
UMDS (Version 6.14)

UMDS User Guide

Contents

1 Introduction 5

1.1 UMDS Overview . 5

1.2 UMDS Architecture . 6

2 UMDS Client 9

2.1 UMDS API . 9

2.2 Server Connection . 9

2.2.1 UMDS Server List . 10

2.2.2 Connecting to Multiple Servers . 10

2.2.3 Client Configuration Properties . 11

2.2.4 Authenticating Applications and Users . 13

2.2.5 Assigning Different Client Settings to Your Application . 13

2.2.6 Application Name . 13

2.3 Receiving . 13

2.4 Sending . 14

2.5 Request and Response Capability . 15

2.6 Using UMDS Late Join . 16

2.6.1 UMDS Late Join Differences . 18

2.6.2 Late Join UMDS Sources . 18

2.7 Using UMDS Persistence . 18

2.7.1 UMDS Persistence uses Session IDs . 20

2.7.2 Configuring UMDS Server for Persistence . 20

2.7.3 Transient Receivers . 21

2.7.4 Persistence and Server Failover . 22

2.7.5 UMDS Persistence Differences . 22

2.8 Using UMDS Client Encryption . 23

2.8.1 UMDS TLS Authentication . 24

2.8.2 Configuring Encryption on Client . 24

2.8.3 Configuring Encryption on Server . 24

2.9 Client Compression . 25

2.10 Log Handling . 25

4 CONTENTS

2.10.1 Size-Based Log Rolling . 26

2.10.2 Time-Based Log Rolling . 26

2.10.3 Combined Log Rolling . 26

3 UMDS Example Client Applications 29

3.1 Java Example Applications . 29

3.1.1 umdsreceive.java . 29

3.1.2 umdssend.java . 29

3.1.3 umdsresponse.java . 30

3.1.4 umdsrequest.java . 30

3.1.5 umdspersistentreceive.java . 31

3.2 .NET Example Applications . 31

3.2.1 umdssend.cs . 31

3.2.2 umdsreceive.cs . 32

3.2.3 umdsresponse.cs . 32

3.2.4 umdsrequest.cs . 33

4 UMDS Server 35

4.1 User Authentication . 36

4.2 Client Application Parameters . 36

4.3 Keep Alive Timers During Idle Periods . 37

4.4 Message Queues . 38

4.4.1 Per-Topic Message Queues . 39

4.4.2 Configuring Message Queue Size . 39

4.4.3 Approximating Per-Queue Memory Use . 39

4.4.4 Approximating the Number of Messages Per Queue . 40

4.4.5 Calculating Optimal Queue Size Limits . 40

4.5 Worker Configuration Guidelines . 40

4.5.1 Increasing Number of UMDS Workers . 41

4.5.2 Workers CPU Cores and Performance . 41

4.5.3 Workers Versus Client Load . 41

5 Umdsd Man Page 43

6 Daemon Statistics 45

6.1 Daemon Statistics Structures . 45

6.2 Daemon Statistics Binary Data . 45

6.3 Daemon Statistics Versioning . 46

6.4 Daemon Statistics Requests . 46

6.5 UMDS Daemon Statistics Structures . 46

6.6 UMDS Daemon Statistics Byte Swapping . 47

CONTENTS 5

6.7 UMDS Daemon Statistics String Buffers . 47

6.8 UMDS Daemon Statistics Configuration . 47

6.9 UMDS Daemon Statistics Requests . 48

6.10 UMDS Daemon Statistics Example Files . 49

7 UMDS Web Monitor 51

7.1 Main Menu . 51

7.2 List Current Connections . 51

7.3 Client Details . 53

7.4 Current Server Configuration File . 54

7.5 Dump Current Memory Allocation . 55

7.6 Quit Server . 55

8 UMDS Server Configuration 57

8.1 UMDS Server Configuration File . 57

8.1.1 UMDS Element "<umds-daemon>" . 58

8.1.2 UMDS Element "<daemon>" . 59

8.1.3 UMDS Element "<tls>" . 59

8.1.4 UMDS Element "<cipher-suites>" . 60

8.1.5 UMDS Element "<trusted-certificates>" . 60

8.1.6 UMDS Element "<certificate-key-password>" . 61

8.1.7 UMDS Element "<certificate-key>" . 61

8.1.8 UMDS Element "<certificate>" . 61

8.1.9 UMDS Element "<topics>" . 62

8.1.10 UMDS Element "<topic>" . 62

8.1.11 UMDS Element "<umds-attributes>" . 63

8.1.12 UMDS Element "<option>" . 64

8.1.13 UMDS Element "<monitor>" . 65

8.1.14 UMDS Element "<application-id>" . 66

8.1.15 UMDS Element "<format>" . 66

8.1.16 UMDS Element "<transport>" . 67

8.1.17 UMDS Element "<daemon-monitor>" . 68

8.1.18 UMDS Element "<lbm-config>" . 68

8.1.19 UMDS Element "<remote-config-changes-request>" . 69

8.1.20 UMDS Element "<remote-snapshot-request>" . 69

8.1.21 UMDS Element "<publishing-interval>" . 70

8.1.22 UMDS Element "<group>" . 71

8.1.23 UMDS Element "<web-monitor>" . 72

8.1.24 UMDS Element "<authentication>" . 72

8.1.25 UMDS Element "<basic>" . 73

8.1.26 UMDS Element "<none>" . 73

6 CONTENTS

8.1.27 UMDS Element "<permissions>" . 74

8.1.28 UMDS Element "<can-reqresp>" . 74

8.1.29 UMDS Element "<can-stream>" . 74

8.1.30 UMDS Element "<can-send>" . 74

8.1.31 UMDS Element "<client>" . 75

8.1.32 UMDS Element "<compression>" . 75

8.1.33 UMDS Element "<server-reconnect>" . 76

8.1.34 UMDS Element "<client-nodelay>" . 76

8.1.35 UMDS Element "<client-sndbuf>" . 78

8.1.36 UMDS Element "<client-rcvbuf>" . 79

8.1.37 UMDS Element "<server-nodelay>" . 79

8.1.38 UMDS Element "<server-sndbuf>" . 80

8.1.39 UMDS Element "<server-rcvbuf>" . 81

8.1.40 UMDS Element "<server-ka-threshold>" . 82

8.1.41 UMDS Element "<client-ka-interval>" . 82

8.1.42 UMDS Element "<client-ka-threshold>" . 83

8.1.43 UMDS Element "<server-ka-interval>" . 84

8.1.44 UMDS Element "<server-list>" . 85

8.1.45 UMDS Element "<server>" . 86

8.1.46 UMDS Element "<lbm-license-file>" . 87

8.1.47 UMDS Element "<pidfile>" . 87

8.1.48 UMDS Element "<gid>" . 88

8.1.49 UMDS Element "<uid>" . 88

8.1.50 UMDS Element "<log>" . 89

8.1.51 UMDS Receiver Topic Options . 90

8.1.52 UMDS Source Topic Options . 91

8.2 UM License File . 91

8.3 UM Configuration File . 91

8.4 Basic Authentication File . 92

8.4.1 UMDS application Element . 92

8.4.2 UMDS user Element . 92

8.5 UMDS Configuration DTD . 93

8.6 Example UMDS Configuration Files . 95

8.6.1 Minimum Configuration File . 96

8.6.2 Typical Configuration File . 96

8.6.3 Complete Configuration File . 97

8.6.4 Sample UM Configuration File . 99

8.6.5 Sample Authentication File . 100

9 UMDS Log Messages 103

Chapter 1

Introduction

(C) Copyright 2004,2024 Informatica Inc. All Rights Reserved.

This software and documentation are provided only under a separate license agreement containing restrictions
on use and disclosure. No part of this document may be reproduced or transmitted in any form, by any means
(electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

A current list of Informatica trademarks is available on the web at https://www.informatica.←↩
com/trademarks.html.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party
notices are included with the product.

This software is protected by patents as detailed at https://www.informatica.com/legal/patents.←↩
html.

The information in this documentation is subject to change without notice. If you find any problems in this documen-
tation, please report them to us in writing at Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are
provided.
INFORMATICA LLC PROVIDES THE INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FIT←↩
NESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

1.1 UMDS Overview

This document introduces the basic concepts and design approaches used by Ultra Messaging Desktop Services
(UMDS). The reader is assumed to already be familiar with basic UM concepts. See the Ultra Messaging
documentation set for full information about UM.

Ultra Messaging Desktop Services (UMDS) extends Ultra Messaging to diverse desktop networks throughout an
enterprise. With the UMDS client-server model, desktop applications can receive and send topic-based messages.

The UMDS Server runs on a server-class machine and communicates over TCP connections with desktop-class
machines. A UMDS Server can also communicate with other Ultra Messaging components, such as UMS applica-
tions and other UMDS Servers.

Customer desktop applications call the UMDS API to send and receive messages over a TCP connection to the
UMDS Server. This API is a subset of Ultra Messaging functionality, for Java and .NET. The UMDS Server routes
messages to clients according to topic interest. The UMDS Server also routes messages between desktop UMDS
Client applications and other Ultra Messaging components.

You can centrally manage UMDS Client functionality from the UMDS Server, and use the Web Monitor to view client

https://www.informatica.com/trademarks.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/legal/patents.html
https://www.informatica.com/legal/patents.html
https://ultramessaging.github.io/currdoc/
https://ultramessaging.github.io/currdoc/

8 Introduction

connection statistics and the server's current configuration file.

UMDS supports redundant servers so that if one server fails, clients can reconnect to an alternate server and
resume messaging (see UMDS Server List).

Note

In this document, links to the UMDS API reference documentation will always be to the Java API. The .N←↩
ET and Java APIs are identical for all practical purposes, and the two reference documents can be used
interchangeably.

1.2 UMDS Architecture

A UMDS implementation comprises a UMDS Server daemon and your applications written with UMDS client API
calls. The UMDS Server is an Ultra Messaging daemon that is part of an Ultra Messaging backbone. The UMDS
Server and the UMDS client application communicate using TCP.

1.2 UMDS Architecture 9

10 Introduction

Chapter 2

UMDS Client

UMDS includes the UMDS API, which is a library of Ultra Messaging functions for use by desktop applications. U←↩
MDS Clients communicate with the UMDS Server with TCP connections. You cannot use UDP to connect a UMDS
Client to a UMDS Server.

2.1 UMDS API

The UMDS API is a more compact version of the Ultra Messaging API, intended to provide an easier and more
consistent implementation of Ultra Messaging across enterprise desktops. The API is fully implemented for Java
and .NET.

2.2 Server Connection

A UMDS Client application can create multiple server connections, which can be to the same UMDS Server or
different UMDS Servers.

1. UMDS Client application creates a UMDSServerConnection object.

2. UMDS Client application sets configuration options using the setProperty() method of the UMDSServer←↩
Connection object. At a minimum, the server-list property must be supplied. See Client Configuration
Properties for the full list of properties.

3. UMDS Client initiates the TCP connection using the start() method of the server connection object.

4. UMDS Client logs into the server and receives configuration parameters. The application detects completion
using the isAuthenticated() method of the server connection object.

5. UMDS Client application creates sources (UMDSSource objects). and/or receivers (UMDSReceiver ob-
jects). Messages are sent and/or received using those objects.

6. After it no longer needs the sources and/or receivers, the objects must be closed (using the "close()" API).
The UMDS Server acknowledges those closings. The application should not simply let those objects become
"garbage".

7. When finished with all messaging, the UMDS Client closes the server connection using the close() method
of the server connection object.

12 UMDS Client

For a subscriber example application, see umdsreceive.java or umdsreceive.cs. For a publisher exam-
ple application, see umdssend.java or umdssend.cs.

2.2.1 UMDS Server List

The UMDS client must be configured with a server list using the server-list connection property. This property can
be configured with one or more servers.

Having more than one server in the list accomplishes two things:

• Load Sharing. When a UMDS client first initializes, it chooses a random server in the server list to initially
connect to. Thus, if many clients are configured for the same list of servers, they will distribute themselves
uniformly across the active servers.

• Redundancy. If the currently-connected server fails, the UMDS client will automatically fail over to the next
server on the list, wrapping to the start if it reaches the end.

Note that a client is never connected to more than one of these servers at the same time.

Contrast this with Connecting to Multiple Servers.

There is one more interesting use case related to the server list. Most client connection properties can be overridden
by the server. Those overrides can be on an application or even a user basis. In particular, the server list can be
overridden to redirect a client to another server.

You might have a UMDS Server that is used as the initial connection for all UMDS clients. The whole purpose of
that server is to identify the application and user of the client, and override the server list property with a server (or
server list) appropriate for that client. If a client's server list is overridden, the client will disconnect from that server
and then reconnect to a server chosen from the new list.

2.2.2 Connecting to Multiple Servers

A UMDS client can create multiple connections to different UMDS Servers. This involves creating more than one
UMDSServerConnection object, and configuring each one with different server lists. These connections are in-
dependent; a receiver or source created in one does not imply that the same receiver or source is automatically
created in the other. This technique is not used to provide redundancy or load sharing (see UMDS Server List).

Instead, the following use cases are reasons for creating multiple server connections:

• Multiple, Unconnected UM TRDs. Although rare, some users have multiple instances of UM which are not
interconnected. Each instance consists a TRD, or multiple TRDs connected with DROs. But the instances
themselves are not routed to each other. No communication happens between these instances.

For a client to exchange messages with both instances, separate UMDS Servers must be deployed in each
instance. A UMDS client can create separate connection objects and connect to each of them.

• Streaming and Persistence. A UMDS Server can be configured either for streaming (the default) or for
persistence. When configured for steaming, the UMDS Server can receive messages from both streaming
and persistent sources. However, when receiving from persistent sources, the persistence functionality is not
used.

A UMDS Server configured for persistence will implement the limited UMDS persistence functionality. How-
ever, this server cannot receive messages from streaming sources.

For a UMDS client to get persistence functionality for persisted sources, and still be able to receive mes-
sages from streaming sources, two UMDS Servers need to be deployed. The UMDS client can create two
connection objects and connect separately to the two servers.

https://ultramessaging.github.io/currdoc/doc/Design/fundamentalconcepts.html#topicresolutiondomain

2.2 Server Connection 13

Note that streaming and persisted sources should not use the same topic names. UMDS is not designed for
use cases where streaming and persisted sources share the same topics.

For more information, see UMDS Persistence Differences.

2.2.3 Client Configuration Properties

The UMDS Server connection object, class UMDSServerConnection, has properties that can be set by the client
application. Unlike Ultra Messaging, the UMDS client does not read a file containing configuration options. Instead,
the application must set properties using the setProperty() method of the UMDSServerConnection object.

Properties should be set after the UMDSServerConnection object is created but before it is connected (with UM←↩
DSServerConnection.start()).

Note that most of these properties represent client requests to set an operating parameter. The UMDS Server's
configuration might restrict the client's ability to set these properties. See the child elements for the servers config-
uration element <client>. In the list below, those properties that can be controlled by the server are indicated by
a link to the server's corresponding configuration element. Those properties without a link are purely controlled by
the client.

Here are the UMDSServerConnection properties that can be set:

Property Description Default

server-list Comma-separated list of IP:Port ad-
dresses for one or more UMDS Servers
for the client to initially connect to. Using
multiple servers provides redundancy. If
the currently-connected server fails, the
UMDS client will connect to another server
in the list.
See UMDS Server List for more informa-
tion.
Note that the UMDS Server is able to
overwrite this after connection. See the
server's configuration element <server-
list>.
EXAMPLE: serverConn.set←↩
Property("server-list",
"10.29.0.1:12000,10.29.←↩
1.1:12000");

(none, must be specified)

user User name for authentication. See Authen-
ticating Applications and Users.

(none)

password Password for authentication. This is not a
secure password. See Authenticating Ap-
plications and Users.

(none)

appl-name Application name for authentication. See
Authenticating Applications and Users.

(none)

server-ka-interval Time in milliseconds between keepalive
messages from the server. See the
server's configuration element <server-ka-
interval>.

2000 (2 sec)

server-ka-threshold Number of milliseconds of silence to
wait before connection is declared dead.
See the server's configuration element
<server-ka-threshold>.

11000 (11 sec)

14 UMDS Client

Property Description Default

server-rcvbuf Specify the UMDS Server's TCP's SO_←↩
RCVBUF (receive-side socket buffer size)
in its connection to the client. See the
server's configuration element <server-
rcvbuf>.

65536 (bytes)

server-sndbuf Specify the UMDS Server's TCP's SO_S←↩
NDBUF (send-side socket buffer size) in its
connection to the client. <server-sndbuf>.

65536 (bytes)

server-nodelay Specify if the UMDS Server's TCP connec-
tion to the client should set the TCP_NO←↩
DELAY socket option, which disables Na-
gle's algorithm. See the server's configura-
tion element <server-nodelay>.

0 (Nagle is enabled)

server-reconnect Indicates whether the client should attempt
to reconnect to the server if the connection
fails. See the server's configuration ele-
ment <server-reconnect>.

1 (enable auto reconnect)

client-ka-interval Milliseconds between keep-alive mes-
sages from the client. See the server's
configuration element <client-ka-
interval>.

3000 (3 sec)

client-ka-threshold Number of milliseconds of silence to wait
before connection is declared dead. See
the server's configuration element <client-
ka-threshold>.

10000 (10 sec)

client-rcvbuf Specify the UMDS client's TCP's SO_←↩
RCVBUF (receive-side socket buffer size)
in its connection to the server. See
the server's configuration element <client-
rcvbuf>.

65536 (bytes)

client-sndbuf Specify the UMDS client's TCP's SO_SN←↩
DBUF (send-side socket buffer size) in its
connection to the server. See the server's
configuration element <client-sndbuf>.

65536 (bytes)

client-nodelay Specify if the UMDS client's TCP connec-
tion to the server should set the TCP_N←↩
ODELAY socket option, which disables Na-
gle's algorithm.

1 (Nagle disabled)

use-tls Direct the UMDS client to connect to the
server using encryption. See Using UMDS
Client Encryption.

0 (no encryption).

truststore Name of custom trust store file. If omitted,
the operating system's default trust store is
used. Java only; not supported for .NET.

(none)

truststore-password Password for trust store. If omitted, no
password will be applied when accessing
the trust store.

(none)

2.3 Receiving 15

2.2.4 Authenticating Applications and Users

You can authenticate either UMDS Client applications or individual desktop users when they connect to the server.
By default, UMDS automatically authenticates all clients during the connection phase.

Warning

The UMDS authentication system is for identification purposes only. The password is intended to prevent
accidental misidentification. It NOT intended to provide security. By default, passwords are transmitted across
the network in cleartext, and the server stores passwords in cleartext. See the Using UMDS Client Encryption
feature if you need a secure connection.

You can embed user passwords in a UMDS Client application or provide users with a login prompt. UMDS does
not provide a login prompt facility. If you choose to authenticate applications or users, the application must supply
a password property using the setProperty() method of the UMDSServerConnection object. For an example,
view the example application umdssend.java and search for svrconn.setProperty("password",
password).

If an application or desktop user requires authentication upon connection to the UMDS Server, set the application
name, user name, and password in a Basic Authentication File. UMDS formats and transmits these parameters
when requesting a connection.

2.2.5 Assigning Different Client Settings to Your Application

If your application requires different operating parameters from the UMDS Server, set the application name and
parameters in a Basic Authentication File. UMDS formats and transmits these parameters when requesting a
connection.

2.2.6 Application Name

UMDS Server administrators use the application name to identify the client applications connected to the server.
Application developers should coordinate their application names with the server administrator to ensure proper
connections and authentication.

2.3 Receiving

A UMDS Client application uses the UMDSReceiver. class to start a receiver object and subscribe to a topic. This
creates a UMS proxy receiver object at the UMDS Server to listen for topic messages from other Ultra Messaging
applications, including other UMDS client applications. As the UMDS Server receives messages for that topic, the
UMDS Server routes the message to the proper UMDS Client applications.

In the following figure, a UMDS Client application subscribes to a topic. The UMDS Client application then receives
a message on the topic from a remote Ultra Messaging sending application.

16 UMDS Client

1. The UMDS Client application creates a UMDS receiver object. The UMDS client library tells the server,
including the subscribed topic.

2. The UMDS Server creates a UM "proxy" receiver facing the UM backbone, and acknowledges the receiver
creation to the client.

3. The server's UM proxy receiver receives messages, which the server forwards to the client.

2.4 Sending

A UMDS Client application uses UMDSSource.send(). to send messages on a topic to the UMDS Server. The
UMDS Server then uses a proxy source to stream these messages.

The following figure shows a UMDS Client application sending a message to all receivers listening on the topic.

A UMDS Client send performs the following steps.

1. UMDS Client application uses UMDSSource.send(). to send a message to the UMDS Server.

2. UMDS Server multicasts the message to the Ultra Messaging Backbone.

2.5 Request and Response Capability 17

3. UMDS Server uses Ultra Messaging to send the message to other UMDS Client applications subscribed to
the topic.

Clients use nonblocking sends to send messages. If the send results in an EWOULDBLOCK, the UMDS Server
temporarily disables the UMDS Client send socket, which applies back pressure to the client application. The UMDS
Server automatically resends the message when the Ultra Messaging source transport unblocks.

You can also write UMDS Client applications that send Immediate Messages.

2.5 Request and Response Capability

UMDS clients can issue requests, and can send and receive responses, by using the UMDS client interface. UMDS
clients can exchange requests and responses with other UMDS clients or with non-UMDS Ultra Messaging sources
and receivers.

You cannot explicitly cancel a request issued by a UMDS client. UMDS client requests automatically time out after
a server-configured period. The server-configured period applies to all clients.

The following figure shows UMDS requests and responses:

The following table describes the request and response operations shown in the preceding figure:

Operation Description C# and Java Method

Request The sending application sends a request through a UMDS
source object. The request_id parameter must be a 32-
bit integer.

request()

Send Request The UMDS Server forwards the request across the UM net-
work.

Request Callback The receiver object issues a callback to the receiving appli-
cation. The receipt of the callback indicates the receipt of a
request.

onRequest()

Response(s) The receiver sends zero or more responses. respond()

18 UMDS Client

Send Response(s) The UMDS Server forwards the response across the UM net-
work.

n/a

Response Callback(s) The source object that sent the request issues one or more
callbacks to the sending application. The receipt of the call-
backs indicates the receipt of a response.

onResponse()

Request Timeout Each request has its own timeout period. When the configured
timeout expires on the UMDS Server, the UMDS Server sends
a request timeout notification to the sending client's onEvent
callback. The timeout notification indicates that the request is
closed, and that the source will deliver no more responses for
that particular request. Requests always time out regardless of
the number of responses received. A sending client must send
new requests if it is dissatisfied with the number of responses.
The server sends timeout notification messages to the sending
client. Therefore, if the client disconnects from the server, the
client cannot receive timeout notifications. When a client dis-
connects, the UMDS Server cancels all outstanding requests
without notification. If the client reconnects, the server does
not send to the client any responses or timeout notifications for
the requests that the client issued before it disconnected.

onEvent()

2.6 Using UMDS Late Join

The UMDS Server can provide a "Late Join" service to UMDS clients. The Late Join feature allows a new subscriber
to a topic to receive previously-sent messages prior to receiving "live" messages from the topic's sources. The UM←↩
DS Late Join feature is a simplification of the Ultra Messaging Late Join feature (see UMDS Late Join Differences).

Note

This section describes the "streaming receiver" Late Join feature, not "persistence". By default, UMDS does
not participate in Persistence. If desired, UMDS can be configured to participate in Persistence; see Using
UMDS Persistence. However, note that UMDS Late Join and UMDS Persistence cannot both be enabled.
UMDS Late Join is a streaming feature, and a UMDS Server configured for persistence does not work with
streaming sources.

2.6 Using UMDS Late Join 19

With Late Join enabled, the first application that subscribes to a topic causes the UMDS Server to create a UM
"proxy" receiver for that topic, which initiates a Late Join request to the UM source(s) for that topic. The UMDS
Server also creates a message cache for the topic and stores all received messages there. The cache is a fixed
size; once it fills, new messages will push out the oldest messages. The purpose of the cache is to provide efficient
Late Join service to subsequent UMDS clients.

During the initial late joining from the source, recovered messages will be forwarded to the UMDS client with the
message's recovered flag set to true, indicating that the message is not "live". When the server's UM proxy receiver
switches to live messages, those will be forwarded to the UMDS client with "recovered" set to false.

The amount of recovery data made available to UMDS clients is normally limited by the smaller of:

• The source's retransmit_retention_size_limit (source),

• The UMDS Server's message cache size - see "message-cache-size" option of the UMDS Receiver Topic
Options.

When a second UMDS Client application subscribes to the same topic, it receives Late Join recovery from the U←↩
MDS Server message cache, not from the source's retention buffer. Those recovered messages will be forwarded
to the UMDS client with the message's recovered flag set to true, indicating that the message is not "live". When
the server switches to live messages, those will be forwarded to the UMDS client with "recovered" set to false.

Note that if the UM source's retention size limit holds fewer messages than the UMDS Server's message cache size,
live messages from the source will populate the additional space in the server's message cache. Thus, subsequent
UMDS receivers for the topic can recover more messages than are retained in the source's retention buffer.

If there are multiple UM sources for the topic, the UMDS Server will add messages from all sources to the same
message cache. Thus, the number of recovered messages from a given source can be smaller than the message
cache size.

By default, Late Join is disabled for UMDS Client receive applications. To configure UMDS Client receiving applica-
tions to use Late Join, you must at a minimum set the "use-late-join" option in the UMDS Receiver Topic Options to
1, and set the "message-cache-size" option of the UMDS Receiver Topic Options.

The following example shows part of a UMDS Server Configuration File that sets the options related to a UMDS
Client receiving application that uses Late Join on topic orderAW.

<topic pattern="orderAW" type="direct">
<umds-attributes>
<option type="umds-receiver" name="use-late-join" value="1" />
<option type="umds-receiver" name="message-cache-size" value="10" />
<option type="lbm-receiver" name="use_late_join" value="1" />
<option type="lbm-receiver" name="late_join_info_request_interval"

value="1000" />
<option type="lbm-receiver" name="late_join_info_request_maximum"

value="60" />
<option type="lbm-receiver" name="retransmit_initial_sequence_number_request"

value="1" />
<option type="lbm-receiver" name="retransmit_message_caching_proximity"

value="2147483647" />
<option type="lbm-receiver" name="retransmit_request_interval"

value="500" />
<option type="lbm-receiver" name="retransmit_request_message_timeout"

value="10000" />
</umds-attributes>

</topic>

Note

To use the Late Join feature, the message cache type is configured to "normal" (the default). See <server>'s
"message-cache-type" attribute.

https://ultramessaging.github.io/currdoc/doc/Config/grplatejoin.html#retransmitretentionsizelimitsource

20 UMDS Client

2.6.1 UMDS Late Join Differences

UMDS Late Join is a simplification of the UM Late Join. Be aware of these differences:

• UMDS's message cache is sized in units of messages. Thus, the amount of memory consumed by the
message cache can vary, depending on the sizes of application messages.
In contrast, the UM late join retention buffer is sized in units of bytes. Thus, a UM source's retention buffer
will hold different numbers of application messages, depending on the sizes of those messages.

• A given topic's UMDS Server's message cache is populated from all sources for that topic. The number of
messages from a given source will depend on the message rates of the other sources for the same topic. A
very active source can, in effect, monopolize the cache, resulting in few, if any, messages from other less-
active sources.
In contrast, the UM late join retention buffer is implemented at each UM source, guaranteeing a certain
amount of recoverable message data from each UM source.

• The first UMDS subscriber for a given topic will receive its late join recovery messages directly from the
server's UM proxy receiver. The amount of recovered data will depend on the UM sources' configured late
join retention buffer sizes. This could significantly exceed the configured message cache size
("message-cache-size" option in the UMDS Receiver Topic Options).
In contrast, subsequent UMDS subscribers for the same topic will receive their late join recovery messages
from the server's message cache. The amount of recovered data will not exceed the configured message
cache size.

2.6.2 Late Join UMDS Sources

You can enable Late Join for UMDS sources in the same manner as for standard Ultra Messaging sources. This
must be done on the UMDS Server via its configuration file. The following example excerpt from a UMDS Server
Configuration File shows how to enable Late Join for topic orderAW. The example also shows other relevant
source Late Join options.

<topic pattern="orderAW" type="direct">
<umds-attributes>
<option type="lbm-source" name="late_join" value="1" />
<option type="lbm-source" name="retransmit_retention_age_threshold"

value="0" />
<option type="lbm-source" name="retransmit_retention_size_limit"

value="25165824" />
<option type="lbm-source" name="retransmit_retention_size_threshold"

value="100" />
</umds-attributes>

</topic>

For more information about Late Join source configuration options, see the Ultra Messaging Configuration Guide.

2.7 Using UMDS Persistence

UMDS can be configured to participate in Persistence. Note that UMDS's persistence semantics are simplified
from native UM's persistence.

Also note that UMDS Persistence functionality is similar to UMDS Late Join functionality. But there are important
differences between these features:

https://ultramessaging.github.io/currdoc/doc/Config/grplatejoin.html#retransmitretentionsizelimitsource
https://ultramessaging.github.io/currdoc/doc/Config/grplatejoin.html#retransmitretentionsizelimitsource
https://ultramessaging.github.io/currdoc/doc/Design/fundamentalconcepts.html#persistence

2.7 Using UMDS Persistence 21

• UMDS recovery data is saved in a message cache that is specific to individual sources.
In contrast, UMDS Late Join uses a single message cache for all sources to a particular topic.
UMDS clients can control the starting point for recovery.
In contrast, UMDS Late Join always attempts to recover a full message cache.

Because of these differences, it is not possible to enable both UMDS Late Join and UMDS Persistence at the same
time.

Note

Only Source-Paced Persistence (SPP) persistence is supported. UM's Receiver-Paced Persistence (RPP)
persistence should not be used. See persistence modes in Persistence Concepts.

With Persistence enabled, the first application that subscribes to a topic causes the UMDS Server to create a UM
"proxy" receiver for that topic, which registers with the UM Stores and starts a recovery operation of previously-
sent messages. The UMDS Server also creates a message cache for the topic/session ID, and stores all received
messages there. The cache is a fixed size; once it fills, new messages will push out the oldest messages. The
purpose of the cache is to provide efficient recovery service to subsequent UMDS clients.

During the initial persistence recovery from the Store, recovered messages will be forwarded to the UMDS client
with the message's recovered flag set to true, indicating that the message is not "live". When the server's UM proxy
receiver switches to live messages, those will be forwarded to the UMDS client with "recovered" set to false.

When a second UMDS Client application subscribes to the same topic, it receives recovery data from the UMDS
Server message cache, not from the Store. Those recovered messages will be forwarded to the UMDS client with
the message's recovered flag set to true, indicating that the message is not "live". When the server switches to live
messages, those will be forwarded to the UMDS client with "recovered" set to false.

Central to UMDS's support for persistence is its use of message caches. This is very similar to the message caches
used by UMSD's Late Join functionality (see Using UMDS Late Join), but with an important difference: UMDS
creates multiple caches for a given receiver corresponding to the different persistent sources joined. For example,
if there are two persistent sources for topic "ABC", the UMDS Server will create two independent message caches,
one for each source. A persisted source's session ID is used as the key to differentiate it from other persisted
sources for the same topic.

To use UMDS Persistence, the UMDS Server must be configured for persistence and the UMDS client must create
persistent receivers using the class UMDSPersistentReceiver. If an application needs to receive some persisted
messages and some streaming messages, it will need to connect to two different UMDS Servers, one configured
for persistence and the other not.

The steps in receiving a persisted message are largely the same as receiving a non-persisted message. See Server
Connection. However, instead of creating a UMDSReceiver object, the client creates a UMDSPersistentReceiver
object.

https://ultramessaging.github.io/currdoc/doc/UME/persistenceconcepts.html

22 UMDS Client

After the UMDSPersistentReceiver object is created, UMDS invokes an application callback (using the UMDS←↩
ReceiverRecoveryInfoCallback object) when the receiver is associated with a persistent source. That callback
provides persistence information related to that source, and allows the application to control recovery. If there is
more than one persisted source for a receiver's topic, the callback will be invoked multiple times, once for each
source. Each source can have different persistence information (session ID, low sequence number, etc.).

The primary job of the application's recovery callback is to decide which messages should be recovered. Unlike
UM persistent receivers, UMDS does not attempt to remember where persistent receivers left off. Instead, the
application is told the earliest sequence number available in the Store's message cache, and the application can
override it to define where message recovery starts.

See the example application umdspersistentreceive.java or umdspersistentreceive.cs.

2.7.1 UMDS Persistence uses Session IDs

With UM persistence, publishers can use either session IDs or registration IDs. To be compatible with UMDS
persistence, UM publishers must use session IDs. See Managing RegIDs with Session IDs.

UMDS uses the sources' session IDs to:

• Manage multiple message caches per topic, one cache per source. The source's session ID is used to route
to the proper message cache.

• Manage recovery information callbacks to the UDMS client application. The application access persistence
information by session ID.

• As messages are received, the UMDSMessage class contains the public member source_session_id that
indicates which source it came from. The application is responsible for keeping track of processed message
sequence numbers (using the seqnum public member) on a topic/session_id basis.

2.7.2 Configuring UMDS Server for Persistence

An instance (process) of the UMDS Server can be configured to participate in UM persistence. If so, that server will
not receive messages from a non-persisted source.

On the other hand, if the UMDS Server is configured for normal operation (not persistence), that server will be able
to receive messages from both persisted and non-persisted sources. However, for persisted sources, the UMDS
Server will not "participate" in the persistence. I.e. the server will not be able to recover missed messages. A
persisted source will be treated the same as a non-persisted source.

If a client application needs to participate in persistence for some topics, but also wants to receive messages from
non-persisted sources for other topics, two instances of the UMDS Servers will need to be available: one configured
for persistence and the other not.

To configure a server for persistence, do the following:

• Set the "message-cache-type" attribute of the UMDS Element "<server>" to "source-session-id". For
example:

<server message-cache-type="source-session-id" ... />

• Set the "use-late-join" option in the UMDS Receiver Topic Options to 1. For example:

<topics>
<topic ...>

https://ultramessaging.github.io/currdoc/doc/UME/registrationidentifiers.html#managingregidswithsessionids

2.7 Using UMDS Persistence 23

<umds-attributes>
<option type="umds-receiver" name="use-late-join" value="1" />

...

• Set the "message-cache-size" option in the UMDS Receiver Topic Options to the number of messages that
should be cached. For example:

<topics>
<topic ...>

<umds-attributes>
<option type="umds-receiver" name="message-cache-size" value="100" />

...

• Set the "message-cache-deletion-delay" option in the UMDS Receiver Topic Options to the number of mil-
liseconds a message cache should be maintained after all UMDS clients delete their persistent receivers for
that topic. For example, to set the deletion timer to 1 hour:

<topics>
<topic ...>

<umds-attributes>
<option type="umds-receiver" name="message-cache-deletion-delay" value="3600000" />

...

The purpose for not deleting the message cache immediate when all client receivers are deleted is to be more
efficient if a short time later a client reconnects and re-creates the receiver, as with the Transient Receivers
use case.

See UMDS Server Configuration for full details.

2.7.3 Transient Receivers

A common use case for UMDS persistence is called "transient receivers." In this use case, an application does not
stay connected to the UMDS Server for long periods of time. Instead, an application might connect to the server,
create sources and persistent receivers, perform a limited set of transactions, and then disconnect. Many seconds
or minutes might pass between connections.

In this use case, the application remembers the sequence number of the last message it received during its previous
connection, and uses that to control recovery.

Here is a sequence that describes the use case. Let's assume that the UMDS Server is configured to hold 50
messages in its message cache.

1. The last time the client application was connected, it last received message number 100. At this point, the
UMDS Server's message cache contains 51-100.

2. While the client application is disconnected, the source sends messages 101-110. At this point, the UMDS
Server's message cache contains 61-110.

3. The client application reconnects. When UMDS invokes the UMDSReceiverRecoveryInfoCallback object,
the application learns that the low sequence number in the message cache is 61. But the application remem-
bers that its last received message was 100. So it overrides the low sequence number to 101.

4. The Server delivers messages 101-110 to the client application, followed by any live messages sent by the
source while the application is connected.

Note that if there is more than one persistent source for a subscribed topic, each one will have its own independent
sequence number. Each received message is delivered in a UMDSMessage object. The source_session_id
public member indicates which source it came from. The application is responsible for keeping track of processed

24 UMDS Client

message sequence numbers (using the seqnum public member) on a topic/session_id basis. This allows the client
to disconnect and reconnect and specify the starting point for recovery when the UMDSReceiverRecoveryInfo←↩
Callback is invoked.

If the client application exits and restarts with no knowledge of its last received message, it can leave the low
sequence number unchanged, and the server will deliver all messages stored in its message cache.

The "message-cache-deletion-delay" option in the UMDS Receiver Topic Options should be set to the maximum
number of milliseconds that a transient receiver is expected to remain disconnected. If a server has no persistent
client receivers for a given message cache for more than that time, UMDS will delete the message cache.

If a UMDS client application subsequently creates a persistent receiver for that topic, the UMDS Server will need to
re-create the message cache, re-register with the UM Store, and recover messages from UM's persistence. This is
not an error condition, but it introduces delays and inefficiency.

2.7.4 Persistence and Server Failover

The UMDS persistence feature is also useful for recovering messages that were sent when a UMDS Server fails
and a client needs to switch to an alternate server. (Both servers must be configured for persistence.)

When a UMDS client detects that its currently connected server has failed, it can fail over to a different configured
server (see UMDS Server List). As with Transient Receivers, the application keeps track of its last received message
from each source. When it re-creates its proxy receiver, that new server will use UM's persistence to recover data
from the UM Store. Then, a new set of recovery callbacks are made. The application should supply the next
expected sequence number for each session ID, and the UMDS Server will recover any missed messages.

2.7.5 UMDS Persistence Differences

Users of UM persistence will see some differences in how UMDS persistent receivers behave. This section outlines
some differences and limitations of UMDS persistence.

• A UMDS client can only create persistent receivers. Persistent publishing is not supported by UMDS.

• A UMDS Server configured for persistence must be used only for persistent sources using a session ID.
A UM source that is not persisted with a session ID will generate an error and no messages will be accepted
(see UMDS Persistence uses Session IDs). A UMDS client that creates a non-persistent receiver will be
rejected (disconnected).
(In contrast, a UM receiver can be configured to accept both persistent and non-persistent sources.)

• Only UM's SPP persistence (the default) is supported. RPP should not be used.

• A UMDS client that creates a persistent receiver but connects to a non-persistent server will be rejected
(disconnected).

• The amount of recovery data made available to UMDS clients is normally limited by the smaller of:

– The Store's UM Persistent Store's disk repository size,

– The UMDS Server's message cache size - see "message-cache-size" option of the UMDS Receiver
Topic Options. Note that a Store's disk repository can typically be made much larger than the UMDS
Server's message cache, since the latter is stored in memory. Thus, the server's message cache size
is typically the limiting factor for the number of messages that can be recovered by UMDS persistent
receivers.

https://ultramessaging.github.io/currdoc/doc/UME/registrationidentifiers.html#managingregidswithsessionids
https://ultramessaging.github.io/currdoc/doc/UME/persistencearchitecture.html#repositorythresholdsandlimits

2.8 Using UMDS Client Encryption 25

• Whereas an Ultra Messaging persistent subscriber acknowledges consumption of received message, the
UMDS persistent subscriber does not. Thus, the UMDS Server does not remember which message a sub-
scriber last consumed. No attempt is made by UMDS to inform a restarted receiver the sequence number it
should recover from. Instead, the receiver is informed of the oldest sequence number available in the Server.

• When a UMDS client creates a persistent receiver, a series of one or more handshakes is made with the
UMDS Server to associate the receiver with UM persistent sources of the desired topic. The application
is informed of the oldest (lowest) sequence number stored in the server's message cache for each unique
UM persisted source, and the application has the option of overriding that sequence number as its recovery
starting place.

However, due to the time required to handshake the sequence number, it is possible that the desired recovery
starting sequence number is no longer in the server's message cache.

• UM Persistence leverages the UM Late Join functionality. UM persistent sources and receivers must be
enabled for Late Join. In fact, if a UMDS Server is configured for persistence, the UM proxy receiver in the
server must be configured for Late Join.

However, the UMDS persistence and Late Join features are implemented differently, and are not compatible
with each other. UMDS Late Join is a streaming feature, and a UMDS Server configured for persistence does
not work with streaming sources.

• UMDS's message cache lifetime is not coordinated with the UM Store's source repository lifetime. With UM
persistence, when a persisted source exits, the Store will maintain the sources previously-sent messages
until either the source returns, or until the repository's state lifetime expires. If the source does not return and
the state lifetime expires, subsequent persistent receivers will not be able to recover messages sent by that
source.

However, the UMDS message cache lifetime is associated with UMDS client receiver interest. So long as
at least one UMDS client has a receiver for a persisted topic, the UMDS Server will maintain the message
cache(s) for that topic's sources, even if those sources exit and their UM Store's state lifetimes expire.

2.8 Using UMDS Client Encryption

UMDS supports encrypting the connection between the UMDS Server and client. It makes use of TLS
(Transport Layer Security), sometimes known by its older designation SSL (Secure Sockets Layer),
which is a family of standard protocols and algorithms for securing TCP communication between a client and a
server. TLS supports secure authentication (through certificates), data confidentiality (through encryption), and
data integrity (ensuring data are not changed, removed, or added-to).

The implementation of UMDS's TLS leverages the UM feature Encrypted TCP, but with some important
differences:

• Whereas UM requires an entire Topic Resolution Domain to be configured for encryption, UMDS's encryption
is on a server basis. If a UMDS Server is configured for encryption, all connecting clients must also be
configured for encryption.

• Whereas UM only encrypts the data transports, leaving topic resolution in cleartext, UMDS encrypts its entire
client/server connection. All traffic, both user data and internal control messages, are encrypted.

Note that enabling UMDS client encryption does not enable encryption of the server's UM context. Both can be
enabled, but they are independent. See Encrypted TCP for UM context encryption.

UMDS client encryption is enabled using configuration; no encryption APIs are needed. When the UMDS Server
is configure for encryption, all clients that connect to it must also be configured for encryption. Conversely, if the
UMDS Server is not configured for encryption, none of the clients may be configured for it.

As with UM encryption, UMDS encryption is certificate based. Both the client and server must have a valid TLS
certificate, and each must have the other's public key in its list of valid certificates.

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://ultramessaging.github.io/currdoc/doc/Design/umfeatures.html#encryptedtcp
https://ultramessaging.github.io/currdoc/doc/Design/umfeatures.html#encryptedtcp

26 UMDS Client

Note

The Client Compression feature is not compatible with encryption. If you enable encryption, do not enable
compression.

2.8.1 UMDS TLS Authentication

TLS authentication uses X.509 digital certificates. Certificate creation and management is the responsibility of the
user. Ultra Messaging's usage of OpenSSL expects PEM encoded certificates. There are a variety of generally
available tools for converting certificates between different encodings. Since user infrastructures vary widely, the
UM package does not include tools for creation, formatting, or management of certificates.

A detailed discussion of certificate usage is beyond the scope of the Ultra Messaging documentation. However,
you can find a step-by-step procedure for creating a self-signed X.509 security certificate here: https://kb.←↩
informatica.com/howto/6/Pages/18/432752.aspx

Note

The TLS authentication feature is separate and unrelated to the UMDS user/password authentication feature.
TLS authentication is primarily intended to secure the connecting hosts, not to identify individual users. By
keeping private keys secure, TLS will prevent an unauthorized host from connecting to a UMDS client or
server.

Identification of users and applications should still use the UMDS application/user authentication feature, described
in Authenticating Applications and Users. As explained in that section, the password mechanism implemented there
is not a secure password, and is intended to prevent accidental misidentification.

2.8.2 Configuring Encryption on Client

To use the TLS encryption feature, both the client and the server must be configured for TLS.

To configure the client, setProperty() set the property use-tls to 1 using the method of the UMDSServerConnection
object. For example: serverConn.setProperty("use-tls", "1");

If you are using Java and have a custom key store, you may specify it with the truststore property.

If your trust store is password protected, you can supply the password with the truststore-password property.

2.8.3 Configuring Encryption on Server

To use the TLS encryption feature, both the client and the server must be configured for TLS.

To configure the server, refer to:

• UMDS Element "<tls>"

• UMDS Element "<cipher-suites>"

• UMDS Element "<certificate>"

• UMDS Element "<certificate-key>"

• UMDS Element "<certificate-key-password>"

https://kb.informatica.com/howto/6/Pages/18/432752.aspx
https://kb.informatica.com/howto/6/Pages/18/432752.aspx

2.9 Client Compression 27

• UMDS Element "<trusted-certificates>"

2.9 Client Compression

UMDS supports compressing the connection between the UMDS Server and client. The primary purpose of com-
pression is to reduce the bandwidth requirement, not to improve latency.

• Compression is configured on a UMDS Server basis. I.e. a server is either configured for compression or not
(default is not).

• If a server is configured for compression, all clients must support compression, and must therefore be UMDS
version 6.14 or above.

• If a server is not configured for compression, it can interoperate with UMDS clients running earlier versions of
the UMDS client library. For example a 6.14 server not configured for compression can service UMDS 6.13.1
clients.

• A server configured for compression should not enable encryption; the features are not compatible.

See UMDS Element "<compression>" for configuration information.

2.10 Log Handling

By default, the UMDS Server's log file grows without bound for as long as it is running. If the server is restarted,
it opens the log file in "append" mode and writes new logs to the end of the file. Thus, over time, the log file can
become very large. (This "open with append" behavior is new as of UMDS version 6.14; see Special Upgrade
Instructions for 6.14.)

The "frequency" and "size" attributes for the UMDS Element "<log>" can be used to control the log file length. It
does this by "rolling" the log file - closing the current one and creating a new one with a different name.

With no log rolling, the log file created is exactly as specified by the <log> element. However, if any of the log
rolling attributes are specified, the configured log file name is always appended by a numeric date/time stamp of the
form: ".yyyy-mm-dd.hh.mm.dd". For example, the configuration:

<log type="file" frequency="hourly">umds.log</log>

will create a log file line like this:

umds.log.2024-01-20.09-08-09

This indicates that the log file was created on January 20, 2024 at 9:08:09.

Note

UM log file rolling does not delete old log files. It is still the user's responsibility to delete old log files that are
no longer needed. Informatica recommends retaining at least a week's worth of log files.

28 UMDS Client

2.10.1 Size-Based Log Rolling

By using the "size" attribute to the UMDS Element "<log>" the UMDS Server will close the current log file and
start a new one automatically when it has written the specified number of megabytes (1,000,000 bytes) to the log
file. The new log file will be named according to the date/time that the server creates the new log file.

2.10.2 Time-Based Log Rolling

By using the "frequency" attribute to the UMDS Element "<log>" the UMDS Server will close the current log
file and start a new one automatically at the specified interval. There are three valid values for the "frequency"
attribute:

• disable - do not roll the log file based on time (default).

• hourly - Roll log file when the UMDS Server has been running for a multiple of 60 minutes since it was started.

• daily - Roll log file when the UMDS Server has been running for a multiple of 24 hours since it was started.

Note that the log file rolling does not happen at the start of the hour/day. For example, let's say your server's
configuration contains:

<log type="file" frequency="hourly">umds.log</log>

and it is started on January 1, 2024 at 9:08:09 AM. The initial log file will be named:

umds.log.2024-01-20.09-08-09

Then, 60 minutes later, the server will be ready to roll the log file (close the current and create a new one).

However, the server will not actually roll the log file until the server generates its next log message. Let's say
a client connects at 10:28:03, which generates a log message. This will trigger the UMDS Server to close the
"umds.log.2024-01-20.09-08-09" file and create "umds.log.2024-01-20.10-28-03".

Note that you can even have instances where one or more time periods contain no log files at all. In the above
example, the server will be ready to roll the log file at 11:28:03. However, if the UMDS Server has nothing to log for
three hours, there will be no log file for the 11 o-clock hour or the 12 o-clock hour. log would be at 11:28:03.

2.10.3 Combined Log Rolling

By using both the "size" and "frequency" attributes of the UMDS Element "<log>" the UMDS Server will close the
current log file and start a new one automatically when it has written the specified number of megabytes (1,000,000
bytes) to the log file or at the specified interval. The new log file will be named according to the date/time that the
server creates the new log file.

For example, let's say your server's configuration contains:

<log type="file" size="1" frequency="hourly">umds.log</log>

and it is started on January 1, 2024 at 9:08:09 AM. The initial log file will be named:

umds.log.2024-01-20.09-08-09

For a quickly-growing log file, the file will roll each time 1 megabyte of log messages are written. For a slowly-growing
log file, the file will roll after the hourly interval.

2.10 Log Handling 29

30 UMDS Client

Chapter 3

UMDS Example Client Applications

This section shows usages of included example applications. The same information can be displayed interactively
by running the example with the "-h" command-line option.

3.1 Java Example Applications

3.1.1 umdsreceive.java

Receive messages on a single topic.

Usage: umdsreceive [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login~

"
-c filename = read config file filename
-h = help
-M num_msgs = End after num_msgs received
-N num_topics = Number of topics (receivers)
-s num_secs = print statistics every num_secs along with bandwidth
-S address:port = Server address and port
-U username = set the user name and prompt for password
-T tls = use encrypted communication
-t truststore = truststore file path
-p truststore-password = truststore password
-v = be verbose about each message
-W = Wildcard topic

3.1.2 umdssend.java

Send messages on a single topic.

32 UMDS Example Client Applications

Usage: umdssend [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config parameters from filename
-I Immediate Mode
-h = help
-l len = send messages of len bytes
-L linger = Allow traffic to drain for up to linger seconds

before closing the connection
-M msgs = send msgs number of messages
-N num_topics = Number of topics to send on
-P msec = pause after each send msec milliseconds
-s num_secs = Print statistics every num_secs
-U username = set the user name and prompt for password
-T tls = use encrypted communication
-t truststore = truststore file path
-p truststore-password = truststore password
-v be verbose

3.1.3 umdsresponse.java

Send responses on a single topic.

Usage: umdsresponse [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config file filename
-h = help
-M num_msgs = End after num_msgs received
-N num_topics = Number of topics (receivers)
-r len = send responses of len bytes
-s num_secs = print statistics every num_secs along with bandwidth
-S address:port = Server address and port
-U username = set the user name and prompt for password
-v = be verbose about each message
-W = Wildcard topic

3.1.4 umdsrequest.java

Send requests and messages on a single topic.

Usage: umdsrequest [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config parameters from filename
-I Immediate Mode
-h = help

3.2 .NET Example Applications 33

-l len = send messages of len bytes
-L linger = Allow traffic to drain for up to linger seconds

before closing the connection
-M msgs = send msgs number of messages
-N num_topics = Number of topics to send on
-P msec = pause after each send msec milliseconds
-r len = send requests of len bytes
-s num_secs = Print statistics every num_secs
-U username = set the user name and prompt for password
-v = be verbose in reporting to the console

3.1.5 umdspersistentreceive.java

Receive persisted messages on a single topic.

Usage: umdspersistentreceive [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config file filename
-h = help
-n Set Starting seq number to Starting
-M num_msgs = End after num_msgs received
-N num_topics = Number of topics (receivers)
-s num_secs = print statistics every num_secs along with bandwidth
-S address:port = Server address and port
-U username = set the user name and prompt for password
-T tls = use encrypted communication
-t truststore = truststore file path
-p truststore-password = truststore password
-v = be verbose about each message
-W = Wildcard topic

3.2 .NET Example Applications

3.2.1 umdssend.cs

Send messages on a single topic.

Usage: umdssend [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config parameters from filename

-I Immediate Mode
-h = help

34 UMDS Example Client Applications

-l len = send messages of len bytes
-L linger = Allow traffic to drain for up to linger seconds

before closing the connection
-M msgs = send msgs number of messages
-N num_topics = Number of topics to send on
-P msec = pause after each send msec milliseconds
-s num_secs = Print statistics every num_secs
-U username = set the user name and prompt for password
-v = be verbose in reporting to the console

3.2.2 umdsreceive.cs

Receive messages on a single topic.

Usage: umdsreceive [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config file filename

-h = help
-M num_msgs = End after num_msgs received
-N num_topics = Number of topics (receivers)
-s num_secs = print statistics every num_secs along with bandwidth
-S address:port = Server address and port
-U username = set the user name and prompt for password
-v = be verbose about each message
-W = Wildcard topic

3.2.3 umdsresponse.cs

Send responses on a single topic.

Usage: umdsresponse [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config file filename
-h = help
-M num_msgs = End after num_msgs received
-N num_topics = Number of topics (receivers)
-r response message length
-s num_secs = print statistics every num_secs along with bandwidth
-S address:port = Server address and port
-U username = set the user name and prompt for password
-v = be verbose about each message
-W = Wildcard topic

3.2 .NET Example Applications 35

3.2.4 umdsrequest.cs

Send requests and messages on a single topic.

Usage: umdsrequest [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config parameters from filename
-I Immediate Mode
-h = help
-l len = send messages of len bytes
-L linger = Allow traffic to drain for up to linger seconds

before closing the connection
-M msgs = send msgs number of messages
-N num_topics = Number of topics to send on
-P msec = pause after each send msec milliseconds
-r len = send requests of len bytes
-s num_secs = Print statistics every num_secs
-U username = set the user name and prompt for password
-v = be verbose in reporting to the console

36 UMDS Example Client Applications

Chapter 4

UMDS Server

The UMDS Server is a daemon that enables UMDS Clients to exchange messages with standard Ultra Messag-
ing sending and receiving applications. The following image shows some of the UMDS Server components and
functionality.

The UMDS Server consists of the following components:

• UMDS Server - The UMDS Server is a daemon that contains a standard Ultra Messaging context, which
sends and receives messages.

• Workers - Workers exchange messages with UMDS Client applications over TCP connections. You can
configure and run multiple worker instances to provide parallelism.

• Web Monitor - Use the Web Monitor, a web-based user interface, to control operation of, and view the status
of, the UMDS Server.

• Configuration Options - When the umdsd UMDS Server starts, it reads configuration options from a UMDS
Server Configuration File.

38 UMDS Server

4.1 User Authentication

You can assign a user or application name, or both, and a password, to authenticate your client applications or
individual desktop users. Authentication occurs when a user or application requests a server connection.

You assign user passwords in the UMDS user Element in the Basic Authentication File, which you specify in the
UMDS Element "<authentication>" in the UMDS Server Configuration File. You can specify an application or user
name in the UMDS user Element. If you specify <none> for the UMDS Element "<authentication>" in the UMDS
Server Configuration File, the UMDS Server authenticates all applications and users.

4.2 Client Application Parameters

When a client application requests a server connection, the UMDS Server looks at a sequence of <client> element
settings to determine what parameters to apply to the client application.

Operating parameters control the degree of resource utilization allowed by a client application, such as keep-alive
intervals and thresholds. You can override all client application parameter values from multiple sources.

With overrides, you can select the optimal trade offs between flexibility and centralized control of client configuration.
For example, a deployment that requires control would allow the client application to override fewer settings, which
might simplify the job of the application programmer, but increase the responsibility of the server administrator.

UMDS Server factory defaults are the least restrictive, allowing clients to change any setting. However, you can
configure a more restrictive, generic set of UMDS daemon UMDS Element "<client>" settings that disable client
overrides for certain settings. You can also set up acceptable ranges of values for other settings. Plus, you can then
configure other applications or users to use different settings, which maybe more or less restrictive than the generic
set of parameters.

The following table shows the sequence of UMDS Element "<client>" settings the UMDS Server goes through
when choosing the operating parameters for a particular UMDS Client application connection.

Step Client Settings Used by UMDS Server Can Configure Parameters Can Authenticate User

1 Factory defaults. Requires no action by
either application programmers or UMDS
Server administrator.

Yes No

2 UMDS Server configuration file UMDS El-
ement "<client>" settings. Overrides fac-
tory defaults. You can apply different settings
to different UMDS Servers across the enter-
prise.

Yes No

3 Basic Authentication File
<application>settings. Overrides
UMDS Server Configuration File. These set-
tings indicate one or more client applications
that require different settings from the server
settings in the UMDS Server Configuration
File.

Yes No

4 Basic Authentication File
<user>settings. Override Basic Au-
thentication File <application>.
These settings indicate one or more users
that require either authentication or different
operating parameters or both.

Yes Yes

4.3 Keep Alive Timers During Idle Periods 39

Step Client Settings Used by UMDS Server Can Configure Parameters Can Authenticate User

5 Client application requests of certain set-
tings. UMDS Server Configuration File
and Basic Authentication File settings can
deny the client application requests with the
client-writeattribute for any operation
parameter.

Yes No

The UMDS Server sends the resulting settings to the client application as the final phase of the initial connection
handshake.

Note

For Steps 3 and 4, if you specify no Basic Authentication File and the client application does not provide
a password, the UMDS Server permits the connection. However, the UMDS Server does not apply any
<application>or <user>settings requested by the client application.

4.3 Keep Alive Timers During Idle Periods

UMDS provides keep alive timers so during periods of message inactivity, servers and clients can be aware of any
unresponsiveness. Both the server and client have a keep alive interval and threshold. You configure these timers
in the UMDS Element "<client>" of the umds configuration file.

• The interval defines the time period in milliseconds between keep alive messages sent from either a client
or server to the other (UMDS Element "<client-ka-interval>" and UMDS Element "<server-ka-interval>").
When a client or server sends a data message or keep alive message, it resets the interval.

• The threshold defines the timeout for message traffic from the server or client to the other (keep alive or
otherwise). A timeout results in disconnection. (UMDS Element "<client-ka-threshold>" and UMDS Element
"<server-ka-threshold>"). When a client or server receives a data message or keep alive message, it resets
the threshold.

The following figure shows the interaction of the interval and threshold configuration elements for a server when
traffic from a client ceases.

40 UMDS Server

1. When the server sends a message (data or keepalive) to the client, it resets the server-ka-interval.
During the period when the server sends no data messages to the client, at the end of the
server-ka-interval, it sends a keepalive message and resets the server-ka-interval. It
continues to send keepalive messages at the expiration of the server-ka-interval as long as the
connection exists.

2. When the server receives a message (data or keepalive) from the client, it resets the server-ka-threshold.

3. If the server receives no messages from the client, it disconnects the client when the server-ka-threshold
timer expires.

During periods of inactivity, the interval used by one side prevents the threshold from being reached on the other
side. Therefore, there is a relationship between client-ka-interval and server-ka-threshold and
also between server-ka-interval and client-ka-threshold. The interval should be less than the
related threshold.

4.4 Message Queues

The UMDS Server maintains a message queue for the messages that it forwards to each UMDS Client. This is
called the "default" message queue. Because connections to UMDS Client applications use receiver-paced TCP,
the UMDS Server queues these messages to prevent loss from fast senders.

In the UMDS Server Configuration File, you can configure the default queue's age limit and size limit with the
"msg-age-limit" and "msg-q-size-limit" attributes of the UMDS Element "<server>". The UMDS Server deletes
messages that stay in the queue longer than the age limit. If the queue reaches the configured size limit, the UMDS
Server deletes the oldest messages in the queue to make room for new messages.

4.4 Message Queues 41

Note

When considering memory usage, be aware that when the UMDS Server creates sources and receivers, it
also creates other buffers and caches. Examples include the topic Late Join message cache, and buffers
created using the standard Ultra Messaging configuration options. Note also that when UMDS configuration
files do not specify standard Ultra Messaging configuration options, these options use default values.

4.4.1 Per-Topic Message Queues

In addition to the default queue, the UMDS Server can be configured for one or more "per-topic queues". See the
UMDS Element "<topic>".

Each per-topic queue has its own size limit, independent from the default queue. See UMDS Receiver Topic Options,
option "topic-queue-size-limit". Note that per-topic queues do not have a message age limit.

When per-topic queues are not used, all messages flow through the default queue. When the default queue reaches
its size limit and a new message arrives, the UMDS Server deletes the oldest message. This can be undesirable if
the oldest message is for a different topic than the newest message. For example, suppose you have a price topic
that has a high message rate, and a trade topic that has a much lower message rate. It is very important that every
trade message be delivered, and less important for every price message to be delivered. If the price topic bursts at
too high a rate and the default queue fills, it is undesirable for UMDS to drop trade messages.

By configuring a per-topic queue for the trade topic, trade messages will not be discarded when the default queue
fills with price messages. Only old price messages will be discarded.

Note that when per-topic queues are enabled, message are still delivered to the client in the order that they arrived
at the server. I.e. messages in the per-topic queues do not have a higher delivery priority, they must still wait until it
is their turn to be sent to the client.

Also note that messages in the per-topic queues are still subject to being dropped. In the above example, if the
price topic bursts to a higher rate than the UMDS client can consume, that topic's queue can grow to its limit, at
which point messages can be dropped.

You can configure topics by pattern matching or explicit names (see "type" attribute of UMDS Element "<topic>").

Each queue maintains its own statistics, which you can view in the Web Monitor Client Details page.

Note that if a large number of topics are assigned their own queues, and each queue fills to its maximum
size, this can result in undesirably large memory consumption. The UMDS Element "<server>" attribute
"msg-q-size-limit" can be used to control memory growth.

4.4.2 Configuring Message Queue Size

Use the following information and examples to determine the optimum settings for the queue size configurations,
and to properly size the physical memory contained in the UMDS Server host machine.

4.4.3 Approximating Per-Queue Memory Use

The msg-q-size-limit parameter sets the maximum number of message payload bytes that the UMDS Server
allows in each client's "default" queue before deleting older messages to make room for new messages. The
topic-queue-size-limit parameter does the same thing for per-topic queues. These limits do not include
the Ultra Messaging overhead of approximately 900 bytes per message.

42 UMDS Server

For example, if a message queue contains 2,000 25-byte messages, this total of 50,000 payload bytes does not
exceed the msg-q-size-limit parameter default size of 1,048,576 bytes. However, with the overhead of 900
bytes, the queue actually uses 925 x 2,000 = 1,850,000 bytes.

Note that if per-topic queues are in use, the same calculations apply using the

4.4.4 Approximating the Number of Messages Per Queue

You can calculate the maximum number of messages that fit into a queue if you know the message payload size.
For example, if all messages have a payload size of 25 bytes, then the default configuration of 1,048,576 bytes
indicates that up to (1,048,576 / 25) = 41,943 messages can be enqueued.

When using individual topic queues, each UMDS Client has multiple queues. Thus, the total memory use is the
sum of the memory use of all topic queues.

4.4.5 Calculating Optimal Queue Size Limits

If all connected clients are able to keep up with average message traffic, then the message queue consumes little
or no memory. However, if a burst of high-rate traffic occurs, queues can fill up quickly as clients struggle to keep
up. The following example demonstrates peak memory utilization.

• If each message contains 25 bytes of user data, and the default queue size limit is set to 1,048,576 bytes,
then the queue can grow to contain 41,943 messages.

• If each 25-byte message consumes a total of 925 bytes including the UMDS overhead, a full queue consumes
about 37 MB of memory.

• If 80 client queues all fill to capacity, these queues collectively consume about 3 GB of memory.

4.5 Worker Configuration Guidelines

The default configuration of the UMDS Server assigns three workers to service all client connections. For each
worker, four primary threads process data as follows:

• One Client-to-Server Data Thread: handles all data produced by all sending Clients

• One Server-to-Client Data Thread: handles all data dispatched to all receiving Clients

• Two Ultra Messaging Backbone Context Processing Threads: shared by all workers

– UMS context worker thread processes all UMS streaming data from the Ultra Messaging Backbone,
using UMS unicast and multicast transports.

– MIM context worker thread sends MIM data from sending Clients to the Ultra Messaging Backbone.

Four additional threads handle low volume internal command and control. These threads require a small fraction of
the processing done by the primary threads.

4.5 Worker Configuration Guidelines 43

4.5.1 Increasing Number of UMDS Workers

For each additional worker configured, the number of Client to Server Data Threads and Server to Client Data
Threads increases by one. For example, four workers will result in four Client to Server Data Threads and four
Server to Client Data Threads. Regardless of the number of workers configured, UMDS uses only two Informatica
High Speed Message Backbone Processing Threads and 4 additional low volume command and control threads.

4.5.2 Workers CPU Cores and Performance

Due to the number of primary threads as described above, increasing the number of workers does not necessarily
increase performance if the number of CPU Cores is four or less. For systems with greater than four cores, set
the number of workers so the number of primary threads never exceeds the number of CPU Cores. See the table
below.

Workers Client to Server
Threads

Server to Client
Threads

Ultra Messaging
Threads

Number of Pri-
mary Threads

Number of C←↩
PU Cores Rec-
ommended

1 1 1 2 4 4 or less

2 2 2 2 6 6

3 3 3 2 8 8

4 4 4 2 10 10

Proper performance analysis to determine the optimal configuration is recommended.

4.5.3 Workers Versus Client Load

Using multiple workers distributes work load among multiple threads. UMDS assigns each new client connection to
a worker in round robin fashion. For the case of 1 worker, the single worker manages all client connections. If you
configure two workers, then each worker services half the clients. Note, however, the following two limitations:

• The server does not perform any load balancing of clients. For example, if two workers are servicing three
clients each, but one of the six clients produces and/or consumes all the data, that client's worker will not
distribute any processing chores to the other worker.

• UMDS assigns new clients to workers in a round-robin fashion without regard to the current load. If, for
example, a number of clients are evenly distributed across the workers and then all the clients assigned to
a single worker disconnect, the UMDS Server does not move any clients to the idle worker. In addition, new
connections continue to be assigned in a round-robin fashion.

44 UMDS Server

Chapter 5

Umdsd Man Page

umdsd options configfile

Description

umdsd runs the UMDS Server and requires a UMDS Server Configuration File.

Options

-d or -dump-dtd - option dumps the DTD file used to validate the UMDS Server Configuration File to standard
output. After dumping the DTD, umdsd exits instead of initiating the UMDS Server.

-v or -validate - option validates the UMDS Server Configuration File against the DTD. After attempting vali-
dation, umdsd exits instead of initiating the UMDS Server. The exit status will be 0 for a configuration file validated
by the DTD and non-zero otherwise.

-f or -detach option forks umdsd, detaches the child from the controlling terminal and the parent exits immedi-
ately. The UMDS Server normally remains attached to the controlling terminal and runs until interrupted.

-h or -help - option provides command line help.

Note

The UMDS Server may, under some conditions, return an error message similar to error, not enough
file descriptors. This may be caused by exceeding the default limit of 1024 file descriptors per pro-
cess. To override this limit, edit /etc/security/limits.conf and add a line for the user name that
starts the UMDS Server and increase it to 2048 or higher. This enables use of the ulimit -n command (or
limit openfiles on some systems). Use ulimit -n just before starting the UMDS Server to activate
the new limit.

Exit Status

The exit status from umdsd is 0 for success and some non-zero value for failure.

46 Umdsd Man Page

Chapter 6

Daemon Statistics

The UMDS Server has a simple web server which provides operational information. This information is important
for monitoring the operation and performance of these components. However, while the web-based presentation is
convenient for manual, on-demand monitoring, it is not suitable for automated collection and recording of operational
information for continuous monitoring and historical analysis.

The Daemon Statistics feature supports the background publishing of their operational information via UM mes-
sages. Monitoring systems can now subscribe to this information in much the same way that UM transport statistics
can be subscribed.

6.1 Daemon Statistics Structures

The operational information is published as messages of different types sent over a normal UM topic source (topic
name configurable). Each message is in the form of a binary, C-style data structure.

There are generally two categories of messages: config and stats. A given instance of a category "config" message
does not have content which changes over time. An instance of a category "stats" message has content that does
change over time. The daemon-specific documentation indicates which messages are in which category.

Each message type is configured for a publishing interval. When the publishing interval for a message type expires,
the possible messages are checked to see if its content has materially changed since the last interval. If not, then
the message is not republished. The publishing interval for a stat message is typically set to shorter periods to see
those changes as they occur.

6.2 Daemon Statistics Binary Data

The messages published are in binary form and map onto the C data structures defined for each message type.

The byte order of the structure fields is defined as the host endian architecture of the publishing daemon. Thus,
if a monitoring host receiving the messages has the same endian architecture, the binary structures can be used
directly. If the monitoring host has the opposite endian architecture, the receiver must byte-swap the fields.

The message structure is designed to make it possible for a monitoring application to detect a mismatch in endian
architecture. Detection and byte swapping is demonstrated with daemon-specific example monitoring applications.

48 Daemon Statistics

6.3 Daemon Statistics Versioning

Each message sent by the daemon consists of a standard header followed by a message-type-specific set of fields.
The standard header contains a version field which identifies the version of the C include file used to build the
daemon.

The UMDS Server is built with the include file umdsdmonmsgs.h. With each daemon statistics message sent by
the UMDS Server, it sets the header version field to LBM_UMDSD_DMON_VERSION. With each new release of
the UMDS package, if that include file changes in a substantive way, the value of LBM_UMDSD_DMON_VERSION
is increased. In this way, a monitoring application can determine if it is receiving messages from a store daemon
whose data structures match the monitoring application's structure definitions.

6.4 Daemon Statistics Requests

The daemon can optionally be configured to accept command-and-control requests from monitoring applications.
There are two categories of these requests: "snapshot" and "config". "Snapshot" requests tell the daemon to
immediately republish the desired stats and/or configs without waiting until the next publishing interval. These
requests might be sent by a monitoring application which has only just started running and needs a full snapshot
of the operational information. "Config" requests tell the daemon to modify an operational parameter of the running
daemon.

The monitoring application sends a request to the daemon, and the daemon sends status messages in response.
The exchanges are made via standard UM topicless immediate Request Response messaging. Informatica recom-
mends the use of Unicast Immediate Messaging (UIM) for sending the requests using lbm_unicast_immediate_←↩
request(). To use UIM effectively, Informatica recommends configuring the daemon monitor context for a specific
UIM interface and port using: request_tcp_port (context) and request_tcp_interface (context). This enables the
monitoring application to know how to address the request UIMs to the proper daemon.

The request message is formatted as a simple ASCII string. For the SRS service, the request message is formatted
as a JSON message. The request is sent as a non-topic unicast immediate request message. The daemon reacts
by parsing the request and sending a UM response with a success/failure response. If the request was parsed
successfully, the daemon then performs the requested operation (republishing the data or modifying the operational
parameter). There are daemon-specific example applications which demonstrate the use of this request feature.

6.5 UMDS Daemon Statistics Structures

The different message types are:

• UMDS_DSTATTYPE_CFG

• UMDS_DSTATTYPE_MALLINFO

• UMDS_DSTATTYPE_CONNSUMMARY

• UMDS_DSTATTYPE_CLIENTPERMS

• UMDS_DSTATTYPE_CLIENTATTRS

• UMDS_DSTATTYPE_PERTOPIC

• UMDS_DSTATTYPE_TOPICTOTALS

• UMDS_DSTATTYPE_SOURCE

6.6 UMDS Daemon Statistics Byte Swapping 49

• UMDS_DSTATTYPE_RECEIVER

• UMDS_DSTATTYPE_SMARTHEAP

• UMDS_DSTATTYPE_WORKER

Each one has a specific structure associated with it, as detailed in the file umdsdmonmsgs.h.

Note that message type ending with "CFG" is in the config category. All others are in the stats category. See
Daemon Statistics Structures for information on how the two categories are handled differently.

6.6 UMDS Daemon Statistics Byte Swapping

A monitoring application receiving these messages must detect if there is an endian mismatch (see Daemon Statis-
tics Binary Data). The header structure umdsd_dstat_msg_hdr_t_stct contains a 16-bit field named magic which
is set equal to LBM_UMDS_DMON_MAGIC. The receiving application should compare it to LBM_UMDS_DMO←↩
N_MAGIC and LBM_UMDS_DMON_ANTIMAGIC. Anything else would represent a serious problem.

If the receiving app sees:

magic == LBM_UMDS_DMON_MAGIC

then it can simply access the binary fields directly. However, if it sees:

magic == LBM_UMDS_DMON_ANTIMAGIC

then most (but not all) binary fields need to be byte-swapped. See umdsdmon.c for an example, paying special
attention to the macros COND_SWAPxx (which conditionally swaps based on the magic test) and the functions
byte_swapXX() (which performs the byte swapping).

6.7 UMDS Daemon Statistics String Buffers

UMDS Daemon Statistics data structures sometimes contain string buffers. Strings in these data structures are
always null-terminated. These messages are generally sent as fixed-length equal to the sizes of the structures,
and therefore include all of the declared bytes of the string fields, even if the contained string uses fewer bytes
than declared. For example, the structure umdsd_dstat_connection_summary_record_stct contains the field
user_name which is a char array of size UMDS_DSTAT_CFG_EL_NAME_SZ + 1. If user_name is set to
"p1", then only 3 bytes of the buffer are used (including the null string terminator). However, all UMDS_DSTAT_C←↩
FG_EL_NAME_SZ + 1 bytes will be sent in the UMDS_DSTATTYPE_CONNSUMMARY message type.

There is one exception to this rule: UMDS_DSTATTYPE_CFG.

The UMDS_DSTATTYPE_CFG message is of type umdsd_dstat_config_msg_stct, which contains the structure
umdsd_dstat_config_record_stct, which contains the field data. This field is variable length and contains a
null-terminated string.

6.8 UMDS Daemon Statistics Configuration

UMDS daemon statistics are configured by the UMDS Element "<daemon-monitor>" in the UMDS Server Config-
uration File.

50 Daemon Statistics

6.9 UMDS Daemon Statistics Requests

The UMDS Daemon supports a monitoring application to send a specific set of requests to control the operation
of Daemon Statistics. The remote-snapshot-request and remote-config-changes-request configuration elements
control whether the Store enables this request feature (defaults to disabled).

If enabled, the monitoring application can send a command message to the UMDS in the form of a topicless
unicast immediate "request" message (see lbm_unicast_immediate_request() with NULL for topic). The format of
the message is a simple ascii string, with or without null termination. Due to the simple format of the message, no
data structure is defined for it.

When the UMDS receives and validates the command, it sends a UM response message back to the requesting
application containing a status message (which is not null-terminated). If the status was OK, the Store also performs
the requested action.

The example program umdsdcmd.c demonstrates the correct way to send the messages and receive the re-
sponses.

Commands enabled by remote-snapshot-request:

version

The UMDS Server returns in its command response the value of LBM_UMDSD_DMON_VERSION. No daemon
statistics messages are published.

snap mallinfo

The UMDS Server immediately publishes the memory allocation usage message of type UMDS_DSTATTY←↩
PE_MALLINFO.

snap cfg

The UMDS Server immediately publishes the UMDS configuration message(s) UMDS_DSTATTYPE_CFG.

snap connsum

The UMDS Server immediately publishes connection summary information message(s) UMDS_DSTATTYP←↩
E_CONNSUMMARY.

snap conndet

The UMDS Server immediately publishes connection details message(s), consisting of an initial UMDS_DST←↩
ATTYPE_CONNSUMMARY message, followed by zero or more of the following messages: UMDS_DSTAT←↩
TYPE_CLIENTPERMS, UMDS_DSTATTYPE_PERTOPIC, UMDS_DSTATTYPE_TOPICTOTALS, UMDS_←↩
DSTATTYPE_RECEIVER, UMDS_DSTATTYPE_SOURCE, and UMDS_DSTATTYPE_CLIENTATTRS.

snap worksum

The UMDS Server immediately publishes worker summary message(s), consisting of an initial UMDS_DST←↩
ATTYPE_WORKER message, followed by zero or more UMDS_DSTATTYPE_CONNSUMMARY messages.

snap workdet

The UMDS Server immediately publishes worker summary message(s), consisting of an initial UMDS_DST←↩
ATTYPE_WORKER message, followed by zero or more of the following messages: UMDS_DSTATTYPE_C←↩
LIENTPERMS, UMDS_DSTATTYPE_PERTOPIC, UMDS_DSTATTYPE_TOPICTOTALS, UMDS_DSTATT←↩
YPE_RECEIVER, UMDS_DSTATTYPE_SOURCE, and UMDS_DSTATTYPE_CLIENTATTRS.

Commands enabled by remote-config-changes-request:

6.10 UMDS Daemon Statistics Example Files 51

mallinfo N

Set the publishing interval for memory allocation usage.
For example: mallinfo 5

worksum N

Set the publishing interval for the worker summary messages.
For example: worksum 5

workdet N

Set the publishing interval for the worker detail messages.
For example: workdet 5

6.10 UMDS Daemon Statistics Example Files

The following files are provided in source code form to assist users in writing monitoring applications using the
UMDS Daemon Statistics feature.

• umdsdmon.c - C program to read UMDS Daemon Statistics and print them.

• umdsdcmd.c - C program to send Daemon Statistics commands to the UMDS Server.

• umdsdmonmsgs.h - C header file which defines the internal structures. You can also see its Doxygen
documentation.

• getopt.c - GNU command-line option parsing code (useful for building umdsdmon.c and umdsdcmd.c
on Windows platform).

• replgetopt.h - C header file for getopt.c.

52 Daemon Statistics

Chapter 7

UMDS Web Monitor

Use the UMDS Web Monitor to monitor the UMDS Server's connections. The monitor displays statistics for each
connection, with a link to more details about the client connection. You configure the UMDS Web Monitor with the
UMDS Element "<web-monitor>" in the UMDS daemon configuration file.

7.1 Main Menu

Use the UMDS Web Monitor Main Menu to view connections, the configuration file, current memory allocation
statistics, or to stop the UMDS Server daemon.

7.2 List Current Connections

The Connection List page shows all current UMDS client-server connections. The page organizes connections by
Worker subsystem. If you mouse over table elements, you see pop-up tooltips displays.

54 UMDS Web Monitor

The Connection List display has the following column headings:

• Connection ID - Identifies a connection to a UMDS Client in x.y format, where x designates the worker thread
number and y is a connection identifier for that thread. Click a Connection ID to go to the Connection Details
page.

• User Name - Name of the user logged in for this connection, as sent by the client. If the UMDS Client does
not supply a user name, this item is blank. You specify authenticated users in the Basic Authentication File.

• Application - Name of the client application connected to the server, as sent by the client. You can specify
an application name in the Basic Authentication File or from within the application.

• Client IP - IP address of the host where the UMDS Client application is running.

• Received From Client - Number of messages and number of bytes that the UMDS Server has received from
the UMDS Client applications. Pause on the value to see a tooltip display separating the value into user data,
requests, responses, and control data.

• Sent To Client - Number of messages and number of bytes that the UMDS Server has sent to UMDS
Client applications. Pause on the value to see a tooltip display separating the value into user data, requests,
responses, and control data.

• Messages Lost/Discarded - Total number of messages that the UMDS Server either lost or discarded, based
on the following reasons:

– A: - messages dropped because the message queue has reached the limit set by parameter
msg-age-limit.

– S: - messages dropped because the message queue has reached the limit set by parameter
msg-q-size-limit.

7.3 Client Details 55

– L: - messages never enqueued on the client queue in the UMDS Server. Transport level loss can happen
between the UMDS Server and external Ultra Messaging sources, or between sources and receivers
internal to the UMDS Server.

7.3 Client Details

This page displays information specific to the Connection ID clicked on in the UMDS Connection List page.

The Client Details page begins with the following items:

• User Name - Name of the user authenticated for this connection, as sent by the client. This item is blank if
no user is authenticated. You specify authenticated users in the Basic Authentication File.

• Application Name - Name of the client application connected to the server, as sent by the client. You specify
applications in the Basic Authentication File.

• Client Host - IP address of the host where the UMDS Client application is running.

• Permissions - Permissions configured for the Application or User Name. These settings are deprecated and
have no effect.

The Message Queues display has the following column headings:

56 UMDS Web Monitor

• Topic - For per-topic message queues, this is the topic name. Default is the non-topic-specific default
message queue.

• Attributes - The configured queue size limit for this message queue.

• Cumulative Total Messages - The number of messages that have entered the queue since being created or
reset.

• Messages Currently in Queue - The number of messages the queue is holding at the time the page was
loaded or refreshed. The UMDS Server has not yet delivered these messages to a UMDS Client receiving
application.

• Messages Lost/Discarded - Total number of messages that the UMDS Server either lost or discarded, based
on the following reasons:

– A: - messages dropped because the message queue has reached the limit set by parameter
msg-age-limit

– S: - messages dropped because the message queue has reached the limit set by parameter
msg-q-size-limit

– L: - messages never enqueued on the client queue in the UMDS Server. Transport level loss can
happen between the UMDS Server and external Ultra Messaging sources, or between sources and
receivers internal to the UMDS Server.

The Client Details page ends with the following items:

• Receivers - Receivers listed by index number and topic name.

• Sources - The number of sources associated with this UMDS Client.

• Attribute Table - A display of the configuration option values for this UMDS Client.

• Clear Connection "Messages Lost/Discarded" Counts - Click this button to reset the Messages Lost/←↩
Discarded values to 0.

• Clear Connection Statistics - Click this button to clear the connection statistics for this UMDS Client.

• Disconnect this Client - Click this button to disconnect this UMDS Client from the UMDS Server. You can
configure this button to be hidden with the "allow-shutdown-via-webmon" attribute of the UMDS Element
"<server>".

7.4 Current Server Configuration File

This page displays the UMDS Server Configuration File.

7.5 Dump Current Memory Allocation 57

7.5 Dump Current Memory Allocation

This page displays current memory allocation statistics.

7.6 Quit Server

Stop the UMDS Server. This option closes all server connections and terminates the umdsd process. You can con-
figure this button to be hidden with the "allow-shutdown-via-webmon" attribute of the UMDS Element "<server>".

58 UMDS Web Monitor

Chapter 8

UMDS Server Configuration

You configure the UMDS Server with four files:

1. The UMDS Server Configuration File (in xml format). Required and typically specified on the UMDS Server
program command line.

2. The UM License File (in Ultra Messaging license format). Optional and specified in the UMDS Server config-
uration file.

3. The UM Configuration File that affects the Ultra Messaging Context running on the same host as the UMDS
Server. Does not directly affect the activity between UMDS Server and Client Applications. See the Ultra
Messaging Configuration Guide. Optional and specified in the UMDS Server configuration file.

4. The Basic Authentication File (in xml format). Optional and specified in the UMDS Server configuration file.

8.1 UMDS Server Configuration File

The following example shows the element structure of the xml configuration file that you use for the umdsd UMDS
Server daemon.

<?xml version="1.0" encoding="UTF-8"?>
<umds-daemon version="1.1">

<daemon>
<log type="file" xml:space="preserve">umdsd.log</log>
<uid>12345</uid>

<gid>23456</gid>
<pidfile xml:space="preserve">example.pid</pidfile>
<lbm-license-file>example.lic</lbm-license-file>
<lbm-config>example.lbmcfg</lbm-config>

<server bind-addr="*:14701" num-workers="3" msg-age-limit="1000"
msg-q-size-limit="1048576"/>

<client>
<server-list client-write="yes">LIST</server-list>
<server-ka-interval client-write="range"

min="0" max="2147483648">2000</server-ka-interval>
<client-ka-threshold client-write="range"

min="0" max="2147483648">3000</client-ka-threshold>
<client-ka-interval client-write="range"

min="0" max="2147483648">10000</client-ka-interval>

60 UMDS Server Configuration

<server-ka-threshold client-write="yes">11000</server-ka-threshold>
<server-rcvbuf client-write="yes">0</server-rcvbuf>
<server-sndbuf client-write="yes">0</server-sndbuf>
<server-nodelay client-write="yes">0</server-nodelay>
<client-rcvbuf client-write="yes">0</client-rcvbuf>
<client-sndbuf client-write="yes">0</client-sndbuf>
<client-nodelay client-write="yes">0</client-nodelay>
<server-reconnect client-write="yes">0</server-reconnect>

</client>
<authentication>
<basic xml:space="preserve">BASIC_FILE</basic>

</authentication>
<web-monitor>172.16.254.1:8080</web-monitor>
<monitor object="source" interval="7">
<transport module="lbm" options="string"/>
<format module="csv" options="string"/>
<application-id xml:space="preserve">STRING</application-id>

</monitor>
<topics>

<topic pattern="BEW.xyz.*" type="PCRE">
<umds-attributes>
<option type="umds-receiver" name="receiver-queue-type"

value="topic" />
<option type="umds-receiver" name="topic-queue-size-limit"

value="200000" />
</umds-attributes>

</topic>
<topic pattern="BEW.xyz" type="direct">

<umds-attributes>
<option type="umds-receiver" name="receiver-queue-type"

value="default" />
<option type="umds-receiver" name="topic-queue-size-limit"

value="200000" />
</umds-attributes>

</topic>
</topics>

</daemon>
</umds-daemon>

8.1.1 UMDS Element "<umds-daemon>"

Container element which holds the UMDS Server's configuration. Also defines the version of the configuration
format used by the file.

Required.

• Children: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

version Version number of user's configuration file. "1.1" - Initial version "1.0"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

8.1 UMDS Server Configuration File 61

...
</umds-daemon>

8.1.2 UMDS Element "<daemon>"

Container element which holds the UMDS Server's configuration.

Required.

• Cardinality: 0 .. 1

• Parent: <umds-daemon>

• Children: <log>, <uid>, <gid>, <pidfile>, <lbm-license-file>, <lbm-config>, <server>, <client>,
<permissions>, <authentication>, <web-monitor>, <daemon-monitor>, <monitor>, <topics>, <tls>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
...

</daemon>
</umds-daemon>

8.1.3 UMDS Element "<tls>"

Contains elements to configure client link encryption.

For more information, see Using UMDS Client Encryption.

• Cardinality: 0 .. 1

• Parent: <daemon>

• Children: <certificate>, <certificate-key>, <certificate-key-password>, <trusted-certificates>, <cipher-
suites>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<tls>

<certificate>test.crt<certificate>
<certificate-key>test.key<certificate-key>
<certificate-key-password>

CorrectHorseBatteryStaple
</certificate-key-password>
<trusted-certificates>peers.crt<trusted-certificates>

</tls>
...

</daemon>
</umds-daemon>

62 UMDS Server Configuration

8.1.4 UMDS Element "<cipher-suites>"

Defines the list of one or more (comma separated) names of cipher suites that the UMDS Server will accept. See
OpenSSL's Cipher Suite Names for the full list of suite names. When configuring UM, use the OpenSSL
names (with dashes), not the IANA names (with underscores).

If more than one suite name is supplied, they should be in descending order of preference. When a client negotiates
encrypted TCP, the two sides must find a cipher suite in common, otherwise the connection will be canceled.

The default is highly secure and is recommended.

For more information, see Using UMDS Client Encryption.

• Cardinality: 0 .. 1

• Parent: <tls>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<tls>

<cipher-suites>TLS_DHE_RSA_WITH_AES_256_GCM_SHA384<cipher-suites>
...

</tls>
...

</daemon>
</umds-daemon>

8.1.5 UMDS Element "<trusted-certificates>"

Specifies the path to a file containing one or more OpenSSL-compatible PEM-formatted TLS client certificates
and certificate authorities. If this element is not supplied, the default behavior is to use the system-level trusted
certificates and certificate authorities (operating-system dependent). The TLS server uses these trusted certificates
to verify the identity of connecting clients.

If a client connects and presents a certificate which is not in the server's trusted certificates file, the connection will
be canceled.

For more information, see Using UMDS Client Encryption.

• Cardinality: 0 .. 1

• Parent: <tls>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<tls>

<trusted-certificates>peers.crt<trusted-certificates>
...

</tls>
...

</daemon>
</umds-daemon>

https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html#CIPHER-SUITE-NAMES

8.1 UMDS Server Configuration File 63

8.1.6 UMDS Element "<certificate-key-password>"

Specifies the passphrase needed to decrypt the server private key file specified by <certificate-key>.

For more information, see Using UMDS Client Encryption.

• Cardinality: 0 .. 1

• Parent: <tls>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<tls>

<certificate-key-password>
CorrectHorseBatteryStaple

</certificate-key-password>
...

</tls>
...

</daemon>
</umds-daemon>

8.1.7 UMDS Element "<certificate-key>"

Specifies the path to a file containing the private key associated with the "server" certificate specified by
<certificate>. Note that this private key must be protected from intruders. For that reason, when the certificate
and private key files are generated, the private key file is typically encrypted with a passphrase. The passphrase is
supplied using <certificate-key-password>.

For more information, see Using UMDS Client Encryption.

• Parent: <tls>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<tls>

<certificate-key>test.key<certificate-key>
...

</tls>
...

</daemon>
</umds-daemon>

8.1.8 UMDS Element "<certificate>"

Specifies the path to a file containing an OpenSSL-compatible PEM-formatted certificate that will be presented as
the TLS server certificate when a TLS connection is established by a client.

For more information, see Using UMDS Client Encryption.

• Parent: <tls>

64 UMDS Server Configuration

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<tls>

<certificate>test.crt<certificate>
...

</tls>
...

</daemon>
</umds-daemon>

8.1.9 UMDS Element "<topics>"

Container element for topics that the UMDS Server forwards to UMDS client applications. Use this element to apply
UMS Configuration Options to individual topics or topic patterns. You can also configure topics and topic patterns
to have individual message queues, which can mitigate possible message loss.

Optional. If omitted, topics use the UMDS Server default message queue, and these topics do not use specific UMS
configuration options.

• Cardinality: 0 .. 1

• Parent: <daemon>

• Children: <topic>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<topics>

...
</topics>
...

</daemon>
</umds-daemon>

8.1.10 UMDS Element "<topic>"

Holds the configuration for a specific set of topics.

Required, if UMDS Element "<topics>" is present.

Note: if type "direct" is used, the pattern must exactly match the entire topic string. For example,
pattern="x.y" type="direct" will only match the topic "x.y". Topcis "x.yz" and "zx.y" and will
be excluded. However, if the type is a regular expression, no assumption is made regarding the start or end of
the topic name. The user is expected to make use of anchor metacharacters "</tt>∧<tt>" and "</tt>$<tt>" if
needed. For example, pattern="x" type="PCRE" will match topics "x", "xyz", "zyx", and "axe".
If it is desired to match only topics that start with "x", use pattern="∧x" type="PCRE". That will match
"x" and "xyz", but exclude "zyx" and "axe". Also remember that a period (".") is a metacharacter which
matches any character, and must be escaped if an actual period is desired. For example, pattern="∧NASD\."
type="PCRE" will match topics "NASD.a", "NASD.a.b", and "NASD.", but will exclude "NASDa.b" and "XNASD.a".

• Parent: <topics>

8.1 UMDS Server Configuration File 65

• Children: <umds-attributes>

XML Attributes:

Attribute Description Valid Values Default Value

pattern Specifies a pattern used to
match topic names. Used to
select incoming topics to apply
the configuration.

string (no default; must be specified)

type Specifies how the pattern
should be interpreted.

"direct" - Exact match for
full topic name.
"PCRE" - Regular expression
match using PCRE syntax.
"regexp" - (Not recom-
mended.) Regular expression
match using POSIX extended
regular expressions syntax.

"direct"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<topics>
<topic pattern="^NASD\..*" type="PCRE">
...

</topic>
...

</topics>
...

</daemon>
</umds-daemon>

8.1.11 UMDS Element "<umds-attributes>"

Container for one or more UMDS Element "<option>" elements which configure the topic(s) matching the parent
UMDS Element "<topic>".

Optional, but there is no use case for omission.

• Cardinality: 0 .. 1

• Parent: <topic>

• Children: <option>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<topics>
<topic pattern="^NASD\..*" type="PCRE">

<umds-attributes>
...

</umds-attributes>

66 UMDS Server Configuration

</topic>
...

</topics>
...

</daemon>
</umds-daemon>

8.1.12 UMDS Element "<option>"

Specifies a configuration option for the topic(s) matching the parent UMDS Element "<topic>".

Required, if UMDS Element "<umds-attributes>" is present.

Each option supplied is of one of six types:

• Types "lbm-receiver", "lbm-wildcard-receiver", "lbm-source", and "lbm-context" are used to specify L←↩
BM configuration options, as described in the UM Configuration Guide.

• Type "umds-receiver" is used to specify UMDS-specific receiver configuration options, as described in sec-
tion UMDS Receiver Topic Options.

• Type "umds-source" is used to specify UMDS-specific receiver configuration options, as described in section
UMDS Source Topic Options.

• Parent: <umds-attributes>

XML Attributes:

Attribute Description Valid Values Default Value

type Specifies the scope of the con-
figuration option being set.

"lbm-receiver" - UM
configuration option of "re-
ceiver" scope. See UM
Configuration Guide.
"lbm-wildcard-receiver"
- UM configuration option of
"wildcard_receiver" scope.
See UM Configuration
Guide.
"lbm-context" - UM
configuration option of
"context" scope. See UM
Configuration Guide.
"lbm-source" - UM
configuration option of
"source" scope. See UM
Configuration Guide.
"umds-receiver" - Con-
figuration option specific to
UMDS client-side receivers.
See UMDS Receiver Topic
Options.
"umds-source" - Configu-
ration option specific to UMDS
client-side sources. See
UMDS Source Topic Options.

(no default; must be specified)

https://ultramessaging.github.io/currdoc/doc/Config/index.html
https://ultramessaging.github.io/currdoc/doc/Config/index.html
https://ultramessaging.github.io/currdoc/doc/Config/index.html
https://ultramessaging.github.io/currdoc/doc/Config/index.html
https://ultramessaging.github.io/currdoc/doc/Config/index.html
https://ultramessaging.github.io/currdoc/doc/Config/index.html
https://ultramessaging.github.io/currdoc/doc/Config/index.html
https://ultramessaging.github.io/currdoc/doc/Config/index.html
https://ultramessaging.github.io/currdoc/doc/Config/index.html

8.1 UMDS Server Configuration File 67

Attribute Description Valid Values Default Value
name Specifies the name of the con-

figuration option being set.
attr_name (no default; must be specified)

value Specifies the desired value for
the configuration option being
set.

string (no default; must be specified)

Example:

In this example, the server will configure its wildcard receiver for topics such as "NASD.X" and "NASD.Y" to not stop
topic resolution queries using the UM configuration option resolver_query_minimum_duration_wildcard (receiver).

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<topics>
<topic pattern="^NASD\..*" type="PCRE">
<umds-attributes>

<option type="lbm-wildcard-receiver"
name="resolver_query_minimum_duration"
value="0"/>

...
</umds-attributes>

</topic>
...

</topics>
...

</daemon>
</umds-daemon>

8.1.13 UMDS Element "<monitor>"

Enables and configures the UM transport statistics monitoring function. Multiple instances of this element are
typically supplied to enable monitoring of the different types of UM objects created by the UMDS Server during its
operation.

Opional. If omitted, no monitoring takes place.

• Cardinality: 0 .. 1

• Parent: <daemon>

• Children: <transport>, <format>, <application-id>

XML Attributes:

Attribute Description Valid Values Default Value

object The UM object type to monitor. "context" - Monitor UM
contexts.
"source" - Monitor UM
sources.
"receiver" - Monitor UM
receivers.

(no default; must be specified)

interval The time, in seconds, that
monitoring statistics are sam-
pled and published.

string "5"

68 UMDS Server Configuration

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<monitor object="context" interval="60">
...

</monitor>
<monitor object="receiver" interval="30">
...

</monitor>
...

</daemon>
</umds-daemon>

8.1.14 UMDS Element "<application-id>"

Identification string, used by monitoring applications to identify the application (where the UMDS Server itself is the
application in this case).

Optional. If omitted, application ID is not used.

• Parent: <monitor>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<monitor object="context" interval="60">
<application-id>

UMDS Server 123
</application-id>
...

</monitor>
...

</daemon>
</umds-daemon>

8.1.15 UMDS Element "<format>"

Configures the data formatting module for publishing monitoring statistics.

Optional. If omitted, uses csv format.

8.1 UMDS Server Configuration File 69

This element is normally not supplied since there is only one supported format, "csv", and UMDS defaults to that
format. The element is defined in the DTD for future expansion.

• Parent: <monitor>

XML Attributes:

Attribute Description Valid Values Default Value

module Specifies the formatting module to use.
Currently, only "csv" is supported.

"csv" - Formatting module which pro-
duces delimiter-separated values.

"csv"

options Options string to be passed to the for-
matting module.

string (null string)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<monitor object="context" interval="60">
<format module="csv"/>
...

</monitor>
...

</daemon>
</umds-daemon>

8.1.16 UMDS Element "<transport>"

Configures the data transmission module for publishing monitoring statistics.

Optional. If omitted, uses lbm transport.

• Parent: <monitor>

XML Attributes:

Attribute Description Valid Values Default Value

module Specifies the transmission module to
use.

"lbm" - Use normal UM source to
publish.
"udp" - Use a simple UDP socket to
publish.

"lbm"

options Options string to be passed to the
transport module.

string (null string)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<monitor object="context" interval="60">
<transport module="lbm"/>
...

</monitor>
...

70 UMDS Server Configuration

</daemon>
</umds-daemon>

8.1.17 UMDS Element "<daemon-monitor>"

Configures the Daemon Statistics feature. See Daemon Statistics for information on Daemon Statistics.

Optional. If omitted, Daemon Statistics are not published.

• Cardinality: 0 .. 1

• Parent: <daemon>

• Children: <publishing-interval>, <remote-snapshot-request>, <remote-config-changes-request>, <lbm-
config>

XML Attributes:

Attribute Description Valid Values Default Value

topic Topic name to use for publishing Daemon Statistics. string "umdsd.monitor"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<daemon-monitor>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1.18 UMDS Element "<lbm-config>"

Specifies the file that contains UM configuration options associated with the parent element.

• Cardinality: 0 .. 1

• Parent: <daemon>, <daemon-monitor>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

8.1 UMDS Server Configuration File 71

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<daemon-monitor>
<lbm-config>/

etc/umds_dmon.cfg
</lbm-config>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1.19 UMDS Element "<remote-config-changes-request>"

Configures whether the UMDS Server will respond to monitoring apps requests to change the rate at which Daemon
Statistics messages are published.

Optional. If omitted, change requests will be ignored.

See Daemon Statistics for information on Daemon Statistics.

• Cardinality: 0 .. 1

• Parent: <daemon-monitor>

XML Attributes:

Attribute Description Valid Values Default Value

allow Enable or disable change requests. "0" - UMDS will ignore change requests.
"1" - UMDS will respond to change requests.

"0"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<daemon-monitor>
<remote-config-changes-request allow="1"/>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1.20 UMDS Element "<remote-snapshot-request>"

Configures whether the UMDS Server will respond to monitoring apps requests to send on-demand snapshots of
daemon statistics.

Optional. If omitted, snapshot requests will be ignored.

See Daemon Statistics for information on Daemon Statistics.

72 UMDS Server Configuration

• Cardinality: 0 .. 1

• Parent: <daemon-monitor>

XML Attributes:

Attribute Description Valid Values Default Value

allow Enable or disable snapshot requests. "0" - UMDS will ignore snapshot re-
quests.
"1" - UMDS will respond to snapshot
requests.

"0"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<daemon-monitor>
<remote-snapshot-request allow="1"/>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1.21 UMDS Element "<publishing-interval>"

Configures the rate at which Daemon Statistics messages are published.

Optional. If omitted, default publishing intervals will be used (see children elements for defaults).

See Daemon Statistics for information on Daemon Statistics.

• Cardinality: 0 .. 1

• Parent: <daemon-monitor>

• Children: <group>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<daemon-monitor>
<publishing-interval>

...
</publishing-interval>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1 UMDS Server Configuration File 73

8.1.22 UMDS Element "<group>"

Configures the rate at which one particular grouping of Daemon Statistics messages are published.

Optional. If omitted, the group publishes at its default rate.

See Daemon Statistics for information on Daemon Statistics.

• Parent: <publishing-interval>

XML Attributes:

Attribute Description Valid Values Default Value

name Statistics group to set. "default" - Sets interval
for those statistics groups
which are not explicity set by
other <group> elements.
"malloc-info-ivl" -
Sets interval for message type
umdsd_dstat_mallinfo_←↩
msg_stct.
"worker-details-ivl"
- Sets interval for worker detail
reports, which consists of
a set of UMDS_DSTATT←↩
YPE_WORKER messages,
one per worker, and a set
of UMDS_DSTATTYPE_←↩
CLIENTPERMS, UMDS_←↩
DSTATTYPE_PERTOPIC,
UMDS_DSTATTYPE_TOPI←↩
CTOTALS, UMDS_DSTAT←↩
TYPE_RECEIVER, UMDS_←↩
DSTATTYPE_SOURCE, and
UMDS_DSTATTYPE_CLIE←↩
NTATTRS messages.
"worker-summary-ivl"
- Sets interval for worker sum-
mery reports, which consists
of a set of UMDS_DSTAT←↩
TYPE_WORKER messages,
one per worker, and a set of
UMDS_DSTATTYPE_CON←↩
NSUMMARY messages, one
for each connection.

(no default; must be specified)

ivl Time, in seconds, between
publishing the statistics group.

string (no default; must be specified)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<daemon-monitor>
<publishing-interval>

<group name="default" ivl="5">
<group name="worker-details-ivl" ivl="30">
...

</publishing-interval>

74 UMDS Server Configuration

...
</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1.23 UMDS Element "<web-monitor>"

Enables the web-based server monitoring and control functions, and configures the IP address and port to listen
on. Value is in IP:PORT format. An IP value of ∗ indicates any interface (for example: ∗:8080).

Optional. If omitted, the web monitor is disabled.

• Cardinality: 0 .. 1

• Parent: <daemon>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<web-monitor>
172.16.254.1:8080

</web-monitor>
...

</daemon>
</umds-daemon>

8.1.24 UMDS Element "<authentication>"

Determines if UMDS clients use authentication. If empty (<authentication>), no authentication occurs.

Required.

• Parent: <daemon>

• Children: <none>, <basic>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<authentication>
...

</authentication>
...

</daemon>
</umds-daemon>

8.1 UMDS Server Configuration File 75

8.1.25 UMDS Element "<basic>"

Enables basic authentication of the client with the server, and supplies the name of the authentication file. See
Basic Authentication File.

Optional.

• Cardinality: 0 .. 1

• Parent: <authentication>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<authentication>
<basic>/

etc/umds_basic_auth.txt
</basic>

</authentication>
...

</daemon>
</umds-daemon>

8.1.26 UMDS Element "<none>"

No authentication is done.

Optional.

• Cardinality: 0 .. 1

• Parent: <authentication>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<authentication>
<none/>

</authentication>
...

</daemon>
</umds-daemon>

76 UMDS Server Configuration

8.1.27 UMDS Element "<permissions>"

This option is deprecated. Setting values has no effect.

• Cardinality: 0 .. 1

• Parent: <daemon>

• Children: <can-send>, <can-stream>, <can-reqresp>

Do not use.

8.1.28 UMDS Element "<can-reqresp>"

This option is deprecated. Setting values has no effect.

• Cardinality: 0 .. 1

• Parent: <permissions>

Do not use.

8.1.29 UMDS Element "<can-stream>"

This option is deprecated. Setting values has no effect.

• Cardinality: 0 .. 1

• Parent: <permissions>

Do not use.

8.1.30 UMDS Element "<can-send>"

This option is deprecated. Setting values has no effect.

• Cardinality: 0 .. 1

• Parent: <permissions>

Do not use.

8.1 UMDS Server Configuration File 77

8.1.31 UMDS Element "<client>"

Sets optional client operating parameters.

Required.

Each client child element can be configured to be overwritten by a client application with the client-write attribute.
Some client elements (keep-alive, receive and send socket buffers) can also restrict the ability of a client application
to overwrite a client element by specifying a range of acceptable values from the client application.

• Parent: <daemon>

• Children: <server-list>, <server-ka-interval>, <client-ka-threshold>, <client-ka-interval>, <server-ka-
threshold>, <server-rcvbuf>, <server-sndbuf>, <server-nodelay>, <client-rcvbuf>, <client-sndbuf>,
<client-nodelay>, <server-reconnect>, <compression>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
...

</client>
...

</daemon>
</umds-daemon>

8.1.32 UMDS Element "<compression>"

Enable compression between the UMDS Server and its clients. Valid values are

• none

• lz4

See Client Compression for more information.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting for
this element. As of UMDS version
6.14, this attribute cannot be set to
"yes".

"no" - Client is not allowed to over-
ride.

"no"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<compression>

78 UMDS Server Configuration

lz4
</compression>
...

</client>
...

</daemon>
</umds-daemon>

8.1.33 UMDS Element "<server-reconnect>"

Indicates whether the client should attempt to reconnect to the server if the connection fails.

Optional. If omitted, reconnection is enabled.

Value of 1 turns on reconnect. The client then tries to reconnect to a server in the UMDS Element "<server-list>".
A value of 0 prevents the client from reconnecting to any server after connection failure.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting for
this element.

"yes" - Client is allowed to override.
"no" - Client is not allowed to over-
ride.

"yes"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<server-reconnect client-write="no">

1
</server-reconnect>
...

</client>
...

</daemon>
</umds-daemon>

8.1.34 UMDS Element "<client-nodelay>"

Specify if the UMDS client's TCP connection to the server should set the TCP_NODELAY socket option, which
disables Nagle's algorithm.

Optional. If omitted, TCP_NODELAY is not set (Nagle's algorithm is retained).

This option should be set if the lowest-possible latency is desired. Leaving it unset permits more-efficient use of
network resources.

• Parent: <client>

8.1 UMDS Server Configuration File 79

XML Attributes:

80 UMDS Server Configuration

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the client setting for
this element.

"yes" - Client is allowed to override.
"no" - Client is not allowed to over-
ride.

"yes"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<client-nodelay client-write="yes">

1
</client-nodelay>
...

</client>
...

</daemon>
</umds-daemon>

8.1.35 UMDS Element "<client-sndbuf>"

Specify the UMDS client's TCP's SO_SNDBUF (send-side socket buffer size) in its connection to the server.

Optional. If omitted, client's operating system sets it.

It is usually recommended not to set this option.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<client-sndbuf client-write="yes">

524288
</client-sndbuf>

8.1 UMDS Server Configuration File 81

...
</client>
...

</daemon>
</umds-daemon>

8.1.36 UMDS Element "<client-rcvbuf>"

Specify the UMDS client's TCP's SO_RCVBUF (receive-side socket buffer size) in its connection to the server.

Optional. If omitted, client's operating system sets it.

It is usually recommended not to set this option.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<client-rcvbuf client-write="yes">

524288
</client-rcvbuf>
...

</client>
...

</daemon>
</umds-daemon>

8.1.37 UMDS Element "<server-nodelay>"

Specify if the UMDS Server's TCP connection to the client should set the TCP_NODELAY socket option, which
disables Nagle's algorithm.

82 UMDS Server Configuration

Optional. If omitted, TCP_NODELAY is not set (Nagle's algorithm is retained).

This option should be set if the lowest-possible latency is desired. Leaving it unset permits more-efficient use of
network resources.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting for
this element.

"yes" - Client is allowed to override.
"no" - Client is not allowed to over-
ride.

"yes"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<server-nodelay client-write="yes">

1
</server-nodelay>
...

</client>
...

</daemon>
</umds-daemon>

8.1.38 UMDS Element "<server-sndbuf>"

Specify the UMDS Server's TCP's SO_SNDBUF (send-side socket buffer size) in its connection to the client.

Optional. If omitted, server's operating system sets it.

It is usually recommended not to set this option.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

8.1 UMDS Server Configuration File 83

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<server-sndbuf client-write="yes">

524288
</server-sndbuf>
...

</client>
...

</daemon>
</umds-daemon>

8.1.39 UMDS Element "<server-rcvbuf>"

Specify the UMDS Server's TCP's SO_RCVBUF (receive-side socket buffer size) in its connection to the client.

Optional. If omitted, server's operating system sets it.

It is usually recommended not to set this option.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<server-rcvbuf client-write="yes">

524288
</server-rcvbuf>
...

</client>
...

</daemon>
</umds-daemon>

84 UMDS Server Configuration

8.1.40 UMDS Element "<server-ka-threshold>"

Number of milliseconds of silence to wait before connection is declared dead.

Optional. If omitted, defaults to 11000

n the absence of message or keep-alive traffic for the threshold, the server declares the connection dead. This
value should be at least one second (1000 ms) greater than the UMDS Element "<client-ka-interval>". See also
Keep Alive Timers During Idle Periods.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<server-ka-threshold client-write="yes">

12000
</server-ka-threshold>
...

</client>
...

</daemon>
</umds-daemon>

8.1.41 UMDS Element "<client-ka-interval>"

Milliseconds between keep-alive messages from the client.

Optional. If omitted, defaults to 10000

In the absence of message traffic, the client sends keep-alive messages at this interval. This value should be at
least one second (1000 ms) less than UMDS Element "<server-ka-threshold>" Element. See also Keep Alive
Timers During Idle Periods.

8.1 UMDS Server Configuration File 85

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<client-ka-interval client-write="yes">

8000
</client-ka-interval>
...

</client>
...

</daemon>
</umds-daemon>

8.1.42 UMDS Element "<client-ka-threshold>"

Number of milliseconds of silence to wait before connection is declared dead.

Optional. If omitted, defaults to 3000

In the absence of message or keep-alive traffic for the threshold, the client declares the connection dead and
attempts to reconnect. This value should be at least one second (1000 ms) greater than the UMDS Element
"<server-ka-interval>". See also Keep Alive Timers During Idle Periods.

• Parent: <client>

XML Attributes:

86 UMDS Server Configuration

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<client-ka-threshold client-write="yes">

4000
</client-ka-threshold>
...

</client>
...

</daemon>
</umds-daemon>

8.1.43 UMDS Element "<server-ka-interval>"

Milliseconds between keep-alive messages from the client.

Optional. If omitted, defaults to 2000

In the absence of message traffic, the client sends keep-alive messages at this interval. This value should be
at least one second (1000 ms) less than UMDS Element "<client-ka-threshold>" Element. See also Keep Alive
Timers During Idle Periods.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

8.1 UMDS Server Configuration File 87

Attribute Description Valid Values Default Value
max Client's override must be no more

than this value.
string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<server-ka-interval client-write="yes">

3000
</server-ka-interval>
...

</client>
...

</daemon>
</umds-daemon>

8.1.44 UMDS Element "<server-list>"

Comma-separated list of UMDS Server addresses (IP:Port) that the client should use.

Optional. If omitted, the client uses the server list in its own configuration.

This allows a server to be used as a "redirection" service. I.e. a client can be initially configured to connect to UMDS
Server A, which re-directs the client to the production server.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting for
this element.

"yes" - Client is allowed to override.
"no" - Client is not allowed to over-
ride.

"yes"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<client>
<server-list client-write="no">

10.11.12.13:14701,10.11.12.14:14701
</server-list>
...

</client>
...

</daemon>
</umds-daemon>

88 UMDS Server Configuration

8.1.45 UMDS Element "<server>"

Configure the operating parameters of the UMDS Server with the attributes supplied.

Required.

• Parent: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

bind-addr IP/Port that the UMDS Server
listens on for client connections.

string "∗:14701"

num-workers Number of workers to create
to service clients. See Worker
Configuration Guidelines.

string "3"

msg-age-limit Maximum age in milliseconds
before umdsd deletes the oldest
messages when it reaches this
limit. To remove this limit, set this
attribute to zero.

string "1000" (1 sec)

msg-q-size-limit Maximum size in bytes of the
default message queue (does
not apply to per-topic queues).
Umdsd deletes the oldest mes-
sages when it reaches this limit.
Zero is a special value which dis-
ables checking the default queue
size.

string "1048576"

total-q-size-limit Maximum size in bytes con-
sumed by all message queues,
including the default queue and
all per-topic queues (if any).
Zero is a special value which dis-
ables checking the total size.

string "0"

message-cache-type Sets the UMDS Server's us-
age of the internal message
caches. Value "normal"
is for UM streaming (non-
persistent) sources. Value
"source-session-id"
is for UM persistent sources,
and instructs the UMDS Server
to potentially create multiple
message caches for the same
topic, keyed by the persistent
source's session ID. See UMDS
Persistence uses Session IDs
The full server instance must
either use persistence or non-
persistence. See Using UMDS
Persistence.

string "normal" (streaming)

allow-shutdown-via-webmon Control if the UMDS web mon-
itor offers a "Quit Server" but-
ton in the main page, and a "←↩
Disconnect this Client" button in
the Client Details page. Value
"0" disables the buttons. Value
"1" enables the buttons.

string "0" (disable)

8.1 UMDS Server Configuration File 89

Attribute Description Valid Values Default Value

request-timeout Duration for each request
to remain open (accepting
responses).

string "10,000" (10 sec)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<server bind-addr="*.14701"

num-workers="3"
msg-age-limit="1000"
msg-q-size-limit="1048576"
request-timeout="10000"
allow-shutdown-via-webmon="0"

\>
...

</daemon>
</umds-daemon>

8.1.46 UMDS Element "<lbm-license-file>"

Specifies the pathname where the the user has placed their UM license file.

Optional. if omitted, the license must be supplied via an environment variable.

• Cardinality: 0 .. 1

• Parent: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<lbm-licnese-file>/etc/umdsd.lic</lbm-licnese-file>
...

</daemon>
</umds-daemon>

8.1.47 UMDS Element "<pidfile>"

Specifies the pathname where the UMDS Server stores its Process ID (PID).

90 UMDS Server Configuration

Optional. If omitted, the server does not store its PID in a file.

• Cardinality: 0 .. 1

• Parent: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<pidfile>/var/run/umdsd.pid</pidfile>
...

</daemon>
</umds-daemon>

8.1.48 UMDS Element "<gid>"

Specifies the Group ID (GID) for the server process (if run as root).

Optional. If omitted, the GID of the parent process is inherited.

• Cardinality: 0 .. 1

• Parent: <daemon>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<gid>5555</gid>
...

</daemon>
</umds-daemon>

8.1.49 UMDS Element "<uid>"

Specifies the User ID (UID) for the server process (if run as root).

Optional. If omitted, the UID of the parent process is inherited.

• Cardinality: 0 .. 1

• Parent: <daemon>

8.1 UMDS Server Configuration File 91

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<uid>5555</uid>
...

</daemon>
</umds-daemon>

8.1.50 UMDS Element "<log>"

Configures UMDS Server's logging behavior. The value contained within the <log>...</log> is a file name,
but is only used if the "type" attribute is set to "file".

Optional. If omitted, logs are written to Standard Out.

The size of the log file can be controlled using the "frequency" and/or "size" attributes. See Log Handling for more
information.

• Cardinality: 0 .. 1

• Parent: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

type Specifies the method of logging. "file" - Logs to a text file.
"syslog" - Logs to the Unix SYS←↩
LOG facility.
"console" - Logs to standard out-
put.

"console"

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

frequency Period by which the current log file is
closed and a new log file created (log
file "rolling"). See Log Handling.

"disable" - Do not roll log file.
"daily" - Roll log file when the
UMDS Server has been running for
a multiple of 24 hours since it was
started.
"hourly" - Roll log file when the
UMDS Server has been running for
a multiple of 60 minutes since it was
started.
"test" - For internal Informatica
testing only.

"disable"

size Roll log file at the given number of
megabytes of file size. See Log Han-
dling.

string "0" (disable)

Example 1: (write log messages to Standard Out)

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>

92 UMDS Server Configuration

<log type="console"/>
...

</daemon>
</umds-daemon>

Example 2: (write log messages to "umds.log" file)

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.1">

<daemon>
<log type="file" frequency="daily">umds.log</log>
...

</daemon>
</umds-daemon>

8.1.51 UMDS Receiver Topic Options

Available options for UMDS Element "<option>", type "umds-receiver":

Option Description Default Value

receiver-queue-type topic or default. The value topic
creates a queue for the topic. The value
default places messages for the topic in
the client's default queue.

default

topic-queue-size-limit Maximum size in bytes of topic message
queue. UMDS Server deletes oldest mes-
sages when the queue reaches this config-
ured limit. A value of 0 (zero) means no limit.

1048576

use-late-join Controls whether UMDS receivers use Late
Join for this topic. This should be done for nor-
mal Late Join functionality (see Using UMDS
Late Join) and for UMDS persistence (see Us-
ing UMDS Persistence).
To disable Late Join for UMDS receivers, set
this option to 0 (Off).

1 (On)

message-cache-size Specifies the size, in number of messages, of
the Late Join message cache for this topic.
This applies to both Late Join and Persistence
functions. See Using UMDS Late Join and
Using UMDS Persistence for more informa-
tion.

1

message-cache-deletion-delay Indicates a period of time (in milliseconds)
that a message cache is maintained for a topic
after the last client receiver for that topic is
deleted. This applies to both Late Join and
Persistence functions. The default value of
0 (zero) deletes the message cache immedi-
ately upon deletion of the last client receiver
for the topic. See Using UMDS Late Join and
Using UMDS Persistence for more informa-
tion.

0 (immediate)

8.2 UM License File 93

Option Description Default Value

ignore-unique-receiver-attributesIndicates which set of lbm-receiver op-
tions a UMDS Client application uses when
it discovers a source/topic that matches a
wildcard receiver pattern. Both the wildcard
pattern and the individual topic might have
lbm-receiver options. The default value
of 1 ignores the lbm-receiver individual
topic options, and instead uses the options
configured for the wildcard pattern. This value
can provide more efficient control over options
for all receivers. Setting this option to 0 (zero)
instructs the UMDS Client application to use
lbm-receiver options configured for the
individual topic.

1 (Ignore)

8.1.52 UMDS Source Topic Options

Available options for UMDS Element "<option>", type "umds-source":

At this time, there are no source-specific UMDS topic options defined. The option type "umds-source" is defined for
future expansion.

8.2 UM License File

The Ultra Messaging license file contains the Ultra Messaging license key. The file name is specified with the UMDS
Element "<lbm-license-file>". If omitted from the UMDS Server Configuration File, umdsd looks for the environment
variables, LBM_LICENSE_INFO or LBM_LICENSE_FILENAME.

8.3 UM Configuration File

This file is optional. You specify this file in the UMDS Server Configuration File with the UMDS Element "<lbm-
config>". The Ultra Messaging Configuration File contains configuration options for the UMDS Server's Ultra Mes-
saging context. If omitted, Ultra Messaging uses the factory default values. See the Ultra Messaging Configuration
Guide for complete details.

Do not include the following options in the Ultra Messaging configuration file when you use it with the umdsd
daemon. UMDS ignores these options if they appear in the file.

• operational_mode (context)

• mim_ordered_delivery (context)

• ordered_delivery (receiver)

• use_transport_thread (receiver)

94 UMDS Server Configuration

• use_late_join (receiver)

• ume_use_store (receiver)

• umq_queue_participation (receiver)

• umq_queue_name (source)

8.4 Basic Authentication File

The Basic Authentication File specifies user and application records which contain client operational parameters.
You optionally specify this file in the UMDS Server Configuration File. If the Basic Authentication File is omitted,
umdsd does not perform Basic Authentication.

The format of the Basic Authentication File is xml. The <client> child elements of both the Application and
User elements are identical to those specified for the umdsd Configuration File. Values in a Basic Authentication
File override those in the umdsd Configuration File. The following example shows a Basic Authentication File:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-authentication-basic="1.0">

<application name="NAME">
<client>

...
</client>

</application>
<user name="NAME" password="PASW">
<client>

...
</client>

</user>
</umds-authentication-basic>

8.4.1 UMDS application Element

Optional. Name of application to associate client operating parameters.

Attribute Values

name Name is limited to 31 characters.

8.4.2 UMDS user Element

Optional. Name and password for an application user. Client operating parameters can be set for individual users.

Attribute Values

name Name is limited to 31 characters.

password Password used to authenticate user. Password is limited to 31 characters and is stored in plain text.

8.5 UMDS Configuration DTD 95

8.5 UMDS Configuration DTD

Here is the umdsd server's configuration DTD, used to validate the user's XML file:

<!ELEMENT umds-daemon (daemon?)>
<!ATTLIST umds-daemon

version (1.1) #REQUIRED
>
<!ELEMENT daemon (log?, uid?, gid?, pidfile?, lbm-license-file?, lbm-config?,

server, client, permissions?, authentication, web-monitor?, daemon-monitor?,
monitor?, topics?, tls?)>

<!ELEMENT log (#PCDATA)>
<!ATTLIST log

type (file | syslog | console) "console"
xml:space (default | preserve) "default"
frequency (disable | daily | hourly | test) "disable"
size CDATA "0"

>
<!ELEMENT uid (#PCDATA)>
<!ELEMENT gid (#PCDATA)>
<!ELEMENT pidfile (#PCDATA)>
<!ATTLIST pidfile

xml:space (default | preserve) "default"
>
<!ELEMENT lbm-license-file (#PCDATA)>
<!ATTLIST lbm-license-file

xml:space (default | preserve) "default"
>
<!ELEMENT lbm-config (#PCDATA)>
<!ATTLIST lbm-config

xml:space (default | preserve) "default"
>
<!ELEMENT server EMPTY>
<!ATTLIST server

bind-addr CDATA "*:14701"
num-workers CDATA "3"
msg-age-limit CDATA "1000"
msg-q-size-limit CDATA "(1024*1024)"
total-q-size-limit CDATA "(0)"
message-cache-type CDATA "normal"
allow-shutdown-via-webmon CDATA "0"
request-timeout CDATA "10000"

>
<!ELEMENT client (server-list | server-ka-interval | client-ka-threshold |

client-ka-interval | server-ka-threshold | server-rcvbuf | server-sndbuf |
server-nodelay | client-rcvbuf | client-sndbuf | client-nodelay |
server-reconnect | compression)* >

<!ELEMENT server-list (#PCDATA) >
<!ATTLIST server-list

client-write (yes | no) "yes"
>
<!ELEMENT server-ka-interval (#PCDATA) >
<!ATTLIST server-ka-interval

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT client-ka-threshold (#PCDATA) >
<!ATTLIST client-ka-threshold

96 UMDS Server Configuration

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT client-ka-interval (#PCDATA) >
<!ATTLIST client-ka-interval

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT server-ka-threshold (#PCDATA) >
<!ATTLIST server-ka-threshold

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT server-rcvbuf (#PCDATA) >
<!ATTLIST server-rcvbuf

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT server-sndbuf (#PCDATA) >
<!ATTLIST server-sndbuf

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT server-nodelay (#PCDATA) >
<!ATTLIST server-nodelay

client-write (yes | no) "yes"
>
<!ELEMENT client-rcvbuf (#PCDATA) >
<!ATTLIST client-rcvbuf

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT client-sndbuf (#PCDATA) >
<!ATTLIST client-sndbuf

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT client-nodelay (#PCDATA) >
<!ATTLIST client-nodelay

client-write (yes | no) "yes"
>
<!ELEMENT server-reconnect (#PCDATA) >
<!ATTLIST server-reconnect

client-write (yes | no) "yes"
>
<!ELEMENT compression (#PCDATA) >
<!ATTLIST compression

client-write (no) "no"
>
<!ELEMENT permissions (can-send?, can-stream?, can-reqresp?) >
<!ELEMENT can-send (#PCDATA) >
<!ELEMENT can-stream (#PCDATA) >
<!ELEMENT can-reqresp (#PCDATA) >
<!ELEMENT authentication (none?, basic?)>
<!ELEMENT none EMPTY>
<!ELEMENT basic (#PCDATA)>

8.6 Example UMDS Configuration Files 97

<!ATTLIST basic
xml:space (default | preserve) "default"

>
<!ELEMENT web-monitor (#PCDATA)>
<!ELEMENT monitor (transport | format | application-id)*>
<!ATTLIST monitor

object (context | source | receiver) "context"
interval CDATA "5"

>
<!ELEMENT topics (topic+)>
<!ELEMENT topic (umds-attributes?)>
<!ATTLIST topic pattern CDATA #REQUIRED

type (direct | PCRE | regexp) #IMPLIED
>
<!ELEMENT umds-attributes (option+)>
<!ELEMENT option EMPTY>
<!ATTLIST option type (lbm-receiver | lbm-wildcard-receiver | lbm-context |

lbm-source | umds-receiver | umds-source) #IMPLIED>
<!ATTLIST option name CDATA #REQUIRED>
<!ATTLIST option value CDATA #REQUIRED>
<!ELEMENT transport EMPTY>
<!ATTLIST transport

module (lbm | udp) "lbm"
options CDATA #IMPLIED

>
<!ELEMENT format EMPTY>
<!ATTLIST format

module (csv) "csv"
options CDATA #IMPLIED

>
<!ELEMENT application-id (#PCDATA)>
<!ATTLIST application-id

xml:space (default | preserve) "default"
>
<!ELEMENT daemon-monitor (publishing-interval?, remote-snapshot-request?,

remote-config-changes-request?, lbm-config?)>
<!ATTLIST daemon-monitor topic CDATA "umdsd.monitor">
<!ELEMENT publishing-interval (group+)>
<!ELEMENT group EMPTY>
<!ATTLIST group name (default | malloc-info-ivl | worker-details-ivl |

worker-summary-ivl) #REQUIRED>
<!ATTLIST group ivl CDATA #REQUIRED>
<!ELEMENT remote-snapshot-request EMPTY>
<!ATTLIST remote-snapshot-request allow (0 | 1) "0">
<!ELEMENT remote-config-changes-request EMPTY>
<!ATTLIST remote-config-changes-request allow (0 | 1) "0">
<!ELEMENT tls (certificate, certificate-key, certificate-key-password?,

trusted-certificates?, cipher-suites?)>
<!ELEMENT cipher-suites (#PCDATA)>
<!ELEMENT certificate (#PCDATA)>
<!ELEMENT certificate-key (#PCDATA)>
<!ELEMENT certificate-key-password (#PCDATA)>
<!ELEMENT trusted-certificates (#PCDATA)>

8.6 Example UMDS Configuration Files

This section presents the following example UMDS Server configuration files, which contain comments that explain
sections of the xml files.

98 UMDS Server Configuration

8.6.1 Minimum Configuration File

The following sample UMDS Server Configuration File contains the minimum configuration information required to
start the UMDS Server umdsd daemon. The daemon uses default values for the empty elements.

<?xml version="1.0" encoding="UTF-8"?>
<umds-daemon version="1.1">
<daemon>

<!-- This line is required. Defaults are: bind-addr="*:14701" num-workers="3" -->
<!-- msg-age-limit= "1000" msg-q-size-limit="1048576" -->
<server/>

<!-- This line is required. -->
<client/>

<!-- This line is required. Default is "none" -->
<authentication/>

</daemon>
</umds-daemon>

8.6.2 Typical Configuration File

The second example is a typical starting point for most users. It relies on example.lic (which contains the Ultra
Messaging license information and is not shown), Sample UM Configuration File, and Sample Authentication File.
The UMDS Server generates the file named example.log.

<?xml version="1.0" encoding="UTF-8"?>
<umds-daemon version="1.1">
<daemon>

<!-- Write log messages to a file -->
<log type="file" xml:space="preserve">example.log</log>

<!-- License contains your Informatica license key -->
<!-- <lbm-license-file>example.lic</lbm-license-file> -->

<!-- Override LBM configuration parameters. -->
<lbm-config>example.lbmcfg</lbm-config>

<!-- Select a unique port and set the other parameters. -->
<server bind-addr="*:17500" num-workers="2" msg-age-limit= "7000"

msg-q-size-limit="4000000" />

<!-- Select reasonable defaults and prevent users from overriding. -->
<!-- (Specific users can override via the authentication file.) -->
<client>
<!-- Pick default server-list settings -->
<server-list/>

<!-- Server sends a keep alive msg every 5 seconds -->
<server-ka-interval client-write="no">5000</server-ka-interval>

8.6 Example UMDS Configuration Files 99

<!-- Client times-out if no keep alive received in 12 seconds -->
<client-ka-threshold client-write="no">12000</client-ka-threshold>

<!-- Client sends a keep alive msg every 9 seconds -->
<client-ka-interval client-write="no">9000</client-ka-interval>

<!-- Server times-out if no keep alive received in 20 seconds -->
<server-ka-threshold client-write="no">20000</server-ka-threshold>

<!-- Set buffers to 1/2 megabyte -->
<server-rcvbuf client-write="no">524288</server-rcvbuf>
<server-sndbuf client-write="no">524288</server-sndbuf>
<!-- Do not change TCP nodelay from OS default -->
<server-nodelay client-write="no">0</server-nodelay>

<!-- Set client side to same as server side -->
<client-rcvbuf client-write="no">524288</client-rcvbuf>
<client-sndbuf client-write="no">524288</client-sndbuf>
<client-nodelay client-write="no">0</client-nodelay>

<!-- Do not allow client to automatically reconnect to the server -->
<server-reconnect client-write="no">0</server-reconnect>

</client>

<!-- Block unathorized users. -->
<authentication>
<basic>authentication.xml</basic>

</authentication>

<!-- Web monitoring can be a valuable feature -->
<web-monitor>*:8080</web-monitor>

</daemon>
</umds-daemon>

8.6.3 Complete Configuration File

This sample UMDS Server Configuration File contains values for all configuration elements.

<?xml version="1.0" encoding="UTF-8"?>
<umds-daemon version="1.1">
<daemon>

<!-- This line is optional. Default sends log information to the screen -->
<log type="file" xml:space="preserve">example.log</log>

<!-- These lines are optional. To set UID and GID, you need to be root -->
<!--

<uid>12345</uid>
<gid>23456</gid>

-->

<!-- This line is optional. If omitted, no PID file is created -->
<pidfile xml:space="preserve">example.pid</pidfile>

<!-- This line is optional; it is not the only way to designate a license. -->
<!-- <lbm-license-file>example.lic</lbm-license-file> -->

100 UMDS Server Configuration

<!-- Sets Ultra Messaging configuration options for contexts used by UMDS. -->
<lbm-config>example.lbmcfg</lbm-config>

<!-- This line is required. -->
<server/>

<!-- All client attributes and their defaults appear below. -->
<!-- Attributes must be listed in this order -->
<client>
<server-list client-write="yes">0.0.0.0:14701</server-list>

<!-- Server sends keep alive at interval...client times out at threshold -->
<server-ka-interval client-write="range"

min="0" max="2147483648">2000</server-ka-interval>
<client-ka-threshold client-write="range"

min="0" max="2147483648">3000</client-ka-threshold>

<!-- Client sends keep alive at interval...server times out at threshold -->
<client-ka-interval client-write="range"

min="0" max="2147483648">10000</client-ka-interval>
<server-ka-threshold client-write="range"

min="0" max="2147483648">11000</server-ka-threshold>

<!-- Zero means use the OS default settings -->
<server-rcvbuf client-write="range"

min="0" max="2147483648">0</server-rcvbuf>
<server-sndbuf client-write="range"

min="0" max="2147483648">0</server-sndbuf>

<!-- Zero means don’t enable TCP_NODELAY (improves network efficiency) -->
<server-nodelay client-write="yes">0</server-nodelay>

<!-- Zero means use the OS default settings -->
<client-rcvbuf client-write="range"

min="0" max="2147483648">0</client-rcvbuf>
<client-sndbuf client-write="range"

min="0" max="2147483648">0</client-sndbuf>

<!-- Zero means don’t enable TCP_NODELAY -->
<client-nodelay client-write="yes">0</client-nodelay>

<!-- Zero indicates that the client will not attempt to reconnect -->
<!-- to the server after connection is lost -->
<server-reconnect client-write="yes">0</server-reconnect>

</client>

<!-- This line is required. An empty element specifies the default "none" -->
<authentication/>

<!-- This line is optional. Web monitoring can be a valuable feature -->
<web-monitor>*:8080</web-monitor>

<!-- Enables and configures the UM transport statistics monitoring functionality. -->
<!-- See the Informatica Ultra Messaging Concepts Guide. -->
<monitor object="context" interval="5">
<transport module="lbm" options=""/>
<format module="csv" options=""/>
<application-id xml:space="preserve"></application-id>

</monitor>

8.6 Example UMDS Configuration Files 101

<topics>
<topic pattern="BEW.xyz.*" type="PCRE">

<!-- This configures a message queue for a wildcard topic pattern. -->
<umds-attributes>

<option type="umds-receiver" name="receiver-queue-type"
value="topic" />

<option type="umds-receiver" name="topic-queue-size-limit"
value="200000" />

</umds-attributes>
</topic>
<topic pattern="BEW.xyz" type="direct">

<!-- This directs the topic, BEW.xyz, to use the default message queue. -->
<umds-attributes>

<option type="umds-receiver" name="receiver-queue-type"
value="default" />

<option type="umds-receiver" name="topic-queue-size-limit"
value="200000" />

</umds-attributes>
</topic>
<topic pattern="wild.*" type="direct">
<!-- This is a direct match for a wildcard to set explicit wildcard and receiver attributes -->
<umds-attributes>

<option type="lbm-wildcard-receiver" name="resolver_no_source_linger_timeout"
value="30000"/>

<option type="lbm-receiver" name="use_late_join" value="0" />
<option type="umds-receiver" name="ignore-unique-receiver-attributes"

value="1" />
</umds-attributes>

</topic>
</topics>

</daemon>
</umds-daemon>

8.6.4 Sample UM Configuration File

The following sample UMS configuration file contains override values used by the UMDS Server for the specified
UMS options. You use the UMDS Element "<lbm-config>" to specify a file such as this.

context transport_tcp_receiver_socket_buffer 4000000
source transport_tcp_sender_socket_buffer 4000000

context transport_lbtrm_receiver_socket_buffer 4000000
context transport_lbtrm_source_socket_buffer 4000000

context transport_lbtru_receiver_socket_buffer 4000000
context transport_lbtru_source_socket_buffer 4000000

context mim_implicit_batching_minimum_length 8192

context transport_lbtrm_data_rate_limit 400000000
context transport_lbtrm_retransmit_rate_limit 40000000

102 UMDS Server Configuration

8.6.5 Sample Authentication File

The following sample authentication file specifies settings for a master application, a set of users who can only
monitor prices, a second set of users who can post trades and monitor prices, and settings for an administrative
user. You specify this file with the UMDS Element "<authentication>".

<?xml version="1.0" encoding="UTF-8" ?>
<umds-authentication-basic version="1.0">

<application name="master_app">
<client>

<!-- Allow application "master_app" to reconnect and give ability to override this setting -->
<server-reconnect client-write="yes">0</server-reconnect>

</client>
</application>

<!-- users allowed to only monitor prices...except when using master_app -->
<user name="john_doe" password="id1" />
<user name="jane_doe" password="id2" />
<user name="jim_doe" password="id3" />
<user name="jackie_doe" password="id4" />
<user name="john_smith" password="id5" />
<user name="jane_smith" password="id6" />
<user name="jim_smith" password="id7" />
<user name="jackie_smith" password="id8" />
<!-- This list could be 1,000’s of users -->

<!-- users allowed to monitor prices and post trades -->
<user name="rob_smith" password="priv1"> </user>
<user name="rose_smith" password="priv2"> </user>
<user name="rod_smith" password="priv3"> </user>
<!-- This list could be 100’s or even 1,000’s of users -->

<user name="patel" password="admin">
<client>

<!-- allow this user to override any setting -->
<server-ka-interval client-write="yes">5000</server-ka-interval>
<client-ka-threshold client-write="yes">12000</client-ka-threshold>
<client-ka-interval client-write="yes">9000</client-ka-interval>
<server-ka-threshold client-write="yes">20000</server-ka-threshold>
<server-rcvbuf client-write="yes">524288</server-rcvbuf>
<server-sndbuf client-write="yes">524288</server-sndbuf>
<server-nodelay client-write="yes">0</server-nodelay>
<client-rcvbuf client-write="yes">524288</client-rcvbuf>
<client-sndbuf client-write="yes">524288</client-sndbuf>
<client-nodelay client-write="yes">0</client-nodelay>
<server-reconnect client-write="yes">0</server-reconnect>

</client>

</user>
<!-- This list would probably be limited -->

</umds-authentication-basic>

8.6 Example UMDS Configuration Files 103

104 UMDS Server Configuration

Chapter 9

UMDS Log Messages

Umds-10372-10: unable to create
umds cfg stat group: s

Failure when creating daemon
monitor umds config stats group

Verify all the attributes in the
daemon-monitor section of the xml
file are correct

Umds-10372-11: unable to create
memory stat group: s

Failure created while creating dae-
mon monitor malloc info stat group

Verify all the attributes in the
daemon-monitor section of the xml
file are correct

Umds-10372-12: unable to sched-
ule timer for gateway config stat
group call back, s

Error setting up UMDS config stat
group callback timer

Contact Informatica Support.

Umds-10372-13: unable to sched-
ule timer for umds config stat group
call back, s

Failure setting up gateway config
stat group callback timer

Contact Informatica Support.

Umds-10372-14: umdsd_publish←↩
_cfg: s

UM was unable to publish dmon
message.

Contact Informatica Support.

Umds-10372-15: error trying to
publish config record

Failure publishing config record Contact Informatica Support.

Umds-10372-16: error reading
memory info record

Error attempting to read daemon
stats memory info record

This is an information message
only.

Umds-10372-17: unable to sched-
ule timer for memory stat group
callback: s

Failure creating memory stat group
callback timer

Contact Informatica Support.

Umds-10372-18: error reading
malloc info record

Error attempting to read daemon
stats malloc info record

Contact Informatica Support.

Umds-10372-19: unable to sched-
ule timer for memory stat group call
back, s

failure scheduling timer for memory
stat group callback timer

Contact Informatica Support.

Umds-10372-1: pointer to stats_←↩
info is NULL: s

pointer to stats_info is NULL Contact Informatica Support.

Umds-10372-20: Error reading
memory record

Error reading memory record Contact Informatica Support.

Umds-10372-21: worker id number
is out of range

Worker number is out of range Contact Informatica Support.

Umds-10372-22: worker_list
pointer is NULL

worker_list pointer is NULL Contact Informatica Support.

Umds-10372-23: stats_info pointer
is NULL

stats_info pointer is NULL Contact Informatica Support.

Umds-10372-24: unable to sched-
ule timer for gateway config stat
group call back, s

Error setting up UMDS config stat
group callback timer

Contact Informatica Support.

106 UMDS Log Messages

Umds-10372-25: unable to sched-
ule timer for gateway config stat
group call back, s

Error setting up UMDS config stat
group callback timer

Contact Informatica Support.

Umds-10372-26: No workers de-
fined in umdsd_dstat_allworker_←↩
stat_grp_create

No workers defined Verify that the number of workers
defined in the xml file is > 0

Umds-10372-27: error initializing a
worker stat object

Error initializing a worker stat object Contact Informatica Support.

Umds-10372-28: unable to sched-
ule timer for worker stat group call
back, s

failure scheduling timer for worker
stat group callback timer

Contact Informatica Support.

Umds-10372-29: unable to sched-
ule timer for worker stat group call
back, s

failure scheduling timer for worker
stat group callback timer

Contact Informatica Support.

Umds-10372-2: unable to create
context attributes: s

Failure while creating context at-
tributes

Contact Informatica Support.

Umds-10372-30: Worker ID num-
ber d is out of range

Worker ID is out of range Contact Informatica Support.

Umds-10372-31: error reading
worker stats

Failure reading worker stats This is an information message
only

Umds-10372-32: connection sta-
tus read failed

Failure reading connection stats This is an information message
only

Umds-10372-33: umdsd_dstat_←↩
send_thread_main: Unable to pub-
lish message of type d: s

UM was unable to publish dmon
message.

Contact Informatica Support.

Umds-10372-34: invalid UMDS
dmon message [s] from s [s]

UM dmon received an invalid/cor-
rupted immediate message.

Verify that messages sent on the
request port are valid.

Umds-10372-35: UMDS dmon
failed to send error response [s]

UM could not respond to a dmon
immediate message.

Contact Informatica Support.

Umds-10372-36: UMDS dmon
failed to send success response [s]

UM could not respond to a dmon
immediate message.

Contact Informatica Support.

Umds-10372-37: UMDS dmon re-
ceived control message exceeding
255 bytes

UM daemon monitor received an
invalid control message exceeding
255 bytes.

Verify that messages sent on the
control channel are <= 255 bytes.

Umds-10372-38: UMDS dmon
failed to send error response [s]

UM could not respond to a dmon
immediate message.

Contact Informatica Support.

Umds-10372-39: UMDS received
unknown lbm_msg_t type x [s][s]

UM daemon monitor received un-
known lbm_msg_t type.

Stop the source of unknown mes-
sages to the daemon monitor.

Umds-10372-3: lbmaux_context←↩
_attr_setopt_from_file() failed, s

Failure while setting up extra config
opts for UMDS daemon monitor

Check attributes in "lbm-config"
config file specified in the "daemon-
monitor" section of umdsd's xml file

Umds-10372-40: error from
umdsd_dstat_mallinfo_stat_grp_←↩
snapshot()

Failure reading malloc info stat
group record

Contact Informatica Support.

Umds-10372-41: error from
umdsd_cfg_dstat_stat_grp_←↩
snapshot()

Failure reading config info stat
group record

Verify that the xml file has not been
removed since starting the dae-
mon.

Umds-10372-42: error from
umdsd_dstat_workers_snapshot()

Failure reading worker stat group
record

This is an information message
only.

Umds-10372-43: error from
umdsd_dstat_memory_stat_grp←↩
_snapshot()

Failure reading malloc info stat
group record

Contact Informatica Support.

Umds-10372-44: error from
umdsd_dstat_cfg_stat_grp_←↩
snapshot()

Failure reading config info stat
group record

This is an information message
only

107

Umds-10372-45: No connection ID
specified for connection snapshot

No connection ID specified for the
connections snapshot

Verify that a valid connection ID
was specified

Umds-10372-46: error from
umdsd_dstat_conn_snapshot()

Failure reading connection stat
group record

This is an information only mes-
sage.

Umds-10372-47: bad worker ID re-
turned from umdsd_getworkerID←↩
_fromstring()

The worker ID is invalid Verify that the worker ID is within
the range of Workers specified in
umdsd's XML file

Umds-10372-48: error from
umdsd_dstat_workers_snapshot()

Failure reading worker stat group
record

This is an information only mes-
sage

Umds-10372-49: error returned
from umdsd_dstat_setinterval()

Failure changing the publishing in-
terval for config stat group

Contact Informatica Support.

Umds-10372-4: lbm_context_attr←↩
_setopt() failed, s

Failure setting up attributes for dae-
mon monitor remote control han-
dler

Contact Informatica Support.

Umds-10372-50: error returned
from umdsd_dstat_setinterval()

Failure changing the publishing in-
terval for mallinfo stat group

Contact Informatica Support.

Umds-10372-51: bad worker ID re-
turned from umdsd_getworkerID←↩
_fromstring()

The worker ID is invalid Verify that the worker ID is within
the range of workers specified in
the umdsd XML file

Umds-10372-52: error returned
from umdsd_dstat_setinterval()

Failure changing the publishing in-
terval for worksum stat group

Contact Informatica Support.

Umds-10372-53: invalid command
s

Attempt to obtain snapshot of
record for invalid stat group

Contact Informatica Support.

Umds-10372-54: unable to sched-
ule timer

Failure to schedule callback timer Contact Informatica Support.

Umds-10372-55: Worker ID d is out
of range

Worker ID out of range Contact Informatica Support.

Umds-10372-56: Unable to start
daemon stats monitor

unable to start daemon stats moni-
tor for UMDS

Verify all daemon monitor related
attributes are correct in xml and
config files

Umds-10372-57: NULL webmon
pointer

NULL webmon pointer Contact Informatica Support.

Umds-10372-58: monitor section
lbm-config must have a value

Expecting a string that contains the
path to the config file.

Please specify a string that con-
tains the path to the config file.

Umds-10372-59: monitor section
xml-config must have a value

Expecting a string that contains the
path to the config file.

Please specify a string that con-
tains the path to the config file.

Umds-10372-5: unable to create
context attributes: s

Failure creating lbm context for
daemon stats monitor

Contact Informatica Support.

Umds-10372-60: lbmaux_src_←↩
topic_attr_setopt_from_file() failed,
s

Failure while setting up extra con-
fig opts for UMDS daemon monitor
source object

Check attributes in "lbm-config"
config file specified in the "daemon-
monitor" section of umdsd's xml file

Umds-10372-6: unable to create
src topic attributes: s

Error creating source attributes for
daemon stats monitor

Contact Informatica Support.

Umds-10372-7: unable to alloc src
topic: s

Error allocating src topic for dae-
mon stats monitor

Contact Informatica Support.

Umds-10372-8: unable to create
src: s

Error creating source for daemon
stats monitor

Contact Informatica Support.

Umds-10372-9: unable to allworker
stat group

Failure returned while creating all-
worker stats group

Verify all the attributes in the
daemon-monitor section of the xml
file are correct

Umds-10633-1: umdsd_main←↩
: Daemon setup failed. Exiting
umdsd.

There was a failure trying to setup
the UMDS Daemon. The daemon
cannot continue and exits.

Check previous errors and correct
appropriately.

108 UMDS Log Messages

Umds-10759-1: Unable to create
daemon stats sender thread: s

Failure to create sender thread for
daemon stats

Contact Informatica Support.

Umds-10759-2: umdsd_dstat_←↩
send_thread_create() error creat-
ing TL queue: s

Unable to create two-lock queue Contact Informatica Support.

Umds-10759-3: umdsd_dstat_←↩
send_thread_main(): Error while
dequeueing

Error while dequeueing from TL
queue

Contact Informatica Support.

Umds-10929-01: Problem de-
tected trying to setup a TLS
context. TLS initialization failed
or no configured ciphers were
available.

An error occurred when creating
the OpenSSL context.

Check the OpenSSL version to
make sure it is the version de-
livered with LBM. Also check the
tls_cipher_suites configuration op-
tion.

Umds-10929-10: umdsd_worker←↩
_conn_read_cb: worker_conn (p)
decryption error (s)

Decrypting a UMDS message from
the client resulted in an UM error.

A description of the UM error is in-
cluded in the message text.

Umds-10929-11: umdsd_worker←↩
_conn_read_cb: worker_conn (p)
decryption error (s)

Decrypting a UMDS message from
the client resulted in an UM error.

A description of the UM error is in-
cluded in the message text.

Umds-10929-20: umdsd_worker←↩
_cont_sending_cntl: worker_conn
(p) encryption error (s)

Encrypting a UMDS Control mes-
sage to the client resulted in an UM
error.

A description of the UM error is in-
cluded in the message text.

Umds-10929-21: umdsd_worker←↩
_cont_sending_data: worker_conn
(p) encryption error (s)

Encrypting a UMDS Control mes-
sage to the client resulted in an UM
error.

A description of the UM error is in-
cluded in the message text.

Umds-10929-4: TLS initialization
failed : s

Initialization of SSL failed Check OpenSSL library version
and availability.

Umds-10929-635: Ultra Messaging
UMDS using TLS library version [s]

Reports the version of SSL. No resolution, this in formation is
provided for audit and debugging
purposes.

Umds-10958-1: Using default con-
text and source config values for
daemon stats

No "lbm-config" file was specified
in the "daemon-monitor" section of
umdsd's xml file. This is not a
problem, but be aware that dae-
mon statistics might be sent over
the same transport session as ap-
plication data. Most users choose
to avoid this.

Add "lbm-config" config file speci-
fied in the "daemon-monitor" sec-
tion of umdsd's xml file

Umds-10969-1: Created client
thread: id[s]

The UMDS created the client
thread with the reported thread ID.

This is for informational purposes
only and can be ignored.

Umds-10969-2: Created DCTL
thread: id[s]

UMDS created the DCTL thread
with the reported thread ID.

This is for informational purposes
only and can be ignored.

Umds-10969-3: Created Daemon
stats send thread: id[s]

Umdsd created the daemon stats
send thread with the reported
thread id.

This is for informational purposes
only and can be ignored.

Umds-10969-4: Created Signal
handler thread: id[s]

The Umds created the Signal poller
thread with the reported thread id.

This is for informational purposes
only and can be ignored.

Umds-10969-5: Created MIM
server thread: id[s]

The UMDS created the MIM server
thread with the reported thread id.

This is for informational purposes
only and can be ignored.

Umds-10969-6: Created Primary
server thread: id[s]

The UMDS created the Primary
server thread with the reported
thread id.

This is for informational purposes
only and can be ignored.

Umds-10969-7: Created Webmon
thread: id[s]

The UMDS created the Webmon
thread with the reported thread id.

This is for informational purposes
only and can be ignored.

109

Umds-10969-8: Created Worker
queue dispatch thread: id[s]

The UMDS created Worker queue
dispatch thread with the reported
thread id.

This is for informational purposes
only and can be ignored.

Umds-10969-9: Created Worker
thread: id[s]

The UMDS created a Worker
thread with the reported thread id.

This is for informational purposes
only and can be ignored.

Umds-11008-01: Source (s) is de-
livering msgs but has no Session
ID with Source Session ID caching
enabled–dropping messages

A streaming source was discovered
by a UMDS Server configured to
cache message per Source Ses-
sion ID.

This is not necessarily an issue but
messages from this source will not
be delivered.

Umds-11008-02: umdsd_worker←↩
_client_rcv_create–Source Ses-
sion ID caching is NOT enabled
and therefore receive clients using
Source Session ID caching will not
be accepted.

Source Session ID caching is not
enabled but a Source Session ID
caching client has attempted to
connect. The client will be discon-
nected.

The configuration needs to be cor-
rected.

Umds-11008-03: umdsd_←↩
worker_client_rcv_create–Source
Session ID caching enabled but
use-late-join is disabled. CHAN←↩
GING TO ENABLED

Source Session ID caching is set
but use-late-join is not enabled.
The use-late-join option is required
and being forced to ENABLED.

The configuration needs to be cor-
rected.

Umds-11008-04: umdsd_←↩
worker_client_rcv_create–Source
Session ID caching is enabled
and therefore receive clients need
to support Source Session ID
caching.

Source Session ID caching is en-
abled but a legacy client has at-
tempted to connect. The client will
be disconnected.

Use only receive clients that sup-
port Source Session ID caching.

Umds-11008-05: umdsd_←↩
worker_client_rcv_create–Source
Session ID caching is enabled;
topic config for this topic expected
(s).

Source Session ID caching is en-
abled but there is no topic configu-
ration for the topic given. The client
will be disconnected.

Make sure there is topic config-
uration for all topics when using
Source Session ID caching.

Umds-11008-10: umdsd_topic←↩
_deletion_delay_set–problem set-
ting up the Proxy Receiver (s); no
deletion delay will be implemented.

There was an error setting up the
Proxy Receiver for the configured
Deletion Delay.

Check topic symbol or contact sup-
port.

Umds-11008-22: umdsd_worker←↩
_client_wrcv_create–Source Ses-
sion ID caching is NOT enabled
and therefore receive clients using
Source Session ID caching will not
be accepted.

Source Session ID caching is not
enabled but a Source Session ID
caching client has attempted to
connect. The client will be discon-
nected.

The configuration needs to be cor-
rected.

Umds-11008-23: umdsd_rcv_←↩
create_func_cb–Source Session
ID caching enabled but use-late-
join is disabled (s). CHANGING
TO ENABLED

Source Session ID caching is set
but use-late-join is not enabled.
The use-late-join option is required
and being forced to ENABLED.

The configuration needs to be cor-
rected.

Umds-11008-24: umdsd_worker←↩
_client_wrcv_create–Source
Session ID caching is enabled
and therefore receive clients need
to support Source Session ID
cachging.

Source Session ID caching is en-
abled but a legacy client has at-
tempted to connect. The client will
be disconnected.

Use only receive clients that sup-
port Source Session ID caching.

Umds-11008-25: umdsd_rcv_←↩
create_func_cb–Source Session
ID caching is enabled; topic config
for this topic expected (s).

Source Session ID caching is en-
abled but there is no required topic
configuration for the topic given.

Make sure there is topic config-
uration for all topics when using
Source Session ID caching.

110 UMDS Log Messages

Umds-11340-1: The total-q-size-
limit (d) is less than the msg-q-size-
limit (d)

The configuration has set the total-
q-size-limit less than the msg-q-
size-limit.

Check the configuration since this
configuration might not produce the
desired behavior.

Umds-11384-01: Server could not
decompress client message size
(d) orig size (d)...dropping

Failure was detected decompress-
ing message from client. Message
is dropped.

Make sure the correct version of
client code is used for compressing
data.

Umds-11384-02: Server could not
decompress client response
message size (d) orig size
(d)...dropping

Failure was detected decompress-
ing message from client. Message
is dropped.

Make sure the correct version of
client code is used for compressing
data.

Umds-11384-03: Server could
not decompress client request
message size (d) orig size
(d)...dropping

Failure was detected decompress-
ing message from client. Message
is dropped.

Make sure the correct version of
client code is used for compressing
data.

Umds-11384-04: Client connected
to Server configured for compres-
sion but client is not compression
capable.

The UMDS client did not indicate
it is compression capable and can-
not connect to server configured for
compression.

Check client version to make sure it
is compression capable.

Umds-11384-05: Server could not
decompress due to lack of original
size information (d)...dropping

Compression is configured but the
original message size was not sup-
plied by the client. Message is
dropped.

Make sure the correct version of
client code is used for compressing
data.

Umds-11384-06: Server re-
ceived compressed header from
client but compression is not
enabled...dropping

Compression is not configured but
a compression header was re-
ceived on the message from the
client. Message is dropped.

Make sure the correct version of
client code is used for compressing
data.

Umds-11384-20: Server could not
compress the outgoing message
size (d)...dropping

Failure was detected compressing
outbound message.

This is a compression failure.

Umds-4892-1: Attempt to set use←↩
_late_join failed for attrs p err(d)

ERROR: Attempt to turn use_late←↩
_join ON in the rcvr attrs failed.

Umds-4892-2: Attempt to set
ume_use_store failed for attrs p
err(d)

ERROR: Attempt to turn ume←↩
_use_store ON in the rcvr attrs
failed.

Umds-4892-3: Error creating Topic
Queue: No Hash function found.

FATAL: A hash function is required
to create a Topic Queue. This
is set from the resolver_string_←↩
hash_function in the topic queue
map init function.

Check that the Hash function for
Topic Resolution has been set cor-
rectly.

Umds-4892-4: Attempt to get
ume_session_id failed or session
id is zero: lu

ERROR: Trying to create a persis-
tent receiver but the session id is
either zero, or reading the attribute
failed.

Check that session ID sent by the
UMDS client is not zero

Umds-4892-5: Attempt to set
ume_explicit_ack_only failed for at-
trs p err(d)

ERROR: The attempt to set ume←↩
_explicit_ack_only (to ON) failed
while creating a persistent receiver.

Umds-5688-5609: umdsd_←↩
worker_api_mim_loss_advisory:
worker(p<d>) not running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

111

Umds-5688-5617: PCRE exec
[s][s][d] error d

An error occurred while trying to
match the pattern listed in the first
bracketed expression. The topic
string attempting to be matched
is supplied as the second brack-
eted expression, and its length is
supplied as the third bracketed ex-
pression. The error that occurred
was internal to PCRE, and the er-
ror code is listed in the PCRE
documentation for return values of
pcre_exec.

Umds-6033-635: Ultra Messaging
UMDS server version " UMDS_V←↩
ERSION " Build s, s (s)

Reports the version of UMDS, build
time and date, and version of the
underlying UM library.

No resolution, this in formation is
provided for audit and debugging
purposes.

Umds-6033-637: umdsd_main←↩
: webmon interface not found (s)

The interface specified for the web
monitor could not be found.

Review the setting in the <web-
monitor> tag in the server's xml
configuration file.

Umds-6033-638: umdsd_main←↩
: client interface not found (s)

The interface specified for the client
connections could not be found.

Review the setting for the bind-addr
attribute in the <server> tag in the
server's xml configuration file.

Umds-6033-641: umdsd_main: Er-
ror opening pidfile 's' (s)

Opening (creating) the pid file
failed.

The error message includes the OS
error message associated with the
open attempt. Check that files can
be created in the target directory
and that the device is not full.

Umds-6033-656: umdsd_worker←↩
_cont_sending_cntl: sendb header
error (s)

Sending a UMDS Control message
to the client resulted in an UM error.

A description of the UM error is in-
cluded in the message text.

Umds-6033-657: umdsd_worker←↩
_cont_sending_data: sendb data
error (s)

Sending on the client socket en-
countered an error.

Included in the message text is a
description of the particular error
encountered.

Umds-6033-659: End Of Stream
(EOS) on topic s from s",(msg-
>topic_name!=NULL ? msg-
>topic_name : "

Informational message indicating
that an EOS has been received on
the given topic and source.

No action required.

Umds-6033-662: Beginning Of
Stream (BOS) on topic s from
s",(msg->topic_name!=NULL ?
msg->topic_name : "

Informational message indicating
that a BOS has been received on
the given topic and source.

No action required.

Umds-6033-664: umdsd_←↩
webmon_api_create: failed to init
web server (ip=s, port=s)

The web monitor subsystem failed
to start.

The web server library will have re-
ported additional details to the con-
sole.

Umds-6033-685: s: worker p<d>
connection p<d> invalid conn_←↩
state (d)

The indicated state for the client
connection is inappropriate for the
requested operation.

The client connection will be
deleted and if configured, the client
will retry. If this error repeats,
call Informatica support with all
relevant server and client log files.

Umds-6033-705: umdsd_worker←↩
_internal_cmd_del_conn: worker
p<d> connection p<d> (s:u)
deleted, bytes_in=lld, bytes_←↩
out=lld

The indicated connection has been
deleted

No resolution is required.

112 UMDS Log Messages

Umds-6033-706: umdsd_←↩
worker_internal_cmd_mim_loss←↩
_advisory: worker(p<d>) not
running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

Umds-6033-708: umdsd_worker←↩
_keepalive_tmr_cb: worker(p<d>)
not running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

Umds-6033-709: umdsd_worker←↩
_keepalive_tmr_cb: send_←↩
period=d, disconnecting worker
p<d> connection p<d>

The keep alive state has been PE←↩
NDING for too long; it is being dis-
connected as unresponsive.

This can occur if the client appli-
cation is spending long periods of
time in any of the library call back
functions and preventing the client
sid socket from being read.

Umds-6033-710: umdsd_worker←↩
_keepalive_tmr_cb: rcv_period=d,
disconnecting worker p<d> con-
nection p<d>

The keep alive timer has expired for
the indicated worker connection; it
is being disconnected as unrespon-
sive.

This can occur if the keep alive
threshold and intervals are not ap-
propriate for the connection or if the
client application is spending long
periods of time in any of the library
call back functions.

Umds-6033-711: umdsd_worker←↩
_api_conn_add: worker(p<d>)
not running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

Umds-6033-712: umdsd_worker←↩
_api_conn_add: worker p<d>
waiting to add new connection

The client request to add a connec-
tion to this worker is still pending.

The main UM context thread is un-
usually busy at this time but will
eventually serve this request.

Umds-6033-715: umdsd_worker←↩
_api_delete: quit skipped (ctx=p,
thrd_running=d)

The context or worker thread has
already shutdown

Shutdown is already in progress

Umds-6033-716: umdsd_worker←↩
_api_delete: error joining worker
(p<d>) thread (d)

An error occurred joining the
worker thread during shutdown.

It is likely this is a result of multiple
shutdown requests. However if this
error is seen on multiple occasions,
please report it along with any ap-
plicable configuration and log files
to GCS.

Umds-8218-1: s: error: 's', appl_←↩
name='s'

The UMDS client failed to authenti-
cate.

Check authentication credentials
and server auth configuration.

Umds-8366-1: Unknown receiver
type deleting umdsd_rcv <p>

An unknown receiver type was en-
countered while deleting a UMDS
receiver object.

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

Umds-8366-2: failed to free umds
unique receiver p

The UMDS server (umdsd) en-
countered an error deleting the
UM receiver associated with the
umds_rcv object

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

Umds-8366-3: failed to free umds
wc receiver p

The UMDS server (umdsd) en-
countered an error deleting the UM
wildcard receiver associated with
the umds_rcv object

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

113

Umds-8366-4: Unknown receiver
type deleting umdsd_rcv <p>

An unknown receiver type was en-
countered while freeing a UMDS
receiver object.

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

Umds-8366-5: Unknown receiver
type deleting umdsd_rcv <p>

An unknown receiver type was en-
countered while deleting a UMDS
receiver object.

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

Umds-8406-1: umdsd_stats←↩
_queue_internal_cmd_cb: src
create before delete. is <d>

The webmon statistics subsystem
got a source create for an already
existing source id (the intended
src structure was not NULL in the
source array).

It is possible for creation and dele-
tion to happen out of order.

Umds-8406-2: umdsd_stats←↩
_queue_internal_cmd_cb: src
delete before create. id <d>

The webmon statistics subsystem
got a source delete for an already
deleted source id (the intended src
structure was NULL in the source
array).

It is possible for creation and dele-
tion to happen out of order.

Umds-8406-3: umdsd_stats←↩
_queue_internal_cmd_cb: rcv
create before delete. id <d>

The webmon statistics subsystem
got a receiver create for an already
existing receiver id (the intended
rcv structure was not NULL in the
receiver array).

It is possible for creation and dele-
tion to happen out of order.

Umds-8406-4: umdsd_stats←↩
_queue_internal_cmd_cb: rcv
delete before create. id <d>

The webmon statistics subsystem
got a receiver delete for an already
deleted source id (the intended rcv
structure was NULL in the receiver
array).

It is possible for creation and dele-
tion to happen out of order.

Umds-8408-1: umdsd_worker_←↩
api_delete: waiting for worker
p<d> to quit

The request to remove a worker is
still pending.

The worker thread is unusually
busy at this time but will eventually
serve this request.

Umds-8447-1: umdsd_worker_←↩
handle_blocked_msg: Parse Error

The client connection parser en-
countered an unrecoverable error.

This is an internal error, if it recurs,
please report it along with any rela-
vant log files to GCS.

Umds-8499-1: LBM error while
sending request: s

LBM returned an unhandled error
code.

The LBM error code is given in the
log message. Please refer to the
LBM error code.

Umds-8499-2: LBM error while
sending message: s

LBM returned an unhandled error
code.

The LBM error code is given in the
log message. Please refer to the
LBM error code.

Umds-8499-3: LBM error while
sending response: s

LBM returned an unhandled error
code.

The LBM error code is given in the
log message. Please refer to the
LBM error code.

Umds-8519-1: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage before the umdsd server has
created the corresponding source.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

Umds-8519-2: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage before the umdsd server has
created the corresponding source.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

114 UMDS Log Messages

Umds-8519-3: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage before the umdsd server has
created the corresponding source.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

Umds-8542-1: umdsd_worker_←↩
client_src_create: transport <s>
not allowed, using TCP instead

The UMDS server configuration file
specified the use of LBT-SMX as
a transport type, which is not sup-
ported. The server will use TCP in-
stead.

Change the server configuration
file to specify one of the supported
transport types.

Umds-8544-11: Error creating
source: <d>: s

An error occurred creating the re-
quest source.

The text of the warning will provide
additional information for the reso-
lution of the problem.

Umds-8544-1: Error creating
source: <d>: s

An error occurred creating the re-
quest source.

The text of the warning will provide
additional information for the reso-
lution of the problem.

Umds-8697-1: umdsd_worker_←↩
api_create: Error creating R←↩
O-Contex while creating worker
p<d>

Creating the reactor only context
for a worker failed.

This fatal error is usually due to
specifying too many workers.

Umds-8697-2: umdsd_worker_←↩
api_create: Error creating thread
while creating worker p<d>

Creating the worker application
thread failed.

This fatal error is usually due to
specifying too many workers.

Umds-8753-1: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage with a wrong or garbage tidx;
either the client is buggy or t he
server is receiving garbage data.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

Umds-8753-2: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage with a wrong or garbage tidx;
either the client is buggy or the
server is receiving garbage data.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

Umds-8757-1: s: malformed con-
nect capabilities

The UMDS client sent a malformed
capabilities string.

Make sure the client and server
versions are compatible and that
data from another application isn't
being erroneously sent to the UM←↩
DS server.

Umds-8796-100: Error creating
umdsd_rcv_topic: <d>: s

An internal error occurred while
creating a receiver in the UMDS
server.

Contact Informatica support.

Umds-8894-1: umdsd_worker←↩
_internal_cmd_add_sock←↩
: worker(p<d>) not running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

Umds-8894-2: umdsd_worker_←↩
internal_cmd_add_sock: worker
p<d> connection p<d> (s:u) cre-
ated

Notification that a new client con-
nection has been added.

No resolution is required.

Umds-8896-1: umdsd_webmon_←↩
api_create: failed to init web server
(ip=s, port=s)

The web monitor subsystem failed
to start.

The web server library will have re-
ported additional details to the con-
sole.

Umds-8909-1: UMDS Permissions
are no longer applied

Permissions are no longer sup-
ported in the UMDS server XML
configuration file.

Remove any permissions sections
from the server's XML config file.

Umds-8909-2: get_application←↩
: UMDS Permissions are no longer
applied

Permissions are no longer sup-
ported in the UMDS server XML
configuration file.

Remove any permissions sections
from the server's XML config file.

115

Umds-8909-3: get_user: UMDS
Permissions are no longer applied

Permissions are no longer sup-
ported in the UMDS server XML
configuration file.

Remove any permissions sections
from the server's XML config file.

Umds-8947-1: Error creating
umdsd_rcv_topic: <d>: s

An underlying regular receiver for
a topic could not be created for a
wildcard receiver.

This would usually imply an out
of memory problem or some other
internal error; contact Informatica
support.

	Introduction
	UMDS Overview
	UMDS Architecture

	UMDS Client
	UMDS API
	Server Connection
	UMDS Server List
	Connecting to Multiple Servers
	Client Configuration Properties
	Authenticating Applications and Users
	Assigning Different Client Settings to Your Application
	Application Name

	Receiving
	Sending
	Request and Response Capability
	Using UMDS Late Join
	UMDS Late Join Differences
	Late Join UMDS Sources

	Using UMDS Persistence
	UMDS Persistence uses Session IDs
	Configuring UMDS Server for Persistence
	Transient Receivers
	Persistence and Server Failover
	UMDS Persistence Differences

	Using UMDS Client Encryption
	UMDS TLS Authentication
	Configuring Encryption on Client
	Configuring Encryption on Server

	Client Compression
	Log Handling
	Size-Based Log Rolling
	Time-Based Log Rolling
	Combined Log Rolling

	UMDS Example Client Applications
	Java Example Applications
	umdsreceive.java
	umdssend.java
	umdsresponse.java
	umdsrequest.java
	umdspersistentreceive.java

	.NET Example Applications
	umdssend.cs
	umdsreceive.cs
	umdsresponse.cs
	umdsrequest.cs

	UMDS Server
	User Authentication
	Client Application Parameters
	Keep Alive Timers During Idle Periods
	Message Queues
	Per-Topic Message Queues
	Configuring Message Queue Size
	Approximating Per-Queue Memory Use
	Approximating the Number of Messages Per Queue
	Calculating Optimal Queue Size Limits

	Worker Configuration Guidelines
	Increasing Number of UMDS Workers
	Workers CPU Cores and Performance
	Workers Versus Client Load

	Umdsd Man Page
	Daemon Statistics
	Daemon Statistics Structures
	Daemon Statistics Binary Data
	Daemon Statistics Versioning
	Daemon Statistics Requests
	UMDS Daemon Statistics Structures
	UMDS Daemon Statistics Byte Swapping
	UMDS Daemon Statistics String Buffers
	UMDS Daemon Statistics Configuration
	UMDS Daemon Statistics Requests
	UMDS Daemon Statistics Example Files

	UMDS Web Monitor
	Main Menu
	List Current Connections
	Client Details
	Current Server Configuration File
	Dump Current Memory Allocation
	Quit Server

	UMDS Server Configuration
	UMDS Server Configuration File
	UMDS Element `¨<umds-daemon>`¨
	UMDS Element `¨<daemon>`¨
	UMDS Element `¨<tls>`¨
	UMDS Element `¨<cipher-suites>`¨
	UMDS Element `¨<trusted-certificates>`¨
	UMDS Element `¨<certificate-key-password>`¨
	UMDS Element `¨<certificate-key>`¨
	UMDS Element `¨<certificate>`¨
	UMDS Element `¨<topics>`¨
	UMDS Element `¨<topic>`¨
	UMDS Element `¨<umds-attributes>`¨
	UMDS Element `¨<option>`¨
	UMDS Element `¨<monitor>`¨
	UMDS Element `¨<application-id>`¨
	UMDS Element `¨<format>`¨
	UMDS Element `¨<transport>`¨
	UMDS Element `¨<daemon-monitor>`¨
	UMDS Element `¨<lbm-config>`¨
	UMDS Element `¨<remote-config-changes-request>`¨
	UMDS Element `¨<remote-snapshot-request>`¨
	UMDS Element `¨<publishing-interval>`¨
	UMDS Element `¨<group>`¨
	UMDS Element `¨<web-monitor>`¨
	UMDS Element `¨<authentication>`¨
	UMDS Element `¨<basic>`¨
	UMDS Element `¨<none>`¨
	UMDS Element `¨<permissions>`¨
	UMDS Element `¨<can-reqresp>`¨
	UMDS Element `¨<can-stream>`¨
	UMDS Element `¨<can-send>`¨
	UMDS Element `¨<client>`¨
	UMDS Element `¨<compression>`¨
	UMDS Element `¨<server-reconnect>`¨
	UMDS Element `¨<client-nodelay>`¨
	UMDS Element `¨<client-sndbuf>`¨
	UMDS Element `¨<client-rcvbuf>`¨
	UMDS Element `¨<server-nodelay>`¨
	UMDS Element `¨<server-sndbuf>`¨
	UMDS Element `¨<server-rcvbuf>`¨
	UMDS Element `¨<server-ka-threshold>`¨
	UMDS Element `¨<client-ka-interval>`¨
	UMDS Element `¨<client-ka-threshold>`¨
	UMDS Element `¨<server-ka-interval>`¨
	UMDS Element `¨<server-list>`¨
	UMDS Element `¨<server>`¨
	UMDS Element `¨<lbm-license-file>`¨
	UMDS Element `¨<pidfile>`¨
	UMDS Element `¨<gid>`¨
	UMDS Element `¨<uid>`¨
	UMDS Element `¨<log>`¨
	UMDS Receiver Topic Options
	UMDS Source Topic Options

	UM License File
	UM Configuration File
	Basic Authentication File
	UMDS application Element
	UMDS user Element

	UMDS Configuration DTD
	Example UMDS Configuration Files
	Minimum Configuration File
	Typical Configuration File
	Complete Configuration File
	Sample UM Configuration File
	Sample Authentication File

	UMDS Log Messages

