4‘» Informatica

Ultra Messaging (version 6.16)

NET Examples

Contents

1

1.1
1.2
1.3
1.4

Introduction 5
NET Examples Introduction L 5
Configuring .NET Examples 6
Unhandled C#Events e 6
CHExamples o 6
1.41 Example MinRcv.cs L L 7
1.42 Example MinSrc.Cs o L e 7
1.4.3 Example VerifiableMessage.cs e 7
1.4.4 Example lbomExampleUtil.es L 7
1.45 Example IomStatistics.cs 7
1.4.6 Examplelbmhfxrev.cs L 7
1.4.7 Example Ibmimsg.CS e e e e 8
1.4.8 Example lbmlatping.cs 9
1.4.9 Example Ibmlatpong.cs e e 9
1.4.10 Example lbmmon.cs L e e 9
1.4.11 Example Ibmmrcv.Cs L e e e e 10
1.4.12 Example Ibmmsrc.Cs L e e e e e 10
1.4.13 Example Ibmpong.Cs e e e e e 11
1.4.14 Examplelbmrov.cs L 12
1.4.15 Example Iomrcvxsp.CS o e 12
1.4.16 Example lbmreq.cs e e e e e 13
1.4.17 Example lomresp.Cs 13
1.4.18 Example Ibmsrc.Cs e e e e e 14
1.4.19 Example lbmtrreq.cs L e e 15
1.4.20 Example Ibmwrcv.CS e e e e e e 15
1.4.21 Example umercv.Cs e 15
1.4.22 Example UMEeSIC.CS o o i e e 16
1.4.23 Example umqgrev.CS e e e e e e e e 17
1.4.24 EXxample UMQSIC.CS o o v e e e e 18

Chapter 1

Introduction

This document lists and gives some background information on the C#-language example UM programs.
For policies and procedures related to Ultra Messaging Technical Support, see UM Support.
(C) Copyright 2004,2023 Informatica Inc. All Rights Reserved.

This software and documentation are provided only under a separate license agreement containing restrictions
on use and disclosure. No part of this document may be reproduced or transmitted in any form, by any means
(electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

A current list of Informatica trademarks is available on the web at https://www.informatica.«
com/trademarks.html.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party
notices are included with the product.

This software is protected by patents as detailedat ht tps: //www.informatica.com/legal /patents.«
html.

The information in this documentation is subject to change without notice. If you find any problems in this documen-
tation, please report them to us in writing at Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are
provided.

INFORMATICA LLC PROVIDES THE INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FIT«
NESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

See UM Glossary for Ultra Messaging terminology, abbreviations, and acronyms.

1.1 .NET Examples Introduction

These programs were written to help in troubleshooting, testing, and demonstrating UM coding techniques. See
also C Example Source Code and Java Example Source Code.

Since the tools are written to be useful as well as instructive, they are more complex than purely-instructive examples
would be, with many options to add or subtract functionality. See UMExamples for purely-instructive examples of
a variety of UM use cases.

The example C# programs listed here are provided in both source form and in binary executable form.

https://ultramessaging.github.io/UM_Support.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/legal/patents.html
https://www.informatica.com/legal/patents.html
https://ultramessaging.github.io/UMExamples/

6 Introduction

1.2 Configuring .NET Examples

The example programs universally provide the "-c filename" command-line option. Using that option, the example
application calls the LBM.setConfiguration(string fileName) API. However, note that this APl is not recommended
for use with XML-format LBM configuration files, largely because you are not able to specify an application name.

To use an XML configuration file with a UM example application, set the environment variables:

* LBM_XML_CONFIG_APPNAME - Desired name of application.

* LBM_XML_CONFIG_FILENAME - Path name of XML configuration file.

In this way, UM will correctly set the example application's name and will properly load the XML configuration file.

1.3 Unhandled C# Events

Each of the example programs is written to demonstrate a subset of UM's total available functionality. For example,
some programs are written to demonstrate Streaming functionality (e.g. Ibmsrc), while other programs are written to
demonstrate Persistence functionality (e.g. umesrc), while still other programs are written to demonstrate Queuing
functionality (e.g. umagsrc).

UM is generally designed to be event-driven, with events being delivered to the programs through standard call-
backs, like source callbacks and receiver callbacks. There are many events which are common across all streaming,
persistence, and queuing. Other events are specific to persistence, and still other events are specific to queuing.

This can lead to example programs reporting "unknown" or "unhandled" events. For example, if the "lbmsrc" stream-
ing program is run with a configuration file that enables persistence, UM will deliver events that are specific to
persistence to the "lbmsrc" program. But "lbmsrc" is designed for streaming, and does not include code cases for
persistence or queuing events. Maybe you should change your configuration to disable persistence, or you should
be using the "umesrc" example program.

Similarly, the "umagsrc" program expects queuing functionality, and can report unhandled events if persistence is
configured. Or "umesrc" can report unhandled events if queuing is configured.

If you see an unhandled event, it is generally reported as a number. You can see which event this corresponds to
by looking up the number in the C API document:

+ C Receiver Events for subscribing programs and

+ C Source Events for publishing programs.

Note that C# uses the same numbering system.

Once you understand the nature of the unhandled event, you can decide how to change your configuration or
choose a different program.

1.4 C# Examples

1.4 C# Examples

1.4.1 Example MinRcv.cs

Source code: MinRcv.cs:

Purpose: minimal subscriber application.

MinRcv.cs - Minimal receiver program.
See Quick Start document.

1.4.2 Example MinSrc.cs

Source code: MinSrc.cs:

Purpose: minimal publisher application.

MinSrc.cs - Minimal source program.
See Quick Start document.

1.4.3 Example VerifiableMessage.cs

Source code: VerifiableMessage.cs:

Utility functions to produce randomized messages whose contents
can be checked.

1.4.4 Example IbomExampleUtil.cs

Source code: 1bmExampleUtil.cs:

General utility functions for UM example programs.

1.4.5 Example IbmStatistics.cs

Source code: 1bmStatistics.cs:

General utility functions for UM example programs.

1.4.6 Example Ibmhfxrcv.cs

Source code: 1bmhfxrcv.cs:

Introduction

Purpose: Receive messages via a HFX.

Usage: lbmhfxrcv [options] topic
Available options:
—c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
—-d gdelay = monitor event queue delay above gdelay usecs
-E = exit after source ends
-h = help
—-I CIDR = create a receiver on the interface specified by CIDR
Multiple interfaces are allowed.
Example: '-I 10.29.1.0/24 -I 10.29.2.0/24
—q = use an LBM event queue
-S = exit after source ends, print throughput summary
—-s num_secs = print statistics every num_secs along with bandwidth
-r msgs = delete receiver after msgs messages
-v = be verbose about each message
-V = verify message contents
-z gsize = monitor event queue size above gsize in length
Monitoring options:\n
—--monitor-ctx NUM = monitor context every NUM seconds
—--monitor-rcv NUM = monitor receiver every NUM seconds
——monitor-transport TRANS = use monitor transport module TRANS
TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’, default is ‘lbm’
—--monitor-transport-opts OPTS = use OPTS as transport module options
——monitor-format FMT = use monitor format module FMT
FMT may be ‘csv’
—-—-monitor-format-opts OPTS = use OPTS as format module options
——monitor—-appid ID = use ID as application ID string

1.4.7 Example Ibmimsg.cs

Source code: 1bmimsg.cs:

Purpose: Send immediate messages on a single topic or send topic-less messages.

Usage: lbmimsg [options] topic
Available options:
—-c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
-d delay = delay sending for delay seconds after source creation
-h = help
-1 len = send messages of len bytes
-L linger = linger for linger seconds before closing context
-M msgs = send msgs number of messages
-0 = send topic-less immediate messages
-P msec = pause after each send msec milliseconds

-R [UM]DATA/RETR = Set transport type to LBT-R[UM], set data rate limit to
DATA bits per second, and set retransmit rate limit to

RETR bits per second. For both limits, the optional

k, m, and g suffixes may be used. For example,
"-R 1m/500k’ is the same as '-R 1000000/500000"
-T target = target for unicast immediate messages

1.4 C# Examples

1.4.8 Example Ibmlatping.cs

Source code: 1bmlatping.cs:

Usage: lbmlatping [options]
Available options:
—-a procmask = set cpu affinity mask.
Available processors bitmask:

—-c filename = Use LBM configuration file filename.
Multiple config files are allowed.

Example: '-c filel.cfg -c file2.cfg’
-h = help
-1 len = use len length messages
-P usec = pause after each send usec microseconds (busy wait only)

1.4.9 Example Ibmlatpong.cs

Source code: 1bmlatpong.cs:

Usage: lbmlatpong [options]
Available options:
—a procmask = set cpu affinity mask.
Available processors bitmask:

—c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
-h = help

1.4.10 Example Ibommon.cs

Source code: 1bmmon . cs:

Purpose: Example LBM statistics monitoring application.

Usage: lbmmon [options]
Available options:

-h = help
-t, ——transport TRANS use transport module TRANS
TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’, default is
‘lbm’
——transport-opts OPTS use OPTS as transport module options
-f, ——format FMT use format module FMT
FMT may be ‘csv’
——format-opts OPTS use OPTS as format module options

Transport and format options are passed as name=value pairs, separated by a
semicolon.

LBM transport options:
config=FILE use LBM configuration file FILE
topic=TOPIC receive statistics on topic TOPIC
default is /29west/statistics
wctopic=PATTERN receive statistics on wildcard topic PATTERN

10

Introduction

UDP transport options:

port=NUM receive on UDP port NUM
interface=IP receive multicast on interface IP
mcgroup=GRP receive on multicast group GRP

LBMSNMP transport options:
config=FILE use LBM configuration file FILE
topic=TOPIC receive statistics on topic TOPIC

default is /29west/statistics

wctopic=PATTERN receive statistics on wildcard topic PATTERN

CSV format options:
separator=CHAR separate CSV fields with character CHAR

defaults to Y,’

1.4.11 Example Ibmmrcv.cs

Source code: 1bmmrcv.cs:

Purpose: Receive messages on multiple topics.

Usage: lbmmrcv [options]
Available options:

-B
-C

—-S
-V

= Set receive socket buffer size to # (in MB)

filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’

ctxs = use ctxs number of context objects

= help

num = initial topic number num

root = use topic names with root of \

rcvs = create rcvs receivers

= print statistics along with bandwidth
= be verbose about each message

Monitoring options:\n
—-—-monitor-ctx NUM = monitor context every NUM seconds
——-monitor-rcv NUM = monitor each receiver every NUM seconds
—--monitor-transport TRANS = use monitor transport module TRANS

TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’,
‘1lbm’

—--monitor-transport-opts OPTS = use OPTS as transport module options
——-monitor-format FMT = use monitor format module FMT

FMT may be ‘csv’

—--monitor-format-opts OPTS = use OPTS as format module options
——-monitor—-appid ID = use ID as application ID string

1.4.12 Example Ibommsrc.cs

Source code: 1bmmsrc.cs:

Purpose: Send messages on multiple topics.

Usage: lbmmsrc [options]
Available options:

-C

filename = Use LBM configuration file filename.

default is

1.4 C# Examples

11

-S
=T

Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
delay = delay sending for delay seconds after source creation

= help

num = initial topic number

len = send messages of len bytes

linger = linger for linger seconds before closing context
msgs = send maximum of msgs number of messages

root = use topic names with root of \

= print source statistics before exiting

msec = pause msec milliseconds after each send

[UM]DATA/RETR = Set transport type to LBT-R[UM], set data rate limit to
DATA bits per second, and set retransmit rate limit to
RETR bits per second. For both limits, the optional
k, m, and g suffixes may be used. For example,
"-R 1m/500k’ is the same as ’-R 1000000/500000"

Srcs = use Srcs sources

thrds = use thrds threads

Monitoring options:\n
—-—-monitor-ctx NUM = monitor context every NUM seconds
—-—-monitor-src NUM = monitor each source every NUM seconds

—-monitor-transport TRANS = use monitor transport module TRANS
TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’, default
‘lbm’
—--monitor-transport-opts OPTS = use OPTS as transport module options

—--monitor-format FMT = use monitor format module FMT

FMT may be ‘csv’

—-monitor-format-opts OPTS = use OPTS as format module options
—-monitor-appid ID = use ID as application ID string

1.4.13 Example Ibmpong.cs

Source code: 1bmpong. cs:

Purpose: Message round trip processor.

Usage: lbmpong [options] id
Available options:

—-C

filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’

= collect RTT data

= exit after source ends

= help

msgs = send and ignore msgs messages to warm up
= Use MIM

len = use len length messages

msgs = stop after receiving msgs messages

msec = pause after each send msec milliseconds

= use an LBM event queue

[UM]DATA/RETR = Set transport type to LBT-R[UM], set data rate limit to
DATA bits per second, and set retransmit rate limit to
RETR bits per second. For both limits, the optional
k, m, and g suffixes may be used. For example,
"—r 1m/500k’ is the same as ’"-r 1000000/500000"

secs = run for secs seconds

= be verbose about each message (for RTIT only)

= either \

is

12 Introduction

1.4.14 Example Ibmrcv.cs

Source code: 1bmrcv.cs:

Purpose: Receive messages on a single topic.

Usage: lbmrcv [options] topic
Available options:
—-c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
-d gdelay = monitor event queue delay above gdelay usecs
-D = Assume received messages are SDM formatted
-E = exit after source ends
-f = use hot-failover

-h = help

-n nsrcs = stop topic resolution queries after nsrcs sources

—-gq = use an LBM event queue

-S = exit after source ends, print throughput summary

-s num_secs = print statistics every num_secs along with bandwidth
-r msgs = delete receiver after msgs messages

-N NUM = subscribe to channel NUM

-v = be verbose about each message

-V = verify message contents

-z gsize = monitor event queue size above gsize in length

Monitoring options:\n
—-—-monitor-ctx NUM = monitor context every NUM seconds
—--monitor-rcv NUM = monitor receiver every NUM seconds

——-monitor-transport TRANS = use monitor transport module TRANS
TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’, default is
‘lbm’
—--monitor-transport-opts OPTS = use OPTS as transport module options

—-—-monitor—-format FMT = use monitor format module FMT

FMT may be ‘csv’
——-monitor-format-opts OPTS = use OPTS as format module options
—--monitor-appid ID = use ID as application ID string

1.4.15 Example Ibmrcvxsp.cs

Source code: 1bmrcvxsp.cs:

Purpose: Receive messages on a single topic, mapping transports to various XSPs.

Usage: lbmrcvxsp [options] topic
Available options:
—c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
-d = don’t delete XSPs until shutdown
-D = use the default XSP for all transports
-E = exit after source ends
-h = help
-P = preallocate the XSPs - use with -R
-Q = use sequential mode for XSPS
-r msgs = delete receiver after msgs messages
-R NUM = use a simple round-robin method for assigning transports to NUM XSPs.

1.4 C# Examples

13

(this is the DEFAULT for this application,

= exit after sou
num_secs =

rce ends,

with a NUM of 3

print throughput summary
print statistics every num_secs along with bandwidth

= be verbose about each message

= verify message

Monitoring options:\n
—-monitor-ctx NUM =
—--monitor-rcv NUM =
—--monitor-transport

—--monitor-transport-opts OPTS =
—--monitor-format FMT =

—-—-monitor-format-opts OPTS =

—--monitor-appid ID

contents

monitor
monitor
TRANS =

*1lbm’

FMT may be

‘csv’

‘lbm’,

context every NUM seconds

receiver every NUM seconds
use monitor transport module TRANS
TRANS may be

‘udp’, or

= use ID as application ID string

1.4.16 Example Ibmreq.cs

Source code: 1bmreq. cs:

Purpose:

messages.

Usage:

lbmreqg [option

Available options:

—C

filename =

s] topic

Use LBM configuration file filename.

Multiple config files are allowed.

Examp
sec =
source cr

= help
= send immediate
= implement with
len =
linger = linger
sec = pause sec
[UM]DATA/RETIR =

requests = send
target = target
= be verbose

-v = be even mor

le:

eation

requests
EventQueues

send messages of len bytes

'—c filel.cfg -c file2.cfg’
delay sending initial request sec seconds after

‘lbmsnmp’ ,

use OPTS as transport module options
use monitor format module FMT

use OPTS as format module options

for linger seconds before closing context

seconds after
Set transport
DATA bits per
RETR bits per
k, m,
"—-r 1m/500k’

sending request
type to LBT-R[UM],

second,
second.

and g suffixes may be used.
is the same as

For both limits,

request number of requests
for unicast immediate requests

e verbose

1.4.17 Example Ibmresp.cs

Source code: 1bmresp.cs:

Purpose:

Usage:

lbmresp [optio

Available options:

ns] topic

Respond to request messages on a single topic.

(for responses to arrive)
set data rate limit to
and set retransmit rate limit to

the optional

For example,
"-r 1000000/500000"

default is

Send request messages from a single source with setttable interval between

Introduction

14

—c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’

-E = end after end-of-stream

-h = help

-1 len = use len bytes for the length of each response

-r responses = send responses messages for each request

-gq = implement with EventQueues
-v = be verbose about each message
-v —-v = be even more verbose about each message

1.4.18 Example Ibmsrc.cs

Source code: lbmsrc.cs:
Purpose: Send messages on a single topic.

Usage: lbmsrc [options] topic
Available options:
—c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
—-d delay = delay sending for delay seconds after source creation
-D = Use SDM Messages
-f = use hot-failover
-1 seq = hot-failover: begin sequencing with this number

-h = help

-1 len = send messages of len bytes

-L linger = linger for linger seconds before closing context
-M msgs = send msgs number of messages

-N chn = send messages on channel chn

-n = used non-blocking I/O

-P msec = pause after each send msec milliseconds

-R [UM]DATA/RETR = Set transport type to LBT-R[UM], set data rate limit to
DATA bits per second, and set retransmit rate limit to
RETR bits per second. For both limits, the optional

k, m, and g suffixes may be used. For example,
"-R 1m/500k’ is the same as '—R 1000000/500000"
-s sec = print stats every sec seconds

-t filename = use filename contents as a recording of message sequence numbers

(HF only!)
-V = construct verifiable messages
-x bits = Use 32 or 64 bits for hot-failover sequence numbers
Monitoring options:\n
—--monitor-ctx NUM = monitor context every NUM seconds
—-—-monitor-src NUM = monitor source every NUM seconds
——-monitor-transport TRANS = use monitor transport module TRANS
TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’,

‘1lbm’
——-monitor-transport-opts OPTS = use OPTS as transport module options
—-monitor-format FMT = use monitor format module FMT

FMT may be ‘csv’
——monitor-format-opts OPTS = use OPTS as format module options
—-monitor-appid ID = use ID as application ID string

default is

1.4 C# Examples

1.4.19 Example Ibmtrreq.cs

Source code: 1bmtrreq.cs:
Purpose: Request topic resolution for quiescent components.

Usage: lbmtrreqg [options]
Available options:

—-c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
-a, ——adverts Request Advertisements
-g, ——queries Request Queries
-w, —-wildcard Request Wildcard Queries
-1, —-—-interval=NUM Interval between requests (milliseconds)
—-d, —-—-duration=NUM Minimum duration of requests (seconds)
-L, —--linger=NUM Linger for NUM seconds before closing context

1.4.20 Example Ibmwrcv.cs

Source code: 1bmwrcv. cs:

Purpose: Receive messages using a wildcard receiver.

Usage: [options] topic
Available options
—-c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: ’'-c filel.cfg -c file2.cfg’
-E = exit after source ends
-D = Deregister receiver after 100 messages

-h = help
—-gq = use an LBM event queue
-r msgs = delete receiver after msgs messages

-s = print statistics along with bandwidth
-N NUM = subscribe to channel NUM
-v = be verbose about each message
Monitoring options:\n
—--monitor-ctx NUM = monitor context every NUM seconds
—-monitor-transport TRANS = use monitor transport module TRANS
TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’, default is

‘lbm’
—-monitor-transport-opts OPTS = use OPTS as transport module options
—-monitor-format FMT = use monitor format module FMT

FMT may be ‘csv’
—-monitor-format-opts OPTS = use OPTS as format module options
——-monitor-appid ID = use ID as application ID string

1.4.21 Example umercv.cs

Source code: umercv.cs:

Purpose: Receive messages on a single topic via the UM .NET API.

Usage: umercv [options] topic
Available options:

16 Introduction

—c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
-d gdelay = monitor event queue delay above gdelay usecs
-D = Deregister after 1000 messages
—e num_messages = send an Explicit ACK every num_messages messages
-E = exit after source ends
-h = help
-1 offset = use offset to calculate Registration ID
(as source registration ID + offset)
offset of 0 forces creation of regid by store
-n nsrcs = stop topic resolution queries after nsrcs sources
-N offset = display recovery sequence number info and set low segnum to lowtoffset
—q = use an LBM event queue
-r msgs = delete receiver after msgs messages
—-s num_secs = print statistics every num_secs along with bandwidth
-S = exit after source ends, print throughput summary
-v = be verbose about each message
-z gsize = monitor event queue size above gsize in length
Monitoring options:\n
—-—-monitor-ctx NUM = monitor context every NUM seconds
—-monitor-rcv NUM = monitor receiver every NUM seconds
—--monitor-transport TRANS = use monitor transport module TRANS
TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’, default is
*lbm’
—--monitor-transport-opts OPTS = use OPTS as transport module options
——monitor-format FMT = use monitor format module FMT
FMT may be ‘csv’
—-—-monitor-format-opts OPTS = use OPTS as format module options
——monitor—-appid ID = use ID as application ID string

1.4.22 Example umesrc.cs

Source code: umesrc.cs:

Purpose: Send messages on a single topic via the UM .NET API

Usage: umesrc [options] topic
Available options:
—-c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’

-D Send Deregistration after 1000 messages

—-f NUM = allow NUM unstabilized messages in flight (determines message rate)

——flight-size = See —-f above

-h = help

—-j = turn on UME late join

-1 len = send messages of len bytes

-L linger = linger for linger seconds before closing context

-m NUM = send at NUM messages per second (trumped by -f)

--message-rate = See -m above

-M msgs = send msgs number of messages

-N = display sequence number information source events

-n = used non-blocking I/0

-P msec = pause after each send msec milliseconds

-R [UM]DATA/RETR = Set transport type to LBT-R[UM], set data rate limit to
DATA bits per second, and set retransmit rate limit to
RETR bits per second. For both limits, the optional
k, m, and g suffixes may be used. For example,
"-R 1m/500k’ is the same as ’'-R 1000000/500000"

1.4 C# Examples

17

ip:port = use UME store at the specified address and port
sec = print stats every sec seconds

storename = use UME store with name storename

= verbose

Monitoring options:\n
—--monitor-ctx NUM = monitor context every NUM seconds
——-monitor-src NUM = monitor source every NUM seconds
—--monitor-transport TRANS = use monitor transport module TRANS

TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’,

default is ‘lbm’
—--monitor-transport-opts OPTS = use OPTS as transport module options
——monitor-format FMT = use monitor format module FMT

FMT may be ‘csv’

—--monitor-format-opts OPTS = use OPTS as format module options
——monitor—-appid ID = use ID as application ID string

1.4.23 Example umgrcv.cs

Source code: umgrcv. cs:

Purpose: Receive messages from a queue.

Usage: umgrcv [options] topic
Available options:

-B
—C

broker = use broker specified by address
filename = Use LBM configuration file filename.

Multiple config files are allowed.

Example: '-c filel.cfg -c file2.cfg’
gdelay = monitor event queue delay above gdelay usecs
= deregister upon exit
= exit after source ends
num_messages = send an Explicit ACK every num_messages messages
offset = use offset to calculate Registration ID

(as source registration ID + offset)
offset of 0 forces creation of regid by store
ID = set Receiver Type ID to ID

offset = display recovery sequence number info and set low seqnum to low+offset

= exit after source ends, print throughput summary

num_secs = print statistics every num_secs along with bandwidth
= help

nsrcs = stop topic resolution queries after nsrcs sources

= use an LBM event queue

gsize = monitor event queue size above gsize in length

msgs = delete receiver after msgs messages

= be verbose about each message

Monitoring options:\n
—-—-monitor-ctx NUM = monitor context every NUM seconds
—-—-monitor-rcv NUM = monitor receiver every NUM seconds
—--monitor-transport TRANS = use monitor transport module TRANS

TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’, default is

——monitor-transport-opts OPTS = use OPTS as transport module options
—-—-monitor—-format FMT = use monitor format module FMT

FMT may be ‘csv’

——monitor—-format-opts OPTS = use OPTS as format module options
—--monitor-appid ID = use ID as application ID string

*lbm’

18 Introduction

1.4.24 Example umgsrc.cs

Source code: umgsrc. cs:

Purpose: Send messages on a single topic.

Usage: umgsrc [options] topic
Available options:
—-A cfg = use ULB Application Sets given by cfg
-B broker = use broker specified by address
—-c filename = Use LBM configuration file filename.
Multiple config files are allowed.
Example: '-c filel.cfg -c file2.cfg’
-d NUM = delay sending for NUM seconds after source creation
—-f NUM = allow NUM unstabilized messages in flight
-h = help
-1 = display message IDs for sent message
-1 len = send messages of len bytes
-L linger = linger for linger seconds before closing context
-M msgs = send msgs number of messages
-N = display sequence number information source events
-m NUM = send at NUM messages per second (trumped by -f)
-n = used non-blocking I/O
-P msec = pause after each send msec milliseconds

-R rate/pct = send with LBT-RM at rate and retranmission pct%
-s sec = print stats every sec seconds
-X = Send using numeric or named UMQ index X
-Y = Send using named UMQ index for broker sources
-v = verbose

Monitoring options:\n
—--monitor-ctx NUM = monitor context every NUM seconds
—--monitor-src NUM = monitor source every NUM seconds

—--monitor-transport TRANS = use monitor transport module TRANS
TRANS may be ‘lbm’, ‘udp’, or ‘lbmsnmp’, default is
‘lbm’

—--monitor-transport-opts OPTS = use OPTS as transport module options
——monitor-format FMT = use monitor format module FMT

FMT may be ‘csv’
—--monitor-format-opts OPTS = use OPTS as format module options
——monitor-appid ID = use ID as application ID string
——flight-size = See —-f above
—-—-message-rate = See -m above

1.4 C# Examples

19

	Introduction
	.NET Examples Introduction
	Configuring .NET Examples
	Unhandled C# Events
	C# Examples
	Example MinRcv.cs
	Example MinSrc.cs
	Example VerifiableMessage.cs
	Example lbmExampleUtil.cs
	Example lbmStatistics.cs
	Example lbmhfxrcv.cs
	Example lbmimsg.cs
	Example lbmlatping.cs
	Example lbmlatpong.cs
	Example lbmmon.cs
	Example lbmmrcv.cs
	Example lbmmsrc.cs
	Example lbmpong.cs
	Example lbmrcv.cs
	Example lbmrcvxsp.cs
	Example lbmreq.cs
	Example lbmresp.cs
	Example lbmsrc.cs
	Example lbmtrreq.cs
	Example lbmwrcv.cs
	Example umercv.cs
	Example umesrc.cs
	Example umqrcv.cs
	Example umqsrc.cs

