
Ultra Messaging (Version 6.17)

Concepts Guide

Contents

1 Introduction 5

2 Fundamental Concepts 7

2.1 License Key . 8

2.1.1 License Via XML Configuration File . 8

2.1.2 License Via Environment . 9

2.2 Messaging Paradigms . 9

2.2.1 Streaming . 9

2.2.2 Persistence . 9

2.2.3 Queuing . 10

2.3 Messages . 10

2.3.1 Message Integrity . 10

2.3.2 Message Metadata . 11

2.4 Topic Structure and Management . 11

2.4.1 Message Ordering . 11

2.4.2 Topic Resolution Overview . 12

2.4.3 Topic Resolution Domain . 12

2.5 Messaging Reliability . 12

2.5.1 Unrecoverable Loss . 13

2.5.2 Head Loss . 13

2.5.3 Leading Loss . 14

2.5.4 Tail Loss . 15

2.5.5 Burst Loss . 15

2.6 UM Software Stack . 16

2.6.1 Delivery Controller . 17

2.7 UM Threading . 17

2.7.1 Embedded Mode . 18

2.7.2 Sequential Mode . 18

2.7.3 Context Sequential Mode . 18

2.7.4 XSP Sequential Mode . 19

2.7.5 IPC Sequential Mode . 19

4 CONTENTS

2.7.6 Other Specialized Threads . 19

2.8 Deleting UM Objects . 20

2.8.1 Callback After Delete . 20

2.8.2 Event Sync . 20

2.8.3 C API Extended Delete . 21

2.9 DRO . 21

2.10 Late Join . 22

2.11 Request/Response . 23

2.12 Registered File Descriptors . 23

2.13 UM Transports . 24

2.14 Transport Sessions . 24

2.14.1 Subscribing to a Transport Session . 24

2.14.2 Transport Session Differences . 25

2.14.3 Flexible LBT-RU Topic Assignment . 26

2.15 Transport Pacing . 27

2.15.1 Source Pacing . 27

2.15.2 Receiver Pacing . 28

2.15.3 Receiver Queuing . 28

2.15.4 Pacing and DRO . 29

2.15.5 Pacing and Queuing . 29

2.15.6 Pacing and Persistence . 29

2.15.7 Suspended Receiver Problem . 29

2.16 Event Delivery . 30

2.16.1 Receiver BOS and EOS Events . 31

2.16.2 Source Connect and Disconnect Events . 32

2.16.3 Source Wakeup Event . 32

2.16.4 Source Flight Notification Event . 34

2.17 Rate Controls . 35

2.17.1 Transport Rate Control . 35

2.17.2 Topic Resolution Rate Control . 36

2.18 Operational Statistics . 36

2.19 Immediate Messaging . 37

3 UM Objects 39

3.1 Context Object . 40

3.2 Topic Object . 41

3.3 Source Object . 41

3.3.1 Source String . 41

3.3.2 Source Strings in a Routed Network . 42

3.3.3 Source Configuration and Transport Sessions . 42

CONTENTS 5

3.4 Receiver Object . 43

3.4.1 Receiver Configuration and Transport Sessions . 43

3.4.2 UM Wildcard Receivers . 43

3.4.3 Transport Services Provider Object . 44

3.4.4 UM Hot Failover Across Contexts Objects (HFX) . 44

3.5 Event Queue Object . 45

3.5.1 Using an Event Queue . 46

3.5.2 "Deleting an Event Queue" . 47

3.5.3 Event Queue Efficiency . 47

3.5.4 Event Queue Timeout . 47

3.5.5 Event Queue Monitor . 48

3.6 Message Object . 49

3.6.1 Message Object Deletion . 49

3.6.2 Message Object Retention . 50

3.7 Attributes Object . 50

3.8 UM Timers . 51

4 Security Considerations 53

4.1 Webmon Security . 53

5 Configuration Introduction 55

6 Transport Types 57

6.1 Transport TCP . 57

6.1.1 TCP Flow Control Restrictions . 58

6.2 Transport LBT-RU . 58

6.3 Transport LBT-RM . 59

6.3.1 NAK Suppression . 59

6.3.2 Comparing LBT-RM and PGM . 60

6.4 Transport LBT-IPC . 61

6.4.1 Sources and LBT-IPC . 61

6.4.2 Receivers and LBT-IPC . 61

6.4.3 Similarities with Other UM Transports . 62

6.4.4 Differences from Other UM Transports . 63

6.4.5 Sending to Both Local and Remote Receivers . 63

6.4.6 LBT-IPC Configuration Example . 63

6.4.7 Required privileges . 64

6.4.8 Host Resource Usage and Limits . 65

6.4.9 LBT-IPC Resource Manager . 65

6.5 Transport LBT-SMX . 65

6.5.1 Sources and LBT-SMX . 67

6 CONTENTS

6.5.2 Sending with SMX-specific APIs . 67

6.5.3 Sending over LBT-SMX with General APIs . 68

6.5.4 Receivers and LBT-SMX . 68

6.5.5 Similarities Between LBT-SMX and Other UM Transports 69

6.5.6 Differences Between LBT-SMX and Other UM Transports 69

6.5.7 LBT-SMX Configuration Example . 70

6.5.8 Java Coding for LBT-SMX . 71

6.5.9 .NET Coding for LBT-SMX . 73

6.5.10 LBT-SMX Resource Manager . 74

6.6 Transport Broker . 75

7 Topic Resolution Description 77

7.1 Resolver Caches . 78

7.1.1 Source Resolver Cache . 78

7.1.2 Receiver Resolver Cache . 78

7.2 TR Protocol Comparison . 79

7.2.1 Multicast UDP TR . 79

7.2.2 Unicast UDP TR . 79

7.2.3 TCP TR . 80

7.3 TCP-Based Topic Resolution Details . 80

7.3.1 TCP-Based TR and Fault Tolerance . 81

7.3.2 TCP-Based TR Interest . 82

7.3.3 TCP-Based TR Version Interoperability . 82

7.3.4 TCP-Based TR Configuration . 83

7.3.5 SRS Service . 83

7.4 SRS Monitoring . 85

7.4.1 SRS Monitoring: Logs . 85

7.4.2 SRS Monitoring: Daemon Stats . 85

8 Architecture 89

8.1 UDP-Based Topic Resolution Details . 89

8.1.1 Sources Advertise . 90

8.1.2 Receivers Query . 91

8.1.3 Wildcard Receiver Topic Resolution . 91

8.1.4 Initial Phase . 91

8.1.5 Sustaining Phase . 93

8.1.6 Quiescent Phase . 94

8.1.7 Store (context) Name Resolution . 94

8.1.8 UDP Topic Resolution Configuration Options . 95

8.1.9 Unicast UDP Topic Resolution . 95

8.1.10 LBMRD NAT Transit . 96

CONTENTS 7

8.1.11 Example NAT Configuration . 96

8.1.12 Lbmrd NAT Restrictions . 97

8.2 UDP-Based Topic Resolution Strategies . 98

8.2.1 Default TR . 98

8.2.2 Query-Centric TR . 99

8.2.3 Known Query Threshold TR . 99

8.2.4 Advertise-Centric TR . 100

8.3 Message Batching . 100

8.3.1 Implicit Batching . 101

8.3.2 Intelligent Batching . 102

8.3.3 Application Batching . 103

8.3.4 Explicit Batching . 103

8.3.5 Adaptive Batching . 104

8.4 Message Fragmentation and Reassembly . 104

8.4.1 Datagram Max Sizes . 105

8.4.2 Datagram Max Size and Network MTU . 106

8.4.3 Setting Datagram Max Sizes High . 106

8.4.4 Changing Datagram Max Size . 107

8.4.5 Dynamic Fragmentation Reduction . 107

8.5 Ordered Delivery . 108

8.5.1 Sequence Number Order, Fragments Reassembled (Default Mode) 109

8.5.2 Arrival Order, Fragments Reassembled . 109

8.5.3 Arrival Order, Fragments Not Reassembled . 109

8.6 Loss Detection Using TSNIs . 110

8.7 Receiver Keepalive Using Session Messages . 110

8.8 Extended Messaging Example . 111

8.8.1 Example: First Message . 112

8.8.2 Example: Batching . 112

8.8.3 Example: UM Fragmentation . 113

8.8.4 Example: Loss Recovery . 114

8.8.5 Example: Unrecoverable Loss . 115

8.8.6 Example: Transport Deletion . 116

9 Application Design Principles 119

9.1 UM Monitoring . 119

9.2 Message Reception . 119

9.2.1 C Message Reception . 120

9.2.2 Java Message Reception . 121

9.2.3 .NET Message Reception . 124

10 UM Features 129

8 CONTENTS

10.1 Transport Services Provider (XSP) . 129

10.1.1 XSP Handles Transport Sessions, Not Topics . 129

10.1.2 XSP Threading Considerations . 131

10.1.3 XSP Usage . 132

10.1.4 Other XSP Operations . 134

10.1.5 XSP Restrictions . 134

10.2 Using Late Join . 134

10.2.1 Late Join With Persistence . 136

10.2.2 Late Join Options Summary . 136

10.2.3 Using Default Late Join Options . 136

10.2.4 Specifying a Range of Messages to Retransmit . 137

10.2.5 Retransmitting Only Recent Messages . 138

10.2.6 Configuring Late Join for Large Numbers of Messages . 139

10.3 Off-Transport Recovery (OTR) . 140

10.3.1 OTR with Sequence Number Ordered Delivery . 141

10.3.2 OTR With Persistence . 141

10.3.3 OTR Options Summary . 141

10.4 Encrypted TCP . 142

10.4.1 TLS Authentication . 142

10.4.2 TLS Backwards Compatibility . 143

10.4.3 TLS Efficiency . 143

10.4.4 TLS Configuration . 143

10.4.5 TLS Options Summary . 144

10.4.6 TLS and Persistence . 144

10.4.7 TLS and Queuing . 144

10.4.8 TLS and the DRO . 144

10.4.9 TLS and Compression . 145

10.4.10 OpenSSL Dependency . 145

10.5 Compressed TCP . 146

10.5.1 Compression Configuration . 146

10.5.2 Compression and Persistence . 147

10.5.3 Compression and Queuing . 147

10.5.4 Compression and the DRO . 147

10.5.5 Compression and Encryption . 147

10.5.6 Version Interoperability . 147

10.6 High-resolution Timestamps . 148

10.6.1 Timestamp Restrictions . 148

10.6.2 Timestamp Configuration Summary . 149

10.7 Unicast Immediate Messaging . 149

10.7.1 UIM Reliability . 150

CONTENTS 9

10.7.2 UIM Addressing . 150

10.7.3 Receiving a UIM . 150

10.7.4 Sending a UIM . 151

10.7.5 UIM Connection Management . 151

10.8 Multicast Immediate Messaging . 152

10.8.1 Temporary Transport Session . 153

10.8.2 MIM Notifications . 153

10.8.3 Receiving Immediate Messages . 153

10.8.4 MIM and Wildcard Receivers . 154

10.8.5 MIM Loss Handling . 154

10.8.6 MIM Configuration . 154

10.8.7 MIM Example Applications . 154

10.9 HyperTopics . 155

10.10 Application Headers . 155

10.10.1 Application Headers Usage . 155

10.11 Message Properties . 157

10.11.1 Message Properties Usage . 157

10.11.2 Message Properties Data Types . 159

10.11.3 Message Properties Performance Considerations . 159

10.11.4 Smart Sources and Message Properties . 160

10.11.5 Smart Source Message Properties Usage . 160

10.12 Request/Response Model . 162

10.12.1 Request Message . 162

10.12.2 Response Message . 162

10.12.3 Response Size . 163

10.12.4 Response Deletion . 163

10.12.5 TCP Management . 163

10.12.6 Request/Response Configuration . 164

10.12.7 Request/Response Example Applications . 164

10.13 Self Describing Messaging . 165

10.14 Pre-Defined Messages . 165

10.14.1 Typical PDM Usage Patterns . 166

10.14.2 Getting Started with PDM . 166

10.14.3 Using the PDM API . 168

10.14.4 Migrating from SDM . 175

10.15 Sending to Sources . 177

10.15.1 Source String from Receive Event . 178

10.15.2 Source String from Source Notification Function . 178

10.15.3 Sending to Source Readiness . 179

10.16 Spectrum . 180

10 CONTENTS

10.16.1 Spectrum Performance Advantages . 180

10.16.2 Spectrum Configuration Options . 180

10.16.3 Spectrum Receiver Callback . 181

10.16.4 Smart Sources and Spectrum . 181

10.17 Hot Failover (HF) . 182

10.17.1 Implementing Hot Failover Sources . 182

10.17.2 Implementing Hot Failover Receivers . 183

10.17.3 Implementing Hot Failover Wildcard Receivers . 183

10.17.4 HF with Java and .NET . 184

10.17.5 Using Hot Failover with Persistence . 184

10.17.6 Hot Failover Intentional Gap Support . 184

10.17.7 Hot Failover Optional Messages . 184

10.17.8 Using Hot Failover with Ordered Delivery . 185

10.17.9 Hot Failover Restrictions . 185

10.17.10Hot Failover Across Multiple Contexts (HFX) . 185

10.18 NAK Cutoff . 187

10.18.1 Why NAK Cutoff? . 187

10.18.2 What Is a NAK Storm? . 187

10.18.3 NAK Storm Prevention . 188

10.19 Binary Daemon Statistics . 188

10.19.1 Daemon Controller . 188

10.19.2 Daemon Statistics Structures . 188

10.19.3 Daemon Statistics Binary Data . 189

10.19.4 Daemon Statistics Versioning . 189

10.19.5 Daemon Control Requests . 190

10.19.6 Securing Daemon Control Requests . 190

10.19.7 Daemon Statistics Details . 191

11 Advanced Optimizations 193

11.1 Receive Thread Busy Waiting . 194

11.1.1 Network Socket Busy Waiting . 194

11.1.2 IPC Transport Busy Waiting . 194

11.1.3 SMX Transport Busy Waiting . 195

11.2 Zero Object Delivery . 195

11.3 Receive Buffer Recycling . 195

11.3.1 Receive Buffer Recycling Restrictions . 196

11.4 Single Receiving Thread . 197

11.4.1 Single Receiving Thread Restrictions . 197

11.5 Extended Context Process Events . 197

11.5.1 Context Lock Reduction . 198

CONTENTS 11

11.5.2 Context Lock Reduction Restrictions . 198

11.5.3 Gettimeofday Reduction . 199

11.5.4 Gettimeofday Reduction Restrictions . 199

11.6 Receive Multiple Datagrams . 200

11.6.1 Receive Multiple Datagrams Compatibility . 200

11.6.2 Receive Multiple Datagrams Restrictions . 200

11.7 Transport Demultiplexer Table Size . 201

11.8 Smart Sources . 201

11.8.1 Smart Source Message Buffers . 202

11.8.2 Smart Sources and Memory Management . 203

11.8.3 Smart Sources Configuration . 203

11.8.4 Smart Source Defensive Checks . 204

11.8.5 Smart Sources Restrictions . 205

11.9 Zero-Copy Send API . 205

11.9.1 Zero-Copy Send Compatibility . 206

11.9.2 Zero-Copy Restrictions . 206

11.10 Comparison of Zero Copy and Smart Sources . 207

11.11 XSP Latency Reduction . 207

11.12 Receive-Side Batching . 208

11.12.1 Receive-Side Batching Restrictions . 208

11.13 Core Pinning . 208

11.14 Memory Latency Reduction . 209

12 Man Pages for SRS 211

12.1 SRS Man Page . 211

12.2 Srsds Man Page . 212

13 SRS Configuration File 217

13.1 SRS Configuration Elements . 218

13.1.1 SRS Element "<um-srs>" . 218

13.1.2 SRS Element "<daemon-monitor>" . 218

13.1.3 SRS Element "<monitor-format>" . 219

13.1.4 SRS Element "<remote-config-changes-request>" . 219

13.1.5 SRS Element "<remote-snapshot-request>" . 220

13.1.6 SRS Element "<publish-connection-events>" . 220

13.1.7 SRS Element "<lbm-attributes>" . 221

13.1.8 SRS Element "<option>" . 221

13.1.9 SRS Element "<publishing-interval>" . 222

13.1.10 SRS Element "<internal-config-opts>" . 222

13.1.11 SRS Element "<config-opts>" . 223

13.1.12 SRS Element "<um-client-error-stats>" . 223

12 CONTENTS

13.1.13 SRS Element "<srs-error-stats>" . 224

13.1.14 SRS Element "<connection-events>" . 224

13.1.15 SRS Element "<um-client-stats>" . 225

13.1.16 SRS Element "<srs-stats>" . 225

13.1.17 SRS Element "<default>" . 226

13.1.18 SRS Element "<ping-interval>" . 226

13.1.19 SRS Element "<debug-monitor>" . 227

13.1.20 SRS Element "<enabled>" . 227

13.1.21 SRS Element "<port>" . 228

13.1.22 SRS Element "<interface>" . 228

13.1.23 SRS Element "<srs>" . 229

13.1.24 SRS Element "<application-id>" . 229

13.1.25 SRS Element "<clientactor>" . 229

13.1.26 SRS Element "<batch-frame-max-datagram-size>" . 230

13.1.27 SRS Element "<batch-frame-max-record-count>" . 230

13.1.28 SRS Element "<record-queue-service-interval>" . 230

13.1.29 SRS Element "<request-stream-max-msg-count>" . 230

13.1.30 SRS Element "<namemap>" . 230

13.1.31 SRS Element "<shards>" . 231

13.1.32 SRS Element "<routemap>" . 231

13.1.33 SRS Element "<topicmap>" . 231

13.1.34 SRS Element "<otidmap>" . 231

13.1.35 SRS Element "<source-leave-backoff>" . 232

13.1.36 SRS Element "<context-name-state-lifetime>" . 232

13.1.37 SRS Element "<route-state-lifetime>" . 233

13.1.38 SRS Element "<interest-state-lifetime>" . 233

13.1.39 SRS Element "<source-state-lifetime>" . 234

13.1.40 SRS Element "<state-lifetime>" . 234

13.1.41 SRS Element "<daemon>" . 235

13.1.42 SRS Element "<pid-file>" . 235

13.1.43 SRS Element "<log>" . 236

13.2 SRS XSD file . 237

14 SRS Daemon Statistics 241

14.1 Message Type: SRS_STATS . 241

14.2 Message Type: SRS_ERROR_STATS . 244

14.3 Message Type: UM_CLIENT_STATS . 246

14.4 Message Type: UM_CLIENT_ERROR_STATS . 249

14.5 Message Type: CONNECTION_EVENTS . 250

14.5.1 Message Subtype: UM_CLIENT_CONNECT . 250

CONTENTS 13

14.5.2 Message Subtype: UM_CLIENT_DISCONNECT . 251

14.5.3 Message Subtypes: SIR and SDR . 252

14.6 Message Type: CONFIG_OPTS . 253

14.7 Message Type: INTERNAL_CONFIG_OPTS . 256

14.8 Request Type: REPORT_SRS_VERSION . 257

14.9 Request Type: REPORT_MONITOR_INFO . 257

14.10 Request Type: SET_PUBLISHING_INTERVAL . 258

15 Man Pages for Lbmrd 261

15.1 Lbmrd Man Page . 261

15.2 Lbmrds Man Page . 263

16 lbmrd Configuration File 265

16.1 lbmrd Configuration Elements . 265

16.1.1 LBMRD Element "<lbmrd>" . 265

16.1.2 LBMRD Element "<transformations>" . 266

16.1.3 LBMRD Element "<transform>" . 266

16.1.4 LBMRD Element "<rule>" . 267

16.1.5 LBMRD Element "<replace>" . 267

16.1.6 LBMRD Element "<match>" . 268

16.1.7 LBMRD Element "<domains>" . 269

16.1.8 LBMRD Element "<domain>" . 269

16.1.9 LBMRD Element "<network>" . 270

16.1.10 LBMRD Element "<daemon>" . 270

16.1.11 LBMRD Element "<resolver_unicast_send_socket_buffer>" 270

16.1.12 LBMRD Element "<resolver_unicast_receiver_socket_buffer>" 271

16.1.13 LBMRD Element "<log>" . 271

16.1.14 LBMRD Element "<ttl>" . 272

16.1.15 LBMRD Element "<port>" . 272

16.1.16 LBMRD Element "<interface>" . 272

16.1.17 LBMRD Element "<activity>" . 273

16.2 Dummy lbmrd Configuration File . 273

16.3 Lbmrd DTD file . 274

17 Packet Loss 277

17.1 Design to Prevent Loss . 277

17.1.1 Decrease Packet Flow through Loss Points . 278

17.1.2 Increase Efficiency of Packet Consumers . 278

17.2 UM Recovery of Lost Packets . 278

17.3 Packet Loss Points . 279

17.3.1 Loss: Switch Egress Port . 279

14 CONTENTS

17.3.2 Loss: NIC Ring Buffer . 280

17.3.3 Loss: Socket Buffer . 280

17.3.4 Loss: Other . 281

17.4 Verifying Loss Detection Tools . 281

17.4.1 Prepare to Verify . 282

17.4.2 Verifying Switch Loss . 282

17.4.3 Verifying NIC Loss . 283

17.4.4 Verifying Socket Buffer Loss . 283

17.5 TCP Disconnections . 284

18 UM Glossary 287

18.1 Glossary A . 287

18.2 Glossary B . 288

18.3 Glossary C . 288

18.4 Glossary D . 289

18.5 Glossary E . 289

18.6 Glossary F . 290

18.7 Glossary G . 290

18.8 Glossary H . 290

18.9 Glossary I . 290

18.10 Glossary J . 291

18.11 Glossary K . 291

18.12 Glossary L . 291

18.13 Glossary M . 292

18.14 Glossary N . 292

18.15 Glossary O . 293

18.16 Glossary P . 293

18.17 Glossary Q . 294

18.18 Glossary R . 294

18.19 Glossary S . 295

18.20 Glossary T . 297

18.21 Glossary U . 298

18.22 Glossary V . 299

18.23 Glossary W . 299

18.24 Glossary X . 300

18.25 Glossary Z . 300

Chapter 1

Introduction

This document introduces the basic concepts and design approaches used by Ultra Messaging (UM).

For policies and procedures related to Ultra Messaging Technical Support, see UM Support.

(C) Copyright 2004,2025 Informatica Inc. All Rights Reserved.

This software and documentation are provided only under a separate license agreement containing restrictions
on use and disclosure. No part of this document may be reproduced or transmitted in any form, by any means
(electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

A current list of Informatica trademarks is available on the web at https://www.informatica.←↩
com/trademarks.html.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party
notices are included with the product.

This software is protected by patents as detailed at https://www.informatica.com/legal/patents.←↩
html.

The information in this documentation is subject to change without notice. If you find any problems in this documen-
tation, please report them to us in writing at Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are
provided.
INFORMATICA LLC PROVIDES THE INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FIT←↩
NESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

https://ultramessaging.github.io/UM_Support.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/legal/patents.html
https://www.informatica.com/legal/patents.html

16 Introduction

Chapter 2

Fundamental Concepts

Ultra Messaging is a software layer, supplied in the form of a dynamic library (shared object), which provides appli-
cations with message delivery functionality that adds considerable value to the basic networking services contained
in the host operating system. The UMP and UMQ products also include a "Store" daemon that implements Persis-
tence. The UMQ product also includes a "broker" daemon that implements Brokered Queuing.

See UM Glossary for Ultra Messaging terminology, abbreviations, and acronyms.

Ultra Messaging is supported on a variety of platforms. There are three general categories of supported platforms:

• Core platforms: Linux, Windows, Solaris. These are built and shipped every release of UM.

• On-demand Platforms: AIX, HP-UX, Stratus (VOS), HP-NonStop (OSS), OpenVMS. These are only built and
shipped by request from users.

• VM and Containers: UM can run in virtualized environments, including containers and VMs. See Virtualized
Environments

In addition, Darwin (Mac OS) is supported (on demand) for development and test purposes. We do not support
Darwin for production.

Note

There are many different distributions of Linux and many different releases of all operating systems. Informat-
ica does not certify UM on specific distributions or versions of operating systems. We do keep our test lab
current and test on recent versions of the Core platforms. And we support users on the OS versions that they
use in production. But we do not formally certify.

Applications access Ultra Messaging features through the Ultra Messaging Application Programming Interface (A←↩
PI). Ultra Messaging includes the following APIs: the UM C API, the UM Java API, and the UM .NET API. For details
on these APIs, see:

• UM C API

• UM Java API

• UM .NET API

These APIs are very similar, and for the most part, this document concentrates on the C API. The translation from C
functions to Java or .NET methods should be reasonably straightforward; see Quick Start Guide for sample
applications in C, Java, and .NET. See also C Example Source Code, Java Example Source Code,
and C# Example Source Code.

The UMQ product also supports the JMS API via the ActiveMQ broker.

The UM product is highly configurable to allow optimization over a wide variety of use cases. See Configuration
Introduction for more information.

18 Fundamental Concepts

The three most important design goals of Ultra Messaging are to minimize message latency (the time that a given
message spends "in transit"), maximize throughput, and ensure delivery of all messages under a wide variety of
operational and failure scenarios. Ultra Messaging achieves these goals by not duplicating services provided by
the underlying network whenever possible. Instead of implementing special messaging servers and daemons to
receive and re-transmit messages, Ultra Messaging routes messages primarily with the network infrastructure at
wire speed. Placing little or nothing in between the sender and receiver is an important and unique design principle
of Ultra Messaging.

A UM application can function as a publisher (sometimes call a "source"), or a subscriber (sometimes called a
"receiver"). A publishing application sends messages, and a subscribing application receives them. (It is also
common for an application to function as both publisher and subscriber; we separate the concepts for organizational
purposes.)

2.1 License Key

Before you can use UM, you must obtain a valid license key. A license key comes in two forms: a file and a string.

A license key file is a normal text file containing 4 lines. For example:

Product=UME,UMQ,LBM,UMDRO
Organization=My Company
Expiration-Date=never
License-Key=xxxx xxxx xxxx xxxx

A license key string is a single line of normal text which combines the above 4 lines, separated by colons. For
example:

Product=UME,UMQ,LBM,UMDRO:Organization=My
Company:Expiration-Date=never:License-Key=xxxx xxxx xxxx xxxx

The key (file or string) can be supplied to UM in two different ways: XML configuration file and environment.

2.1.1 License Via XML Configuration File

If you use XML Configuration Files to configure the UM library, you can specify a license key file using the UM
Element "<license>" with format="filename". For example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<license format="filename">my_um_license.txt</license>
...

Alternatively, you can supply the license information as a string in the XML with format="string":

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<license format="string">
Product=UME,UMQ,LBM,UMDRO:Organization=My

Company:Expiration-Date=never:License-Key=xxxx xxxx xxxx xxxx
</license>

...

Note that you cannot supply a license key in Plain Text Configuration Files ("flat" files). See License Via Environ-
ment.

2.2 Messaging Paradigms 19

2.1.2 License Via Environment

You can specify a license key file using the environment variable LBM_LICENSE_FILENAME. For example:

export LBM_LICENSE_FILENAME="my_um_license.txt"

Alternatively, you can supply a license information as a string in the environment variable LBM_LICENSE_INFO.
For example:

export LBM_LICENSE_INFO="Product=UME,UMQ,LBM,UMDRO:Organization=My
Company:Expiration-Date=never:License-Key=xxxx xxxx xxxx xxxx"

2.2 Messaging Paradigms

UM supports three basic messaging paradigms (sometimes called Quality Of Service, or QOS):

• Streaming.

• Persistence.

• Queuing.

Sometimes people equate those paradigms with the UM product names "UMS", "UMP", and "UMQ". But this is
not accurate. The UMP product supports both streaming and persistence. You can write streaming applications
with UMP. The UMQ product supports streaming, persistence, and queuing. You can write streaming or persistent
applications with UMQ.

2.2.1 Streaming

The UMS, UMP, and UMQ products support "Streaming" as their basic messaging paradigm. With Streaming,
messages are sent directly from publisher to subscriber (no broker). A subscriber to a given topic joins the data
stream of a publisher of that topic to receive messages. Messages sent during times that the subscriber is not
joined are generally not available to the subscriber (live-only), although see Late Join.

2.2.2 Persistence

The UMP and UMQ products support Streaming and Persistence messaging paradigms. Persistence, sometimes
called "durable" or "guaranteed" messages, saves messages sent by a publisher in non-volatile storage so that
subscribers can recover missed messages under a variety of failure scenarios. If multiple subscribers exist for the
same topic, each subscriber will get all messages sent by the publisher.

Persistence includes a component known as the persistent Store, which provides stable storage (disk or memory)
of message streams.

UM delivers persisted messages from publisher to subscriber with very low latency by using the same technology
as Streaming. This offers the functionality of durable subscriptions and confirmed message delivery.

(FYI - you will see references to "UME" in the configuration and APIs for persistence. "UME" is an earlier abbreviation
for "UMP".)

For full details on UM Persistence, see the UM Guide for Persistence.

20 Fundamental Concepts

2.2.3 Queuing

The UMQ product supports Streaming, Persistence, and Queuing messaging paradigms. Queuing supports "load
balancing" whereby published messages can be distributed across a set of subscribers such each message is only
handled by one of the subscribers.

UMQ supports both Brokered queuing (where the Queue is a separate component which can store messages
independent of the source and receiver), and Ultra Load Balancing (ULB), where the Queue is memory-based and
resides in the source.

For full details on UM Queuing, see the UM Guide to Queuing.

2.3 Messages

The primary function of UM is to transport application messages from a publisher to one or more subscribers. For
the purposes of UM, a message is a sequence of bytes, the parsing and interpretation of which is the responsibility
of the application.

Since UM does not parse or interpret the messages, UM cannot reformat messages for architectural differences in
a heterogeneous environment. For example, UM does not do byte-swapping between big and little endian CPUs.

However, there are some specific exceptions to this rule:

• The Self Describing Messaging feature is a separate library that allows the construction and parsing of struc-
tured messages as arbitrary name/value pairs.

• The Pre-Defined Messages feature is another separate library that allows the construction and parsing of
structured messages.

• The Message Properties feature allows the setting of structured metadata which is sent along with an appli-
cation message.

2.3.1 Message Integrity

To minimize latency and CPU overhead, UM relies on the Operating System and the Network equipment to en-
sure the integrity of message data. That is, UM does not add a checksum or digital signature to detect message
corruption. Modern network hardware implements very reliable CRCs.

However, we have encountered a case of a microwave-based link that apparently did not use a strong error detection
method. This user reported occasional packet corruptions.

We also encountered a situation where an Operating System and a network interface card were configured in an
unusual way which led to reproducible undetected packet corruption.

Users who wish to reduce the possibility of message corruption to near-zero will want to implement some sort of
message checksum or digital signature outside of UM. (Message Properties could be used to carry the checksum
or signature.)

2.4 Topic Structure and Management 21

2.3.2 Message Metadata

It is sometimes useful for applications to send a message with additional metadata associated with the message.
This metadata could be simply added to the message itself, but it is sometimes preferred that the metadata be
separated from the message data.

For example, some organizations wrap UM in their own messaging middleware layer that provides a rich set of
domain-specific functionality to their applications. This domain-specific functionality allows applications to be writ-
ten more easily and quickly. However, that layer may need to add its own state-maintenance information which
is independent from the application's message data. This middleware data can be supplied either as metadata
attached to the message, or as separate non-application messages which are tagged with metadata. (The lat-
ter approach is often preferred when application messages must be sent with the minimum possible latency and
overhead; adding metadata to a message adds processing overhead, so sending application messages without
metadata is the most efficient.)

There are two different UM features that allow adding metadata to messages:

• Message Properties - a general system of typed name/value pairs.

• Application Headers - an older (deprecated) system of attaching small binary values.

Informatica generally recommends the use of Message Properties over Application headers.

2.4 Topic Structure and Management

UM offers the Publish/Subscribe model for messaging ("Pub/Sub"), whereby one or more receiver programs express
interest in a topic ("subscribe"), and one or more source programs send to that topic ("publish"). So, a topic can be
thought of as a data stream that can have multiple producers and multiple consumers. One of the functions of the
messaging layer is to make sure that all messages sent to a given topic are distributed to all receivers listening to
that topic. So another way of thinking of a topic is as a generalized destination identifier - a message is sent "to" a
topic, and all subscribers receive it. UM accomplishes this through an automatic process known as topic resolution.

(There is an exception to this Publish/Subscribe model; see Immediate Messaging.)

A topic is just an arbitrary string. For example:

Orders
Market/US/DJIA/Sym1

It is not unusual for an application system to have many thousands of topics, perhaps even more than a million, with
each one carrying a very specific range of information (e.g. quotes for a single stock symbol).

It is also possible to configure receiving programs to match multiple topics using wildcards. UM uses powerful
regular expression pattern matching to allow applications to match topics in a very flexible way. Messages cannot
be sent to wildcarded topic names. See UM Wildcard Receivers.

2.4.1 Message Ordering

UM normally ensures that received messages are delivered to the application in the same order as they were sent.
However, this only applies to a specific topic from a single publisher. UM does not guarantee to retain order across
different topics, even if those topics are carried on the same Transport Session. It also does not guarantee order
within the same topic across different publishers. For users that need to retain order between different topics from
a single publisher, see Spectrum.

Alternatively, it is possible to enforce cross-topic ordering in a very restrictive use case:

22 Fundamental Concepts

• The topics are from a single publisher (context),

• The topics are mapped to the same transport session,

• The Transport Session is configured for TCP (receiver-paced), IPC (receiver-paced), or SMX,

• The subscriber is in the same Topic Resolution Domain (TRD) as the publisher (no DRO in the data path),

• The messages being received are "live" - not being recovered from Late Join, OTR, or Persistence,

• The subscriber is not participating in Queuing,

• The subscriber is not using Hot Failover (HF).

2.4.2 Topic Resolution Overview

Topic Resolution ("TR") is a set of protocols and algorithms used internally by Ultra Messaging to establish and
maintain shared state. Here are the basic functions of TR:

• Receiver discovery of sources.

• DRO routing information distribution.

• Persistent Store name resolution.

• Fault tolerance.

For more information, see Topic Resolution Description.

2.4.3 Topic Resolution Domain

A "Topic Resolution Domain" (TRD) is a set of applications and UM components which share the same Topic
Resolution configuration and therefore participate in the TR protocols with each other. The key characteristic of a
TRD is that all UM instances communicate directly with each other.

In small deployments of UM, a single TRD is all that is needed.

For larger deployments, especially deployments that are geographically separated with bandwidth-limited WAN
links, the deployment is usually divided into multiple TRDs. Each TRD uses a different TR configuration, such
that the applications in one TRD don't communicate directly applications in another TRD. The DRO is used to
interconnect TRDs and provide connectivity between TRDs.

For more information, see Topic Resolution Description.

2.5 Messaging Reliability

Users of a messaging system expect every sent message to be successfully received and processed by the ap-
propriately subscribed receivers with the lowest possible latency, 100% of the time. However, this would require
perfect networks and computers that can handle unlimited load at infinite speed with complete reliability. Real world
networks, computers, and software systems have limitations and are subject to overload and failure, which can lead
to message loss.

2.5 Messaging Reliability 23

One job of a messaging system is to detect lost messages and take additional steps to arrange their successful
recovery. But again, the limits of hardware and software robustness can make 100% reliability impractical. Part of
UM's power is to give the user tools to make intelligent trade-offs between reliability and other important factors, like
memory consumption, delivery latencies, hardware redundancies, etc.

2.5.1 Unrecoverable Loss

There are two important concepts when talking about loss:

• Simple Loss - usually a case of lost packets due to an overloaded component. UM can be configured in a
variety of ways to recover simple loss.

• Unrecoverable Loss - usually a case where a user-configured constraint has been exceeded and the mes-
saging system has to give up trying to recover the lost data.

Simple loss is undesirable, even if the messaging system is able to recover the loss. Any recovery mechanism adds
delay to the ultimate delivery of the message, and most uses have limits on the amount of time they are willing to
wait for recovery. For example, consider a network hardware outage that takes 10 minutes to repair. A user might
have a 5 minutes limit on the age of a message. Thus, the user would like messages sent during the first 5 minutes
of the 10-minute outage to simply be declare unrecoverable. Messages sent during the last 5 minutes should be
recovered and delivered.

However, when the messaging layer gives up trying to recover messages, it is important for the application software
to be informed of this fact. UM delivers unrecoverable loss events to the application followed by subsequent mes-
sages successfully received. Applications can use those unrecoverable loss events to take corrective action, like
informing the end user, and possibly initiating a re-synchronization operation between distributed components.

Obviously unrecoverable loss is considered a serious event. However, even simple loss should be monitored by
users. Daily data rates tend to increase over time. A "clean" network this month might have overload-related simple
loss next month, which might progress to unrecoverable loss the month after that.

UM does not deliver specific events to the application when simple loss is detected and successfully recovered.
Instead, users have a variety of tools at their disposal to monitor UM transport statistics, which includes counters
for simple loss. Applications themselves can use the UM API to "self-monitor" and alert end users when simple loss
happens. Or external monitoring applications can be written to receive transport statistics from many applications,
and provide a central point where small problems can be detected and dealt with before they become big problems.

See Packet Loss for an extended discussion of packet loss and how UM deals with it.

There are some special cases of unrecoverable loss that deserve additional description:

• Head Loss

• Leading Loss

• Tail Loss

• Burst Loss

2.5.2 Head Loss

When an application wants to publish messages, it creates one or more UM sources for topics. The design of UM
is such that a subscriber discovers the sources of interest and joins them. The process of receivers discovering and
joining sources (in UM it is called "Topic Resolution") takes a non-zero amount of time. Since UM is a fully-distributed
system with no central master broker, the publisher has no way of knowing when the subscribers have completed

24 Fundamental Concepts

the discovery/join process. As a result, it is possible for a publisher to create its sources and send messages, and
some of those messages might not reach all of the subscribed receivers.

For many UM-based applications, this is not a problem. Consider a market data distribution system. The market
data is a continuous stream of updates with no beginning or end. When a receiver joins, it has no expectation to get
the "first" message; it joins at an arbitrary point in the stream and starts getting messages from that point.

But there are other applications where a sender comes up and wants to send a request to a pre-existing receiver.
In this case, the sender is very interested in avoiding head loss so that the receiver will get the request.

UM's Persistence feature does a rigorous job of recovering from head loss. UM's Late Join feature is sometimes
used by streaming receivers to recover from head loss, although it requires care in the case of a receiver restart
since late join can also delivery duplicate messages.

2.5.3 Leading Loss

The behavior described in this section does not apply to Persisted data streams where delivery of all messages is
important.

For Streaming (non-persisted) data streams, once a receiver successfully joins a source, it should start getting
messages. However, there are some circumstances which interfere with the initial message reception.

For example, if a sender is sending a series of very large messages, those messages are fragmented, broken into
smaller pieces and sent serially. If a receiver joins the message stream after the first message of a large message
has already gone by, the receiver will no longer be able to successfully reassemble that first message. In UM
versions prior to 6.12, this led to delivery of one or more Unrecoverable Loss events to the application receiver
callback prior to delivery of the first successfully-received message.

Some users attempt to use the Late Join feature to avoid this problem, but the Late Join feature depends on a
circular buffer of message fragments. Requesting Late Join may well recover the initial fragment of the message
currently under transmission, but it might also recover the final fragments of the message before that. That leads to
an unrecoverable loss event for that previous message.

As a final example, suppose that a receiver joins a source during a period of severe overload leading to packet loss.
The receiver may not be able to get a full message until the overload condition subsides. This can deliver one or
more unrecoverable loss events prior to the first successfully delivered message.

In all of these examples, UM has either gotten no messages or incomplete messages during the startup phase
of a new receiver. Starting in UM version 6.12, UM will not deliver unrecoverable loss events to the application in
these cases. Once UM is able to successfully deliver its first message to a receiver, UM will enable the delivery of
unrecoverable loss events.

This matches what most programmers want to see. They are not interested in messages that came before their
first, but they are interested in any gaps that happen after that first message.

Be aware that pre-6.12 versions of UM do deliver leading unrecoverable loss events to the application under some
circumstances, leading application developers to implement their own filter for those leading events. Those appli-
cations can safely upgrade to 6.12 or beyond; their filter will simply never be executed since UM filters the leading
events first.

Finally, remember that it is important for UM-based systems to be monitored for transport statistics, including loss.
Since leading unrecoverable loss events are now suppressed (and even pre-6.12 were not reliably delivered in all
cases), the transport stats should be used to determine the "health" of the network.

Note

Persisted receivers should not suppress leading unrecoverable loss. However, this behavior was mistakenly
applied to persisted receivers in UM version 6.12 - 6.16.1 (see bug 11338). Starting in UM version 6.17, the
leading loss suppression behavior has been removed from persisted receivers.

2.5 Messaging Reliability 25

2.5.4 Tail Loss

Packet loss is a fact of life. Temporary overloads of network hardware can lead to dropped packets. UM receivers
are designed to recover those lost packets from the sender, but that recovery takes greater than zero time.

Suppose a application has some messages to send, and then exits. You could have a situation where the last
message sent fell victim to a network drop. If the publisher exits immediately, the receivers may not have had
enough time to recover the lost packets; may not even have detected the loss.

If the delivery of those tail messages is important, UM's persistence functionality should be used. A sender should
delay its exit until the persistence layer informs it that all messages are "stable".

Non-persistent applications can implement an application-level handshake where the receivers tell the senders that
they have successfully processed the final message.

Sometimes, delivery of the final message is not of critical importance. In that case, some application developers
choose to simply introduce a delay of a second or two after the last message is sent before the sources are deleted.
This will give UM a chance to detect and recover any lost messages.

See Preventing NAK Storms with NAK Intervals and Preventing Undetected Unrecoverable Loss for configu-
ration details related to tail loss.

2.5.5 Burst Loss

UM's "burst loss" feature is no longer recommended. All known use cases for the burst loss feature are better ac-
complished through other means. For example, controlling latency after loss should be done using NAK-related and
OTR-related configuration options. Informatica recommends disabling the burst loss feature by setting the configu-
ration options delivery_control_maximum_burst_loss (receiver) and delivery_control_maximum_burst_loss
(hfx) to 1,000,000,000.

When setting the burst loss options, be sure to include all subscribers, including all instances of UM Stores, DROs,
and UMDS servers.

This is especially important for persistent receivers and Stores.

Feature Description

Normally, when the Delivery Controller detects a gap in topic sequence numbers of received message fragments,
it waits for a NAK generation interval (defaults to 10 seconds) before declaring the missing message fragments
unrecoverably lost. This wait time allows the underlying transport layer to attempt to retrieve the missing message
fragments.

The configuration options delivery_control_maximum_burst_loss (receiver) and delivery_control_maximum←↩
_burst_loss (hfx) specify a size for a contiguous gap in topic sequence numbers beyond which the gap is defined to
be a "burst loss". When this happens, the delivery controller immediately declares the entire gap to be unrecoverably
lost and resets its loss-handling structures.

Note that the burst loss feature does not reduce NAKs and retransmissions. If burst loss is invoked, the underlying
transport layer will still attempt to recover the lost messages. NAK-based protocols will continue to send NAKs and
retransmissions. However, the delivery controller will discard any successfully recovered messages because they
were already declared unrecoverable as part of the burst loss event.

For burst loss, a single LBM_MSG_UNRECOVERABLE_LOSS_BURST event is delivered for the entire sequence
number gap. Contrast this with simple (not burst) loss events, where a separate LBM_MSG_UNRECOVERABL←↩
E_LOSS event will be delivered to the receiver for each lost sequence number.

Note

The burst loss control takes priority over all recovery methods. For example, if the subscriber is receiving
persistent data and OTR is enabled, a gap longer than delivery_control_maximum_burst_loss will immediately
declare the gap as unrecoverable without trying to use OTR to recover.

26 Fundamental Concepts

Finally, be aware that successfully-received but buffered messages can be discarded when a burst loss is detected.
For example, let's say that topic sequence number 10 is lost, and number 11 through 30 are successfully received.
Datagrams 11 through 30 will be buffered, awaiting datagram 10 being retransmitted. But if the next topic sequence
number is 1055, that exceeds the burst loss threshold, which clears the entire order map, discarding messages 11
through 30. The application sees message 9, followed by a burst loss notification, followed by message 1055.

2.6 UM Software Stack

Here is a simplified diagram of the software stack:

At the bottom is the operating system socket layer, the computer hardware, and the network infrastructure. UM
opens normal network sockets using standard operating system APIs. It expects the socket communications to
operate properly within the constraints of the operational environment. For example, UM expects sent datagrams to
be successfully delivered to their destinations, except when overload conditions exist, in which case packet loss is
expected.

The UM library implements a Transport Layer on top of Sockets. The primary responsibility of the Transport Layer
is to reliably route datagrams from a publishing instance instance of UM to a receiving instance of UM. If datagram
delivery fails, the Transport Layer detects a gap in the data stream and arranges retransmission.

UM implements a Topic Layer on top of its Transport Layer. Publishers usually map multiple topics to a Transport
Session, therefore there can be multiple instances of the topic layer on top of a given transport layer instance ("←↩
Transport Session"). The Topic layer is responsible for UM fragmentation of messages (splitting large application
messages into datagram-sized pieces) and sending them on the proper Transport Session. On the receiving side,
the Topic Layer (by default) reassembles fragmented messages, makes sure they are in the right order, and delivers
them to the application. Note that the receive-side Topic Layer has a special name: the Delivery Controller.

In addition to those layers is a Topic Resolution module which is responsible for topic discovery and triggering the
receive-side joining of Transport Sessions.

2.7 UM Threading 27

2.6.1 Delivery Controller

The interaction between the receiver Transport Layer and the Delivery Controller (receive-side Topic Layer) deserves
some special explanation.

In UM, publishing applications typically map multiple topic sources to a Transport Session. These topics are multi-
plexed onto a single Transport Session. A subscribing application will instantiate an independent Delivery Controller
for each topic source on the Transport Session that is subscribed. The distribution of datagrams from the Transport
Session to the appropriate Delivery Controller instances is a de-multiplexing process.

In most communication stacks, the transport layer is responsible for both reliability and ordering - ensuring that
messages are delivered in the same order that they were sent. The UM division of functionality is different. It is the
Delivery Controller which re-orders the datagrams into the order originally sent.

The transport layer delivers datagrams to the Delivery Controller in the order that they arrive. If there is datagram
loss, the Delivery Controller sees a gap in the series of topic messages. It buffers the post-gap messages in a
structure called the Order Map until transport layer arranges retransmission of the lost datagrams and gives them
to the Delivery Controller. The Delivery Controller will then deliver to the application the re-transmitted message,
followed by the buffered messages in proper order.

To prevent unbounded memory growth during sustained loss, there are two configuration options that control the size
and behavior of the Order Map: delivery_control_maximum_total_map_entries (context) and otr_message_←↩
caching_threshold (receiver).

This is an important feature because if a datagram is lost and requires retransmission, significant latency is intro-
duced. However, because the Transport Layer delivers datagrams as they arrive, the Delivery Controller is able to
deliver messages for topics that are unaffected by the loss. See Example: Loss Recovery for an illustration of this.

This design also enables the UM "Arrival Order Delivery" feature directly to applications (see Ordered Delivery).
There are some use cases where a subscribing application does not need to receive every message; it is only
important that it get the latest message for a topic with the lowest possible latency. For example, an automated
trading application needs the latest quote for a symbol, and doesn't care about older quotes. With Arrival Order
delivery, the transport layer will attempt to recover a lost datagram, an unavoidable latency. While waiting for the
retransmission, a newer datagram for that topic might be received. Rather than waiting for the retransmitted lost
datagram, the Delivery Controller will immediately deliver the newer datagram to the application. Then, when the
lost datagram is retransmitted, it will also be delivered to the application. (Note: with arrival order delivery, the Order
Map does not need to buffer any messages since all messages are delivered immediately on reception.)

Applications can track when Delivery Controllers are created and deleted using the source_notification_function
(receiver) configuration option. This is generally preferable to using Receiver BOS and EOS Events.

2.7 UM Threading

Ultra Messaging is designed for event-driven, asynchronous, distributed applications. Threads are used to im-
plement the asynchronous behavior, with application callbacks being made from UM threads independently from
application threads.

The UM Context Object owns a thread called the "context thread". This thread waits for network activity and handles
much of the protocol work for UM. In particular, the context thread is responsible for reading messages from the
network socket, preparing them, and delivering them to the application's receiver callback function.

However, the context thread often is not involved in the sending of application messages. An application thread calls
the UM send function, and in a typical case, that thread flows through the UM code and makes the socket "send"
call. An exception to this is if Implicit Batching is used and a timeout trigger the sending of a partial batch; in this
case it is the context thread that sends the message.

The context thread can either be created implicitly when the context is created (Embedded Mode), or the application
can choose to create the context thread external to UM and "donate" it to a context (Sequential Mode).

There are some Other Specialized Threads that the context can create, depending on which UM features you use.

28 Fundamental Concepts

2.7.1 Embedded Mode

When you create a context (lbm_context_create()) with the UM configuration option operational_mode (context)
set to embedded (the default), UM creates an independent thread, called the context thread, which handles timer
and socket events, and does protocol-level processing, like retransmission of dropped packets.

2.7.2 Sequential Mode

Ultra Messaging typically relies on certain independent threads to perform a variety of its functions. For example,
network messages are received by either a context thread or an XSP thread.

By default, UM creates the necessary threads internally using the operating system's thread primitives. However,
there are times where an application needs more control. Here are two example use cases:

1. The application wants to create the threads so that specific thread attributes can be set as part of creating
the threads. For example, CPU affinity, execution priority, even stack size.

2. The application wants to serialize all UM operations without the use of any independent threads of execution.
In this case, the application may want to have a single thread which executes application code and UM code
serially.

These goals can be met using "sequential" mode. With this mode, UM does not create the thread. It becomes the
application's responsibility to call the event processing API. For use case 1 above, the application typically creates
its own independent thread which simply calls the event processing API in a loop. For use case 2 above, the
application calls the event processing API from its main thread.

2.7.3 Context Sequential Mode

When you create a context (C API: lbm_context_create()), by default a separate independent thread is created.
This is the "context thread".

You enable Sequential mode by setting the configuration option operational_mode (context) to the value "sequen-
tial". For example:

context operational_mode sequential

The event processing C API for the context is lbm_context_process_events() or lbm_context_process_events←↩
_ex(). Java: LBMContext.processEvents().

Warning

If using sequential mode and fd_management_type "wincompport", the thread that creates the context must
not exit while the context is active. Furthermore, you gain a small performance improvement if the thread that
creates the context is the same thread that calls lbm_context_process_events().

2.7 UM Threading 29

2.7.4 XSP Sequential Mode

An XSP is a specialized form of a context. When you create an XSP (C API: lbm_xsp_create()), by default a
separate independent thread is created. This is the "XSP thread".

You enable Sequential mode by setting the configuration option operational_mode (xsp) to the value "sequential".
For example:

xsp operational_mode sequential

The event processing C API for XSP is lbm_xsp_process_events(). Java: LBMXSP.processEvents().

Warning

If using sequential mode and fd_management_type "wincompport", the thread that creates the XSP must
not exit while the context is active. Furthermore, you gain a small performance improvement if the thread that
creates the context is the same thread that calls lbm_xsp_process_events().

2.7.5 IPC Sequential Mode

When a receiver joins an IPC source's transport, by default the context dynamically creates an independent thread
to service the IPC shared memory. This is the "IPC thread".

You enable Sequential mode by setting the configuration option transport_lbtipc_receiver_operational_mode
(context) to the value "sequential". For example:

context transport_lbtipc_receiver_operational_mode sequential

The event processing C API for IPC is lbm_context_process_lbtipc_messages(). The Java API does not support
IPC sequential mode.

2.7.6 Other Specialized Threads

In addition to the context thread, there are other UM features which rely on specialized threads:

• The Transport LBT-SMX feature, when used, creates its own specialized receive thread. However, unlike the
context thread and the LBT-IPC threads, the creation of the LBT-SMX thread is handled by UM. There is no
sequential mode for the LBT-SMX thread.

• The DBL transport acceleration feature, when used, creates its own specialized receive thread. However,
unlike the context thread and the LBT-IPC threads, the creation of the DBL thread is handled by UM; there is
no sequential mode for the DBL thread.

• The Automatic Monitoring feature, when used, creates an independent context to publish statistics via UM,
and a second internal thread for sampling data. The creation of the automatic monitoring threads is handled
by UM; there is no sequential mode for the automatic monitoring threads.

• The TCP-based Topic Resolution, when used, creates its own thread to handle communication with the SR←↩
Ses.

30 Fundamental Concepts

2.8 Deleting UM Objects

Before you can delete a given UM object, you must first delete all associated objects. For example, before deleting
a context, you must delete all sources and receivers associated with that context.

The general order of object deletion is:

1. Cancel UM Timers ("cancel" instead of "delete").

2. Delete any outstanding request objects.

3. Delete sources and receivers, and cancel Registered File Descriptors. ("Receivers" includes wildcard,
hf, and hfx receivers.)

4. Delete XSP(s).

5. Delete context(s).

6. Delete event queue(s). See "Deleting an Event Queue" for more information.

Some important warnings:

• When deleting a source object, any messages waiting to be sent due to implicit batching or rate limiter
might not be sent (if deleting the source also deletes the transport session). Also, any subscribers sending
retransmission requests will be ignored.

• For objects that have application callbacks (e.g. receivers), there can be a race condition where the object
deletion function returns but an application callback is still executing. See the Callback After Delete.

• In UM's Java and .NET APIs, each object should be explicitly deleted, usually by calling its "close" method.
You should not simply release all references to a UM object and expect the garbage collector to do the
cleanup.

2.8.1 Callback After Delete

For objects with application callbacks, there are circumstances where the delete function successfully returns to
the caller while its callback is still executing. This can lead to race conditions and hard-to-diagnose bugs. For
example, an application might delete a receiver object and then immediately delete some resources (memory, etc)
that the receiver callback uses. But if the receiver callback is executing at the same time that the resources are
being deleted, you can get corrupted memory and crashes.

For most object types, this can only happen if the deleted object is associated with an event queue. However, for
UM Timers and Registered File Descriptors, you can have callback execution continuing after the cancel returns
even if no event queue is used.

One effective technique of avoiding this race condition is called "event sync". An alternative for C programs is to use
the C API Extended Delete.

2.8.2 Event Sync

The "event sync" technique works with all APIs and object types, with or without an event queue. It is not a separate
UM feature; rather it is a technique of using a UM timer to synchronize threads.

The event sync technique consists of deleting one or more objects, and then scheduling a zero-duration timer with
a "deletion complete" callback. The timer is associated with the same context as the object(s) being deleted. If the

2.9 DRO 31

object(s) being deleted are associated with an event queue, the timer should be associated with the same event
queue.

Since the timer has a duration of zero, it expires immediately. The UM context thread and/or event queue will finish
whatever it is doing and expire the timer. For the non-event queue case, the timer expiration callback is executed
immediately by the context. If the timer is associated with an event queue, the dispatch thread will finish whatever it
is doing and execute the timer expiration callback. This guarantees that any executing callback for the object being
deleted will be completed before the event sync callback is executed.

It is common for a program shutting down to delete hundreds, or even thousands of source and/or receiver objects.
It is usually not necessary to perform an event sync for each object. You can delete all of the source and receiver
objects and then perform a single event sync to guarantee that all callbacks are done. Then resources used by the
callbacks can be safely cleaned up.

See event_sync for C and Java examples.

2.8.3 C API Extended Delete

For a C application deleting an object that is associated with an event queue, there is an "extended" delete function
which notifies the application via callback when UM guarantees no further callbacks are executing.

The C functions are:

• lbm_context_delete_ex()

• lbm_cancel_timer_ex()

• lbm_cancel_fd_ex()

• lbm_src_delete_ex()

• lbm_rcv_delete_ex()

• lbm_request_delete_ex()

• lbm_wildcard_rcv_delete_ex()

• lbm_hf_rcv_delete_ex()

• lbm_hfx_delete_ex()

• lbm_hfx_rcv_delete_ex()

Note that the "cancel callback" might be invoked synchronously with the call to the ..._ex() function, or it might be
invoked asynchronously by the event queue dispatch thread.

Note that the Java and .NET APIs do not have this extended form of object deletion; Informatica recommends using
Event Sync.

2.9 DRO

The Ultra Messaging Dynamic Routing Option (DRO) consists of a daemon named "tnwgd" that bridges disjoint
Topic Resolution Domains (TRDs) by effectively forwarding control and user traffic between them. Thus, the DRO
facilitates WAN routing where multicast routing capability is absent, possibly due to technical obstacles or enterprise
policies.

https://github.com/UltraMessaging/event_sync

32 Fundamental Concepts

The DRO transfers multicast and/or unicast topic resolution information, thus ensuring that receivers in disjoint topic
resolution domains from the source can receive the topic messages to which they subscribe.

See the Dynamic Routing Guide for more information.

2.10 Late Join

In many applications, a new receiver may be interested in messages sent before that receiver joins the source's
transport session. The Ultra Messaging Late Join feature allows a new receiver to obtain previously-sent messages
from a source. Without the Late Join feature, the receiver would only deliver messages sent after the receiver
successfully joins the source's transport session. With Late Join, the source locally stores recently sent messages
according to its Late Join configuration options, and a new receiver is able to retrieve those messages.

For late join to happen, the source must be configured to offer it, and the receiver must be configured to participate.

Source-side configuration options:

• late_join (source)

• retransmit_retention_age_threshold (source)

• retransmit_retention_size_limit (source)

• retransmit_retention_size_threshold (source)

• request_tcp_interface (context)

Receiver-side configuration options:

• use_late_join (receiver)

• retransmit_request_interval (receiver)

• retransmit_request_message_timeout (receiver)

• retransmit_request_outstanding_maximum (receiver)

• late_join_info_request_interval (receiver)

• late_join_info_request_maximum (receiver)

• retransmit_initial_sequence_number_request (receiver)

• retransmit_message_caching_proximity (receiver)

• response_tcp_interface (context)

Note

With Smart Sources, the following configuration options have limited or no support:

• retransmit_retention_size_threshold (source)

• retransmit_retention_size_limit (source)

• retransmit_retention_age_threshold (source)

You cannot use Late Join with Queuing functionality (UMQ).

2.11 Request/Response 33

2.11 Request/Response

Ultra Messaging also offers a Request/Response messaging model. A publisher (the requester) sends a message
to a topic. Every receiving application listening to that topic gets a copy of the request. One or more of those
receiving applications (responder) can then send one or more responses back to the original requester. Ultra
Messaging sends the request message via the normal pub/sub method, whereas Ultra Messaging delivers the
response message directly to the requester.

An important aspect of the Ultra Messaging Request/Response model is that it allows the application to keep track of
which request corresponds to a given response. Due to the asynchronous nature of Ultra Messaging requests, any
number of requests can be outstanding, and as the responses come in, they can be matched to their corresponding
requests.

Request/Response can be used in many ways and is often used during the initialization of Ultra Messaging receiver
objects. When an application starts a receiver, it can issue a request on the topic the receiver is interested in.
Source objects for the topic can respond and begin publishing data. This method prevents the Ultra Messaging
source objects from publishing to a topic without subscribers.

Be careful not to be confused with the sending/receiving terminology. Any application can send a request, including
one that creates and manages Ultra Messaging receiver objects. And any application can receive and respond to a
request, including one that creates and manages Ultra Messaging source objects.

Note

You cannot use Request/Response with Queuing functionality.

For more details, see Request/Response Model.

2.12 Registered File Descriptors

The UM C API running on Unix supports an application creating its own network socket and registering it with the
UM context. This allows state changes of the file descriptor (e.g. readable, writable) to be monitored by the UM
context. The application provides a callback function that UM invokes when the file descriptor state changes.

This is a rarely-used feature of UM, mostly by market data feed handlers.

Java and .NET sockets are not supported. Windows is also not supported.

To register and cancel an application file descriptor with a context, use:

• lbm_register_fd()

• lbm_cancel_fd() or lbm_cancel_fd_ex()

To register and cancel an application file descriptor with an XSP, use:

• lbm_xsp_register_fd()

• lbm_xsp_cancel_fd() (no "_ex()" form is available)

When canceling a registration, the guidelines for Deleting UM Objects must be followed. Pay special attention to
Callback After Delete.

34 Fundamental Concepts

2.13 UM Transports

A source application uses a UM transport to send messages to a receiver application. An Ultra Messaging transport
type is built on top of a standard IP protocol. For example, the UM transport type "LBT-RM" is built on top of
the standard UDP protocol using standard multicast addressing. The different Ultra Messaging transport types
have different trade-offs in terms of latency, scalability, throughput, bandwidth sharing, and flexibility. The publisher
chooses the transport type that is most appropriate for the data being sent, at the topic level. A programmer might
choose different transport types for different topics within the same application.

Se Transport Types for the different types of UM transports available.

2.14 Transport Sessions

An Ultra Messaging publisher can make use of very many topics - possibly over a million. Ultra Messaging maps
those topics onto a much smaller number of Transport Sessions. A Transport Session can be thought of as a specific
running instance of a transport type, running within a context. A given Transport Session might carry a single topic,
or might carry tens of thousands of topics.

A publishing application can either explicitly map each topic source to specific Transport Sessions, or it can make
use of an automatic mapping of sources to a default pool of Transport Sessions. If explicitly mapping, the application
must configure a new source with identifying information to specify the desired Transport Session. The form of this
identifying information depends on the transport type. For example, in the case of the LBT-RM transport type, a
Transport Session is identified by a multicast group IP address and a destination port number. Alternatively,
if the application does not specify a Transport Session for a new topic source, a Transport Session is implicitly
selected from the default pool of Transport Sessions, configured when the context was created. For example,
with the LBT-RM transport type, the default pool of implicit Transport Sessions is created with a range of multicast
groups, from low to high, and the destination port number. Note that at context creation, the Transport Sessions
in the configured default pool are not immediately activated. As topic sources are created and mapped to Transport
Sessions, those Transport Sessions are activated.

There are many cases where a transport session is identified using a Source String (minus the bracketed topic
index).

Note

When two contexts are in use, each context may be used to create a topic source for the same topic name.
These sources are considered separate and independent, since they are owned by separate contexts. This is
true regardless of whether the contexts are within the same application process or are separate processes. A
Transport Session is also owned by a context, and sources are mapped to Transport Sessions within the same
context. So, for example, if application process A creates two contexts, ctx1 and ctx2, and creates a source
for topic "current_price" in each context, the sources will be mapped to completely independent Transport
Sessions. This can even be true if the same Transport Session identification information is supplied to both.
For example, if the source for "current_price" is created in ctx1 with LBT-RM on multicast group 224.10.10.10
and destination port 14400, and the source for the same topic is created in ctx2, also on LBT-RM with the
same multicast group and destination port, the two Transport Sessions will be separate and independent,
although a subscribing application will receive both Transport Sessions on the same network socket.

2.14.1 Subscribing to a Transport Session

A receiving application might subscribe to a small subset of the topics that a publisher has mapped to a given
Transport Session. In most cases, the subscribing process will receive all messages for all topics on that Transport
Session, and the UM library will discard messages for topics not subscribed. This user-space filtering does consume

2.14 Transport Sessions 35

system resources (primarily CPU and bandwidth), and can be minimized by carefully mapping topics onto Transport
Sessions according to receiving application interest (having receivers). (Certain transport types allow that filtering
to happen in the publishing application; see transport_source_side_filtering_behavior (source).)

When a subscribing application creates its first receiver for a topic, UM will join any and all Transport Sessions
that have that topic mapped. The application might then create additional receivers for other topics on that same
Transport Session, but UM will not "join" the Transport Session multiple times. It simply sets UM internal state
indicating the topic subscriptions. When the publisher sends its next message of any kind on that Transport Session,
the subscribing UM will deliver a BOS event (Beginning Of Stream) to all topic receivers mapped to that Transport
Session, and will consider the Transport Session to be active. Once active, any subsequent receivers created for
topics mapped to that same Transport Session will deliver an immediate BOS to that topic receiver.

If the publisher deletes a topic source, the subscribing application may or may not get an immediate EOS event
(End Of Stream), depending on different circumstances. For example, in many cases, the deletion of topic sources
by a publisher will not trigger an EOS event until all sources mapped to a Transport Session are deleted. When
the last topic is deleted, the Transport Session itself is deleted, and an EOS event might then be delivered to all
topic receivers that were mapped to that Transport Session. (The use of resolver_send_final_advertisements
(source), TCP-Based Topic Resolution Details, or DROs can change this behavior.) Note that for UDP transports,
the deletion of a Transport Session by the publisher is not immediately detected by a subscriber, but rather requires
the expiration of an activity timeout.

Be aware that in a deployment that includes the DRO, BOS and EOS may only indicate the link between the receiver
and the local DRO portal, not necessarily full end-to-end connectivity. Subscribing application should not use BOS
and EOS events as an accurate and timely indication of the creation and deletion of sources by a publisher.

Note

Non-multicast Ultra Messaging transport types can use source-side filtering to decrease user-space filtering
on the receiving side by doing the filtering on the sending side. However, be aware that system resources
consumed on the source side affect all receivers, and that the filtering for multiple receivers must be done
serially, whereas letting the receivers do the filtering allows that filtering to be done in parallel, only affecting
those receivers that need the filtering.

2.14.2 Transport Session Differences

There are a few subtle differences in behavior of transport sessions depending on which transport type is being
used.

As sources are created but not explicitly assigned to a specific transport session, UM will assign the source to a
transport session in the default pool, in a "round-robin" fashion. But how is the default pool populated with transport
sessions?

• Transport LBT-RM - the range of multicast groups from transport_lbtrm_multicast_address_low (context)
to transport_lbtrm_multicast_address_high (context) defines the default pool. Note that an LBT-RM trans-
port session is also specified with a destination port, but that port is not specified as a range and is not iterated
to create multiple transport sessions.

• Transport LBT-IPC and Transport LBT-SMX - the range of IDs, low to high, defines the default pool. See
transport_lbtipc_id_low (context) to transport_lbtipc_id_high (context) for IPC, or transport_lbtsmx←↩
_id_low (context) to transport_lbtsmx_id_high (context) for SMX.

• Transport TCP, Transport LBT-RU - both transport types have a range of ports that the default pool is popu-
lated from, but the number of transport sessions in the default pool is not simply the port low-to-high difference.
Instead, both have a "maximum ports" option that limits the number of transport sessions automatically cre-
ated. This is because the port low-to-high range is often made large so that multiple application processes
can share from it, with each process limited to the maximum ports setting. See transport_tcp_port_low
(context) to transport_tcp_port_high (context) and transport_tcp_maximum_ports (context) for TCP,

36 Fundamental Concepts

or transport_lbtru_port_low (context) to transport_lbtru_port_high (context) and transport_lbtru_←↩
maximum_ports (context) for LBT-RU.

An application can configure a source to a specific transport session, either in the default pool, or outside of it. For
example, an application might use transport_lbtrm_multicast_address (source) to assign a source to a multicast
group that is outside of the low-to-high range.

The different source transport types differ in how this kind of "outside of the default pool" assignment affects the
transport session default pool:

• Transport LBT-RM, Transport LBT-IPC, and Transport LBT-SMX - the explicitly added transport session out-
side of the configured default pool range does not affect the default pool. For example, assigning a source to a
multicast group outside of the low-to-high range does not affect the default pool. Subsequent sources created
without a specific multicast group will only be assigned to groups within the low-to-high range. Assigning a
source to a transport session that is outside the low-to-high range will prevent other sources from sharing that
transport session.

• Transport TCP, Transport LBT-RU - the explicitly added transport session will be added to the default pool.
For example, if the low port is 12000 and the high port is 12049 and the maximum ports if 5, the publishing
context might assign ports 12000 - 12004 to the default pool. If the publisher then creates a source assigned
to port 12020 and another assigned to port 12099, both of those transport sessions will be added to the
default pool, making it 7 transport sessions. In particular, creating a source without a specific port assigned
will be automatically assigned to one of the default pool transport sessions, and so might be assigned to port
12020 or 12099. Assigning a source to a transport session outside of the low-to-high range does not prevent
other sources from sharing the transport session.

See the configuration section for each transport type for specifics on how Transport Sessions are created:

• TCP Transport Session Management

• LBT-RM Transport Session Management

• LBT-RU Transport Session Management

• LBT-IPC Transport Session Management

• LBT-SMX Transport Session Management

With the UMQ product, a ULB source makes use of the same transport types as Streaming, but a Brokered Queuing
source must use the broker transport.

2.14.3 Flexible LBT-RU Topic Assignment

Starting in UM version 6.17, the user is given more flexibility in assigning topics to LBT-RU transport sessions.

Topics are assigned to RU transport sessions by specifying a source port with transport_lbtru_port (source). For
example, in an XML configuration file you might have:

<contexts>
<context>

<sources>
<topic topicname="topic1">
<options type="source">
<option name="transport" default-value="lbtru"/>
<option name="transport_lbtru_port" default-value="12000"/>

</options>
</topic>
<topic topicname="topic2">
<options type="source">

2.15 Transport Pacing 37

<option name="transport" default-value="lbtru"/>
<option name="transport_lbtru_port" default-value="12000"/>

</options>
</topic>

</sources>
</context>

</contexts>

This tells UM to map topic1 and topic2 to the same transport session, and use the port 12000 for that session.

This causes a problem if two applications want to publish to the same topic are run on the same host. If they both
use the same configuration, they will both try to open port, and the second one will fail.

Starting with UM version 6.17, the user can specify transport_lbtru_allow_ephemeral (source). For example:

<contexts>
<context>

<sources>
<topic topicname="topic1">
<options type="source">
<option name="transport" default-value="lbtru"/>
<option name="transport_lbtru_port" default-value="12000"/>
<option name="transport_lbtru_allow_ephemeral" default-value="1"/>

</options>
</topic>
<topic topicname="topic2">
<options type="source">
<option name="transport" default-value="lbtru"/>
<option name="transport_lbtru_port" default-value="12000"/>
<option name="transport_lbtru_allow_ephemeral" default-value="1"/>

</options>
</topic>

</sources>
</context>

</contexts>

This allows the second instance to attempt to bind to port 12000, and upon failing will instead allocate an ephemeral
port.

Note that the port number specified for transport_lbtru_port is still used for topic grouping. In the above example,
both topic1 and topic2 will be mapped to the same ephemeral port.

2.15 Transport Pacing

Pacing refers to the controlling of when messages can be sent. Source Pacing is when the publisher of messages
controls when messages are sent, and Receiver Pacing is when the subscribers can essentially push back on the
publisher if the publisher is sending faster than the subscribers can consume messages.

2.15.1 Source Pacing

In its simplest case, source pacing means that the publishing application controls when to send messages by
having messages to send. For example, market data distribution system sends messages when the exchanges it is
monitoring sends updates. The subscribers must be able to accept those messages at the rates that the exchanges
send them.

38 Fundamental Concepts

A slow subscriber will fall behind and can lose data if buffers overflow. There is no way for a slow subscriber to
"push back" on a fast publisher.

Some of Ultra Messaging's transport types have features that allow the publisher to establish upper limits on the
outgoing message data. For example, LBT-RM has the transport_lbtrm_data_rate_limit (context) configuration
option. If the application attempts to send too many messages in too short a time, the send function can block for a
short time, or return an error indicating that it attempted to exceed the configured rate limit. This is still called source
pacing because the rate limit is optional and is under the control of the publisher.

The source-paced transports are:

• Transport TCP (can be configured for source or receiver pacing)

• Transport LBT-RU (source pacing only)

• Transport LBT-RM (source pacing only)

• Transport LBT-IPC (can be configured for source or receiver pacing)

2.15.2 Receiver Pacing

In a receiver-paced transport, a publisher still attempts to send when it has messages to send, but the send function
can block or return an error if the publisher is sending faster than the slowest subscribed receiver can consume.
There is a configurable amount of buffering that can be used to allow the publisher to exceed the consumption rate
for short periods of time, but when those buffers fill, the sender will be prevented from sending until the buffers have
enough room.

The receiver-paced transports are:

• Transport TCP (can be configured for source or receiver pacing)

• Transport LBT-IPC (can be configured for source or receiver pacing)

• Transport LBT-SMX (receiver-pacing only)

However, it is generally inadvisable to rely on receiver pacing to ensure reliable system operation. Subscribers
should be designed and provisioned to support the maximum possible incoming data rates. The reasons for this
recommendation are described below.

2.15.3 Receiver Queuing

This use case is not related to the Queuing paradigm. It is referring to the use of a software queue between the
context thread which receives the UM message and the application thread which processes the message.

A receiver-paced transport does not necessarily mean that a slow application will push back on a fast publisher.
Suppose that the actual message reception action by UM's context thread is fast, and the received messages are
placed in an unbounded memory queue. Then, one or more application threads take messages from the queue to
process them. If those application threads don't process messages quickly enough, instead of pushing back on the
publisher, the message queue will grow.

For example, the UM Event Queue Object is an unbounded memory-based queue. You could use Transport TCP
configured for receiver pacing, but if the subscriber uses an event queue for message delivery, then a slow consumer
will not slow down the publisher. Instead the subscriber's event queue will grow without bound, eventually leading
to an out-of-memory condition.

2.15 Transport Pacing 39

2.15.4 Pacing and DRO

Transport pacing refers to the connection within a a Topic Resolution Domain (TRD) from source to receiver. If
multiple TRDs are connected with a DRO, there can be multiple hops between the originating publisher and the
final subscriber, with the DROs providing proxy sources and receivers to pass messages across the hops. The
pacing of a particular transport session only applies to the link between the source (or proxy source) and the
receiver (or proxy receiver) of a particular hop.

This means that UM does not support end-to-end transport pacing.

For example, if a DRO joins two TRDs, both of which use receiver-paced TCP for transport, a slow receiver might
push back on the DRO's proxy source, leading to queuing in the DRO. Since the DRO uses bounded queues, the
DRO's queue will fill, leading to dropped messages.

2.15.5 Pacing and Queuing

Brokered Queuing is receiver paced between the source and the broker. For ULB queuing, the transport pacing is
determined by the chosen transport type.

There is also a form of end-to-end application receiver-pacing with queuing. For both brokered ULB, the size of
queue is configurable. As receivers consume messages, they are removed from the queue. If the queue fills due to
the source exceeding the consumption rate of the receiver, the next send call will either block or return a "WOUL←↩
DBLOCK" error until sufficient room opens up in the queue. Note that lifetimes can be configured for messages (to
prevent unbounded blocking) and the application can be notified if a message exceeds its lifetime.

See UM Guide to Queuing for more information.

2.15.6 Pacing and Persistence

With Persistence, the pacing is layered:

• At the transport level, pacing is determined by the chosen transport type.

• At the persistence level, Transport Pacing provides receiver pacing between the source and the Store. This
helps to ensure that a publisher sending on a source-paced transport like LBT-RM will not overwhelm the
Store.

• By default, the end-to-end pacing is source-paced. Which is to say that if a subscribed receiver cannot keep
up with the publish rate, eventually the receiver can experience unrecoverable loss, although this normally
will only happen if the receiver falls further behind than the total size of the Store's repository.

• Alternatively, the end-to-end pacing can be switched to receiver-paced. This is done using RPP: Receiver-←↩
Paced Persistence. Note that if a subscribed receiver crashes, it can lead to unbounded blockage of the
publisher until the subscriber is successfully restarted.

2.15.7 Suspended Receiver Problem

This is a problem that one of our users encountered. Their system used receiver-paced TCP because they wanted
the publishing speed to be limited to the rate that the slowest receiver could consume. This was fine until one day
the publisher appeared to stop working.

40 Fundamental Concepts

With some help from Support, the problem was trace to a receiver at a particular IP address that was joined to the
transport but apparently was not reading any data. It took some time to find the receiver by its IP address, and what
they found was a Windows machine with a dialog box telling the user that the process had generated an exception
and did the user want abort the process or enter the debugger.

When Windows does this, it suspends the process waiting for user input. In that suspended state, the kernel
maintains the network connections, but the process is not able to read any data. So the socket buffers filled up and
the publisher's send call blocked.

2.16 Event Delivery

There are many different events that UM may want to deliver to the application. Many events carry data with them
(e.g. received messages); some do not (e.g. end-of-stream events). Some examples of UM events:

• Received message. UM delivers messages on subscribed topics to the receiver.

• Receiver loss. UM can inform the application when a data gap is detected on a subscribed topic that could
not be recovered through the normal retransmission mechanism.

• End of Stream. UM can inform a receiving application when a data stream (Transport Session) has termi-
nated.

• Connect and Disconnect events. Source-side events delivered to a publisher when receivers connect to and
disconnect from the source's transport session.

• A timer expiring. Applications can schedule timers to expire in a desired number of milliseconds (although the
OS may not deliver them with millisecond precision).

• An application-managed file descriptor event. The application can register its own file descriptors with UM to
be monitored for state changes (readable, writable, error, etc.).

• New source notification. UM can inform the application when sources are discovered by Topic Resolution.

UM delivers events to the application via callbacks. The application explicitly gives UM a pointer to one of its
functions to be the handler for a particular event, and UM calls that function to deliver the event, passing it the
parameters that the application requires to process the event. In particular, the last parameter of each callback type
is a client data pointer (clientdp). This pointer can be used at the application's discretion for any purpose. It's value
is specified by the application when the callback function is identified to UM (typically when UM objects are created),
and that same value is passed back to the application when the callback function is called.

There are two methods that UM can use to call the application callbacks: through context thread callback, or event
queue dispatch.

In the context thread callback method (sometimes called direct callback), the UM context thread calls the application
function directly. This offers the lowest latency, but imposes significant restrictions on the application function. See
Event Queue Object.

The event queue dispatch of application callback introduces a dynamic buffer into which the UM context thread
writes events. The application then uses a thread of its own to dispatch the buffered events. Thus, the application
callback functions are called from the application thread, not directly from the context thread.

With event queue dispatching, the use of the application thread to make the callback allows the application function
to make full, unrestricted use of the UM API. It also allows parallel execution of UM processing and application pro-
cessing, which can significantly improve throughput on multi-processor hardware. The dynamic buffering provides
resilience between the rate of event generation and the rate of event consumption (e.g. message arrival rate v.s.
message processing rate).

In addition, an UM event queue allows the application to be warned when the queue exceeds a threshold of event
count or event latency. This allows the application to take corrective action if it is running too slow, such as throwing
away all events older than a threshold, or all events that are below a given priority.

2.16 Event Delivery 41

Note that while most UM events can be delivered via event queue, there are some that cannot (e.g. resolver_←↩
source_notification_function (context)).

2.16.1 Receiver BOS and EOS Events

There are two receive-side events that some applications use but which are not recommended for most use cases:

• LBM_MSG_BOS - Beginning of (transport) Session.

• LBM_MSG_EOS - End of (transport) Session.

The BOS and EOS events are delivered to receivers on a topic basis, but were originally designed to represent the
joining and exiting of the underlying Transport Session.

Note that the BOS and EOS receive-side events are very similar to the Source Connect and Disconnect Events.

The BOS event means slightly different things for different transport types. The basic principal is that a UM receiver
won't deliver BOS until it has seen some kind of activity on the transport after joining it. For example, a session
message for Transport LBT-RM. Or perhaps a TSNI on any of the transport types. Or even an actual user message.
Any of these will trigger BOS. But if the newly-joined transport session is completely silent, then BOS is delayed
until first activity is detected. Under some configurations, that delay is unbounded.

EOS is also triggered by different things for different transport types. For example, for the TCP transport, a discon-
nect will trigger EOS for any receivers that were subscribed to topics carried on that transport session. For LBT-RM,
an activity timeout can trigger EOS.

However, in recent versions of UM, the meaning of EOS has become more complicated, and no longer necessarily
indicates that the transport session has ended. There are circumstances in many versions of UM where a publisher
of a source that is in a remote TRD can delete that source, and the receiver will receive a timely EOS, even though
the transport session that carried the source stays in effect and joined by the receiver. Starting with UM version 6.10,
the configuration option resolver_send_final_advertisements (source) can be used to trigger EOS on receivers
in the same TRD, even if the transport session remains joined. Starting with UM version 6.12, TCP-based Topic
Resolution will have the same effect. In in a mixed-version UM environment including DROs, it can be difficult to
predict when an EOS will be generated for a deleted source.

Be aware that BOS does not necessarily indicate end-to-end connectivity between sources and receivers. In a DRO
network, where the source is in a different Topic Resolution Domain (TRD) from the receiver, BOS only indicates
the establishment of the transport session between the DRO's proxy source and the receiver.

Also, BOS and EOS do not necessarily come in balanced pairs. For example, if a BOS is delivered to a receiver, and
then the subscriber application deletes the receiver object, UM does not deliver an EOS to the receiver callback.
Also, it is possible to get an EOS event without first getting a BOS. Let's say that a receiver attempts to join an
LBT-RM transport session for a source that was just deleted. BOS will not be delivered because there will be no
communication of a user or control message. However, after LBT-RM times out the transport session, it will deliver
EOS.

Finally, in some versions of UM, EOS represents the end of the entire transport session, so you can have situations
where a publisher deletes a source, but the receiver for that topic does not get an EOS for an unbounded period of
time. Let's say that the publisher maps sources for topics X, Y, and Z to the same transport session. Let's further
say that a subscriber has a receiver for topic Y. It will join the transport session, get a BOS for receiver Y, and will
receive messages that the publisher sends to Y. Now let's say that the publisher deletes the source for topic Y, but
keeps the sources for topics X and Z. The subscriber may not be informed of the deletion of the source for Y, and
can remain subscribed to the transport session. It won't be until the publisher deletes sources X and Z that it will
delete the underlying transport session, which can then deliver EOS to the subscriber. However, if using TCP-based
Topic Resolution, this same scenario can produce an EOS event on the receiver immediately.

For these reasons and others, Informatica does not recommend using the BOS and EOS events to indicate "con-
nectedness" between a source and a receiver. Instead, Informatica recommends logging the events in your appli-
cation log file. If something goes wrong, these messages can assist in diagnosing the problem.

42 Fundamental Concepts

For programmers who are tempted to use BOS and EOS events, Informatica recommends instead using the
source_notification_function (receiver) configuration option. This provides receiving applications a callbacks
when a Delivery Controller is created and deleted, and is usually what the programmer really wants.

2.16.2 Source Connect and Disconnect Events

There are two source-side events that some applications use but which are not recommended for most use cases:

• LBM_SRC_EVENT_CONNECT - Beginning of (transport) Session to receiver.

• LBM_SRC_EVENT_DISCONNECT - End of (transport) Session to receiver.

The Connect and Disconnect events are delivered to source on a topic basis, but actually represent the joining and
exiting of the underlying Transport Session to a specific receiver.

Note

The Connect and Disconnect events are not available for Transport LBT-RM or Transport LBT-SMX sources.

Note that the Connect and Disconnect source-side events are very similar to the Receiver BOS and EOS Events.
However, while BOS and especially EOS have deviated from their pure "transport session" roots, Connect and
Disconnect are still purely implemented with respect to the underlying transport session.

Be aware that Connect does not necessarily indicate end-to-end connectivity between sources and receivers. In a
DRO network, where the source is in a different Topic Resolution Domain (TRD) from the receiver, Connect only
indicates the establishment of the transport session between the DRO's proxy receiver and the source. For example,
if a source in TRD1 is sending messages to two receivers in TRD2 via a DRO, the source will only receive a single
Connect event when the first of the two receivers subscribe. Note also that the IP and port indicated in the Connect
event will be for the DRO portal on TRD1.

Also, since Disconnect represents the end of the entire transport session, you can have situations where a sub-
scriber deletes a receiver, but the source for that topic does not get a Disconnect for an unbounded period of time.
Let's say that the publisher maps sources for topics X, Y, and Z to the same transport session. Let's further say
that a subscriber has a receiver for topic Y and Z. It will join the transport session, and the source will get Connect
events for all three topics, X, Y, and Z. Now let's say that the subscriber deletes the receiver for topic Y, but keeps the
receiver for topic Z. The source will not be informed of the deletion of the receiver for Y, since the transport session
continues to be maintained. It won't be until the subscriber deletes both receivers, Y and Z, that it will delete the
underlying transport session, which can then deliver Disconnect to the source.

For these reasons and others, Informatica does not recommend using the Connect and Disconnect events to indi-
cate "connectedness". Instead, Informatica recommends logging the events in your application log file. If something
goes wrong, these messages can assist in diagnosing the problem.

2.16.3 Source Wakeup Event

The source event LBM_SRC_EVENT_WAKEUP is delivered to the application when a non-blocking "send" function
is called but returns the LBM_EWOULDBLOCK error. When that happens, the message was not sent due to a flow
controlling condition. When that flow controlling condition is cleared, UM delivers the wakeup to the source event
callback, informing the application that it can resume sending.

The flow controlling conditions are:

• The source uses the TCP (normal), IPC (receiver_paced), or SMX protocol, and one or more receivers
are not reading fast enough. When both the receiver's and sender's buffers are full, a non-blocking "send"

2.16 Event Delivery 43

will return LBM_EWOULDBLOCK. When the slow receiver(s) read more data, the flow control condition is
cleared and the wakeup source event is delivered.

• The source uses a UDP-based protocol and the data rate limit is exceeded (see transport_lbtrm_data_←↩
rate_limit (context) or transport_lbtru_data_rate_limit (context)). A non-blocking "send" will return L←↩
BM_EWOULDBLOCK. When the rate interval expires and the rate limiter adds bandwidth, the flow control
condition is cleared and the wakeup source event is delivered.

• The source uses persistence and exceeds a flight size limit (see ume_flight_size (source) and ume_flight←↩
_size_bytes (source)). A non-blocking "send" will return LBM_EWOULDBLOCK. When the Store sends
stability ACKs to the source and the in-flight message data drops below the limit, the flow control condition is
cleared and the wakeup source event is delivered.

In all cases, the wakeup event is delivered by the UM context thread.

However, note that typically a separate thread (created by the application) is calling the non-blocking "send" function.
There can be cases where the call to "send" detects the flow control condition, but before it can return LBM_E←↩
WOULDBLOCK, the context thread clears the condition and delivers the LBM_SRC_EVENT_WAKEUP event via
the the application's source callback. From the application's point of view, this represents the notification of UM's
internal state transitions is reversed, with the wakeup appearing to happen before the LBM_EWOULDBLOCK. This
potential reversal of event notification is a natural consequence of the design of UM and is not considered a bug.
The application must be carefully coded to take this race condition into account.

For example, here's a modified excerpt from the Example lbmsrc.c program (see similar code in Java and .NET):

int blocked = 0; /* global state variable. */
...

int handle_src_event(lbm_src_t *src, int event, void *extra_data, void *clientd)
{

switch (event) {
case LBM_SRC_EVENT_WAKEUP:

blocked = 0;
break;

...

The wakeup event indicates that a blocked source is no longer blocked. This example uses a global variable to track
the blocked state of the source, so the wakeup event clears it.

Here is the application sending code:

/* Assume that the source is blocked. */
blocked = 1;
err = lbm_src_send(src, message, opts->msglen, LBM_SRC_NONBLOCK);
if (err == LBM_FAILURE) {

if (lbm_errnum() == LBM_EWOULDBLOCK) {
/* Source is blocked, message did not send. The "lbmsrc.c" example

* reacts by spin-waiting for "blocked" to be set to zero, and then

* looping back to re-send the same message.

* Alternatively, you could simply return to do other work, and

* re-send the message later when "blocked" is zero.

* Note that it is possible that "blocked" is already zero at this point.

*/
}

}
}
blocked = 0; /* The message sent successfully; source is not blocked. */

The important part of this code is that the global "blocked" flag is set before∗ the call to lbm_src_send(). If you try
to set it after the send function returns, the wakeup event might execute before your sending thread can set it. This
will leave "blocked" set even though the wakeup event has already been delivered.

Note that there should be a separate "blocked" variable for each source object the application creates. This flag
would typically be placed in a "clientd" structure instead of being a process-global variable.

Warning

The above example code is NOT safe for multiple application threads sending to the same source object.

44 Fundamental Concepts

2.16.4 Source Flight Notification Event

The source event LBM_SRC_EVENT_FLIGHT_SIZE_NOTIFICATION can be delivered to the application when a
source is configured for persistence and has set its ume_flight_size_behavior (source) to "notify".

As the application sends messages, the flight size increases, and as the Store delivers message stability ACKs, the
flight size decreases. As the application sends messages increasing the flight size, if it crosses a flight size limit,
the internal flight size state for that source becomes "over" and the LBM_SRC_EVENT_FLIGHT_SIZE_NOTIFIC←↩
ATION event is delivered with state LBM_SRC_EVENT_FLIGHT_SIZE_NOTIFICATION_STATE_OVER.

Subsequently, as Store stability acknowledgements are delivered to the source decreasing the flight size, if it goes
below the flight size limits, the internal flight size state for that source becomes "under" and the LBM_SRC_EVE←↩
NT_FLIGHT_SIZE_NOTIFICATION event is delivered with state LBM_SRC_EVENT_FLIGHT_SIZE_NOTIFICA←↩
TION_STATE_UNDER.

However, these two events are delivered by separate threads. The "OVER" notification is delivered by the application
thread calling the "send" function, and the "UNDER" notification is delivered by the UM context receiving the Store's
stability ACK. There can be cases where the application will process the two events concurrently, or even in the
reverse order that the internal state changed. For example, the actual order of state transitions might be "UNDER",
"OVER", "UNDER", but the application will process the events as "UNDER", "UNDER", "OVER". This potential
reversal of event notification is a natural consequence of the design of UM and is not considered a bug. The
application must be carefully coded to take this race condition into account.

Here is some example code to demonstrate a possible use pattern:

int over_delivered = 0; /* global. */
int under_delivered = 0; /* global. */
...

int handle_src_event(lbm_src_t *src, int event, void *extra_data, void *client_data)
{

switch (event) {
case LBM_SRC_EVENT_FLIGHT_SIZE_NOTIFICATION:
{

lbm_src_event_flight_size_notification_t *notification = (
lbm_src_event_flight_size_notification_t *)extra_data;

if (notification->state == LBM_SRC_EVENT_FLIGHT_SIZE_NOTIFICATION_STATE_OVER) {
over_delivered = 1;

}
else { /* state == LBM_SRC_EVENT_FLIGHT_SIZE_NOTIFICATION_STATE_UNDER */

under_delivered = 1;
}
break;

...

This example uses two global state variables to indicate when the two notification events have been delivered.

Here's some code that checks to see if flight size is "over" and wait for it to be "under" before sending:

if (over_delivered) {
while (! under_delivered) {

/* While waiting for "under", can do other things. */
}
/* Both "over" and "under" events were delivered. Reset them so we can send again. */
over_delivered = 0;
under_delivered = 0;

}
/* Send next message. */
err = lbm_src_send(src, message, opts->msglen, LBM_SRC_NONBLOCK);

This code works because the "over" event is delivered synchronously with the lbm_src_send() function. If lbm_←↩
src_send() exceeds the flight size, UM guarantees that the "over" event will be delivered before the send function
returns. This guarantee enables the code to handle the "under" event being delivered before the "over" event.

Note that there should be a separate "over_delivered" and "under_delivered" variables for each source object the
application creates. These flags would typically be placed in a "clientd" structure instead of being process-global
variables.

Also note that unlike the "wakeup" event (described above), getting an "over" event does not prevent the "send"
function from successfully sending the message. The point of setting ume_flight_size_behavior (source) to "no-
tify" is to allow the publisher to continue sending in spite of exceeding flight size. But note that doing this can prevent
UM from guaranteeing delivery of messages.

2.17 Rate Controls 45

Warning

The above example code is NOT safe for multiple application threads sending to the same source object.

2.17 Rate Controls

For UDP-based communications (LBT-RU, LBT-RM, and Topic Resolution), UM network stability is ensured through
the use of rate controls. Without rate controls, sources can send UDP data so fast that the network can be flooded.
Using rate controls, the source's bandwidth usage is limited. If the source attempts to exceed its bandwidth alloca-
tion, it is slowed down.

Setting the rate controls properly requires some planning; see Topics in High Performance
Messaging, Group Rate Control for details.

Ultra Messaging's rate limiter algorithms are based on dividing time into intervals (configurable), and only allowing
a certain number of bits of data to be sent during each interval. That number is divided by the number of intervals
per second. For example, a limit of 1,000,000 bps and an interval of 100 ms results in the limiter allowing 100,000
bits to be sent during each interval. Dividing by 8 to get bytes gives 12,500 bytes per interval.

Data are not sent over a network as individual bytes, but rather are grouped into datagrams. Since it is not possible
to send only part of a datagram, the rate limiter algorithm needs to decide what to do if an outgoing datagram would
exceed the number of bits allowed during the current time interval. The data transport rate limiter algorithm, for
LBT-RM and LBT-RU, differs from the Topic Resolution rate limiter algorithm.

2.17.1 Transport Rate Control

With data transport, if an application sends a message and the outgoing datagram would exceed the number of bits
allowed during the current time interval, that datagram is queued and the transport type is put into a "blocked" state
in the current context. Note that success is returned to the application, even though the datagram has not yet been
transmitted.

However, any subsequent sends within the same time interval will not queue, but instead will either block (for blocking
sends), or return the error LBM_EWOULDBLOCK (for non-blocking sends). When the time interval expires, the
context thread will refresh the number of allowable bits, send the queued datagram, and unblock the transport type.

Note that for very small settings of transport rate limit, the end-of-interval refresh of allowable bits may still not be
enough to send a queued full datagram. In that case, the datagram will remain on the queue for additional intervals
to pass, until enough bits have accumulated to send the queued datagram. However, it would be very unusual for a
transport rate limit to be set that small.

Transport Rate Control Configuration

Configuration parameters of interest are:

• transport_lbtrm_rate_interval (context)

• transport_lbtrm_data_rate_limit (context)

• transport_lbtrm_retransmit_rate_limit (context)

• transport_lbtru_rate_interval (context)

• transport_lbtru_data_rate_limit (context)

• transport_lbtru_retransmit_rate_limit (context)

https://ultramessaging.github.io/thpm/thpm.html#GROUP-RATE-CONTROL
https://ultramessaging.github.io/thpm/thpm.html#GROUP-RATE-CONTROL

46 Fundamental Concepts

LBM_EWOULDBLOCK

When non-blocking sends are done (LBM_SRC_NONBLOCK), the send can fail with an error number of LBM_E←↩
WOULDBLOCK. This means you have exceeded the rate limit and must wait before sending the message.

Most applications don't need to handle this because they use blocking sends. Instead of returning a failure when the
rate limit is exceeded, the send function sleeps until the transport becomes unblocked again, at which point the UM
context thread wakes up the sleeping send call. However, there are times that blocking behavior is not permitted.
For example, if the application is running as a UM Context thread callback (timer, receiver event, source event, etc),
then only non-blocking sends are allowed.

To assist the application in retrying the message send, the UM context thread will deliver the LBM_SRC_EVEN←↩
T_WAKEUP source event to the application. (This only happens if a non-blocking send was tried and failed with
LBM_EWOULDBLOCK.) The application can use that event to re-try sending the message.

Alternatively, exceeding the rate limit can be avoided by increasing the configured rate limit and/or rate interval. This
can reduce latency, but also increases the risk of packet loss.

The rate limit controls how many bits can be transmitted during a given second of time. The rate interval controls
the "shape" of the transmissions over the second of time.

Adjusting the Rate Interval

A long rate interval will allow intense bursts of traffic to be sent, which can overload switch port queues or NIC ring
buffers, leading to packet loss. A short rate interval will reduce the intensity of the bursts, spreading the burst over
a longer time, but does so by introducing short delays in the transmissions, which increases message latency.

The LBT-RM default rate interval of 10 milliseconds was chosen to be reasonably "safe" in terms of avoiding loss,
at the expense of possible transmission delays. Latency-sensitive applications may require a larger value, but
increases the risk of switch or NIC loss.

There is no analytical way of choosing an optimal value for the rate interval. Latency-sensitive users should test
different values with intense bursts to find the largest value which avoids packet loss.

2.17.2 Topic Resolution Rate Control

With UDP-based Topic Resolution ("TR"), the algorithm acts differently. It is designed to allow at least one datagram
per time interval, and is allowed to exceed the rate limit by at most one topic's worth. Thus, the TR rate limiter value
should only be considered a "reasonably accurate" approximation.

This approximation can seem very inaccurate at very small rate limits. As an extreme example, suppose that a
user configures the sustaining advertisement rate limiter to 1 bit per second. Since the TR rate limiter allows at
least one Advertisement (TIR) to be sent per interval, and a TIR of a 240-character topic creates a datagram about
400 bytes long (exact size depends on user options), ten of those per second is 32,000 bits, which is over 3 million
percent of the desired rate. This sounds extreme, but understand that this works out to only 10 packets per second,
a trivial load for modern networks. In practice, the minimum effective rate limit works out to be one datagram per
interval.

For details of Topic Resolution, see Topic Resolution Description.

2.18 Operational Statistics

UM maintains a variety of transport-level statistics which gives a real-time snapshot of UM's internal handling.
For example, it gives counts for transport messages transferred, bytes transferred, retransmissions requested,
unrecoverable loss, etc.

The UM monitoring API provides framework to allow the convenient gathering and transmission of UM statistics to

2.19 Immediate Messaging 47

a central monitoring point. See Monitoring for more information.

2.19 Immediate Messaging

UM has an alternate form of messaging that deviates from the normal publish/subscribe paradigm. An "immediate
message" can be sent and received without the need for topic resolution. Note that immediate messaging is less
efficient than normal source-based messaging and will not provide the same low latency and high throughput.

There are two forms of immediate messaging:

• Unicast Immediate Messaging (UIM) - TCP-based point-to-point.

• Multicast Immediate Messaging (MIM) - flooding-based multicast; use rarely.

48 Fundamental Concepts

Chapter 3

UM Objects

Many UM documents use the term object. Be aware that with the C API, they do not refer to formal class-based
objects as supported by C++. The term is used here in an informal sense to denote an entity that can be created,
used, and (usually) deleted, has functionality and data associated with it, and is managed through the API. The
handle that is used to refer to an object is usually implemented as a pointer to a data structure (defined in lbm.h),
but the internal structure of an object is said to be opaque, meaning that application code should not read or write
the structure directly.

However, the UM Java and .NET APIs are formally object oriented, with Java/C# class-based objects. See the UM
Java API and the UM .NET API documentation.

The UM API is designed around a set of UM objects. The most-often used object types are:

• Context - a fairly "heavy-weight" parent object for most other UM objects. Also represents an "instance" of
UM, with all foreground and background functions.

• Source - a publisher creates one or more Source objects, one per topic to be published.

• Receiver - a subscriber creates one or more Receivers, one per topic that is subscribed.

• Wildcard Receiver - a subscriber can optionally create Wildcard Receivers to subscribe to patterns that can
match multiple topics.

• Hot Failover Receiver - a specialized type of Receiver object that allows for redundant publishing.

• HFX Receiver - a specialized type of Hot Failover Receiver object that allows redundant sources across
multiple Context objects. (Note: HFX is deprecated.)

• Event Queue - an active object (requires one or more threads) which is used to queue and deliver UM events
(including received messages) to the application using a separate thread. Event queues are normally not
required; by default UM delivers events using the Context's own thread. But there are circumstances where it
is useful to transfer the received message or event to an independent thread for delivery.

A typical UM application program manages UM objects following certain ordering rules:

1. If desired, Event Queues are typically created first. (Most UM applications do not use Event Queues.)

2. Create a Context object. A typical application creates only one context, but there are some specialized use
cases in which a small number of contexts (typically less than 5) are useful.

3. Create one or more Source and Receiver objects. It is not unusual for an application to create thousands of
sources or receivers.

4. The application's main processing phase consists of publishing messages using the Source objects, and
receiving messages using the Receiver objects. UM is most efficiently used if those Source and Receiver
objects are created during initialization. Dynamic object creation during normal operation is possible, but can
require special coding.

50 UM Objects

5. When the application is ready to shut down, Sources and Receivers should be deleted.

6. Contexts are deleted after all Sources and Receivers are deleted. Note that if the context uses Sequential
Mode, the event processing thread should be unblocked and joined prior to Context deletion.

7. Event Queues, if used, are deleted last. Note that the Event Queue dispatching thread(s) should be unblocked
and joined prior to deletion of the Event Queue.

Note that it is very important to enforce the above deletion order. For example, it can lead to crashes if you delete a
context while it still has active Sources or Receivers associated with it. Similarly, crashes can result if you delete an
event queue while it still has active Contexts associated with it.

Also, note that deletion of Source objects can affect the reliability of message delivery. UM Receivers are designed
to detect lost packets and request retransmission. However, once a Source object is deleted, it can no longer fulfill
retransmission requests. It is usually best for an application to delay a few seconds after sending its last messages
before deleting the Sources. This is especially important if Implicit Batching is used since outgoing messages might
be held in the Batcher.

3.1 Context Object

A UM context object conceptually is an environment in which UM runs. An application creates a context, typically
during initialization, and uses it for most other UM operations. In the process of creating the context, UM nor-
mally starts an independent thread (the context thread) to do the necessary background processing such as the
following:

• Topic resolution

• Enforce rate controls for sending messages

• Manage timers

• Manage state

• Implement UM protocols

• Manage Transport Sessions

You create a context with lbm_context_create(). When an application is finished with the context (no more message
passing needed), it should delete the context by calling lbm_context_delete().

Warning

Before deleting a context, you must first delete all objects contained within that context (sources, receivers,
wildcard receivers). See Deleting UM Objects.

Your application can give a context a name, which are optional but should be unique across your UM network. You
set a context name before calling lbm_context_create() in the following ways:

• If you are using XML UM configuration files, call lbm_context_attr_set_from_xml() or lbm_context_attr←↩
_create_from_xml() and set the name in the context_name (context) parameter.

• If you are using plain text UM configuration files, call lbm_context_attr_setopt() and specify context_name
(context) as the optname and the context's name as the optval. Don't forget to set the optlen.

• Create a plain text UM configuration file with the option context_name (context) set to the name of the
context.

3.2 Topic Object 51

Context names are optional but should be unique within a process. UM does not enforce uniqueness, rather issues
a log warning if it encounters duplicate context names. Application context names are only used to load template
and individual option values within an XML UM configuration file.

One of the more important functions of a context is to hold configuration information that is of context scope. See
the UM Configuration Guide for options that are of context scope.

Most UM applications create a single context. However, there are some specialized circumstances where an ap-
plication would create multiple contexts. For example, with appropriate configuration options, two contexts can
provide separate topic name spaces. Also, multiple contexts can be used to portion available bandwidth across
topic sub-spaces (in effect allocating more bandwidth to high-priority topics).

Attention

Regardless of the number of contexts created by your application, a good practice is to keep them open
throughout the life of your application. Do not close them until you close the application.

3.2 Topic Object

A UM topic object is conceptually very simple; it is little more than a container for a string (the topic name). However,
UM uses the topic object to hold a variety of state information used by UM for internal processing. It is conceptually
contained within a context. Topic objects are used by applications in the creation of sources and receivers.

Technically, the user's application does not create or delete topic objects. Their management is handled internally
by UM, as needed. The application uses APIs to gain access to topic objects. A publishing application calls lbm←↩
_src_topic_alloc() to get a reference to a topic object that it intends to use for creation of a Source Object. A
subscribing application calls lbm_rcv_topic_lookup() to get a reference to a topic object that it intends to use for
creation of a Receiver Object.

The application does not need to explicitly tell UM when it no longer needs the topic object. The application's
reference can simply be discarded.

3.3 Source Object

A UM source object is used to send messages to the topic that it is bound to. It is conceptually contained within a
context.

You create a source object by calling lbm_src_create(). One of its parameters is a Topic Object. A source object
can be bound to only one topic. The application is responsible for deleting a source object when it is no longer
needed by calling lbm_src_delete(). See Deleting UM Objects.

3.3.1 Source String

Every source that a publishing application creates has associated with it a unique "source string". Note that if
multiple publishing UM contexts (applications) create sources for the same topic, each context's source will have its
own unique source string. Similarly, if one publishing UM context (application) creates multiple sources for different
topics, each topic's source will have its own unique source string. So a source string identifies one specific instance
of a topic within a UM context.

52 UM Objects

The source string is used in a few different ways in the UM API, for example to identify which Transport Session to
retrieve statistics for in lbm_rcv_retrieve_transport_stats(). The source string is made available to the applica-
tion in several callbacks, for example lbm_src_notify_function_cb, or the "source" field of lbm_msg_t_stct of a
received message. See also Sending to Sources.

The format of a source string depends on the transport type:

• TCP:src_ip:src_port:session_id[topic_idx]
example: TCP:10.29.3.88:45789:f1789bcc[1539853954]

• LBTRM:src_ip:src_port:session_id:mc_group:dest_port[topic_idx]
example: LBTRM:10.29.3.88:14390:e0679abb:231.13.13.13:14400[1539853954]

• LBT-RU:src_ip:src_port:session_id[topic_idx]
example: LBT-RU:10.29.3.88:14382:263170a3[1539853954]

• LBT-IPC:session_id:transport_id[topic_idx]
example: LBT-IPC:6481f8d4:20000[1539853954]

• LBT-SMX:session_id:transport_id[topic_idx]
example: LBT-SMX:6481f8d4:20000[1539853954]

• BROKER
example: BROKER

Please note that the topic index field (topic_idx) may or may not be included, depending on the context in which it is
presented, your version of UM, and the setting for configuration option source_includes_topic_index (context).
For example, a receiver callback probably will include the topic index since the callback is specific to a topic, while
Monitoring output will not, since it is referring to a transport session, not an individual topic.

See also lbm_transport_source_format() and lbm_transport_source_parse().

3.3.2 Source Strings in a Routed Network

In a UM network consisting of multiple Topic Resolution Domains (TRDs) connected by DROs, a given source will
be uniquely identifiable within a TRD by its source string. However, that same source will have different source
strings in different TRDs. For receivers in the same TRD as the source, the source string will refer to the source.
But in remote TRDs, that same source's source string will refer to the proxy source of the DRO on the shortest path
to the source. The IP information contained in the source string will refer to the DRO.

This can lead to a situation where multiple originating sources located elsewhere in the UM network will have source
strings with the same IP information in a given TRD. They will differ by Topic Index number, but even that topic index
will be different in different TRDs.

3.3.3 Source Configuration and Transport Sessions

As with contexts, a source holds configuration information that is of source scope. This includes network options,
operational options and reliability options for LBT-RU and LBT-RM. For example, each source can use a different
transport and would therefore configure a different network address to which to send topic messages. See the UM
Configuration Guide for source configuration options.

As stated in UM Transports, many topics (and therefore sources) can be mapped to a single transport. Many of
the configuration options for sources actually control or influence Transport Session activity. If many sources are
sending topic messages over a single Transport Session (TCP, LBT-RU or LBT-RM), UM only uses the configuration
options for the first source assigned to the transport.

3.4 Receiver Object 53

For example, if the first source to use a LBT-RM Transport Session sets the transport_lbtrm_nak_generation←↩
_interval (receiver) to 24 MB and the second source sets the same option to 2 MB, UM assigns 24 MB to the
Transport Session's transport_lbtrm_nak_generation_interval (receiver).

The UM Configuration Guide identifies the source configuration options that may be ignored when UM
assigns the source to an existing Transport Session. Log file warnings also appear when UM ignores source
configuration options.

3.4 Receiver Object

A UM receiver object is used to receive messages from the topic that it is bound to. It is conceptually contained
within a context. Messages are delivered to the application by an application callback function, specified when the
receiver object is created.

You create a receiver object by calling lbm_rcv_create(). One of its parameters is a Topic Object. A receiver object
can be bound to only one topic. The application is responsible for deleting a receiver object when it is no longer
needed by calling lbm_rcv_delete(). See Deleting UM Objects.

Multiple receiver objects can be created for the same topic within a single context, which can be used to trigger
multiple delivery callbacks when messages arrive for that topic.

3.4.1 Receiver Configuration and Transport Sessions

A receiver holds configuration information that is of receiver scope. This includes network options, operational
options and reliability options for LBT-RU and LBT-RM. See the UM Configuration Guide for receiver con-
figuration options.

As stated above in Source Configuration and Transport Sessions, multiple topics (and therefore receivers) can be
mapped to a single transport. As with source configuration options, many receiver configuration options control
or influence Transport Session activity. If multiple receivers are receiving topic messages over a single Transport
Session (TCP, LBT-RU or LBT-RM), UM only uses the configuration options for the first receiver assigned to the
transport.

For example, if the first receiver to use a LBT-RM Transport Session sets transport_lbtrm_nak_generation_←↩
interval (receiver) to 10 seconds, that value is applied to the Transport Session. If a second receiver using the
same transport session sets the same option to 2 seconds, that value is ignored.

The UM Configuration Guide identifies the receiver configuration options that may be ignored when UM
assigns the receiver to an existing Transport Session. Log file warnings also appear when UM ignores receiver
configuration options.

3.4.2 UM Wildcard Receivers

You create a wildcard receiver object by calling lbm_wildcard_rcv_create(). Instead of a topic object, the caller
supplies a pattern which UM uses to match multiple topics. Because the application does not explicitly lookup the
topics, UM passes the topic attribute into lbm_wildcard_rcv_create() so that it can set options. Also, wildcard
receivers have their own set of options, such as pattern type. The application is responsible for deleting a wildcard
receiver object when it is no longer needed by calling lbm_wildcard_rcv_delete().

The wildcard pattern supplied for matching is a PCRE regular expression that Perl recognizes. See http←↩
://perldoc.perl.org/perlrequick.html for details about PCRE.

http://perldoc.perl.org/perlrequick.html
http://perldoc.perl.org/perlrequick.html

54 UM Objects

Note

Ultra Messaging has deprecated two other wildcard receiver pattern types, regex POSIX extended regular
expressions and appcb application callback, as of UM Version 6.1. Only PCRE is supported.

Be aware that some platforms may not support all of the regular expression wildcard types. For example, UM
does not support the use of Unicode PCRE characters in wildcard receiver patterns on any system that com-
municates with a HP-UX or AIX system. See the Informatica Knowledge Base article, Platform-Specific
Dependencies for details.

For examples of wildcard usage, see Example lbmwrcv.c, Example lbmwrcv.java, and Example lbmwrcv.cs.

For more information on wildcard receivers, see Wildcard Receiver Topic Resolution, and Wildcard Receiver Op-
tions.

TIBCO users see the Informatica Knowledge Base articles, Wildcard topic regular expressions
and SmartSockets wildcards and Wildcard topic regular expressions and Rendezvous
wildcards.

Overlapping Receivers

Suppose an application creates three receivers:

1. Wildcard receiver1: "∧example[0-9]$"

2. Single-topic receiver: "example1".

3. Wildcard receiver2: "∧[a-z]∗1$"

A source for topic "example1" will match all three receivers. Each receiver's object's "receiver callback" will be
invoked sequentially for each received message. However, be aware that these are simply multiple callbacks from
a single underlying UM receiver; they are not independent.

This becomes significant if different "receiver" scoped configuration options are specified for the different receiver
objects, a usage that Informatica recommends against. Only one of the receiver object's configuration is used to
create the underlying receiver; the others are ignored. In the above example, it is not necessarily the first receiver
object which applies its configuration. If, for example, the source is not yet discovered until later, UM does not define
which of the above three receiver objects will be used.

Informatica recommends users always use the same configuration options when creating multiple receiver objects
that overlap.

3.4.3 Transport Services Provider Object

The Transport Services Provider object ("XSP") was introduced with UM version 6.11 to manage sockets, threads,
and other receive-side resources associated with subscribed Transport Sessions. The primary purpose for an XSP
object is to allow the programmer to control the threading of received messages, based on the Transport Sessions
of those messages.

For more information on XSP, see Transport Services Provider (XSP).

3.4.4 UM Hot Failover Across Contexts Objects (HFX)

Hot Failover Across Contexts objects ("HFX") provide a form of hot failover that can operate across multiple network
interfaces.

Note that the HFX feature is deprecated.

https://kb.informatica.com/faq/5/Pages/80077.aspx
https://kb.informatica.com/faq/5/Pages/80077.aspx
https://kb.informatica.com/faq/5/Pages/80075.aspx
https://kb.informatica.com/faq/5/Pages/80075.aspx
https://kb.informatica.com/faq/5/Pages/80277.aspx
https://kb.informatica.com/faq/5/Pages/80277.aspx

3.5 Event Queue Object 55

See DRO Hotlinks for a similar feature.

3.5 Event Queue Object

Most UM events, like received messages, are delivered to the application via event handler callbacks, like a receiver
callback. A UM "event queue" object is a queue for moving execution of a UM callbacks to a different thread - the
event queue dispatch thread.

Note that unlike other UM objects, event queues are not owned by a context. An event queue is a top-level object,
and can be associated with contexts, sources, and/or receivers.

Warning

Before deleting an event queue, you must first delete all objects associated with it (contexts, sources, receivers,
timers). See Deleting UM Objects.

By default, UM events will be delivered from a variety of different threads, frequently a context or XSP thread.
Context/XSP thread callbacks are the most efficient form of event delivery, but place restrictions on your callback
code. For example:

• The application function is not allowed to make certain API calls (mostly having to do with creating or deleting
UM objects).

• The application function must execute very quickly without blocking.

• The application does not have control over when the callback executes. For example, events might be deliv-
ered concurrently from different application and context/XSP threads.

For these reasons, you might want to transfer handling of UM events to a different thread. This can impose strict
serialization and remove restrictions.

You could make use of your own queue for this, perhaps a standard library queue (although be careful of multiple
threads enqueuing on the same queue), or perhaps LMAX's "Disruptor". Or you can use the UM event
queue.

An advantage of the UM event queue is that it retains all of the semantics of the UM callback. The callback code is
structured the same, regardless of whether it is called from a context/XSP thread or from an event queue dispatch
thread. A disadvantage of the UM event queue is efficiency: it makes a kernel call for each enqueue and each
dequeue.

UM event queues are unbounded, non-blocking queues and provide the following features:

• Queue length monitoring. Informatica strongly recommends using the event queue monitor callback to warn
if the configured size or latency thresholds are exceeded. (Note: exceeding a threshold does not prevent
new events from being enqueued.) See Event Queue Monitor for more information.

• The application callback function has no UM API restrictions.

• Your application can control exactly when UM delivers queued events with lbm_event_dispatch(). And you
can have control return to your application either when specifically asked to do so (by calling lbm_event_←↩
dispatch_unblock()), or optionally when there are no events left to deliver.

• Your application can take advantage of parallel processing on multiple processor hardware since UM pro-
cesses asynchronously on a separate thread from your application's processing of received messages. By
using multiple application threads to dispatch an event queue, or by using multiple event queues, each with
its own dispatch thread, your application can further increase parallelism.

https://lmax-exchange.github.io/disruptor/disruptor.html

56 UM Objects

You create an UM event queue in the C API by calling lbm_event_queue_create(). When finished with an event
queue, delete it by calling lbm_event_queue_delete().

In the Java API and the .NET API, use the LBMEventQueue class.

See Event Queue Options for configuration options related to event queues.

3.5.1 Using an Event Queue

To use an Event Queue, an application typically performs the following actions:

1. Create the Event Queue using lbm_event_queue_create().

lbm_event_queue_t *evq;
err = lbm_event_queue_create(&evq, NULL, NULL, NULL);

2. Create a new thread of execution to be the dispatch thread. This new thread should call lbm_event_←↩
dispatch() in a loop.

evq_running = 1;
while (evq_running) {
err = lbm_event_dispatch(evq, LBM_EVENT_QUEUE_BLOCK);
if (err == LBM_FAILURE) { ... handle error ... }

}
/* Exit the thread (OS-dependent). */

Note that the return value should be compared to LBM_FAILURE (-1), and not the normal success value of
0. This is because on success, lbm_event_dispatch() returns the number of events that were dispatched
during its execution.

3. Create other UM objects whose events you want processed by the event queue. For example, creating a UM
Receiver object with the Event Queue will call your message receiver callback through the event queue, using
your dispatch thread.

lbm_rcv_t *rcv;
err = lbm_rcv_create(&rcv, ctx, topic, app_rcv_callback, NULL, evq);

From this point, your application receiver callback function will be called from the dispatch loop for received
messages and other receiver events.

4. When it is time to shut down the program, the UM objects that refer to the event queue must first be deleted.

err = lbm_rcv_delete(rcv);

Remember that an event queue might be handling events for many UM objects; they must all be deleted prior
to deleting the event queue.

5. Now shut down dispatching the event queue.

evq_running = 0;
err = lbm_event_dispatch_unblock(evq);
/* "Join" the dispatch thread (OS-dependent). */

The unblock forces the lbm_event_dispatch() function to return. Typically at that point, the dispatch thread
is "joined", which blocks until the dispatch thread exits.

6. Delete the event queue.

err = lbm_event_queue_delete(evq);

Here are some lesser used event queue APIs:

3.5 Event Queue Object 57

• lbm_event_queue_size() - number of events in the queue.

• lbm_event_queue_shutdown() - purge events from the queue (risky).

• lbm_event_queue_retrieve_stats() - retrieve statistics counters.

• lbm_event_queue_reset_stats() - reset statistics counters.

3.5.2 "Deleting an Event Queue"

Before you can delete an event queue, you must ensure that your application's dispatch thread is no longer running
it. Here is the typical order of operation for deleting an event queue:

1. Unblock the event queue (C API / Java and .NET API). This causes the application's dispatch thread to
return from the dispatch function (C API / Java and .NET API).

2. Exit the application's dispatch thread, typically with a thread join function.

3. Delete the event queue (C API / Java and .NET API).

3.5.3 Event Queue Efficiency

A UM event queue introduces a kernel call with each enqueue and dequeue. Kernel calls are considered costly for
very low latency or high throughput applications.

Compared with a lockless, busy waiting queue like LMAX's "Disruptor", the UM event queue will have a
lower maximum sustainable throughput and higher latency. The latency penalty will be especially apparent at low
message rates where the dispatch thread is put to sleep waiting for new events.

The performance of the UM event queue can be improved by using Receive-Side Batching and by polling the event
queue in a tight loop (see Event Queue Timeout).

3.5.4 Event Queue Timeout

The second parameter passed to lbm_event_dispatch() is a timeout. There are two special values:

• LBM_EVENT_QUEUE_BLOCK - no timeout. Do not return until lbm_event_dispatch_unblock() is called.

• LBM_EVENT_QUEUE_POLL - no wait. If there are one or more events in the queue, process exactly one of
them and return. Otherwise, return immediately without waiting.

Any other value specifies a timeout in milliseconds.

However, this timeout does not necessarily limit the time spent waiting inside the dispatch function. The purpose of
the timeout is to set a minimum time that the dispatch function will process events, not a maximum.

The implementation of the event queue uses an unbounded wait for incoming events. When an event is delivered
to the queue, the dispatch function wakes up and processes the event (calls the appropriate application callback).
Then the dispatch function checks the time to see if the timeout has been exceeded. If so, the dispatch function
returns. Otherwise, it waits for the next event.

https://lmax-exchange.github.io/disruptor/disruptor.html

58 UM Objects

However, suppose that no further events are delivered to the event queue. In this case, the dispatch function will
wait without bound. The timeout parameter will not cause the dispatch function to stop waiting.

If the application needs an upper limit to the time spent dispatching, the timeout can be combined with the use of an
external timer that calls lbm_event_dispatch_unblock() when the maximum time has expired. UM's timer system
may be used by calling lbm_schedule_timer().

3.5.5 Event Queue Monitor

The UM event queue is unbounded, meaning that it doesn't have a fixed maximum size. Rather, if the incoming
event (e.g. message) rate exceeds the callback processing rate, the event queue will grow without bound, eventually
consuming the maximum available memory, usually crashing the program.

The only way to prevent this unbounded memory growth is to ensure that your event handler callback can keep up
with the incoming event rate. However, this is usually impossible to guarantee, so it is important for applications to
monitor queue growth and at least raise an alert if it exceeds some threshold.

The event queue size can change very quickly during traffic bursts. Automatic Monitoring is not a good solution
for detecting these rapid spikes in queue length. UM has a special form of monitoring designed specifically for event
queues: a monitoring callback.

You set the size threshold, in number of events, using queue_size_warning (event_queue). You can also set
a latency threshold, in microseconds that events are waiting in the event queue, using queue_delay_warning
(event_queue). It is also possible to be notified every time an event is added to the event queue, using queue_←↩
enqueue_notification (event_queue) (no information is available about the event).

UM tests the queue against the thresholds during the process of dispatching events. When the dispatch thread
dequeues an event, it checks the size of the queue and the amount of time the dequeued event spent in the queue.
If either or both exceed their thresholds, the monitor callback is called. If there is a burst of traffic, the size threshold
can be exceeded by many events. In that case, the monitor callback will be called repeatedly for each dequeued
event that exceeds a threshold.

Informatica strongly recommends minimizing the monitor callback to perform as little work as possible. Remember
that the event queue grows when the event handling callback cannot keep up with the incoming event rate. Given
that the monitor callback is called by the dispatch thread, its execution time is added to your event handler, slowing
it down even further. We recommend setting a "high water mark" of the maximum detected queue size, and letting
a separate thread periodically check that high water mark and raise an alert.

Note that if an application event handling callback were to deadlock and never return, the dispatch thread would be
effectively halted, and the monitor callback would never be called. The monitor callback cannot be used to detect a
hung application.

C Code Example:

/* Define monitor callback. */
int evq_monitor(lbm_event_queue_t *evq, int event, size_t evq_size,

lbm_ulong_t evq_delay_usec, void *clientd)
{

/* The "event" parameter is sometimes used as a bitmap, and other times

* used as an absolute value. */
if ((event == LBM_EVENT_QUEUE_ENQUEUE_NOTIFICATION)

&& (evq_size == 1) && (evq_delay_usec == 0)) {
/* This is an ENQUEUE notification. No info available on the event. */
...

}
else {
/* "event" is a bitmap; one or both conditions might be active. */
if (event & LBM_EVENT_QUEUE_SIZE_WARNING) {

/* The size threshold is exceeded for the next event to be dispatched.

* There are evq_size events in the queue. */
...

}
if (event & LBM_EVENT_QUEUE_DELAY_WARNING) {

/* The delay threshold is exceeded for the next event to be dispatched.

* The next event to be dispatched waited in the queue for evq_delay_usec */
...

}

3.6 Message Object 59

}
} /* evq_monitor */

...
/* Initialization code, create event queue. */
lbm_event_queue_t *evq;
...
err = lbm_event_queue_create(&evq, evq_monitor, NULL, NULL);

Java and .NET Code Example:

/* Define monitor callback. */
class MyEventQueue extends LBMEventQueue implements LBMEventQueueCallback
{

public MyEventQueue() throws LBMException
{

super();
addMonitor(this);

}

public void monitor(Object cbArg, int event, int evqSize, long evqDelayUsec)
{
/* The "event" parameter is sometimes used as a bitmap, and other times

* used as an absolute value. */
if ((event == LBM.EVENT_QUEUE_ENQUEUE_NOTIFICATION)

&& (evqSize == 1) && (evqDelayUsec == 0)) {
/* This is an ENQUEUE notification. No info available on the event. */
...

}
else {

/* "event" is a bitmap; one or both conditions might be active. */
if (event & LBM.EVENT_QUEUE_SIZE_WARNING) {

/* The size threshold is exceeded for the next event to be dispatched. */
...

}
if (event & LBM.EVENT_QUEUE_DELAY_WARNING) {

/* The delay threshold is exceeded for the next event to be dispatched. */
...

}
}

} /* monitor */
}
...

/* Initialization, create event queue. */
MyEventQueue evq = new MyEventQueue();

3.6 Message Object

When an application subscribes to a topic to which publishers are sending messages, the received messages are
delivered to the application by an application callback function (see Event Delivery). One of the parameters that UM
passes to the application callback is a message object. This object gives the application access to the content of
the message, as well as some metadata about the message, such as the topic.

Unlike other objects described above, the user does not create these message objects by API call. UM creates and
initializes the objects internally.

The default life-span of a message object is different between C and Java or .NET.

3.6.1 Message Object Deletion

C API

In C, by default, the message object is deleted when the receiver callback returns. No action is necessary by the
application to trigger that deletion.

60 UM Objects

See Message Reception for details, including code examples.

Java or .NET API

In Java or .NET, the passed-in message object is not automatically deleted when the receiver application callback
returns. Instead, the message object is fully deleted only when all references to the object are lost and the garbage
collector reclaims the object.

However, applications which allow this kind of garbage buildup and collection usually suffer from large latency
outliers (jitter), and while garbage collection can be tuned to minimize its impact, it is usually recommended that
latency-sensitive applications manage their objects more carefully to prevent creation of garbage. See Zero Object
Delivery.

Also, there are some UM features in which specific actions are triggered by the deletion of messages, and the
application designer usually wants to control when those actions are performed (for example, Persistence Message
Consumption).

For these reasons, Java and .NET developers are strongly advised to explicitly dispose of a message object when
the application is finished with it. It does this by calling the "dispose()" method of the message object. In the simple
case, this should be done in the receiver application callback just before returning.

See Message Reception for details, including code examples.

3.6.2 Message Object Retention

Some applications are designed to process received messages in ways that cannot be completed by the time the
receiver callback returns. In these cases, the application must extend the life span of the message object beyond
the return from the receiver application callback. This is called "message retention".

Note that message retention prevents the recycling of the UM receive buffer in the UM library. See Receive Buffer
Recycling.

C API

To prevent automatic deletion of the message object when the receiver application callback returns, the callback
must call lbm_msg_retain(). This allows the application to transfer the message object to another thread, work
queue, or control flow.

When a received message is retained, it becomes the application's responsibility to delete the message explicitly
by calling lbm_msg_delete(). Failure to delete retained messages can lead to unbounded memory growth.

See Message Reception for details, including code examples.

Java or .NET

The receiver application callback typically calls the "promote()" method of the message object prior to returning.
See Retaining Messages.

See Message Reception for details, including code examples.

3.7 Attributes Object

An attribute object is used to programmatically configure other UM objects. Their use is usually optional; omitting
them results in default configurations (potentially overridden by configuration files). See Configuration Overview
for details.

However, there is a class of configuration options that require the use of an attribute object: configuring application
callbacks. With these options, you are setting a value that includes a pointer to a C function. This cannot be done
from a configuration file. For example, see source_notification_function (receiver).

3.8 UM Timers 61

See Attributes Objects for more details on the types, creation, use, and deletion of attributes objects.

3.8 UM Timers

UM also provides a timer function whereby the application can schedule callbacks to be made some number of
milliseconds in the future. When a given timer expires, its callback is made. A timer can also be canceled prior to
expiration.

These timers are not designed like other UM objects. For example, in the C API, you don't "create" and "delete"
them, you "schedule" and optionally "cancel" them. In the Java and .NET APIs, you do instantiate a timer object in
the normal way, but you don't "close" them when done.

Warning

UM timers are not designed for high accuracy. For example, to improve internal efficiency, UM will sometimes
expire a timer up to 3 milliseconds early. Also, depending on other work being done, a timer can expire but its
callback execution can be delayed an undefined amount of time.

Main timer API functions:

• Schedule - C API / Java and .NET API.

• Cancel - C API / Java and .NET API.

62 UM Objects

Chapter 4

Security Considerations

UM should generally be used in secure networks where unauthorized users are unable to access UM components
and applications. A UM network can be made secure through the use of certificate-based encryption (see Encrypted
TCP), but this increases message delivery latency and reduces maximum possible throughput.

In particular, the use of UDP-based protocols (LBT-RM and LBT-RU) cannot secured in the same way that TCP can.
In a system that uses UDP-based protocols, there is no mechanism in UM to prevent unauthorized applications to
be deployed which can then subscribe and publish topics with complete freedom.

4.1 Webmon Security

Of special interest is the use of simple web-based monitoring of the UM daemons: Store, DRO, SRS. UM does not
provide any sort of authentication or authorization for the daemons web pages.

Be aware that the use of UM daemon web-based monitoring pages does place a load on the daemon being moni-
tored. For some pages, that load can be significant. An unauthorized user who rapidly accesses pages can disrupt
the normal operation of the daemon, potentially leading to message loss.

Users are expected to prevent unauthorized access to the web monitor through normal firewalling methods. Users
who are unable to limit access to a level consistent with their overall security needs should disable the daemon web
monitors. See:

Daemon Configuration Element to Disable Web Monitor

Store <web-monitor>

DRO <web-monitor>

SRS <debug-monitor>

64 Security Considerations

Chapter 5

Configuration Introduction

UM is designed to be highly configurable. Configuration options are generally given default values to support good
performance over a wide variety of use cases, but for users who demand the highest levels of performance, many
configuration options allow for optimization.

Where practical, UM's design philosophy is to offer new features that can be enabled via configuration only, with-
out requiring changes to the application source code. This can provide higher performance and reliability just by
upgrading, without needing to rebuild the application.

Broadly speaking, there are two kinds of components in a UM-based distributed system that need to be configured:

1. Application programs, linked with the UM library,

2. Informatica daemons (service programs that run in the background), which provide services to the applica-
tions.

Application programs are written by users and call UM API functions contained within the UM library. The UM library
can be configured using a number of different methods described in Configuration Overview.

Informatica daemons include:

• SRS (Stateful Resolver Service) - provides TCP-based topic resolution services to other components. See
SRS Configuration File for configuration details.

• lbmrd (Resolver Daemon) - provides unicast UDP-based topic resolution services to other components. See
lbmrd Configuration File for configuration details.

• Stored - provides persistence services. See Configuration Reference for Umestored for configuration
details.

• DRO - routes messages between Topic Resolution Domains. See DRO Configuration Reference for con-
figuration details.

• ActiveMQ Broker - provides general queuing services and JMS API. See ActiveMQ Xml Configuration
for configuration details.

It is important to remember the different kinds of configuration.

• Applications create UM objects (contexts, sources, receivers) using the UM library. Those objects must
be configured to control their operation and behavior using "LBM configuration options". An application
typically uses an "LBM configuration file" in either XML or flat format. For full details on LBM configuration
options, see UM Configuration Guide

• Informatica daemons (e.g. SRS, Store, DRO) are configured using program-specific configuration files in
XML format.

• Informatica daemons (e.g. SRS, Store, DRO) also internally create UM objects (contexts, sources, receivers)
using the UM library. Those objects must also be configured using one or more LBM configuration files.

https://activemq.apache.org/xml-configuration

66 Configuration Introduction

Chapter 6

Transport Types

6.1 Transport TCP

The TCP UM transport uses normal TCP connections to send messages from sources to receivers. This is the
default transport when it's not explicitly set.

TCP is a good choice when:

• Flow control is desired. For example, when one or more receivers cannot keep up, you wish to slow down the
source. But see TCP Flow Control Restrictions.

• Equal bandwidth sharing with other TCP traffic is desired. The source will slow down when general network
traffic becomes heavy.

• There are few receivers listening to each topic. Multiple receivers for a topic requires multiple transmissions
of each message, which places a scaling burden on the source machine and the network.

• The application is not sensitive to latency. Use of TCP as a messaging transport can result in unbounded
latency.

• The messages must pass through a restrictive firewall which does not pass multicast traffic.

Some users choose TCP to avoid unrecoverable loss. However, be aware that network failures can result in TCP
disconnects, which can lead to missed messages. Also, if the DRO is being used, messages can be dropped due
to full queues in an overloaded DRO, leading to unrecoverable loss.

LBT-TCP's Transport Pacing can be either source-paced or receiver-paced. See transport_tcp_multiple_←↩
receiver_behavior (source).

UM's TCP transport includes a Session ID. A UM source using the TCP transport generates a unique, 32-bit non-
zero random Session ID for each TCP transport (IP:port) it uses. The source also includes the Session ID in its
Topic Resolution advertisement (TIR). When a receiver resolves its topic and discovers the transport information,
the receiver also obtains the transport's Session ID. The receiver sends a message to the source to confirm the
Session ID.

The TCP Session ID enables multiple receivers for a topic to connect to a source across a DRO. In the event of a
DRO failure, UM establishes new topic routes which can cause cached Topic Resolution and transport information
to be outdated. Receivers use this cached information to find sources. Session IDs add a unique identifier to
the cached transport information. If a receiver tries to connect to a source with outdated transport information, the
source recognizes an incorrect Session ID and disconnects the receiver. The receiver can then attempt to reconnect
with different cached transport information.

68 Transport Types

Note

To maintain interoperability between version pre-6.0 receivers and version 6.0 and beyond TCP sources, you
can turn off TCP Session IDs with the UM configuration option, transport_tcp_use_session_id (source).

6.1.1 TCP Flow Control Restrictions

The TCP transport protocol can provide a limited form of flow control. If a publisher is sending messages faster
than a subscriber can process them, the publisher's "send" call will "block" to force the sender to slow down to the
receiver's rate. (Alternatively, a non-blocking send will return -1 with the error code LBM_EWOULDBLOCK.)

However, be aware that there are restrictions on this use case.

• DRO - The DRO does not support end-to-end flow control. If a DRO is between a source and a slow receiver,
the DRO will drop messages, resulting in unrecoverable loss in the receiver.

• Event Queue - If the receiver uses an event queue, a slow receiver can result in unbounded memory growth
in the subscriber, rather than slowing down the publisher.

• transport_tcp_multiple_receiver_behavior (source) - if set to "source_paced", the source will drop mes-
sages intended for a slow receiver when the socket buffers fill, resulting in unrecoverable loss in the receiver.

If end-to-end application-level flow control is needed, users should implement their own handshakes.

6.2 Transport LBT-RU

The LBT-RU UM transport adds reliable delivery to unicast UDP to send messages from sources to receivers.
This provides greater flexibility in the control of latency. For example, the application can further limit latency by
allowing the use of arrival order delivery. See the Knowledge Base article, FAQ: How do arrival-order
delivery and in-order delivery affect latency?. Also, LBT-RU is less sensitive to overall net-
work load; it uses source rate controls to limit its maximum send rate.

LBT-RU's Transport Pacing is source-paced.

Since it is based on unicast addressing, LBT-RU can pass through most firewalls. However, it has the same scaling
issues as TCP when multiple receivers are present for each topic.

UM's LBT-RU transport includes a Session ID. A UM source using the LBT-RU transport generates a unique, 32-
bit non-zero random Session ID for each transport it uses. The source also includes the Session ID in its Topic
Resolution advertisement (TIR). When a receiver resolves its topic and discovers the transport information, the
receiver also obtains the transport's Session ID.

The LBT-RU Session ID enables multiple receivers for a topic to connect to a source across a DRO. In the event of a
DRO failure, UM establishes new topic routes which can cause cached Topic Resolution and transport information
to be outdated. Receivers use this cached information to find sources. Session IDs add a unique identifier to the
cached transport information. If a receiver tries to connect to a source with outdated transport information, the
transport drops the received data and times out. The receiver can then attempt to reconnect with different cached
transport information.

Note

To maintain interoperability between version pre-3.3 receivers and version 3.3 and beyond LBT-RU sources,
you can turn off LBT-RU Session IDs with the UM configuration option, transport_lbtru_use_session_id
(source).
LBT-RU can benefit from hardware acceleration. See Transport Acceleration Options for more information.

https://kb.informatica.com/faq/5/Pages/80043.aspx
https://kb.informatica.com/faq/5/Pages/80043.aspx

6.3 Transport LBT-RM 69

6.3 Transport LBT-RM

The LBT-RM transport adds reliable multicast to UDP to send messages. This provides the maximum flexibility
in the control of latency. In addition, LBT-RM can scale effectively to large numbers of receivers per topic using
network hardware to duplicate messages only when necessary at wire speed. One limitation is that multicast is
often blocked by firewalls.

LBT-RM's Transport Pacing is source-paced.

LBT-RM is a UDP-based, reliable multicast protocol designed with the use of UM and its target applications specifi-
cally in mind.

UM's LBT-RM transport includes a Session ID. A UM source using the LBT-RM transport generates a unique, 32-
bit non-zero random Session ID for each transport it uses. The source also includes the Session ID in its Topic
Resolution advertisement (TIR). When a receiver resolves its topic and discovers the transport information, the
receiver also obtains the transport's Session ID.

Note

LBT-RM can benefit from hardware acceleration. See Transport Acceleration Options for more information.

6.3.1 NAK Suppression

Some reliable multicast protocols are susceptible to "NAK storms" in which a subscriber experiences loss due to
overload, and the publisher sends those retransmissions, which makes the subscriber's overload more severe,
resulting in an even greater loss rate, which triggers an even greater NAK rate, which triggers an even greater
retransmission rate, and so on. This self-reinforcing feedback loop can cause healthy, non-overloaded subscribers
to become so overwhelmed with retransmissions that they also experience loss and send NAKs, making the storm
worse. Some users of other protocols have experienced NAK storms so severe that their entire network "melts
down" and becomes unresponsive.

The Ultra Messaging LBT-RM protocol was designed specifically to prevent this kind of run-away feedback loop using
a set of algorithms collectively known as "NAK Suppression". These algorithms are designed to repair occasional
loss reasonably quickly, while preventing a crybaby receiver from degrading the overall system.

Note that although UM's Transport LBT-RU does not use Multicast, there are still dangers associated with crybaby
receivers. LBT-RU implements most of the same NAK suppression algorithms.

Here are the major elements of UM's NAK suppression algorithms:

• When a receiver detects datagram loss (missing sequence number), it chooses a random amount of time
to back off before sending a NAK (see transport_lbtrm_nak_initial_backoff_interval (receiver)). If the
receiver subsequently receives the missing datagram(s) before the timer expires, it cancels the timer and
sends no NAK.

This reduces the load in the case of common loss patterns across multiple receivers. Whichever receiver
chooses the smallest amount of time sends the NAK, and the retransmission prevents (suppresses) NAKs
from the other receivers.

• The source has a configurable limit on the rate of retransmissions allowed; see transport_lbtrm_←↩
retransmit_rate_limit (context). When that rate is reached, the source rejects NAKs for the remainder
of the rate limit interval and instead sends NCFs in response to the NAKs. (NCFs suppress receivers from
sending NAKs for specific sequence numbers for configurable periods of time.)

70 Transport Types

• The source has a configurable interval during which it will only send one retransmission for a given sequence
number; see transport_lbtrm_ignore_interval (source). If a source receives multiple NAKs for the same
sequence number within that interval, only the first will trigger a retransmission. Subsequent NAKs within the
ignore interval are rejected, triggering one or more NCFs.

Note that LBT-RM's NCF algorithm was improved in UM version 6.10. Prior to 6.10, the source responds to every
rejected NAK with an NCF (if the reason for the rejection is temporary). In UM 6.10 and beyond, only the first
rejected NAK within an ignore interval triggers an NCF. Any subsequent NAKs in the same ignore interval are
silently discarded. This reduces the NCF rate in a wide variety of loss conditions, which reduces the stress on
healthy receivers.

Warning

We have seen customers choose configuration values which reduce the protective characteristics of LBT-RM.
For example, setting the retransmission rate too high, or the NAK backoff intervals too low. Doing so can
reduce loss-induced latency, but can also risk disruptive NAK/retransmission storms which can stress other-
wise healthy receivers. Users should request review of their configurations from Informatica's Ultra Messaging
support organization.

6.3.2 Comparing LBT-RM and PGM

The LBT-RM protocol is very similar to PGM, but with changes to aid low latency messaging applications.

• Topic Mapping - Several topics may map onto the same LBT-RM session. Thus a multiplexing mechanism to
LBT-RM is used to distinguish topic level concerns from LBT-RM session level concerns (such as retransmis-
sions, etc.). Each message to a topic is given a sequence number in addition to the sequence number used
at the LBT-RM session level for packet retransmission.

• Negative Acknowledgments (NAKs) - LBT-RM uses NAKs as PGM does. NAKs are unicast to the sender.
For simplicity, LBT-RM uses a similar NAK state management approach as PGM specifies.

• Time Bounded Recovery - LBT-RM allows receivers to specify a maximum time to wait for a lost piece of
data to be retransmitted. This allows a recovery time bound to be placed on data that has a definite lifetime
of usefulness. If this time limit is exceeded and no retransmission has been seen, then the piece of data is
marked as an unrecoverable loss and the application is informed. The data stream may continue and the
unrecoverable loss will be ordered as a discrete event in the data stream just as a normal piece of data.

• Flexible Delivery Ordering - LBT-RM receivers have the option to have the data for an individual topic deliv-
ered "in order" or "arrival order". Messages delivered "in order" will arrive in sequence number order to the
application. Thus loss may delay messages from being delivered until the loss is recovered or unrecoverable
loss is determined. With "arrival-order" delivery, messages will arrive at the application as they are received
by the LBT-RM session. Duplicates are ignored and lost messages will have the same recovery methods ap-
plied, but the ordering may not be preserved. Delivery order is a topic level concern. Thus loss of messages
in one topic will not interfere or delay delivery of messages in another topic.

• Session State Advertisements - In PGM, SPM packets are used to advertise session state and to perform
PGM router assist in the routers. For LBT-RM, these advertisements are only used when data are not flow-
ing. Once data stops on a session, advertisements are sent with an exponential back-off (to a configurable
maximum interval) so that the bandwidth taken up by the session is minimal.

• Sender Rate Control - LBT-RM can control a sender's rate of injection of data into the network by use of a
rate limiter. This rate is configurable and will back pressure the sender, not allowing the application to exceed
the rate limit it has specified. In addition, LBT-RM senders have control over the rate of retransmissions
separately from new data. This allows the publisher to guarantee a minimum transmission rate even in the
face of massive loss at some or all receivers.

http://www.ietf.org/rfc/rfc3208.txt

6.4 Transport LBT-IPC 71

• Low Latency Retransmissions - LBT-RM senders do not mandate the use of NCF packets as PGM does.
Because low latency retransmissions is such an important feature, LBT-RM senders by default send retrans-
missions immediately upon receiving a NAK. After sending a retransmission, the sender ignores additional
NAKs for the same data and does not repeatedly send NCFs. The oldest data being requested in NAKs has
priority over newer data so that if retransmissions are rate controlled, then LBT-RM sends the most important
retransmissions as fast as possible.

6.4 Transport LBT-IPC

The LBT-IPC transport is an Interprocess Communication (IPC) UM transport that allows sources to publish topic
messages to a shared memory area managed as a static ring buffer from which receivers can read topic messages.
Message exchange takes place at memory access speed which can greatly improve throughput when sources and
receivers can reside on the same host.

LBT-IPC's Transport Pacing can be either source-paced or receiver-paced. See transport_lbtipc_behavior
(source).

The LBT-IPC transport uses a "lock free" design that eliminates calls to the Operating System and allows receivers
quicker access to messages. An internal validation method enacted by receivers while reading messages from the
Shared Memory Area ensures message data integrity. The validation method compares IPC header information at
different times to ensure consistent, and therefore, valid message data. Sources can send individual messages or
a batch of messages, each of which possesses an IPC header.

Note that while the use of Transport Services Provider (XSP) for network-based transports does not conflict with
LBT-IPC, it does not apply to LBT-IPC. IPC data flows cannot be assigned to XSP threads.

6.4.1 Sources and LBT-IPC

When you create a source with lbm_src_create() and you've set the transport option to IPC, UM creates a shared
memory area object. UM assigns one of the transport IDs to this area specified with the UM context configura-
tion options, transport_lbtipc_id_high (context) and transport_lbtipc_id_low (context). You can also specify a
shared memory location outside of this range with a source configuration option, transport_lbtipc_id (source), to
prioritize certain topics, if needed.

UM names the shared memory area object according to the format, LBTIPC_x_d where x is the hexadecimal
Session ID and d is the decimal Transport ID. Example names are LBTIPC_42792ac_20000 or LBTIPC_66e7c8f6←↩
_20001. Receivers access a shared memory area with this object name to receive (read) topic messages.

See Transport LBT-IPC Operation Options for configuration information.

Sending over LBT-IPC

To send on a topic (write to the shared memory area) the source writes to the Shared Memory Area starting at the
Oldest Message Start position. It then increments each receiver's Signal Lock if the receiver has not set this to zero.

6.4.2 Receivers and LBT-IPC

Receivers operate identically to receivers for all other UM transports. A receiver can actually receive topic messages
from a source sending on its topic over TCP, LBT-RU or LBT-RM and from a second source sending on LBT-IPC
with out any special configuration. The receiver learns what it needs to join the LBT-IPC session through the topic
advertisement.

72 Transport Types

The configuration option transport_lbtipc_receiver_thread_behavior (context) controls the IPC receiving thread
behavior when there are no messages available. The default behavior, 'pend', has the receiving thread pend on a
semaphore for a new message. When the source adds a message, it posts to each pending receiver's semaphore
to wake the receiving thread up. Alternatively, busy_wait can be used to prevent the receiving thread going to sleep.
In this case, the source does not need to post to the receiver's semaphore. It simply adds the message to shared
memory, which the looping receiving thread detects with the lowest possible latency.

Although 'busy_wait' has the lowest latency, it has the drawback of consuming 100% of a CPU core during periods
of idleness. This limits the number of IPC data flows that can be used on a given machine to the number of available
cores. (If more busy looping receivers are deployed than there are cores, then receivers can suffer 10 millisecond
time sharing quantum latencies.)

For application that cannot afford 'busy_wait', there is another configuration option, transport_lbtipc_pend_←↩
behavior_linger_loop_count (context), which allows a middle ground between 'pend' and 'busy_wait'. The re-
ceiver is still be configured as 'pend', but instead of going to sleep on the semaphore immediately upon emptying
the shared memory, it busy waits for the configured number of times. If a new message arrives, it processes the
message immediately without a sleep/wakeup. This can be very useful during bursts of high incoming message
rates to reduce latency. By making the loop count large enough to cover the incoming message interval during a
burst, only the first message of the burst will incur the wakeup latency.

Topic Resolution and LBT-IPC

Topic resolution operates identically with LBT-IPC as other UM transports albeit with a new advertisement type,
LBMIPC. Advertisements for LBT-IPC contain the Transport ID, Session ID and Host ID. Receivers obtain LB←↩
T-IPC advertisements in the normal manner (resolver cache, advertisements received on the multicast resolver
address:port and responses to queries.) Advertisements for topics from LBT-IPC sources can reach receivers on
different machines if they use the same topic resolution configuration, however, those receivers silently ignore those
advertisements since they cannot join the IPC transport. See Sending to Both Local and Remote Receivers.

Receiver Pacing

Although receiver pacing is a source behavior option, some different things must happen on the receiving side to
ensure that a source does not reclaim (overwrite) a message until all receivers have read it. When you use the
default transport_lbtipc_behavior (source) (source-paced), each receiver's Oldest Message Start position in the
Shared Memory Area is private to each receiver. The source writes to the Shared Memory Area independently of
receivers' reading. For receiver-pacing, however, all receivers share their Oldest Message Start position with the
source. The source will not reclaim a message until all receivers have successfully read that message.

Receiver Monitoring

To ensure that a source does not wait on a receiver that is not running, the source monitors a receiver via the Monitor
Shared Lock allocated to each receiving context. (This lock is in addition to the semaphore already allocated for
signaling new data.) A new receiver takes and holds the Monitor Shared Lock and releases the resource when
it dies. If the source is able to obtain the resource, it knows the receiver has died. The source then clears the
receiver's In Use flag in it's Receiver Pool Connection.

6.4.3 Similarities with Other UM Transports

Although no actual network transport occurs, IPC functions in much the same way as if you send packets across
the network as with other UM transports.

• If you use a range of LBT-IPC transport IDs, UM assigns multiple topics sent by multiple sources to all the
Transport Sessions in a round robin manner just like other UM transports.

• Transport sessions assume the configuration option values of the first source assigned to the Transport Ses-
sion.

• Sources are subject to message batching.

6.4 Transport LBT-IPC 73

6.4.4 Differences from Other UM Transports

• Unlike LBT-RM which uses a transmission window to specify a buffer size to retain messages in case they
must be retransmitted, LBT-IPC uses the transmission window option to establish the size of the shared
memory.

• LBT-IPC does not retransmit messages. Since LBT-IPC transport is essentially a memory write/read opera-
tion, messages should not be be lost in transit. However, if the shared memory area fills up, new messages
overwrite old messages and the loss is absolute. No retransmission of old messages that have been over-
written occurs. (Note: while transport-level retransmission is not available, IPC is compatible with the Off-←↩
Transport Recovery (OTR) feature, which allows for persistent message recovery from the Store, or streaming
message recovery from the Source's Late Join buffer.)

• Receivers also do not send NAKs when using LBT-IPC.

• LBT-IPC does not support ordered_delivery (receiver) options. However, if you set ordered_delivery (re-
ceiver) 1 or -1, LBT-IPC reassembles any large messages.

• LBT-IPC does not support Rate Limiting.

• LBT-IPC creates a separate receiver thread in the receiving context.

6.4.5 Sending to Both Local and Remote Receivers

A source application that wants to support both local and remote receivers should create two UM Contexts with
different topic resolution configurations, one for IPC sends and one for sends to remote receivers. Separate contexts
allows you to use the same topic for both IPC and network sources. If you simply created two source objects (one
IPC, one say LBT-RM) in the same UM Context, you would have to use separate topics and suffer possible higher
latency because the sending thread would be blocked for the duration of two send calls.

A UM source will never automatically use IPC when the receivers are local and a network transport for remote
receivers because the discovery of a remote receiver would hurt the performance of local receivers. An application
that wants transparent switching can implement it in a simple wrapper.

6.4.6 LBT-IPC Configuration Example

The following diagram illustrates how sources and receivers interact with the shared memory area used in the
LBT-IPC transport:

74 Transport Types

In the diagram above, 3 sources send (write) to two Shared Memory Areas while four receivers in two different
contexts receive (read) from the areas. The assignment of sources to Shared Memory Areas demonstrate UM's
round robin method. UM assigns the source sending on Topic A to Transport 20001, the source sending on Topic B
to Transport 20002 and the source sending on Topic C back to the top of the transport ID range, 20001.

The diagram also shows the UM configuration options that set up this scenario:

• The options transport_lbtipc_id_high (context) and transport_lbtipc_id_low (context) establish the
range of Transport IDs between 20001 and 20002.

• The option transport (source) is used to set the source's transport to LBT-IPC.

• The option transport_lbtipc_transmission_window_size (source) sets the size of each Shared Memory
Area to 24 MB.

6.4.7 Required privileges

LBT-IPC requires no special operating system authorities, except on Microsoft Windows Vista and Microsoft Win-
dows Server 2008, which require Administrator privileges. In addition, on Microsoft Windows XP, applications must
be started by the same user, however, the user is not required to have administrator privileges. In order for applica-
tions to communicate with a service, the service must use a user account that has Administrator privileges.

6.5 Transport LBT-SMX 75

6.4.8 Host Resource Usage and Limits

LBT-IPC contexts and sources consume host resources as follows:

• Per Source - 1 shared memory area, 1 shared lock (semaphore on Linux, mutex on Microsoft Windows)

• Per Receiving Context - 2 shared locks (semaphores on Linux, one event and one mutex on Microsoft Win-
dows)

Across most operating system platforms, these resources have the following limits.

• 4096 shared memory areas, though some platforms use different limits

• 32,000 shared semaphores (128 shared semaphore sets ∗ 250 semaphores per set)

Consult your operating system documentation for specific limits per type of resource. Resources may be displayed
and reclaimed using the LBT-IPC Resource Manager. See also the KB article Managing LBT-IPC Host
Resources.

6.4.9 LBT-IPC Resource Manager

Deleting an IPC source or deleting an IPC receiver reclaims the shared memory area and locks allocated by the IPC
source or receiver. However, if a less than graceful exit from a process occurs, global resources remain allocated but
unused. To address this possibility, the LBT-IPC Resource Manager maintains a resource allocation database with
a record for each global resource (memory or semaphore) allocated or freed. You can use the LBT-IPC Resource
Manager to discover and reclaim resources. See the three example outputs below.

Displaying Resources

$> lbtipc_resource_manager
Displaying Resources (to reclaim you must type ’-reclaim’ exactly)

--Memory Resources--
Memory resource: Process ID: 24441 SessionID: ab569cec XportID: 20001

--Semaphore Resources-- Semaphore key: 0x68871d75
Semaphore resource Index 0: reserved

Semaphore resource: Process ID: 24441 Sem Index: 1
Semaphore resource: Process ID: 24436 Sem Index: 2

Reclaiming Unused Resources

$> lbtipc_resource_manager -reclaim
Reclaiming Resources
Process 24441 not found: reclaiming Memory resource (SessionID: ab569cec XPortID:

20001)
Process 24441 not found: reclaiming Semaphore resource: Key: 0x68871d75 Sem Index: 1
Process 24436 not found: reclaiming Semaphore resource: Key: 0x68871d75 Sem Index: 2

6.5 Transport LBT-SMX

The LBT-SMX (shared memory acceleration) transport is an Interprocess Communication (IPC) transport you can
use for the lowest latency message Streaming.

https://kb.informatica.com/faq/5/Pages/80201.aspx
https://kb.informatica.com/faq/5/Pages/80201.aspx

76 Transport Types

LBT-RU's Transport Pacing is receiver-paced. If you need source pacing, see Transport LBT-IPC.

Like LBT-IPC, sources can publish topic messages to a shared memory area from which receivers can read topic
messages. LBT-SMX is slightly faster than Transport LBT-IPC. However, SMX imposes more limitations than LBT-
IPC; see Differences Between LBT-SMX and Other UM Transports.

To achieve the minimum possible latency and jitter, the receive side uses busy waiting exclusively. This means that
while waiting for a message, the receiving context has a thread running at 100% CPU utilization. To avoid latency
jitter, Informatica strongly recommends pinning the thread to a single core to prevent the operating system from
migrating the thread across cores.

Although busy waiting has the lowest latency, it has the drawback of consuming 100% of a CPU core, even during
periods of no messages. This limits the number of SMX data flows that can be used on a given machine to the
number of available cores. If this is not practical for your use case, Informatica recommends the use of Transport
LBT-IPC.

There are two forms of API calls available with LBT-SMX:

• General APIs - the same APIs used with other transports, such as sending messages with lbm_src_send().

• SMX-specific APIs - APIs that further reduce overhead and latency but require a somewhat different code
design, such as sending messages with lbm_src_buff_acquire() and lbm_src_buffs_complete().

Note that the SMX-specific APIs are not thread safe, and require that the calling application guarantee serialization
of calls on a given Transport Sessions.

LBT-SMX operates on the following Ultra Messaging platforms:

• 64-bit SunOS (X86 only)

• 64-bit Linux

• 64-bit Windows

The "latency ping/pong" example programs demonstrate how to use the SMX-specific API.

For C: Example lbmlatping.c and Example lbmlatpong.c.

For Java: Example lbmlatping.java and Example lbmlatpong.java.

For .NET: Example lbmlatping.cs and Example lbmlatpong.cs.

Many other example applications can use the LBT-SMX transport by setting the transport (source) configuration
option to "LBT-SMX":

source transport LBT-SMX

However, you cannot use LBT-SMX with example applications for features not supported by LBT-SMX, such as
Example lbmreq.c, Example lbmresp.c, Example lbmrcvq.c, or Example lbmwrcvq.c.

The LBT-SMX configuration options are similar to the LBT-IPC transport options. See Transport LBT-SMX Opera-
tion Options for more information.

You can use Automatic Monitoring, UM API retrieve/reset calls, and LBMMON APIs to access LBT-SMX source
and receiver transport statistics. To increase performance, the LBT-SMX transport does not collect statistics by
default. Set the UM configuration option transport_lbtsmx_message_statistics_enabled (context) to 1 to enable
the collection of transport statistics.

The next few sections provide an in-depth understanding of how SMX works, using the C API as the model. Java and
.NET programmers are encouraged to read these sections for the understanding of SMX. There are also sections
specific to Java and .NET near the end to provide API details.

6.5 Transport LBT-SMX 77

6.5.1 Sources and LBT-SMX

When you create a source with lbm_src_create() and you've set the transport (source) option to "LBT-SMX", UM
creates a shared memory area object. UM assigns one of the transport IDs to this area from a range of transport IDs
specified with the UM context configuration options transport_lbtsmx_id_high (context) and transport_lbtsmx←↩
_id_low (context). You can also specify a shared memory location inside or outside of this range with the option
transport_lbtsmx_id (source) to group certain topics in the same shared memory area, if needed. See Transport
LBT-SMX Operation Options for configuration details.

UM names the shared memory area object according to the format, LBTSMX_x_d where x is the hexadecimal
Session ID and d is the decimal Transport ID. Example names are LBTSMX_42792ac_20000 or LBTSMX_←↩
66e7c8f6_20001. Receivers access a shared memory area with this object name to receive (read) topic messages.

Note

For every context created by your application, UM creates an additional shared memory area for control
information. The name for these control information memory areas ends with the suffix, _0, which is the
Transport ID.

Here are the SMX-specific in C:

• lbm_src_buff_acquire() - obtains a pointer into the source's shared buffer for a new message of the specified
length.

• lbm_src_buffs_complete() - informs UM that one or more acquired messages are complete and ready to
be delivered to receivers.

• lbm_src_buffs_complete_and_acquire() - a convenience function that is the same as calling lbm_src_←↩
buff_acquire() followed immediately by lbm_src_buffs_complete().

• lbm_src_buffs_cancel() - cancels all message buffers acquired but not yet completed.

The SMX-specific APIs fail with an appropriate error message if a sending application uses them for a source
configured to use a transport other than LBT-SMX.

Note

The SMX-specific APIs are not thread safe at the source object or LBT-SMX Transport Session levels for
performance reasons. Applications that use the SMX-specific APIs for either the same source or a group
of sources that map to the same LBT-SMX Transport Session must serialize the calls either directly in the
application or through their own mutex.

6.5.2 Sending with SMX-specific APIs

Sending with SMX-specific APIs is a two-step process.

1. The publisher first calls lbm_src_buff_acquire(), which returns a pointer into which the publisher writes the
message data.

The pointer points directly into the shared memory area. UM guarantees that the shared memory area has
at least the value specified with the len parameter of contiguous bytes available for writing when lbm_src_←↩
buff_acquire() returns. Note that the acquire function has the potential of blocking (spinning), if the shared
memory area is full of messages that are unread by at least one subscribed receiver. If your application set
the LBM_SRC_NONBLOCK flag with lbm_src_buff_acquire(), UM immediately returns an LBM_EWOUL←↩
DBLOCK error condition if the function detects the blocking condition.

Because LBT-SMX does not support fragmentation, your application must limit message lengths to a maxi-
mum equal to the value of the source's configured transport_lbtsmx_datagram_max_size (source) option

78 Transport Types

minus 16 bytes for headers. In a system deployment that includes the DRO, this value should be the same
as the Datagram Max Sizes of other transport types. See Protocol Conversion.

After the user acquires the pointer into shared memory and writes the message data, the application may
call lbm_src_buff_acquire() repeatedly to send a batch of messages to the shared memory area. If your
application writes multiple messages in this manner, sufficient space must exist in the shared memory area.
lbm_src_buff_acquire() returns an error if the available shared memory space is less than the size of the
next message.

2. The publisher calls one of the two following APIs.

• lbm_src_buffs_complete(), which publishes the message or messages to all listening receivers.

• lbm_src_buffs_complete_and_acquire(), which publishes the message or messages to all listening
receivers and acquires a new pointer.

6.5.3 Sending over LBT-SMX with General APIs

LBT-SMX supports the general send API functions, like lbm_src_send(). These API calls are fully thread-safe.
The LBT-SMX feature restrictions still apply (see Differences Between LBT-SMX and Other UM Transports). The
lbm_src_send_ex_info_t argument to the lbm_src_send_ex() and lbm_src_sendv_ex() APIs must be NULL when
using an LBT-SMX source, because LBT-SMX does not support any of the features that the lbm_src_send_ex_←↩
info_t parameter can enable.

Since LBT-SMX does not support an implicit batcher or corresponding implicit batch timer, UM flushes all messages
for all sends on LBT-SMX transports done with general APIs, which is similar to setting the LBM_MSG_FLUSH flag.
LBT-SMX also supports the lbm_src_flush() API call, which behaves like a thread-safe version of lbm_src_buffs←↩
_complete().

Warning

Users should not use both the SMX-specific APIs and the general API calls in the same application. Users
should choose one or the other type of API for consistency and to avoid thread safety problems.

The lbm_src_topic_alloc() API call generates log warnings if the given attributes specify an LBT-SMX transport
and enable any of the features that LBT-SMX does not support. The lbm_src_topic_alloc() returns 0 (success),
but UM does not enable the unsupported features indicated in the log warnings. Other API functions that operate
on lbm_src_t objects, such as lbm_src_create(), lbm_src_delete(), or lbm_src_topic_dump(), operate with LBT-
SMX sources normally.

Because LBT-SMX does not support fragmentation, your application must limit message lengths to a maximum
equal to the value of the source's configured transport_lbtsmx_datagram_max_size (source) option minus 16
bytes for headers. Any send API calls with a length parameter greater than this configured value fail. In a system
deployment that includes the DRO, this value should be the same as the Datagram Max Sizes of other transport
types. See Protocol Conversion.

6.5.4 Receivers and LBT-SMX

LBT-SMX receivers can be coded the same as receivers on other UM transports. The msg->data pointer of a
delivered lbm_msg_t object points directly into the shared memory area. However, Java and .NET receivers can
benefit from some alternate coding techniques. See Java Coding for LBT-SMX and .NET Coding for LBT-SMX.

The lbm_msg_retain() API function operates differently for LBT-SMX. lbm_msg_retain() creates a full copy of the
message in order to access the data outside the receiver callback.

6.5 Transport LBT-SMX 79

Attention

You application should not pass the msg->data pointer to other threads or outside the receiver callback until
your application has called lbm_msg_retain() on the message.

Warning

Any API calls documented as not safe to call from a context thread callback are also not safe to call from an
LBT-SMX receiver thread.

Topic Resolution and LBT-SMX

Topic resolution operates identically with LBT-SMX as other UM transports albeit with the advertisement type, L←↩
BMSMX. Advertisements for LBT-SMX contain the Transport ID, Session ID, and Host ID. Receivers get LBT-SMX
advertisements in the normal manner, either from the resolver cache, advertisements received on the multicast
resolver address:port, or responses to queries.

6.5.5 Similarities Between LBT-SMX and Other UM Transports

Although no actual network transport occurs, SMX functions in much the same way as if you send packets across
the network as with other UM transports.

• If you use a range of LBT-SMX transport IDs, UM assigns multiple topics sent by multiple sources to all the
Transport Sessions in a round robin manner just like other UM transports.

• Transport sessions assume the configuration option values of the first source assigned to the Transport Ses-
sion.

• Source applications and receiver applications based on any of the three available APIs can interoperate with
each other. For example, sources created by a C publisher can send to receivers created by a Java receiving
application.

6.5.6 Differences Between LBT-SMX and Other UM Transports

• Unlike LBT-RM which uses a transmission window to specify a buffer size to retain messages for retransmis-
sion, LBT-SMX uses the transmission window option to establish the size of the shared memory. LBT-SMX
uses transmission window sizes that are powers of 2. You can set transport_lbtsmx_transmission_←↩
window_size (source) to any value, but UM rounds the option value up to the nearest power of 2.

• The largest transmission window size for Java applications is 1 GB.

• The largest possible message size for Java applications is 1 GB.

• LBT-SMX does not retransmit messages. Since LBT-SMX transport only supports receiver pacing, messages
are never lost in transit.

• Receivers do not send NAKs when using LBT-SMX.

LBT-SMX is not compatible with the following UM features:

• Arrival Order, Fragments Not Reassembled (ordered_delivery 0).

• Source Pacing.

80 Transport Types

• Late Join.

• Off-Transport Recovery (OTR).

• Request/Response.

• Source-side Filtering.

• Hot Failover (HF).

• Message Properties.

• Application Headers.

• Implicit Batching and Explicit Batching.

• Message Fragmentation and Reassembly.

• Unicast Immediate Messaging.

• Multicast Immediate Messaging.

• The "pend"-style of Receiver thread behavior; SMX only supports busy_wait-style.

• Persistence.

• Queuing.

Note that while the use of Transport Services Provider (XSP) for network-based transports does not conflict with
LBT-SMX, it does not apply to LBT-SMX. SMX data flows cannot be assigned to XSP threads.

You also cannot use LBT-SMX to send outgoing traffic from a UM daemon, such as the persistent Store, DRO, or
UMDS.

6.5.7 LBT-SMX Configuration Example

The following diagram illustrates how sources and receivers interact with the shared memory area used in the
LBT-SMX transport.

6.5 Transport LBT-SMX 81

In the diagram above, three sources send (write) to two Shared Memory Areas while four receivers in two different
contexts receive (read) from the areas. The assignment of sources to Shared Memory Areas demonstrate UM's
round robin method. UM assigns the source sending on Topic A to Transport 30001, the source sending on Topic B
to Transport 30002 and the source sending on Topic C back to the top of the transport ID range, 30001.

The diagram also shows the UM configuration options that set up this scenario.

• The options transport_lbtsmx_id_high (context) and transport_lbtsmx_id_low (context) establish the
range of Transport IDs between 30001 and 30002.

• The option "source transport lbtsmx" sets the source's transport to LBT-SMX.

• The option transport_lbtsmx_transmission_window_size (source) sets the size of each Shared Memory
Area to 33554432 bytes or 32 MB. This option's value must be a power of 2. If you configured the transmission
window size to 25165824 bytes (24 MB) for example, UM logs a warning message and then rounds the value
of this option up to the next power of 2 or 33554432 bytes or 32 MB.

6.5.8 Java Coding for LBT-SMX

Java-based SMX works by wrapping the shared memory area in a ByteBuffer object. This lets the sender call
the put methods to build your application message directly in the shared memory, and the receiver calls the get
methods to extract the message directly from the shared memory.

Here are the SMX-specific APIs in Java:

• LBMSource.getMessagesBuffer() - obtains a reference to the source's ByteBuffer, which does not change
for the lifetime of the source object.

https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html

82 Transport Types

• LBMSource.acquireMessageBufferPosition() - obtains an offset into the source's ByteBuffer for a new
message of the specified length.

• LBMSource.messageBuffersComplete() - informs UM that one or more acquired messages are complete
and ready to be delivered to receivers.

• LBMSource.messageBuffersCompleteAndAcquirePosition() - a convenience function that is the same as
calling messageBuffersComplete() followed immediately by acquireMessageBufferPosition().

• LBMSource.messageBuffersCancel() - cancels all message buffers acquired but not yet completed.

Notice that while the normal source send can accept either a byte array or a ByteBuffer, the Java SMX-specific
APIs only accept a ByteBuffer. Also note that the ByteBuffer does not necessarily start at position 0. You must call
acquireMessageBufferPosition() to determine the offset.

The Java example programs Example lbmlatping.java and Example lbmlatpong.java illustrates how a Java-
based SMX source and receiver is written.

For message reception, see the "onReceive" function. Note that there is no SMX-specific code. However, to
maintain high performance, the user should call LBMSource.getMessagesBuffer() to obtain direct access to the
source's ByteBuffer. The position and limit set according to the message to be read.

To save on some front-end latency, the "lat" ping/pong programs pre-acquire a buffer which is filled in when a
messages needs to be sent (the call to src.acquireMessageBufferPosition()). After each send, another buffer
is acquired for the next (future) message (the call to src.messageBuffersCompleteAndAcquirePosition()). This
moves the overhead of acquiring a message buffer to after the message was sent.

Batching

SMX does not support the normal UM feature Implicit Batching. However, it does support a method of Intelligent
Batching whereby multiple messages may be added to the source's ByteBuffer before being released to UM for
delivery.

Note that unlike network-based transports, batching will give only minor benefits for SMX, mostly in the form of
reduced memory contention.

/* Acquire a position in the buffer */
buf.position(src.acquireMessageBufferPosition(msglen, 0));
... /* Construct a message in "buf". */

buf.position(src.acquireMessageBufferPosition(msglen, 0));
... /* Construct a second message in "buf". */

/* Tell UM that all acquired message buffers are now complete. */
src.messageBuffersComplete();

Notice that the same ByteBuffer "buf" is used for both messages. This is because it is backed by the entire shared
memory buffer. The current position of "buf" is set to the start of the message space acquired by acquireMessage←↩
BufferPosition().

Non-blocking

In the example code presented, calls to acquireMessageBufferPosition() passed zero for flags. This means that the
call has the potential to block. Blocking happens if the sender outpaces the slowest receiver and the shared buffer
fills. Because of receiver pacing, the source must not overwrite sent messages that have not been consumed by
one or more subscribed receivers.

It is also possible to pass LBM.SRC_NONBLOCK as a flag to acquireMessageBufferPosition(). In that case,
acquireMessageBufferPosition() will immediately return -1 if the shared buffer does not have enough space for
the request.

pos = src.acquireMessageBufferPosition(msgLength, flags);
if (pos == -1) {

/* Can’t send the message yet. Handle this error. */
}
else {

/* Successful acquisition, set up buffer. */
buf.position(pos);
... /* Construct a message in "buf". */

6.5 Transport LBT-SMX 83

/* Tell UM that all acquired message buffers are now complete. */
src.messageBuffersComplete();

}

For performance reasons, acquireMessageBufferPosition() does not throw LBMEWouldBlock exceptions, like the
standard send APIs do.

Reduce Overhead

Normally, UM allows an application to add multiple receiver callbacks for the same topic receiver. This adds a
small amount of overhead for a feature that is not used very often. This overhead can be eliminated by setting
the "single receiver callback" attribute when creating the receiver object. This is done by calling LBMReceiver←↩
Attributes.enableSingleReceiverCallback().

LBMReceiverAttributes rattr = new LBMReceiverAttributes();
rattr.enableSingleReceiverCallback(true);
LBMTopic topic = ctx.lookupTopic("lbmpong/pong", rattr);

rcv = new LBMReceiver(ctx, topic, new LBMReceiverCallback(onReceive), null);

6.5.9 .NET Coding for LBT-SMX

For most of UM functionality, the Java and .NET APIs are used almost identically. However, given SMX's latency
requirements, we took advantage of some .NET capabilities that don't exist in Java, resulting in a different set of
functions. In particular, instead of wrapping the shared memory area in a ByteBuffer, the .NET SMX API uses a
simple IntPtr to provide a pointer directly into the shared memory area.

Here are the SMX-specific APIs in .NET:

• LBMSource.buffAcquire() - obtains a pointer into the source's shared buffer for a new message of
the specified length.

• LBMSource.buffsComplete() - informs UM that one or more acquired messages are complete and
ready to be delivered to receivers.

• LBMSource.buffsCompleteAndAcquire() - a convenience function that is the same as calling
buffsComplete() followed immediately by acquireMessageBufferPosition().

• LBMSource.buffsCancel() - cancels all message buffers acquired but not yet completed.

• LBMMessage.dataPointerSafe() - Returns an IntPtr into the shared memory at the start of the
message.

Notice that while the normal source send can accept either a byte array or a ByteBuffer, the .NET SMX-specific
APIs only work with an IntPtr. This is because the application builds the message directly in the shared memory.

The .NET example programs Example lbmlatping.cs and Example lbmlatpong.cs illustrates how a .NET-based
SMX source and receiver is written.

For message reception, see the "onReceive" function in Example lbmpong.cs. Note that there doesn't need to
be any SMX-specific code. However, to maintain high performance, the user should call LBMMessage.data←↩
PointerSafe() - to obtain direct access to the source's shared memory.

To save on some front-end latency, the "lat" ping/pong programs pre-acquire a buffer which is filled in when a
messages needs to be sent (the call to source.buffAcquire()). After each send, another buffer is acquired for the
next (future) message (the call to source.buffsCompleteAndAcquire()). This moves the overhead of acquiring a
message buffer to after the message was sent.

Batching

SMX does not support the normal UM feature Implicit Batching. However, it does support a method of Intelligent
Batching whereby multiple messages may be added to the source's shared memory before being released to UM
for delivery.

84 Transport Types

Note that unlike network-based transports, batching will give only minor benefits for SMX, mostly in the form of
reduced memory contention.

/* bufferAcquired was already set up earlier. */
... /* Construct first message at "bufferAcquired". */

source.buffAcquire(out bufferAcquired, (uint)buffer.Length, 0);
... /* Construct second message at "bufferAcquired". */

/* Send both messages, and set up "bufferAcquired" for next message. */
source.buffsCompleteAndAcquire(out bufferAcquired, (uint)buffer.Length, 0);

/* Tell UM that all acquired message buffers are now complete. */
src.buffsComplete();

Non-blocking

In the example code presented, calls to buffAcquire() and buffsCompleteAndAcquire() are passed zero for flags.
This means that the call has the potential to block. Blocking happens if the sender outpaces the slowest receiver
and the shared buffer fills. Because of receiver pacing, the source must not overwrite sent messages that have not
been consumed by one or more subscribed receivers.

It is also possible to pass LBM.SRC_NONBLOCK as a flag to buffAcquire(). In that case, buffAcquire() will immedi-
ately return -1 if the shared buffer does not have enough space for the request.

err = src.buffAcquire(out writeBuff, (uint)msglen, LBM.SRC_NONBLOCK);
if (err == -1) {

/* Can’t send the message yet. Handle this error. */
}
else {

/* Successful acquisition, set up buffer. */
... /* Construct a message in "writeBuff". */
/* Tell UM that all acquired message buffers are now complete. */
src.buffsComplete();

}

For performance reasons, buffsComplete() does not throw LBMEWouldBlock exceptions, like the standard send
APIs do.

Reduce Overhead

Normally, UM allows an application to add multiple receiver callbacks for the same topic receiver. This adds a
small amount of overhead for a feature that is not used very often. This overhead can be eliminated by setting
the "single receiver callback" attribute when creating the receiver object. This is done by calling LBMReceiver←↩
Attributes.enableSingleReceiverCallback().

LBMReceiverAttributes rattr = new LBMReceiverAttributes();
rattr.enableSingleReceiverCallback(true);
LBMTopic topic = ctx.lookupTopic("lbmpong/pong", rattr);

rcv = new LBMReceiver(ctx, topic, new LBMReceiverCallback(onReceive), null);

6.5.10 LBT-SMX Resource Manager

Deleting an SMX source or deleting an SMX receiver reclaims the shared memory area and locks allocated by the
SMX source or receiver. However, if an ungraceful exit from a process occurs, global resources remain allocated but
unused. To address this possibility, the LBT-SMX Resource Manager maintains a resource allocation database with
a record for each global resource (memory or semaphore) allocated or freed. You can use the LBT-SMX Resource
Manager to discover and reclaim resources. See the three example outputs below.

Displaying Resources

$> lbtsmx_resource_manager
Displaying Resources (to reclaim you must type ’-reclaim’ exactly)

6.6 Transport Broker 85

--Memory Resources--
Memory resource: Process ID: 24441 SessionID: ab569cec XportID: 20001

--Semaphore Resources-- Semaphore key: 0x68871d75
Semaphore resource Index 0: reserved

Semaphore resource: Process ID: 24441 Sem Index: 1
Semaphore resource: Process ID: 24436 Sem Index: 2

Reclaiming Unused Resources

Warning

This operation should never be done while SMX-enabled applications or daemons are running. If you have
lost or unused resources that need to be reclaimed, you should exit all SMX applications prior to running this
command.

$> lbtsmx_resource_manager -reclaim
Reclaiming Resources
Process 24441 not found: reclaiming Memory resource (SessionID: ab569cec XPortID:

20001)
Process 24441 not found: reclaiming Semaphore resource: Key: 0x68871d75 Sem Index: 1
Process 24436 not found: reclaiming Semaphore resource: Key: 0x68871d75 Sem Index: 2

6.6 Transport Broker

With the UMQ product, you use the 'broker' transport to send messages from a source to a Queuing Broker, or
from a Queuing Broker to a receiver.

The broker's Transport Pacing is receiver-paced, but only between the source and the broker. There is no end-to-end
pacing with queuing.

When sources or receivers connect to a Queuing Broker, you must use the 'broker' transport. You cannot use the
'broker' transport with UMS or UMP products.

86 Transport Types

Chapter 7

Topic Resolution Description

Topic Resolution ("TR") is a set of protocols and algorithms used internally by Ultra Messaging to establish and
maintain shared state. Here are the basic functions of TR:

• Receiver discovery of sources.

• DRO route maintenance and distribution.

• Persistent Store name resolution.

• Redundancy.

UM performs TR automatically; there are no API functions specific to normal TR operation. However, you can
influence topic resolution by configuration. Moreover, you can set configuration options differently for individual
topics, either by using XML Configuration Files (the <topic> element), or by using the API functions for setting
configuration options programmatically (e.g. lbm_rcv_topic_attr_setopt() and lbm_src_topic_attr_setopt()). See
UDP Topic Resolution Configuration Options for details.

An important design point of Topic Resolution is that information related to sources is distributed to all contexts in a
UM network. This is done so that when a receiver object is created within a context, it can discover sources for the
topic and join those sources. In support of this discovery process, each context maintains a memory-based "resolver
cache", which stores source information. The TR protocols and algorithms are largely in support of maintaining each
context's resolver cache.

Topic Resolution also occurs across a DRO, which means between Topic Resolution Domains (TRDs). A receiver
in one TRD will discover a source in a different TRD, potentially across many DRO hops. In this case, the DROs
actively assist in TR. The sources and receivers in different TRDs do not exchange TR with each other directly, but
rather with the assistance of the DRO.

Note

With the UMQ product, Topic Resolution does not apply to brokered queuing sources, receivers, or the brokers
themselves. However, ULB queuing does make use of topic resolution.

There are three different possible protocols used to provide Topic Resolution:

• Multicast UDP TR,

• Unicast UDP TR (with "lbmrd" service),

• TCP TR (with "SRS" service).

Of those three, Multicast UDP and Unicast UDP are mutually exclusive. It is not possible to configure UM to use
both within a single TRD. Multicast is generally preferred over Unicast, with Unicast being selected when there are
policy or environment reasons to avoid Multicast (e.g. cloud computing).

88 Topic Resolution Description

TCP-based TR (with "SRS" service) is a more recent addition to UM. It supports source discovery, and tracking of
receivers.

TCP-based TR is often paired with one of the UDP-based TR protocols (multicast or unicast). This is done to
support interoperability with pre-6.12 versions of UM, and supply TR functionality not yet available in TCP TR. The
TCP-based and UDP-based TR protocols run in parallel, with the UDP-based TR protocol supporting interoperability
with pre-6.12 components, and supplying the functionality missing from TCP TR.

When all of your UM components are upgraded to UM 6.14 or beyond, you can use the resolver_disable_udp_←↩
topic_resolution (context) configuration option to turn off UDP-based TR.

The advantage of TCP-based TR is greater reliability and reduced network and CPU load. UDP-based TR is sus-
ceptible to deafness issues due to transient network failures. Avoiding those deafness issues requires configuring
UDP-based TR to use significant network and CPU resources. In contrast, TCP-based TR is designed to be reliable
with much less network and CPU load, even in the face of transient network failures.

7.1 Resolver Caches

Independent of the TR protocol used, a context maintains two resolver caches: a source-side cache and a receiver-
side cache.

7.1.1 Source Resolver Cache

The source-side cache holds information about sources that the application created. It is used primarily by the
context to respond to TR Queries.

7.1.2 Receiver Resolver Cache

The receiver-side cache holds information about all sources in the UM network:

• Sources in the current application. For example, if Monitoring is turned on and configured for the same TRD
as the context being monitored, the source used to publish the monitoring data is included.

• Sources in local applications, in the same TRD.

• Sources in remote applications that are reachable by a DRO network.

Thus, the receiver-side cache can become large. In very large deployments, it may be necessary to increase the
size of the receiver cache using resolver_receiver_map_tablesz (context).

A context's receiver-side cache also holds information about receivers created by the current application. This is
used by the context when TR Advertisements are received to assist in completing subscriptions.

Be aware that with UDP-based Topic Resolution, receiver-side cache entries are typically not removed when the
corresponding sources are deleted, unless they are subscribed. If a source is created (but not subscribe) and then
deleted and then re-created, there will be two entries in the cache: one for the old source and one for the new. For
system designs that feature short-lived sources, the topic cache can grow over time without bound. In contrast, with
TCP-based Topic Resolution, receiver-side cache entries typically are removed when the sources are deleted, even
if not subscribed.

7.2 TR Protocol Comparison 89

7.2 TR Protocol Comparison

7.2.1 Multicast UDP TR

Multicast UDP-based Topic Resolution is the default protocol.

Advantages:

• Very fast source discovery for small deployments.

• Simplicity – no independent service (daemon) required.

• Highly fault tolerant.

Disadvantages:

• As the number of topics grows, the speed of source discovery degrades and resource consumption increases
(network bandwidth and CPU load). This resource consumption can introduce significant latency outliers
(jitter).

• Since UDP is not a reliable protocol, Multicast UDP TR relies on repetition to ensure delivery of TR informa-
tion.

• To effectively avoid deafness issues, resources must be consumed over the long term (TR must be configured
to run "forever"). Jitter can be a long-term problem.

• As deployments change and grow, TR performance should be monitored and analyzed for possible reconfig-
uration to strike the right balance between speed of source discovery vs. resource consumption.

• By default, when sources are deleted, receivers are not informed unless all sources on a given transport ses-
sion are deleted. Even if "final advertisements" are enabled, their delivery is best effort and not guaranteed.

See UDP-Based Topic Resolution Details for more information.

7.2.2 Unicast UDP TR

Unicast UDP-based Topic Resolution is functionally identical to Multicast UDP. It is used as a replacement for
Multicast UDP in environments where the use of multicast is not possible (e.g. the cloud) or is against policy. The
"lbmrd" service simulates multicast by simply forwarding all TR traffic to all contexts registered in a TRD. Note that
the "lbmrd" service does not maintain state about the sources and receivers. It simply fans out Unicast TR.

Advantages:

• Does not use multicast (an advantage if multicast cannot be used).

Disadvantages:

• All the same disadvantages of Multicast UDP.

• Requires one or more independent "lbmrd" services, which should be monitored for failure and restarted.

• Due to fan-out, puts a greater load on network hardware.

• By default, when sources are deleted, receivers are not informed unless all sources on a given transport ses-
sion are deleted. Even if "final advertisements" are enabled, their delivery is best effort and not guaranteed.

90 Topic Resolution Description

See UDP-Based Topic Resolution Details for more information.

7.2.3 TCP TR

TCP-based Topic Resolution is a newer implementation of a service-based distribution of source and receiver
information. It is available as of UM version 6.12, in which it provides a subset of the total TR functionality. In
a future UM version, TCP-based TR will provide all TR functionality, at which point it can be used to the exclusion of
UDP-based TR. Until that time, TCP-based TR is typically paired with UDP-based TR (either Multicast or Unicast).

Advantages:

• Can allow UDP-based TR to be disabled or "dialed-back". Its configuration can be adjusted to consume fewer
CPU and network resources. See TCP-Based TR Version Interoperability.

• Since TCP is a reliable protocol, TCP-based TR does not need to repeatedly send the same information to
ensure its reception.

• It is not necessary to consume resources over the long term to avoid deafness issues.

• If a source is deleted, that deletion is reliably communicated to all contexts in the TRD.

Disadvantages:

• For TRDs containing UM versions both before and after UM 6.12, TCP-based TR must be combined with
UDP-based TR to support inter-version interoperability.

• For UM version 6.12 and 6.13, TCP-based TR does not fulfill the TR functions of DRO route maintenance or
persistent Store name resolution. Users who require one or more of those functions should upgrade to UM
version 6.14 or beyond.

Most users who combine UDP and TCP TR should be able to gradually reduce the CPU and Network load from
UDP-based TR as the applications are upgraded to UM 6.12 or beyond.

When all of your UM components are upgraded to UM 6.14 or beyond, you can use the resolver_disable_udp_←↩
topic_resolution (context) configuration option to turn off UDP-based TR.

See TCP-Based Topic Resolution Details for more information.

7.3 TCP-Based Topic Resolution Details

TCP-based TR was introduced in UM version 6.12 to address shortcomings in UDP-based TR:

• Limit on scaling. It is difficult to configure UDP-based TR to scale to many hundreds of thousands of
topics. Too many topics typically results in unacceptable CPU and network load, and latency outliers (jitter).
Intense TR bursts can cause packet loss, retransmissions, and deafness. As deployments grow in size and
complexity, UDP-based TR typically requires greatly extended Sustaining Phases, often to infinity. This results
in significant CPU and network resources over the long term, and introduces latency outliers (jitter).

• High time to resolve. To reduce the CPU and network load, and to avoid packet loss, UDP-based TR is
usually strongly rate limited. This can greatly extend the time required to resolve topics, sometimes into the
tens of minutes.

TCP-based TR differs from UDP-based TR in two important ways:

7.3 TCP-Based Topic Resolution Details 91

• With TCP-based TR, the TCP protocol ensures reliable transmission of information. TCP also makes use of
congestion control algorithms to avoid packet loss.

• With TCP-based TR, topic information is maintained in the Stateful Resolution Service (SRS).

The basic approach used by TCP-based TR is as follows: Each context in a TRD is configured with the address
of one or more SRS instances (up to 5). For fault-tolerance, two or three is typical. When the context is created,
it connects to the configured SRSes. When the connection is successful, the context and SRSes exchange TR
information. They normally do this without involving the other contexts in the TRD.

Then, as an application creates or deletes sources, its context informs the SRSes of the change, which in turn
inform the other contexts in the TRD. In addition (as of UM 6.13), as an application creates or deletes receivers, the
SRSes track that receiver interest. The SRSes do not distribute receiver interest to other applications, but rather
use it to optimize the distribution of source information. An SRS only informs a context of sources that the context
is interested in (has receiver for).

There are periodic handshakes between each context and the SRSes to ensure that connectivity is maintained and
that state is valid. This removes the need to re-send TR information that has already been sent.

If an application loses connection with an SRS (perhaps due an extended network outage, or due to failure of the
SRS), the context will repeatedly try to reconnect. Once successful, the process of exchanging TR information is
repeated.

Note that much of the difficulty of configuring UDP-based TR is related to controlling the repeated transmission of
the same TIRs and TQRs. With TCP-based TR, that repetition is eliminated, making both the configuration and the
operation more straight-forward.

A note about the term "stateful" in relation to the SRS. Even though Unicast UDP TR uses a service called "lbmrd",
that service does not maintain the topic information. The "lbmrd" is not "stateful". Instead, it merely forwards TR
datagrams it receives, essentially simulating Multicast.

In contrast, the SRS maintains knowledge of all sources and receivers in the TRD (hence the "Stateful" in SRS).
For a newly-started receiving application to discover an existing source, the SRS can send the information without
the source getting involved.

With TCP-based TR, source advertisement messages are called "SIRs" (Source Information Records). This term
is used elsewhere in the documentation.

For configuration information, see TCP-Based Resolver Operation Options.

Attention

It is important to configure the SRS with SRS Element "<interface>", even if the SRS is running on a single-
homed host (one network connection). Also, applications that connect to the SRS must configure their inter-
faces properly. See default_interface (context).

Note

The LBMRD NAT Transit functionality provided by the lbmrd is not available with the SRS. If you want to mix
SRS and lbmrd operation on the same network, contact UM Support.

7.3.1 TCP-Based TR and Fault Tolerance

Starting with UM version 6.13, TCP-based TR supports redundancy. This is accomplished by starting two or more
instances of the Stateful Resolver Service (SRS), typically on separate physical hosts, and configuring application
and daemon contexts to connect to all of them. Although up to 5 SRSes can be configured, 2 or 3 are typical.

A context uses the resolver_service (context) option to configure the desired SRSes. Each context will establish
TCP connections to all of the configured SRSes. The SRSes are used "hot/hot", with all information being sent to
all configured SRSes, so there is no loss of Topic Resolution service if an SRS fails.

https://ultramessaging.github.io/UM_Support.html

92 Topic Resolution Description

7.3.2 TCP-Based TR Interest

Starting with UM version 6.13, the SRS tracks topic interest of contexts. If an application creates a receiver for topic
"XYZ", the context informs the SRS that it is interested in that topic. This allows the SRS to filter the TR traffic it
sends to contexts, which greatly increases the scalability of TR.

The SRS only sends source advertisements to contexts that are interested in that source's topic. Contexts also
inform the SRS of wildcard receivers, in which case the SRS will send source advertisements for all sources that
match the topic pattern.

Warning

While SRS filtering has the benefit of TR reducing traffic to a context, it can interfere with the resolver_←↩
source_notification_function (context) and resolver_event_function features. Some applications use those
features to inform the application of the availability of sources before receivers are created. But the SRS will
normally not inform the context of sources for which the context has no receiver. For applications that require
these features, filtering must be turned off by setting resolver_service_interest_mode (context) to "flood".

7.3.3 TCP-Based TR Version Interoperability

TCP-based TR was first introduced in UM version 6.12. To maintain interoperability with pre-6.12, applications can
be configured to use both TCP and UDP-based TR, in parallel.

This can make it difficult to gain all the benefits of TCP-based TR. Since pre-6.12 applications still need to avoid
the problems of deafness, even applications that have upgraded to 6.12 or beyond need to enable UDP-based TR,
usually with extended sustaining phases, often to infinity.

Ideally, all applications within a TRD can be upgraded to 6.14 and beyond, eliminating the need for UDP-based
TR, but this is often not practical. How can the TR load be reduced in a step-wise fashion while an organization is
upgrading applications gradually, over a long period of time?

Fortunately, You can set configuration options differently for individual topics, either by using XML Configuration
Files (the <topic> element), or by using the API functions for setting configuration options programmatically (e.g.
lbm_rcv_topic_attr_setopt() and lbm_src_topic_attr_setopt()).

Some helpful strategies might be:

• Identify those topics or classes of topics that have limited application interest. If topic X has sources and
receivers in upgraded applications, the UDP-based TR for that topic can be reduced (e.g. sustaining phase
greatly reduced).

• Identify those TRDs that have small numbers of applications. When a given TRD's applications have all been
upgraded, the UDP-based TR for all topics in that TRD can be reduced. If practical, applications can be
moved between TRDs to enable some TRDs to be populated by UM version 6.12 and beyond. Also, a TRD
can be sub-divided, separating pre-upgraded from post-upgraded.

When all of your UM components are upgraded to UM 6.14 or beyond, you can use the resolver_disable_udp_←↩
topic_resolution (context) configuration option to turn off UDP-based TR.

7.3 TCP-Based Topic Resolution Details 93

7.3.4 TCP-Based TR Configuration

A UM context is configured to use TCP-based TR with the option resolver_service (context), which tells how to
connect to the SRS. For example:

context resolver_service 10.29.3.41:12000

A DNS host name can be used instead of an IP address:

context resolver_service test1.informatica.com:12000

For fault tolerance, more than one running SRS instance can be configured:

context resolver_service test1.informatica.com:12000,test2.informatica.com:12000

This assumes that an SRS service is running at that address:port.

If interoperability with UDP-based TR is not needed, UM should be configured to use ONLY the SRS for topic
resolution using the option resolver_disable_udp_topic_resolution (context).

7.3.5 SRS Service

The SRS service is a daemon process which must be run to provide TCP-based TR for a TRD.

See Man Pages for SRS for details on running the SRS service.

All the contexts in the TRD must be configured to connect to the SRS with the option resolver_service (context).
After connecting, each context exchanges TR information with the SRS.

Attention

Applications that connect to the SRS must configure their interfaces properly. See default_interface (con-
text).

As applications create and delete sources, the SRS is informed, and the SRS informs all connected contexts. This
includes proxy sources from a DRO. In addition, a periodic "keepalive" handshake is performed between the SRS
and all connected contexts.

If a network failure causes the context's connection to the SRS to be broken, the context will periodically retry the
connection. Since most network failures are brief, the context will soon successfully re-establish a connection to the
SRS. Even though this is a resumption of the same context's earlier connection, the context and SRS still exchange
full TR information to make sure that any changes during the disconnected period are reflected.

The SRS also supports the publishing of operational and status information via the daemonstatistics feature. For
full details on the SRS Daemon Statistics details, see SRS Daemon Statistics.

SRS State Lifetime

If an application exits abnormally, the SRS will detect that the TCP connection is broken. However, the SRS must
not assume that the application has failed; it might be a network problem that forced the disconnection.

So the SRS flags all sources owned by that context as "potentially down", and starts a "source state lifetime"
timer (see <source-state-lifetime>). If the context has not failed, and reconnects within that period, during the
initial exchange of TR information, the SRS will unflag any "potentially down" sources. However, in the case of
application failure, when the state lifetime expires, all "potentially down" sources are deleted. All connected contexts
are informed of those deletions.

Note that as of UM version 6.13, the SRS also tracks application interest (topics for which the context has receivers).
This interest is also remembered by the SRS if the connection is broken, and also has an "interest state lifetime"
timer (see <interest-state-lifetime>). If the context has not failed, and reconnects within that period, during the
initial exchange of TR information, the SRS will unflag any "potentially down" receiver interest. However, in the case
of application failure, when the state lifetime expires, all "potentially down" receiver interest is deleted.

94 Topic Resolution Description

To maintain compatibility with 6.12 configurations, the SRS Element "<state-lifetime>" is maintained, and is used
as the default value for both source and interest state lifetimes.

Note that if an application fails and then restarts, its connection to the SRS is not considered to be a resumption
of the previous connection. It is considered to be a new context, and any sources created are new sources. The
previous application instance's sources will remain in the "potentially down" state, and will time out with the state
lifetime.

If a network outage lasts longer than the configured state lifetime, the SRS gives up on the context and deletes
sources and interest. These deletions are communicated to all connected contexts. When the network outage
is repaired and the context reconnects, the exchange of TR information with the SRS will re-create the context's
sources and interest in the SRS, and communicate them to other contexts. This restores normal operation.

Starting with UM version 6.14, the SRS also tracks routing information sent by the DRO. That information is handled
in much the same way as client information.

SRS Log File

The SRS generates log messages that are used to monitor its health and operation. You can configure these to
be directed to "console" (standard output) or a specified log "file", via the <log> configuration element. Normally
"console" is only used during testing; a persistent log file should be used for production. The SRS does not over-
write its log files on startup, but instead appends to it.

SRS Rolling Logs

To prevent unbounded disk file growth, the SRS supports rolling log files. When the log file rolls, the file is renamed
according to the model:
CONFIGUREDNAME_PID.DATE.SEQNUM
where:

• CONFIGUREDNAME - Root name of log file, as configured by user.

• PID - Process ID of the SRS daemon process.

• DATE - Date that the log file was rolled, in YYYY-MM-DD format.

• SEQNUM - Sequence number, starting at 1 when the process starts, and incrementing each time the log file
rolls.

For example: srs.log_9867.2017-08-20.2

The user can configure when the log file is eligible to roll over by either or both of two criteria: size and frequency.
The size criterion is in millions of bytes. The frequency criterion can be daily or hourly. Once one or both criteria are
met, the next message written to the log will trigger a roll operation. These criteria are supplied as attributes to the
<log> configuration element.

If both criteria are supplied, then the first one to be reached will trigger a roll. For example, consider the setting:

<log type="file" size="23" frequency="daily">srs.log</log>

Let's say that the log file grows at 1 million bytes per hour (VERY unlikely for an SRS, but let's assume for illustration
purposes). At 11:00 pm, the log file will reach 23 million bytes, and will roll. Then, at 12:00 midnight, the log file will
roll again, even though it is only 1 million bytes in size.

In addition, the SRS supports automatic deletion of log files based on either or both of two criteria: max history, and
total size cap. The max history refers to the number of archived log files, and the total size cap refers to the sum of
the sizes of the archived files in millions of bytes. When either or both criteria are met, one or more of the oldest log
files are removed until the criteria no longer apply.

For more information, see the <log> configuration element.

7.4 SRS Monitoring 95

7.4 SRS Monitoring

See Monitoring for an overview of monitoring an Ultra Messaging network.

It is important to the health and stability of a UM network to monitor the operation of SRSes. This monitoring should
include real-time automated detection of problems that will produce a timely alert to operations staff.

Two types of data should be monitored:

• Log file.

• Daemon statistics.

7.4.1 SRS Monitoring: Logs

Ideally, log file monitoring would support the following:

• Archive all log messages for all SRSes for at least a week, preferably a month.

• Provide rapid access to operations staff to view the latest log messages from a SRS.

• Periodic scans of the log file to detect errors and raise alerts to operations staff.

Regarding log file scanning, messages in the SRS's log file contain a severity indicator in square brackets. For
example:

Tue Nov 1 13:29:37 CDT 2022 [INFO]: SRS-10385-99: TCP Disconnect received for
client[10.29.3.101:47205] sessionID[0x8295ab9a]

Informatica recommends alerting operations staff for messages of severity [WARNING], [ERROR], [CRITICAL],
[ALERT], and [EMERGENCY].

It would also be useful to have a set of exceptions for specific messages you wish to ignore.

There are many third party real-time log file analysis tools available. A discussion of possible tools is beyond the
scope of UM documentation.

7.4.2 SRS Monitoring: Daemon Stats

There are two data formats for the SRS to send its daemon stats:

• Protobufs - recommended.

• JSON - deprecated. Informatica recommends migrating to protobufs.

For information on the deprecated JSON formatted daemon stats, see SRS Daemon Statistics.

The protobufs format is accepted by the Monitoring Collector Service (MCS) and the "lbmmon" example
applications: Example lbmmon.c and Example lbmmon.java.

For example, here is an excerpt from a sample SRS configuration file that shows how its daemon stats can be
published:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

...

96 Topic Resolution Description

<daemon-monitor topic="/29west/statistics">
<ping-interval>600000</ping-interval>
<publishing-interval>

<default>600000</default>
</publishing-interval>
<lbm-attributes>

<option scope="context" name="resolver_unicast_daemon" value="10.29.3.101:12801"/>
<option scope="context" name="default_interface" value="10.29.3.0/24"/>
<option scope="context" name="mim_incoming_address" value="0.0.0.0"/>
<option scope="source" name="transport" value="tcp"/>
...

</lbm-attributes>
<monitor-format>pb</monitor-format>

</daemon-monitor>

Notes:

1. The SRS Element "<monitor-format>" value "pb" selects the protobuf format and is available for the SRS in
UM version 6.15 and beyond.

2. For a list of possible protobuf messages for the SRS, see the "srs_mon.proto" file at Example srs_mon.←↩
proto.

3. The SRS Element "<ping-interval>" and SRS Element "<default>" define the statistics sampling period. In
the above example, 600 seconds (10 minutes) is chosen somewhat arbitrarily. Shorter times produce more
data, but not much additional benefit. However, UM networks with many thousands of applications may need
a longer interval (perhaps 30 or 60 minutes) to maintain a reasonable load on the network and monitoring
data storage.

4. The LBM attributes included in the above example within the SRS Element "<daemon-monitor>" element
sets options for the monitoring data TRD. (Alternatively, you can configure the monitoring context using
monitor_transport_opts (context).) When possible, Informatica recommends directing monitoring data to
an administrative network, separate from the application data network. This prevents monitoring data from
interfering with application data latency or throughput. In this example, the monitoring context is configured to
use an interface matching 10.29.3.0/24. There are other ways to specify the interface; see Specifying
Interfaces.

5. In this example, the monitoring data TRD uses Unicast UDP Topic Resolution. The lbmrd daemon is running
on host 10.29.3.101, port 12001.

6. The monitoring data is sent out via UM using the TCP transport.

7. These settings were chosen to conform to the recommendations in Automatic Monitoring.

For a full demonstration of monitoring, see: https://github.com/UltraMessaging/mcs_demo

https://github.com/UltraMessaging/mcs_demo

7.4 SRS Monitoring 97

98 Topic Resolution Description

Chapter 8

Architecture

UM is designed to be a flexible architecture. Unlike many messaging systems, UM does not require an intermediate
daemon to handle routing issues or protocol processing. This increases the performance of UM and returns valuable
computation time and memory back to applications that would normally be consumed by messaging daemons.

8.1 UDP-Based Topic Resolution Details

The following diagram illustrates UDP-based Topic Resolution. The diagram references multicast configuration
options, but the concepts apply equally to unicast.

100 Architecture

By default, Ultra Messaging relies on UDP-based Topic Resolution. UDP-based TR uses queries (TQRs) and
advertisements (TIRs) to resolve topics. These TQRs and TIRs are sent in UDP datagrams, typically with more
than one TIR or TQR in a given datagram.

UDP-based topic resolution traffic can benefit from hardware acceleration. See Transport Acceleration Options
for more information.

For Multicast UDP, TR datagrams are sent to an IP multicast group and UDP port configured with the Ultra Messag-
ing configuration options resolver_multicast_address (context) and resolver_multicast_port (context)).

For Unicast UDP, TR datagrams are sent to the IP address and port of the "lbmrd" daemon. See the UM configura-
tion option resolver_unicast_daemon (context).

Note that if both Multicast and Unicast are configured, the Unicast has higher precedence, and Multicast will not be
used.

UDP-based Topic Resolution occurs in the following phases:

• Initial Phase - Period that allows you to resolve a topic aggressively. This phase can be configured to run
differently from the defaults or completely disabled.

• Sustaining Phase - Period that allows new receivers to resolve a topic after the Initial Phase. Can also be the
primary period of topic resolution if you disable the Initial Phase. This phase can also be configured to run
differently from the defaults or completely disabled.

• Quiescent Phase - The quiet phase where Topic Resolution datagrams are no longer sent in an unsolicited
way. This reduces the CPU and network resources consumed by TR, and also reduces latency outliers (jitter).
However, in large deployments, especially those that include wide-area networks, the Quiescent Phase is
sometimes disabled, by configuring the Sustaining Phase to continue forever. This is done to avoid deafness
issues.

The phases of topic resolution are specific to individual topics. A single context can have some topics in each of the
three phases running concurrently.

8.1.1 Sources Advertise

For UDP-based TR, Sources use Topic Resolution in the following ways:

• Unsolicited advertisement of active sources. When a source is first created, it enters the Initial Phase of TR.
During the Initial, and subsequent Sustaining phases, the source sends Topic Information Record datagrams
(TIRs) to all the other contexts in the TRD. The source does this in an unsolicited manner; it advertises even
if there are no receivers for its topic.

• Respond to Topic Queries. When a receiver is first created, it enters the Initial phase of TR. During the Initial,
and subsequent Sustaining phases, the receiver sends Topic Query Records (TQRs) to all other contexts
in the TRD. When a source receives a TQR for its topic, it will restart its Sustaining Phase of advertising to
ensure that the receiver discovers the source.

A TIR contains all the information that the receiver needs to join the topic's Transport Session. The TIR datagram
sent unsolicited is identical to the TIR sent in response to a TQR. Depending on the transport type, a TIR will contain
one of the following groups of information:

• For transporttcp, the source address, TCP port and Session ID.

• For Transport LBT-RM, the source address, the multicast group address, the UDP destination port, LBT-RM
Session ID, and the unicast UDP port to which NAKs are sent.

• For Transport LBT-RU, the source address, UDP port and Session ID.

8.1 UDP-Based Topic Resolution Details 101

• For Transport LBT-IPC, the Host ID, LBT-IPC Session ID and Transport ID.

• For transportlbtsmx, the Host ID, LBT-SMX Session ID and Transport ID.

See UDP-Based Resolver Operation Options for more information.

8.1.2 Receivers Query

For UDP-based TR, when an application creates a receiver within a context, the new receiver first checks the
context's resolver cache for any matching sources that the context has already discovered. Those will be joined
immediately.

In addition, the receiver normally initiates a process of sending Topic Query Records (TQRs). This triggers sources
for the receiver's topic to advertise, if they are not already. This allows sources which are in their Quiescent Phase
to be discovered by new receivers.

A TQR consists primarily of the topic string.

8.1.3 Wildcard Receiver Topic Resolution

For UDP-based TR, UM Wildcard Receivers use Topic Resolution in conceptually the same ways as a single-topic
receiver, although some of the details are different. Instead of searching the resolver cache for a specific topic, a
new wildcard receiver object searches for all sources that match the wildcard pattern.

Also, the TQRs contain the wildcard pattern, and all sources matching the pattern will advertise.

Finally, wildcard receivers omit the Sustaining Phase for sending Queries. They only support Initial and Quiescent
Phases.

See Wildcard Receiver Options for more information.

8.1.4 Initial Phase

For UDP-based TR, the initial topic resolution phase for a topic is an aggressive phase that can be used to resolve
all topics before sending any messages. During the initial phase, network traffic and CPU utilization might actually
be higher. You can completely disable this phase, if desired. See Disabling Aspects of Topic Resolution for more
information.

Advertising in the Initial Phase

For the initial phase default settings, the resolver issues the first advertisement as soon as the scheduler can process
it. The resolver issues the second advertisement 10 ms later, or at the resolver_advertisement_minimum_←↩
initial_interval (source). For each subsequent advertisement, UM doubles the interval between advertisements.
The source sends an advertisement at 20 ms, 40 ms, 80 ms, 160 ms, 320 ms and finally at 500 ms, or the resolver←↩
_advertisement_maximum_initial_interval (source). These 8 advertisements require a total of 1130 ms. The
interval between advertisements remains at the maximum 500 ms, resulting in 7 more advertisements before the
total duration of the initial phase reaches 5000 ms, or the resolver_advertisement_minimum_initial_duration
(source). This concludes the initial advertisement phase for the topic.

102 Architecture

The initial phase for a topic can take longer than the resolver_advertisement_minimum_initial_duration (source)
if many topics are in resolution at the same time. The configuration options, resolver_initial_advertisements_←↩
per_second (context) and resolver_initial_advertisement_bps (context) enforce a rate limit on topic advertise-
ments for the entire UM context. A large number of topics in resolution - in any phase - or long topic names may
exceed these limits.

If a source advertising in the initial phase receives a topic query, it responds with a topic advertisement. UM
recalculates the next advertisement interval from that point forward as if the advertisement was sent at the nearest
interval.

Querying in the Initial Phase

Querying activity by receivers in the initial phase operates in similar fashion to advertising activity, although with
different interval defaults. The resolver_query_minimum_initial_interval (receiver) default is 20 ms. Subsequent
intervals double in length until the interval reaches 200 ms, or the resolver_query_maximum_initial_interval
(receiver). The query interval remains at 200 ms until the initial querying phase reaches 5000 ms, or the resolver←↩
_query_minimum_initial_duration (receiver).

The initial query phase completes when it reaches the resolver_query_minimum_initial_duration (receiver). The
initial query phase also has UM context-wide rate limit controls (resolver_initial_queries_per_second (context)
and resolver_initial_query_bps (context)) that can result in the extension of a phase's duration in the case of a
large number of topics or long topic names.

8.1 UDP-Based Topic Resolution Details 103

8.1.5 Sustaining Phase

For UDP-based TR, the sustaining topic resolution phase follows the initial phase and can be a less active phase
in which a new receiver resolves its topic. It can also act as the sole topic resolution phase if you disable the initial
phase. The sustaining phase defaults use less network resources than the initial phase and can also be modified
or disabled completely. See Disabling Aspects of Topic Resolution for details.

Advertising in the Sustaining Phase

For the sustaining phase defaults, a source sends an advertisement every second (resolver_advertisement_←↩
sustain_interval (source)) for 1 minute (resolver_advertisement_minimum_sustain_duration (source)). When
this duration expires, the sustaining phase of advertisement for a topic ends. If a source receives a topic query, the
sustaining phase resumes for the topic and the source completes another duration of advertisements.

The sustaining advertisement phase has UM context-wide rate limit controls (resolver_sustain_advertisements←↩
_per_second (context) and resolver_sustain_advertisement_bps (context)) that can result in the extension of
a phase's duration in the case of a large number of topics or long topic names.

Querying in the Sustaining Phase

Default sustaining phase querying operates the same as advertising. Unresolved receivers query every second
(resolver_query_sustain_interval (receiver)) for 1 minute (resolver_query_minimum_sustain_duration (re-
ceiver)). When this duration expires, the sustaining phase of querying for a topic ends.

104 Architecture

Sustaining phase queries stop when one of the following events occurs:

• The receiver discovers multiple sources that equal resolution_number_of_sources_query_threshold (re-
ceiver).

• The sustaining query phase reaches the resolver_query_minimum_sustain_duration (receiver).

The sustaining query phase also has UM context-wide rate limit controls (resolver_sustain_queries_per_second
(context) and resolver_sustain_query_bps (context)) that can result in the extension of a phase's duration in the
case of a large number of topics or long topic names.

8.1.6 Quiescent Phase

For UDP-based TR, this phase is the absence of topic resolution activity for a given topic. It is possible that some
topics may be in the quiescent phase at the same time other topics are in initial or sustaining phases of topic
resolution.

This phase ends if either of the following occurs.

• A new receiver sends a query.

• Your application calls lbm_context_topic_resolution_request() that provokes the sending of topic queries
for any receiver or wildcard receiver in this state.

8.1.7 Store (context) Name Resolution

For UDP-based TR, with the UMP/UMQ products, topic resolution facilitates the resolution of persistent Store names
to a DomainID:IPAddress:Port.

Topic Resolution resolves Store (or context) names by sending context name queries and context name adver-
tisements over the topic resolution channel. A Store name resolves to the Store's DomainID:IPAddress:Port. You

8.1 UDP-Based Topic Resolution Details 105

configure the Store's name and IPAddress:Port in the Store's XML configuration file. See Identifying Persistent
Stores for more information.

If you do not use the DRO, the DomainID is zero. Otherwise, the DomainID represents the Topic Resolution Domain
where the Store resides. Stores learn their DomainID by listening to Topic Resolution traffic.

Via the Topic Resolution channel, sources query for Store names and Stores respond with an advertisement when
they see a query for their own Store name. The advertisement contains the Store's DomainID:IPAddress:Port.

For a new source configured to use Store names (ume_store_name (source)), the resolver issues the first context
name query as soon as the scheduler can process it. The resolver issues the second advertisement 100 ms later,
or at the resolver_context_name_query_minimum_interval (context). For each subsequent query, UM doubles
the interval between queries. The source sends a query at 200 ms, 400 ms, 800 ms and finally at 1000 ms, or
the resolver_context_name_query_maximum_interval (context). The interval between queries remains at the
maximum 1000 ms until the total time querying for a Store (context) name equals resolver_context_name_query←↩
_duration (context). The default for this duration is 0 (zero) which means the resolver continues to send queries
until the name resolves. After a Store name resolves, the resolver stops sending queries.

If a source sees advertisements from multiple Stores with the same name, or a Store sees an advertisement that
matches its own Store name, the source issues a warning log message. The source also issues an informational log
message whenever it detects that a resolved Store (context) name changes to a different DomainID:IPAddress:Port.

8.1.8 UDP Topic Resolution Configuration Options

See the following sections in UM Configuration Guide for more information:

• UDP-Based Resolver Operation Options

• Multicast Resolver Network Options

• Unicast Resolver Network Options

• Wildcard Receiver Options

Assigning Different Configuration Options to Individual Topics

You can set configuration options differently for individual topics, either by using XML Configuration Files (the
<topic> element), or by using the API functions for setting configuration options programmatically (e.g. lbm_rcv←↩
_topic_attr_setopt() and lbm_src_topic_attr_setopt()).

8.1.9 Unicast UDP Topic Resolution

By default UM expects multicast connectivity between all sources and receivers. When only unicast connectivity is
available, you may configure all sources and receivers to use unicast topic resolution. This requires that you run
one or more instances of the UM unicast topic resolution daemon (lbmrd), which perform the same topic resolution
activities as multicast topic resolution. You configure your applications to use the lbmrd daemons with resolver_←↩
unicast_daemon (context).

See Lbmrd Man Page for details on running the lbmrd daemon.

The lbmrd can run on any machine, including the source or receiver. Of course, sources will also have to select
a transport protocol that uses unicast addressing (e.g. TCP, TCP-LB, or LBT-RU). The lbmrd maintains a table of
clients (address and port pairs) from which it has received a topic resolution message, which can be any of the
following:

• Topic Information Records (TIR) - also known as topic advertisements

106 Architecture

• Topic Query Records (TQR)

• keepalive messages, which are only used in unicast topic resolution

After lbmrd receives a TQR or TIR, it forwards it to all known clients. If a client (source or receiver) is not sending
either TIRs or TQRs, it sends a keepalive message to lbmrd according to the resolver_unicast_keepalive_interval
(context). This registration with the lbmrd allows the client to receive advertisements or queries from lbmrd. lbmrd
maintains no state about topics, only about clients.

LBMRD with the DRO Best Practice

If you're using the lbmrd for topic resolution across a DRO, you may want all of your domains discovered and all
routes to be known before creating any topics. If so, change the UM configuration option, resolver_unicast_←↩
force_alive (context), from the default setting to 1 so your contexts start sending keepalives to lbmrd immediately.
This makes your startup process cleaner by allowing your contexts to discover the other Topic Resolution Domains
and establish the best routes. The trade-off is a little more network traffic every 5 seconds.

Unicast Topic Resolution Resilience

Running multiple instances of lbmrd allows your applications to continue operation in the face of a lbmrd failure.
Your applications' sources and receivers send topic resolution messages as usual, however, rather than sending
every message to each lbmrd instance, UM directs messages to lbmrd instances in a round-robin fashion. Since
the lbmrd does not maintain any resolver state, as long as one lbmrd instance is running, UM continues to forward
LBMR packets to all connected clients. UM switches to the next active lbmrd instance every 250-750 ms.

8.1.10 LBMRD NAT Transit

Some networks make use of a glossarynat NAT router to map one IP address space onto another. If your network
architecture includes LANs that are bridged with a NAT device, UM receivers will usually not be able to connect
directly to UM sources across the NAT. Sources send Topic Resolution advertisements containing their local IP
addresses and ports, but receivers on the other side of the NAT cannot access those sources using those local
addresses/ports. They must use alternate addresses/ports, which the NAT forwards according to the NAT's config-
uration.

The recommended method of establishing UM connectivity across a NAT is to run a pair of DROs connected with
a single TCP peer link. In this usage, the LANs on each side of the NAT are distinct Topic Resolution Domains.

Alternatively, if the NAT can be configured to allow two-way UDP traffic between the networks, the lbmrd can be
configured to modify Topic Resolution advertisements according to a set of rules defined in an XML configuration
file. Those rules allow a source's advertisements forwarded to local receivers to be sent as-is, while advertisements
forwarded to remote receivers are modified with the IP addresses and ports that the NAT expects. In this usage, the
LANs on each side of the NAT are combined into a single Topic Resolution domain.

This is a lower-latency solution than dual DROs, but has significant restrictions.

8.1.11 Example NAT Configuration

In this example, there are two networks, A and B, that are interconnected via a NAT firewall. Network A has IP
addresses in the 10.1.0.0/16 range, and B has IP addresses in the 192.168.1/24 range. The NAT is configured
such that hosts in network B have no visibility into network A, and can send TCP and UDP packets to only a single
host in A (10.1.1.50) via the NAT's external IP address 192.168.1.1, ports 12000 and 12001. Packets sent from B
to 192.168.1.1:12000 are forwarded to 10.1.1.50:12000, and packets from B to 192.168.1.1:12001 are forwarded to
10.1.1.50:12001. Hosts in network A have full visibility of network B and can send TCP and UDP packets to hosts
in B by their local 192 addresses and ports. Those packets have their source addresses changed to 192.168.1.1.

8.1 UDP-Based Topic Resolution Details 107

Since hosts in network A have full visibility into network B, receivers in network A should be able to use source
advertisements from network B without any changes. However, receivers in network B will not be able to use source
advertisements from network A unless those advertisements' IP addresses are transformed.

The lbmrd is configured for NAT using its XML configuration file:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
<interface>10.1.1.50</interface>
<port>12000</port>

</daemon>
<domains>
<domain name="Net-NYC">

<network>10.1.0.0/16</network>
</domain>
<domain name="Net-NJC">

<network>192.168.1/24</network>
</domain>

</domains>
<transformations>
<transform source="Net-NYC" destination="Net-NJC">

<rule>
<match address="10.1.1.50" port="*"/>
<replace address="192.168.1.1" port="*"/>

</rule>
</transform>

</transformations>
</lbmrd>

The lbmrd must be run on 10.1.1.50.

The application on 10.1.1.50 should be configured with:

context resolver_unicast_daemon 10.1.1.50:12000
source transport_tcp_port 12001

The applications in the 192 network should be configured with:

context resolver_unicast_daemon 192.168.1.1:12000
source transport_tcp_port 12100

With this, the application on 10.1.1.50 is able to create sources and receivers that communicate with applications in
the 192 network.

See lbmrd Configuration File for full details of the XML configuration file.

8.1.12 Lbmrd NAT Restrictions

• TCP-based Topic Resolution using the SRS does not support this form of NAT operation. If you want to mix
SRS and lbmrd operation on the same network, contact UM Support.

• Persistence - not supported.

• Queuing - not supported.

• Request/Response - not supported.

• Unicast Immediate Messaging (UIM) - not supported.

• Late Join - limited supported.

• Off-Transport Recovery (OTR) - limited supported.

• Sending to Sources - limited supported.

https://ultramessaging.github.io/UM_Support.html

108 Architecture

Late Join, sending to sources, and OTR can be made to work if applications are configured to use the default value
(0.0.0.0) for request_tcp_interface (context). This means that you cannot use default_interface (context). Be
aware that the DRO requires a valid interface be specified for request_tcp_interface (context). Thus, lbmrd NAT
support for Late Join, Request/Response, and OTR is not compatible with UM topologies that contain the
DRO.

8.2 UDP-Based Topic Resolution Strategies

Configuring UDP-based TR frequently involves a process of weighing the costs and benefits of different goals. The
most common goals involved are:

• Avoid "deafness". deafness is when there is a source and a receiver for a topic, but the receiver does not
discover the source. This is usually a very high priority goal.

• Minimize the delay before a transport session is joined. This is especially important when a new source
is created and the application wants to wait until all existing receivers have fully joined the transport session
before sending messages.

• Minimizing impact on the system. Sending and receiving TR datagrams consumes CPU, network band-
width, and can introduce latency outliers (jitter) on active data transports.

• Maximizing scalability and flexibility. Some deployments are tightly-coupled, carefully controlled, and well-
defined. In those cases, scalability and flexibility might not be high-priority goals. Other deployments are
loosely-coupled, and consist of many different application groups that do not necessarily coordinate their use
of UM with each other. In those cases, scalability and flexibility can be important.

• Fault tolerance. Some environments, especially those that include Wide Area Networks, can have periodic
degradation or loss of network connectivity. It is desired that after a given network problem is resolved, UM
will quickly and automatically reestablish normal operation without deafness.

The right TR strategy for a given deployment can depend heavily on the relative importance of these and other
goals. It is impossible to give a "one size fits all" solution. Most users work with Informatica engineers to design a
custom configuration.

Most users employ a variation on a few basic strategies. Note for the most part, these strategies do not depend
on the specific UDP protocol (Multicast vs. Unicast). Normally Multicast is chosen, except where network or policy
restrictions forbid it.

8.2.1 Default TR

The main characteristics of UM's default TR settings are:

• Multicast UDP.

• Three phases enabled (Initial, Sustaining, Quiescent). Unsolicited TIRs and TQRs nominally last for 65
seconds, although that number can grow as the number of sources or receivers in a context increases.

The default settings can be fine for reasonably small, static deployments, typically not including Wide Area Networks.
(A "static" deployment is one where sources, and receivers are, for the most part, created during system startup,
and deleted during system shutdown. Contrast with a "dynamic" system where applications come and go during
normal operation, with sources and receivers being created and deleted at unpredictable times.)

Advantages:

8.2 UDP-Based Topic Resolution Strategies 109

• Simplicity.

• In a network where sources and receivers are relatively static, the consumption of resources by TR stops
reasonably quickly.

Disadvantages:

• As the numbers of contexts, sources, and receivers grow, the traffic load during the initial phase can be
very intense, leading to packet loss and potential deafness issues. In these cases, the initial phase can be
configured to be less aggressive, or disabled altogether.

• If a network outage lasts longer than 65 seconds, it is possible for new sources and receivers to be deaf to
each other, due to entering their quiescent phases. In these cases, the sustaining phase can be configured
for longer durations.

8.2.2 Query-Centric TR

The main characteristics of Query-centric TR are:

• Unsolicited TIRs are severely limited or disabled. See Disabling Aspects of Topic Resolution.

• TQRs are extended, often to infinity.

Query-centric TR can be useful for large-scale, dynamic systems, especially those that may have many sources for
which there are no receivers during normal operation. For example, in some market data distribution architectures,
many tens of thousands of sources are created, but a fairly small percentage of them have receivers at any given
time. In that case, it is unnecessary to advertise sources on topics that have no receivers.

Note that this strategy does not prevent advertisements. Each TQR will trigger one or more sources to send a TIR
in response.

Advantages:

• For some deployments, can result in significantly reduced TR loading due to removal of TIRs for topics with
no receivers.

Disadvantages:

• To avoid deafness issues, the Query sustaining phase is usually extended, often to infinity. This consumes
CPU and Network bandwidth, and can introduce latency outliers (jitter).

• For topics that have receivers, both TQR and TIR traffic are present. (In contrast, a Advertise-Centric TR
strategy removes the TQRs, but at the expense of advertising all sources, even those that have no receivers.)

8.2.3 Known Query Threshold TR

In a special case of Query-centric TR, certain classes of topics have a specific number of sources. For example,
in point-to-point use cases, a particular topic has exactly one source. As another example, some market data
distribution architectures have two sources for each topic, a primary and a warm standby.

For those topics where it is known how many sources there should be, the configuration option resolution_←↩
number_of_sources_query_threshold (receiver) can be combined with Query-centric TR to great benefit. Con-
figure the receiver to query forever, and configure the query threshold to the number of expected sources. When

110 Architecture

the receiver discovers at least that many sources for the topic, it suppresses queries. Note that if a source exits
and the receiver detects EOS, the number of known sources decreases. If the number drops below the threshold,
queries resume.

For example, consider a market data system with a primary and warm standby source for each topic. Unsolicited ad-
vertisements are disabled (see Disabling Aspects of Topic Resolution), and resolution_number_of_sources←↩
_query_threshold (receiver) is set to 2. The receiver will query until it has discovered two sources, at which point
it will stop sending queries. If a source fails, the receiver resumes sending queries until it again has two sources.

The advantage here is that it is no longer necessary to extend the Sustaining phase forever to avoid deafness.

NOTE: wildcard receivers do not fit well with this model of TR. Wildcard receivers have their own query mechanism;
see Wildcard Receiver Topic Resolution. In particular, there is no wildcard equivalent to the number of sources
query threshold. In a query-centric model, wildcard queries must be extended to avoid potential deafness issues.
However, in most deployments, the number of wildcard receiver objects is small compared to the number of regular
single-topic receivers, so using the Known Query Threshold TR model can still be beneficial.

8.2.4 Advertise-Centric TR

The main characteristics of Advertise-centric TR are:

• Unsolicited TQRs are severely limited or disabled. See Disabling Aspects of Topic Resolution.

• TIRs are extended, often to infinity.

Advertise-centric TR can be useful for large-scale, dynamic systems, especially those that may have very few
sources for which there are no receivers. For example, most order management and routing systems use messaging
in a point-to-point fashion, and every source should have a receiver. In that case, it is unnecessary to extend queries.

Advantages:

• For some deployments, can result in moderate reduced TR loading due to reduction of TQRs.

Disadvantages:

• To avoid deafness issues, the Advertising sustaining phase is usually extended, often to infinity. This con-
sumes CPU and Network bandwidth, and can introduce latency outliers (jitter).

• For topics that have no receivers, TIR traffic is present. (In contrast, a Query-Centric TR strategy removes
the TIRs for topics that have no receivers, but at the expense of introducing both TQRs and TIRs.)

• In a deployment that includes the DRO, some number of TQRs are necessary to inform the Router that
the context is interested in the topic. To avoid deafness issues, it is recommended to extend the Querying
Sustaining Phase, although at a reduced rate.

• If the resolution_no_source_notification_threshold (receiver) feature is used, some number of TQRs are
necessary.

8.3 Message Batching

This section is about source-side batching - publishers batching messages when sending. See also Receive-Side
Batching.

8.3 Message Batching 111

Batching many small messages into fewer network packets decreases the per-message CPU load, thereby increas-
ing throughput. Let's say it costs 2 microseconds of CPU to fully process a message. If you process 10 messages
per second, you won't notice the load. If you process half a million messages per second, you saturate the CPU.
So to achieve high message rates, you have to reduce the per-message CPU cost with some form of message
batching. These per-message costs apply to both the sender and the receiver.

Many people are under the impression that while batching reduces CPU load, it increases message latency. There
are circumstances where this can happen, but it is also true that careful use of batching can result in small latency
increases or none at all. In fact, there are common circumstances where Intelligent Batching will reduce average
latency.

The most common forms of source-side batching employed with UM are:

• Implicit Batching

• Intelligent Batching

• Application Batching

Note that implicit and intelligent batching are not supported for UMQ Brokered Queuing, Smart Sources, or Transport
LBT-SMX.

When using a kernel-bypass network driver (e.g. Solarflare's Onload), there are special considerations when batch-
ing. See Datagram Max Size and Network MTU.

8.3.1 Implicit Batching

With implicit batching, UM automatically batches smaller messages into Transport Session datagrams. The implicit
batching configuration options, implicit_batching_interval (source) (default = 200 milliseconds) and implicit_←↩
batching_minimum_length (source) (default = 2048 bytes) govern UM implicit message batching. Although these
are source options, they actually apply to the Transport Session to which the source was assigned.

See Implicit Batching Options.

See also Source Configuration and Transport Sessions.

UM establishes the implicit batching parameters when it creates the Transport Session. Any sources assigned to
that Transport Session use the implicit batching limits set for that Transport Session, and the limits apply to any and
all sources subsequently assigned to that Transport Session. This means that batched transport datagrams can
contain messages on multiple topics.

Implicit Batching Operation

Implicit Batching buffers messages until:

• the buffer size exceeds the configured implicit_batching_minimum_length (source), or

• the oldest message in the buffer has been in the buffer for implicit_batching_interval (source) milliseconds,
or

• adding another message would cause the buffer to exceed the configured Datagram Max Sizes for the un-
derlying transport type.

When at least one condition is met, UM flushes the buffer, pushing the messages onto the network.

Note that the two size-related parameters operate somewhat differently. When the application sends a message,
the implicit_batching_minimum_length (source) option will trigger a flush after the message is sent. A sent
datagram will typically be larger than the value specified by implicit_batching_minimum_length (source) (hence
the use of the word "minimum"). In contrast, the transport_∗_datagram_max_size option will trigger a flush before
the message is sent. A sent datagram will never be larger than the transport_∗_datagram_max_size option. If both
size conditions apply, the Datagram Max Sizes takes priority.

112 Architecture

It may appear this design introduces significant latencies for low-rate topics. However, remember that Implicit
Batching operates on a Transport Session basis. Typically many low-rate topics map to the same Transport Ses-
sion, providing a high aggregate rate. The implicit_batching_interval (source) option is a last resort to prevent
messages from becoming stuck in the Implicit Batching buffer. If your UM deployment frequently uses the implicit←↩
_batching_interval (source) to push out the data (if the entire Transport Session has periods of inactivity longer
than the value of implicit_batching_interval (source) (defaults to 200 ms), then either the implicit batching options
need to be fine-tuned (reducing one or both), or you should consider an alternate form of batching. See Intelligent
Batching.

The minimum value for the implicit_batching_interval (source) is 3 milliseconds. The actual minimum amount of
time that data stays in the buffer depends on your Operating System and its scheduling clock interval. For example,
on a Solaris 8 machine, the actual time is can be as much as 20 milliseconds. On older Microsoft Windows
machines, the time can be as much as 16 milliseconds. On a Linux 2.6 kernel, the actual time is 3 milliseconds (+/-
1).

Implicit Batching Example

The following example demonstrates how the implicit_batching_minimum_length (source) is actually a trigger
or floor, for sending batched messages. It is sometimes misconstrued as a ceiling or upper limit.

source implicit_batching_minimum_length 2000

1. The first send by your application puts 1900 bytes into the batching buffer, which is below the minimum, so
UM holds it.

2. The second send fills the batching buffer to 3800 bytes, well over the minimum. UM sends it down to the
transport layer, which builds a 3800-byte (plus overhead) datagram and sends it.

3. The sender's Operating System performs IP fragmentation on the datagram to produce packets, and the
receiving Operating System reassembles the datagram.

4. UM reads the datagram from the socket at the receiver.

5. UM parses out the two messages and delivers them to the appropriate topic levels, which deliver the data.

The proper setting of the implicit batching parameters often represents a trade-off between latency and efficiency,
where efficiency affects the highest throughput attainable. In general, a large minimum length setting increases
efficiency and allows a higher peak message rate, but at low message rates a large minimum length can increase
latency. A small minimum length can lower latency at low message rates, but does not allow the message rate to
reach the same peak levels due to inefficiency. An intelligent use of implicit batching and application-level flushing
can be used to implement an adaptive form of batching known as Intelligent Batching which can provide low latency
and high throughput with a single setting.

Implicit Batching Restrictions

• The Smart Sources feature does not support implicit batching.

• The Unicast Immediate Messaging and Multicast Immediate Messaging APIs don't support implicit batching.

• The response APIs associated with the Request/Response Model do not support implicit batching.

8.3.2 Intelligent Batching

Intelligent Batching uses Implicit Batching along with your application's knowledge of the messages it must send. It
is a form of dynamic adaptive batching that automatically adjusts for different message rates. Intelligent Batching
can provide significant savings of CPU resources without adding any noticeable latency.

For example, your application might receive input events in a batch, and therefore know that it must produce a
corresponding batch of output messages. Or the message producer works off of an input queue, and it can detect

8.3 Message Batching 113

messages in the queue. In any case, if the application knows that it has more messages to send without going to
sleep, it simply does normal sends to UM, letting Implicit Batching send only when the buffer meets the implicit_←↩
batching_minimum_length (source) threshold.

However, when the application detects that it has no more messages to send after it sends the current message,
it sets the FLUSH flag (LBM_MSG_FLUSH) when sending the message which instructs UM to flush the implicit
batching buffer immediately by sending all messages to the transport layer. Refer to lbm_src_send() in the UM API
documentation (UM C API, UM Java API, or UM .NET API) for all the available send flags.

When using Intelligent Batching, it is usually advisable to increase the implicit_batching_minimum_length
(source) option to 10 times the size of the average message, to a maximum value of 8196. This tends to strike a
good balance between batching length and flushing frequency, giving you low latencies across a wide variation of
message rates.

8.3.3 Application Batching

In all of the above situations, your application sends individual messages to UM and lets UM decide when to push
the data onto the wire (often with application help). With application batching, your application buffers messages
itself and sends a group of messages to UM with a single send. Thus, UM treats the send as a single message.
On the receiving side, your application needs to know how to dissect the UM message into individual application
messages.

This approach is most useful for Java or .NET applications where there is a higher per-message cost in delivering an
UM message to the application. It can also be helpful when using an event queue to deliver received messages. This
imposes a thread switch cost for each UM message. At low message rates, this extra overhead is not noticeable.
However, at high message rates, application batching can significantly reduce CPU overhead.

8.3.4 Explicit Batching

Warning

The Explicit Batching feature is deprecated and may be removed in a future release. Users are advised
to use Implicit Batching or Intelligent Batching.

UM allows you to group messages for a particular topic with explicit batching. The purpose of grouping messages
with explicit batching is to allow the receiving application to detect the first and last messages of a group without
needing to examine the message contents.

Note

Explicit Batching does not guarantee that all the messages of a group will be sent in a single datagram.

Warning

Explicit Batching does not provide any kind of transactional guarantee. It is possible to receive some messages
of a group while others are unrecoverably lost. If the first and/or last messages of a group are unrecoverably
lost, then the receiving application will not have an indication of start and/or end of the group.

When your application sends a message (lbm_src_send()) it may flag the message as being the start of a batch (L←↩
BM_MSG_START_BATCH) or the end of a batch (LBM_MSG_END_BATCH). All messages sent between the start
and end are grouped together. The flag used to indicate the end of a batch also signals UM to send the message
immediately to the implicit batching buffer. At this point, Implicit Batching completes the batching operation. UM
includes the start and end flags in the message so receivers can process the batched messages effectively.

114 Architecture

Unlike Intelligent Batching which allows intermediate messages to trigger flushing according to the implicit_←↩
batching_minimum_length (source) option, explicit batching holds all messages until the batch is completed.
This feature is useful if you configure a relatively small implicit_batching_minimum_length (source) and your
application has a batch of messages to send that exceeds the implicit_batching_minimum_length (source). By
releasing all the messages at once, Implicit Batching maximizes the size of the network datagrams.

Explicit Batching Example

The following example demonstrates explicit batching.

source implicit_batching_minimum_length 8000

1. Your application performs 10 sends of 100 bytes each as a single explicit batch.

2. At the 10th send (which completes the batch), UM delivers the 1000 bytes of messages to the implicit batch
buffer.

3. Let's assume that the buffer already has 7899 bytes of data in it from other topics on the same Transport
Session

4. UM adds the first 100-byte message to the buffer, bringing it to 7999.

5. UM adds the second 100-byte message, bringing it up to 8099 bytes, which exceeds implicit_batching_←↩
minimum_length (source) but is below the 8192 Datagram Max Sizes.

6. UM sends the 8099 bytes (plus overhead) datagram.

7. UM adds the third through tenth messages to the implicit batch buffer. These messages will be sent when
either implicit_batching_minimum_length (source) is again exceeded, or the implicit_batching_interval
(source) is met, or a message arrives in the buffer with the flush flag (LBM_MSG_FLUSH) set.

8.3.5 Adaptive Batching

Warning

The Adaptive Batching feature is deprecated and may be removed in a future release. Users are advised
to use Implicit Batching or Intelligent Batching.

8.4 Message Fragmentation and Reassembly

Message fragmentation is the process by which an arbitrarily large message is split into a series of smaller pieces
or fragments. Reassembly is the process of putting the pieces back together into a single contiguous message.
Ultra Messaging performs UM fragmentation and reassembly on large user messages. When a user message is
small enough, it fits into a single fragment.

Note that there is another layer of fragmentation and reassembly that happens in the TCP/IP network stack, usually
by the host operating system. This IP fragmentation of datagrams into packets happens when sending datagrams
larger than the MTU of the network medium, usually 1500 bytes. However, this fragmentation and reassembly hap-
pens transparently to and independently of Ultra Messaging. In the UM documentation, "fragmentation" generally
refers to the higher-level UM fragmentation.

Some users of UM have configured their network and systems for "jumbo frames", which provides an MTU of up
to 9000 bytes. This can provide efficiency benefits, but is not practical for most users. This document assumes an
MTU of 1500.

https://en.wikipedia.org/wiki/Maximum_transmission_unit

8.4 Message Fragmentation and Reassembly 115

Another term that Ultra Messaging borrows from networking is "datagram". In the UM documentation, a datagram
is a unit of data which is sent to the transport (network socket or shared memory). In the case of network-based
transport types, this refers to a buffer which is sent to the network socket in a single system call.

(Be aware that for UDP-based transport types (LBT-RM and LBT-RU), the UM datagrams are in fact sent as UDP
datagrams. For non-UDP-based transports, the use of the term "datagram" is retained for consistency.)

The mapping of message fragments to datagrams depends on three factors:

1. User message size,

2. Configured Datagram Max Sizes for the source's transport type, and

3. Use of the Implicit Batching feature.

When configured, the source implicit batching feature combines multiple small user messages into a single data-
gram no greater than the size of the transport type's configured Datagram Max Sizes.

Large user messages can be split into N fragments, the first N-1 of which are approximately the size of the transport
type's configured Datagram Max Sizes, and the Nth fragment containing the left-over bytes.

A subscriber's receiver callback can get information about a message's fragments by calling lbm_msg_retrieve_←↩
fragment_info().

A publisher can test an individual sent message to see if UM fragmented it via the LBM_SRC_EVENT_SEQU←↩
ENCE_NUMBER_INFO source event, which is enabled by sending the message using the lbm_src_send_ex()
function and setting the LBM_SRC_SEND_EX_FLAG_SEQUENCE_NUMBER_INFO flag or LBM_SRC_SEND←↩
_EX_FLAG_SEQUENCE_NUMBER_INFO_FRAGONLY flag.

Note

The SMX transport type does not support fragmentation.

8.4.1 Datagram Max Sizes

Each transport type has its own default maximum datagram size. For example, LBT-RM and LBT-RU have 8K as
their default maximum datagram sizes, while TCP and IPC have 64K as their default maximums. These different
defaults represent optimal values for the different transport types, and in a simple UM network, it is usually not
necessary to change them.

The configuration options are:

• transport_tcp_datagram_max_size (context)

• transport_lbtrm_datagram_max_size (context)

• transport_lbtru_datagram_max_size (context)

• transport_lbtipc_datagram_max_size (context)

• transport_lbtsmx_datagram_max_size (source) - note this is a source-scoped option; the others are
context-scoped.

Note that the transport's datagram max size option limits the size of the UM payload, and does not include overhead
specific to the underlying transport type. For example, transport_lbtrm_datagram_max_size (context) does not
include the UDP, IP, or packet overhead. The actual network frame can be larger than than the configured datagram
max size.

116 Architecture

Attention

When a DRO is being used in a UM network, it is usually advisable to override the different transports' data-
gram max sizes to make them all the same. This should be done for all applications and UM daemons, in all
Topic Resolution Domains (TRDs). See DRO Protocol Conversion.

8.4.2 Datagram Max Size and Network MTU

By default, when a UM source is building an outgoing message, it reserves space for the largest possible UM
header. This fixed-size reservation is subtracted from the configured datagram max size to determine how much
user data can be added to the datagram. Since most UM messages do not need a large UM header, there can be
cases where a user message that could fit in a single datagram without exceeding the configured datagram limit will
instead be split into two fragments, each carried in a datagram that is significantly below the configured datagram
limit.

When UM is configured with a datagram max size of 8K or more, this space inefficiency does not pose a noticeable
problem since the header reservation is a small percentage of the full 8K. However, for users who want to avoid
IP fragmentation, the datagrams should be limited to 1472 bytes. In this case, the space inefficiency becomes
objectionable; packets will often not be as full as they should be.

For most networks, Informatica recommends setting the Datagram Max Sizes to a minimum of 8K, and allowing
the operating system to perform IP fragmentation. Some network engineers have learned that IP fragmentation can
place a burden on network hardware (routers and switches), but this is true only if the network network hardware has
to perform the fragmentation. For most modern networks, the entire fabric is designed to handle a common MTU,
typically of 1500 bytes. Thus, a UDP datagram larger than 1500 bytes is fragmented once by the sending host's
operating system, and the switches and routers only need to forward the already-fragmented packets. Switches and
routers can forward fragmented packets without burden.

There are typically two circumstances where users should set UM's Datagram Max Sizes to a smaller value:

• If kernel bypass network drivers are being used which either don't handle IP fragments at all, or does handle
them but only via the "slow path" (not accelerated).

• If the smallest MTU across a network path is smaller than the MTU of a host's network interface. For example,
your hosts typically have an Ethernet connection with a 1500-byte MTU. But a WAN link might have a much
smaller MTU. In that case, UM's Datagram Max Sizes should be set to a value that keeps all packets within
the WAN link's MTU. Note that in modern networks, it is rare to find links with an MTU below 1500.

In both cases, the space inefficiency caused by reserving space for the largest possible UM header is objectionable.

The preferred solution is to use UM version 6.14 or beyond and enable the Dynamic Fragmentation Reduction
feature.

For pre-6.14 UM, it can be possible to artificially increase the Datagram Max Sizes to a value above the desired
limit. See Setting Datagram Max Sizes High.

Note

UM version 6.12 changed the amount of space that Smart Sources reserve for the UM header. This can mean
that pre-6.12 smart source users upgrading to 6.12 or beyond may need to change their configuration. See
Smart Source Header Size Change.

8.4.3 Setting Datagram Max Sizes High

There are cases when the Datagram Max Sizes must be set to a relatively small value to prevent IP fragmentation.
However, as described in Datagram Max Size and Network MTU, this is space inefficient and can result in more UM

8.4 Message Fragmentation and Reassembly 117

fragmentation than is necessary.

Some users set their datagram max size to a value above the desired limit, knowing that LBT-RM and LBT-RU will
reserve a large number of bytes for the largest possible UM header. This allows traffic to more-efficiently fill packets,
and therefore avoid unnecessary UM fragmentation. However, this technique is imperfect.

Setting the datagram max size above the desired limit technically gives UM permission to send a datagram up to
that size. You cannot always count on the largest possible header space being reserved. In practice with a restricted
use case (e.g. flushing every message), LBT-RM data messages may never go above the desired limit. But TSNI
messages can reach the full datagram max size, and so can implicitly batched messages.

Also, keep in mind that UM does not publish the internal reserved size, and does not guarantee that the reserved
size will stay the same. Users who use this technique must determine their optimal datagram max size empirically
through extensive testing within the constraints of their use cases.

Starting with UM version 6.14, Informatica recommends that kernel bypass users make use of the Dynamic Frag-
mentation Reduction feature. This allows setting the datagram max size to 1472 to prevent IP fragmentation, while
ensuring that data messages are not unnecessarily fragmented.

8.4.4 Changing Datagram Max Size

For UM versions prior to 6.17, changing a UM network's datagram max size required changing all UM-based com-
ponents (applications and UM daemons) at the same time. You couldn't gradually change some components to a
different size while leaving other components are their original size. This is because if a component with a larger
datagram max size sends a datagram larger than a subscriber's datagram max size, the subscriber's receive buffer
will be insufficient to hold the datagram, resulting in unrecoverable loss. By changing all components at the same
time, a sender will fragment large messages to the proper size for subscribers' receive buffers.

This "all at once" requirement for changing the datagram max size presents a challenge to larger organizations that
desire to migrate towards kernel bypass technology (like Solarflare's Onload driver).

Starting with UM version 6.17, a component can be configured for different datagram max sizes for sending and re-
ceiving. See transport_lbtrm_receiver_datagram_max_size (context), transport_lbtrm_source_datagram_←↩
max_size (context), transport_lbtru_receiver_datagram_max_size (context), and transport_lbtru_source_←↩
datagram_max_size (context). Note that a receiver's datagram max size can be set larger than a source's; it is
reliable to have a larger receive size, although it does use more memory.

So, for example, in the case of wanting to reduce the datagram max size to accommodate kernel bypass drivers,
you would first reduce all publishers' "source" datagram max size to 1472 (Dynamic Fragmentation Reduction is
recommended). This can be done gradually, small groups of publishers at a time, concentrating first on those
publishers that need kernel bypass as a high priority.

Once all components have their source datagram max sizes reduced, then the receiver datagram max size can be
reduced to the same value.

It is less common, though still supported, to increase the datagram max size using the opposite process: first
increase the receivers datagram max size, then increase the source.

Many users choose not to accelerate UDP-based topic resolution, so it may not be necessary to change the TR
datagram max size. But should it be necessary, the same principles apply: change the TR receiver's datagram
size with resolver_receiver_datagram_max_size (context) and the sender's with resolver_source_datagram←↩
_max_size (context).

8.4.5 Dynamic Fragmentation Reduction

As described in Datagram Max Size and Network MTU, UM versions prior to 6.14 reserved an unnecessarily large
size in each datagram for a worst-case header, resulting in the LBT-RM and LBT-RU protocols performing UM

118 Architecture

fragmentation at message sizes where they should not have to. In an effort to more-fully fill data packets, some
users set their Datagram Max Sizes above an MTU, but this can result in IP fragmentation.

Starting with UM version 6.14, enabling dynamic_fragmentation_reduction (context) lets UM's transport proto-
cols more-fully utilize the configured datagram max size, thus avoiding unnecessary UM and IP fragmentation. This
option is typically only of interest to users of LBT-RM and/or LBT-RU who need to avoid IP fragmentation, such as
users of a kernel-bypass driver.

This allows the user to set the desired transport's datagram max size option to 1472, which prevents IP fragmenta-
tion on the transport session, while still efficiently filling the packets to close to the MTU.

Enabling Dynamic Fragmentation Reduction

Users of kernel bypass drivers sometimes set their datagram max sizes well above 1472. This avoids inefficient
filling of packets, but still carries the risk that some messages will trigger IP fragmentation.

To use the Dynamic Fragmentation Reduction feature:

context dynamic_fragmentation_reduction 1
context transport_lbtrm_datagram_max_size 1472
context transport_lbtru_datagram_max_size 1472
Technically, only RM and RU matter. But when DROs are present, allow
protocol conversion by making all transports the same.
context transport_tcp_datagram_max_size 1472
context transport_lbtipc_datagram_max_size 1472
source transport_lbtsmx_datagram_max_size 1472

DRO users see Protocol Conversion.

Upgrade Path

The Dynamic Fragmentation Reduction feature is designed to allow a gradual upgrade. Older versions of UM can
interoperate with 6.14 and beyond using Dynamic Fragmentation Reduction, but certain requirements must be met.

Users interested in Dynamic Fragmentation Reduction are typically users of kernel-bypass drivers who want to set
their datagram max sizes to 1 MTU. For efficiency purposes, they've empirically determined an optimal value which
is noticeably higher than a network MTU. A typical value might be between 1800 and 1900.

During the upgrade period, you will be running upgraded UM programs (version 6.14 or beyond) with Dynamic
Fragmentation Reduction enabled, and datagram max sizes set to 1472. These will successfully interoperate with
older UM versions running with datagram max sizes between 1800 and 1900.

The exception to this rule is the DRO. In a mixed-version environment, the DRO should always be configured with
the largest datagram max size values used in your network. If an older version application is set to 1800, a DRO
running 6.14 or beyond should also be configured for 1800.

See also Protocol Conversion.

8.5 Ordered Delivery

With the Ordered Delivery feature, a receiver's Delivery Controller can deliver messages to your application in se-
quence number order or arrival order. This feature can also reassemble fragmented messages or leave reassembly
to the application. You can set Ordered Delivery via UM configuration option to one of three modes:

• Sequence Number Order, Fragments Reassembled

• Arrival Order, Fragments Reassembled

• Arrival Order, Fragments Not Reassembled (deprecated)

See ordered_delivery (receiver)

8.5 Ordered Delivery 119

Note that these ordering modes only apply to a specific topic from a single publisher. UM does not ensure ordering
across different topics, or on a single topic across different publishers. See Message Ordering for more information.

8.5.1 Sequence Number Order, Fragments Reassembled (Default Mode)

In this mode, a receiver's Delivery Controller delivers messages in sequence number order (the same order in
which they are sent). This feature also guarantees reassembly of fragmented large messages. To enable sequence
number ordered delivery, set the ordered_delivery (receiver) configuration option as shown:

receiver ordered_delivery 1

Please note that ordered delivery can introduce latency when packets are lost (new messages are buffered waiting
for retransmission of lost packets).

8.5.2 Arrival Order, Fragments Reassembled

This mode delivers messages immediately upon reception, in the order the datagrams are received, except for
fragmented messages, which UM holds and reassembles before delivering to your application. Be aware that
messages can be delivered out of order, either because of message loss and retransmission, or because the
networking hardware re-orders UDP packets. Your application can then use the sequence_number field of lbm_←↩
msg_t objects to order or discard messages. But be aware that the sequence number may not always increase by
1; application messages larger than the Datagram Max Sizes will be split into fragments, and each fragment gets
its own sequence number. With the "Arrival Order, Fragments Reassembled" mode of delivery, UM will reassemble
the fragments into the original large application message and deliver it with a single call to the application receiver
callback. But that message's sequence_number will reflect the final fragment.

To enable this arrival-order-with-reassembly mode, set the following configuration option as shown:

receiver ordered_delivery -1

8.5.3 Arrival Order, Fragments Not Reassembled

Warning

This mode of delivery is deprecated and may be removed in a future version. The user is advised to use mode
-1.

This mode allows messages to be delivered to the application immediately upon reception, in the order the data-
grams are received. If a message is lost, UM will retransmit the message. In the meantime, any subsequent
messages received are delivered immediately to the application, followed by the dropped packet when its retrans-
mission is received. This mode has the lowest latency.

With this mode, the receiver delivers messages larger than the transport's Datagram Max Sizes as individual frag-
ments. The C API function, lbm_msg_retrieve_fragment_info() returns fragmentation information for the message
you pass to it, and can be used to reassemble large messages. (In Java and .NET, LBMMessage provides methods
to return the same fragment information.) Note that reassembly is not required for small messages.

To enable this no-reassemble arrival-order mode, set the following configuration option as shown:

receiver ordered_delivery 0

When developing message reassembly code, consider the following:

120 Architecture

• Message fragments don't necessarily arrive in sequence number order.

• Some message fragments may never arrive (unrecoverable loss), so you must time out partial messages.

Arrival order delivery without reassembly is not compatible with the following UM features:

• Transport LBT-SMX

• Message Properties

8.6 Loss Detection Using TSNIs

A TSNI (Topic Sequence Number Information) message is an internal UM message sent by a source to inform
receivers of the topic-level sequence number of the last message sent.

When a source enters an idle period during which it has no data traffic to send (5 seconds by default), that source
will send one or more TSNI messages. The TSNI lets receivers know that the source is still active and also reminds
receivers of the sequence number of the last message. This helps receivers become aware of any lost messages
prior to the TSNI.

Sources send TSNIs over the same transport and on the same topic as normal data messages. You can set a time
value of the TSNI interval with configuration option transport_topic_sequence_number_info_interval (source).
You can also set a time value for the duration that the source sends contiguous TSNIs with configuration option
transport_topic_sequence_number_info_active_threshold (source), after which time the source stops issuing
TSNIs.

8.7 Receiver Keepalive Using Session Messages

When an LBT-RM, LBT-RU, or LBT-IPC Transport Session enters an inactive period during which it has no messages
to send, the UM context sends Session Messages (SMs). The first SM is sent after 200 milliseconds of inactivity
(by default). If the period of inactivity continues additional SMs will be sent at increasing intervals, up to a maximum
interval of 10 seconds (by default).

SMs serve three functions:

1. Keepalive - SMs inform receivers that transport sessions are still alive. If a receiver stops getting any kind of
traffic for a transport session, after a configurable period of inactivity the receiver will time out the transport
session and will assume that it has died.

2. Tail loss - for UDP-based transport sessions (LBT-RM and LBT-RU), SMs are used to detect packet loss,
specifically "tail loss", and trigger recovery.

3. Multicast Flows - for multicast-based transport sessions (LBT-RM), SMs serve to keep the network hardware
multicast flows "hot", so that replication and forwarding of multicast packets is done in hardware at line speed.

Any other UM message on a transport session will suppress the sending of SMs, including data messages and
TSNIs. (Topic Resolution messages are not sent on the transport session, and will not suppress sending SMs.) You
can set time values for SM interval and duration with configuration options specific to their transport type.

8.8 Extended Messaging Example 121

8.8 Extended Messaging Example

This section illustrates many of the preceding concepts using an extended example of message passing. This
example uses LBT-RM, but for the purposes of this example, LBT-RU operates in a similar manner.

The example starts out with two applications, Publisher and Subscriber:

The publisher has created three source objects, for topics "A", "B", and "C" respectively. All three sources are
mapped to a single LBT-RM Transport Session by configuring them for the same multicast group address and
destination port.

The Subscriber application creates two receivers, for topics "A" and "B".

The creation of sources and receivers triggers Topic Resolution, and the subscriber joins the Transport Session
once the topics are resolved. To be precise, the first receiver to discover a source triggers joining the Transport
Session and creating a Delivery Controller; subsequent source discoveries on the same Transport Session don't
need to join; they only create Delivery Controllers. However, until such time as one or more publishing sources

122 Architecture

send their first topic-layer message, the source Transport Session sends no datagrams. The Transport Session is
created, but has not yet "started".

8.8.1 Example: First Message

In this example, the first message on the Transport Session is generated by the publishing application sending an
application message, in this case for topic "A".

The send function is passed the "flush" flag so that the message is sent immediately. The message is assigned a
topic-level sequence number of 0, since it is the application's first message for that topic. The source-side transport
layer wraps the application message in a datagram and gives it transport sequence number 0, since it is the first
datagram sent on the Transport Session.

On the receive side, the first datagram (of any kind) on the Transport Session informs the transport layer that the
Transport Session is active. The transport layer informs all mapped Delivery Controller instances that the Transport
Session has begun. Each Delivery Controller delivers a Beginning Of Session event (BOS) to the application
callback for each receiver. The passed-in lbm_msg_t structure has event type equal to LBM_MSG_BOS.

Note that the receiver for topic B gets a BOS even though no messages were received for it; the BOS event informs
the receivers that the Transport Session is active, not the topic.

Finally, the transport layer passes the received datagram to the topic-A Delivery Controller, which passes the ap-
plication message to the receiver callback. The passed-in lbm_msg_t structure has event type equal to LBM←↩
_MSG_DATA, and a topic-level sequence_number of 0. (The transport sequence number is not available to the
application.)

8.8.2 Example: Batching

The publishing application now has two more messages to send. To maximize efficiency, it chooses to batch the
messages together:

8.8 Extended Messaging Example 123

The publishing application sends a message to topic "B", this time without the "flush" flag. The source-side topic
layer buffers the message. Then the publishing application sends a message to topic "C", with the "flush" flag. The
source-side transport layer wraps both application messages into a single datagram and gives it transport sequence
number 1, since it is the second datagram sent on the Transport Session. But the two topic level sequence numbers
are 0, since these are the first messages sent to those topics.

Note that almost no latency is added by batching, so long as the second message is ready to send immediately after
the first. This method of low-latency batching is called Intelligent Batching, and can greatly increase the maximum
sustainable throughput of UM.

The subscriber gets the datagram and delivers the topic "B" message to the application receiver callback. It's
topic-level sequence_number is 0 since it was the first message sent to the "B" source. However, the subscriber
application has no receiver for topic "C", so the message "C" is simply discarded.

8.8.3 Example: UM Fragmentation

The publishing application now has a topic "A" message to send that is larger than the maximum allowable data-
gram.

The source-side topic layer splits the application message into two fragments and assigns each fragment its own
topic-level sequence number (1 for the first, 2 for the second). The topic-layer gives each fragment separately to the
transport layer, which wraps each fragment into its own datagram, consuming two transport sequence numbers (2
and 3). Note that the transport layer does not interpret these fragments as parts of a single larger message; from
the transport's point of view, this simply two datagrams being sent.

The receive-side transport layer gets the datagrams and hands them to the Topic-A Delivery Controller (receiver-side
topic layer). The Delivery Controller reassembles the fragments in the correct order, and delivers the message to
the application's receiver callback in a single call. The sequence_number visible to the application is the topic-level
sequence number of the last fragment (2 in this example).

Note that the application receiver callback never sees a topic sequence_number of 1 for topic "A". It saw 0 then
2, with 1 seemingly missing. However, the application can call lbm_msg_retrieve_fragment_info() to find out the
range of topic sequence numbers consumed by a message.

The behavior described above is for the default ordered_delivery (receiver) equal to 1. see Ordered Delivery for
alternative behaviors.

124 Architecture

8.8.4 Example: Loss Recovery

Now the publishing application sends a message to topic C. But the datagram is lost, so the receiver does not see
it. Also, right after the send to topic C, the application deletes the sources for topics B and C.

Deleting a source shortly after sending a message to it is contrary to best practice. Applications should pause
between the last send to a topic and the deletion of the topic, preferable a delay of between 5 and 10 seconds. This
gives receivers an opportunity to attempt recovery if the last message sent was lost. We delete the sources here to
illustrate an important point.

Note that although the datagram was lost and two topics were deleted, nothing happens. The receiver does not
request a retransmission because the receiver has no idea that the source sent a message. Also, the source-side
topic layer does not explicitly inform the receiver that the topics are deleted.

Continuing the example, the publishing application sends another message, this time a message for topic A ("Topic-
A, topic sqn=3"):

There are two notable events here:

1. The "A" message is delivered immediately to the topic "A" receiver, even though earlier data was lost and not
yet retransmitted. If this were TCP, the kernel would buffer and prevent delivery of subsequent data until the
lost data is recovered.

2. The reception of that "A" message with transport sequence number 5 informs the receive-side transport layer
that transport datagram #4 was lost. So it initiates a NAK/retransmission cycle. When the lost datagram is
retransmitted, the receiver throws it away since it is for an unsubscribed topic.

You might wonder: why NAK and retransmit datagram 4 if the subscriber is just going to throw it away? The
subscriber NAKs it because it has no way of knowing which topic it contains; if it were topic B, then it would need
that datagram. The publisher retransmits it because it does not know which topics the subscriber is interested in. It
has no way of knowing that the subscriber will throw it away.

Regarding message "Topic-A, sqn=3", what if the publisher did not have that message to send? For example, what
if that "Topic-C, sqn=1" message were the last one for a while? This is called "tail loss" since the lost datagram is

8.8 Extended Messaging Example 125

not immediately followed by a successful datagram. The subscriber has no idea that messages were sent but lost.
In this case, the source-side transport layer would have sent a transport-level "session message" after about 200
ms of inactivity on the Transport Session. That session message would inform the receiver-side transport layer that
datagram #5 was lost, and would trigger the NAK/retransmission.

Finally, note that the message for topic-C was retransmitted, even though the topic-C source was deleted. This is
because the deletion of a source does not purge the transport layer's retransmission buffer of datagrams from that
source. However, higher-level recovery mechanisms, such as late join and OTR, are no longer possible after the
source is deleted. Also, if all sources on a Transport Session are deleted, the Transport Session itself is deleted,
which makes even transport-level retransmission impossible. (Only Persistence allows recovery after the transport
session is deleted.)

8.8.5 Example: Unrecoverable Loss

The previous examples assume that events are happening in fairly rapid succession. In this example of unrecover-
able loss, significantly longer time periods are involved.

Unrecoverable loss is what happens when UM tries to recover the lost data but it is unable to. There are many
possible scenarios which can cause recovery efforts fail, most of which involve a massive overload of one or more
components in the data flow.

To simplify this example, let's assume that, starting now, all NAKs are blocked by the network switch. If the publisher
never sees the NAKs, it assumes that all datagrams were received successfully and does not retransmit anything.

At T=0, the message "Topic-A, sqn=4" is sent, but not received. Let's assume that the publisher has no more
application messages to send for a while. With every application message sent, the source starts two activity
timers: a transport-level "session" timer, and a topic-level "TSNI" timer. The session timer is for .2 seconds (see

126 Architecture

transport_lbtrm_sm_minimum_interval (source)), and the TSNI timer is for 5 seconds (see transport_topic_←↩
sequence_number_info_interval (source)).

At T=0.2, the session timer expires and the source-side transport layer sends a session message. When the
receive-side transport layer sees the session message, it learns that transport datagram #6 was lost. So it starts
two receive-side transport-level timers: "NAK backoff" and "NAK generation". NAK backoff is shown here as .05
seconds, but is actually randomized between .025 and .075 (see transport_lbtrm_nak_initial_backoff_interval
(receiver). The NAK generation is 10 seconds (see transport_lbtrm_nak_generation_interval (receiver)).

At T=0.25, the NAK backoff timer expires. Since the transport receiver still has not seen datagram #6, it sends a
NAK. However, we are assuming that all NAKs are blocked, so the transport source never sees it. Over the next∼5
seconds, the source will send several more session messages and the receiver will send several more NAKs (not
shown).

At T=5, the TSNI timer set by the source at T=0 expires. Since no application messages have been sent since
then, the source sends a TSNI message for topic "A". This informs the Delivery Controller that it lost the message
"Topic-A, sqn=4". However, the receive-side Delivery Controller (topic layer) does not initiate any recovery activity.
It only sets a topic-level timer for the same amount of time as the transport's NAK generation timer, 10 seconds.
The Delivery Controller assumes that the transport layer will do the actual data recovery.

At T=10.2, the receive-side transport layer's NAK generation timer (set at T=0.2) finally expires; the transport layer
now considers datagram #6 as unrecoverable loss. The transport layer stops sending NAKs for that datagram, and
it increments the receive-side transport statistic lbm_rcv_transport_stats_lbtrm_t_stct::unrecovered_tmo. Note
that it does not deliver an unrecoverable loss event to the application.

Over the next∼5 seconds, the Delivery Controller continues to wait for the missing message to be recovered by the
transport receiver, but the transport receiver has already given up. You might wonder why the transport layer doesn't
inform the Delivery Controller that the lost datagram was unrecoverable loss. The problem is that the transport layer
does not know the contents of the lost datagram, and therefore does not know which topic to inform. That is why the
Delivery Controller needs to set its own NAK generation timer at the point where it detects topic-level loss (at T=5).

Note that had sources src-B and src-C not been deleted earlier, messages sent to them could have been success-
fully received and processed during this entire 15-second period. However, any subsequent messages for topic "A"
would need to be buffered until T=15. After the unrecoverable loss event is delivered for topic A sequence_number
4, subsequently received and buffered messages for topic "A" are delivered.

8.8.6 Example: Transport Deletion

During the previous 15 seconds, the source-side had sent a number of topic-level TSNI (for topic A) and transport-
level session messages. At this point, the publishing application deletes source "A". Since sources "B" and "C" were
deleted earlier, "A" was the last source mapped to the Transport Session. So UM deletes the Transport Session.

Note that no indication is sent from the source side to inform receivers of the removal of the sources, nor the

8.8 Extended Messaging Example 127

Transport Session. So the receive-side transport layer has to time out the Transport Session after 60 seconds of
inactivity (see transport_lbtrm_activity_timeout (receiver)).

The receive-side transport layer then informs both Delivery Controllers of the End Of Session event, which the
Delivery Controllers pass onto the application receiver callback for each topic. The lbm_msg_t structure has an
event type of LBM_MSG_EOS. The delivery controllers and the receive-side transport layer instance are then
deleted.

However, note that the receiver objects will continue to exist. They are ready in case another publishing application
starts up and creates sources for topics A and/or B.

128 Architecture

Chapter 9

Application Design Principles

9.1 UM Monitoring

For an Ultra Messaging deployment, "monitoring" is the process of overseeing the operation of UM and the re-
sources it uses to determine its health and performance.

Informatica strongly recommends that users of Ultra Messaging actively monitor its operation.

Monitoring is addressed in depth in the Operations Guide; see Monitoring Introduction. From an application
design point of view, you should decide on a monitoring approach before you start coding your applications.

In particular, implement the recommendations related to the Application Log File.

9.2 Message Reception

Applications receive messages from UM via application callback. The application registers its callback function
with UM during the creation of the Receiver Object. As messages are received, the application's receiver callback
function is called, passing in the received message.

Note: there are events other than message reception that can trigger calls to the application's receiver callback.
Those other event types are not covered in this section (see lbm_msg_t_stct::type).

At a high level, there are three common approaches to handling received messages:

1. Message is fully processed by the application's receiver callback, called by a context or XSP thread. This is
typically the most efficient approach.

2. Message is fully processed by the application's receiver callback, called by an event queue dispatch thread.
This is a simple method to move message processing to a different thread.

3. Message is retained by the receiver callback for further processing by a different application thread.

For example code demonstrating message reception best practices, see the API language:

• C Message Reception

• Java Message Reception

130 Application Design Principles

• .NET Message Reception

9.2.1 C Message Reception

C: Message Is Fully Processed by the Application's Receiver Callback, Called by a Context or XSP Thread

int my_receiver_callback(lbm_rcv_t *rcv, lbm_msg_t *msg, void *clientd)
{

switch (msg->type) {
case LBM_MSG_DATA:

/* Process "msg->len" bytes in "msg->data". */
...

break;

/* Handle other receiver events. */
} /* switch */

/* No need to delete message (C API deletes by default). */
return 0;

} /* my_receiver_callback */

Important rules regarding the receiver callback function when called by a context/XSP thread:

• The function must return 0.

• The passed-in message must not be modified.

• The function should not perform any operation that might be time consuming or put the thread to sleep (block).
This is because any delays in your callback prevents the context thread from servicing its sockets, increasing
the risk of packet loss.

• If the receiver callback sends a message, non-blocking sends must be used (see LBM_SRC_NONBLOCK).
The code should be written to handle a send failure of LBM_EWOULDBLOCK.

• It is not allowed to create/delete sources or receivers, or subscribe/unsubscribe from a Spectrum channel
from a callback function executed by a context/XSP thread.

• You may schedule UM timers.

If this is a Persistent receiver, see Persistence Message Consumption.

C: Message Is Fully Processed by the Application's Receiver Callback, Called by an Event Queue Dispatch
Thread

The code is identical to the context/XSP thread case above.

The rules are similar, with some important differences (in bold):

• The function must return 0.

• The passed-in message must not be modified.

• The application is permitted to perform operations that are time consuming and/or blocking, as long
as the average message processing rate is greater than the average message sending rate. Any
temporary delays will buffer messages in the event queue.

• Blocking or non-blocking sends may be used, according to the application's preferences.

• You may create/delete sources or receivers, or subscribe/unsubscribe from a Spectrum channel.
However, the receiver which is delivering the current message must not be deleted.

• You may schedule UM timers.

9.2 Message Reception 131

• Informatica strongly recommends monitoring event queue length. See Event Queue Monitor for more infor-
mation.

If this is a Persistent receiver, see Persistence Message Consumption.

C: Message Is Retained by the Receiver Callback for Further Processing by a Different Application Thread

int my_receiver_callback(lbm_rcv_t *rcv, lbm_msg_t *msg, void *clientd)
{

int err, more_processing_needed;

switch (msg->type) {
case LBM_MSG_DATA:

more_processing_needed = my_process_received_message(msg);
if (more_processing_needed) {

err = lbm_msg_retain(msg); /* Check and handle errors. */
my_save_message_for_more_processing(msg);

}
break;

/* Handle other receiver events. */
} /* switch */

return 0;
} /* my_receiver_callback */

...

void my_additional_processing(lbm_msg_t *msg)
{

int err;

/* Process "msg->len" bytes in "msg->data". */
...

/* Tell UM: finished with "msg". */
err = lbm_msg_delete(msg);
/* Check and handle errors. */

} /* my_additional_processing */

This demonstrates the use of:

• lbm_msg_retain()

• lbm_msg_delete()

By default, when a receiver callback returns, the UM message is implicitly deleted. To prevent that from happening,
the message must be "retained". The application must ensure that every message retained is eventually deleted.

The my_save_message_for_more_processing() function is just whatever you use to transfer the message to your
processing thread. The my_additional_processing() function is typically called by your thread to process the mes-
sage.

The rules for the message processing code are the same as the event queue case (above).

If this is a Persistent receiver, see Persistence Message Consumption.

9.2.2 Java Message Reception

Java: Message Is Fully Processed by the Application's Receiver Callback, Called by a Context or XSP
Thread

public int onReceive(Object cbArg, LBMMessage msg)
{

try {
switch (msg.type())
{

case LBM.MSG_DATA:
ByteBuffer message = msg.dataBuffer();
long msgLen = msg.dataLength();

132 Application Design Principles

// Process "msgLen" bytes in "message".
...

// Tell UM: finished with "msg".
msg.dispose();
break;

/* Handle other receiver events. */
} /* switch */

} catch (Exception e) {
/* Handle exception. */

}
return 0;

} /* onReceive */

This demonstrates the use of:

• com.latencybusters.lbm.LBMMessage.dataBuffer()

• com.latencybusters.lbm.LBMMessage.dataLength()

• com.latencybusters.lbm.LBMMessage.dispose()

These functions prevent unnecessary garbage and are strongly recommended by Informatica (see Zero Object
Delivery).

Important rules regarding the receiver callback function when called by the context thread:

• The function must return 0.

• The function must not be allowed to pass an unhandled exception back into UM. For example, you could have
your entire callback function enclosed in a large try/catch. (This is true of all UM callbacks, not just receiver.)

• The passed-in message must not be modified.

• The passed-in message must be disposed. In Java, every message must explicitly be disposed, to properly
clean up the native memory. Do not assume that GC will clean it up.

• The function should not perform any operation that might be time consuming or put the thread to sleep (block).
This is because any delays in your callback prevents the context thread from servicing its sockets, increasing
the risk of packet loss.

• If the receiver callback sends a message, non-blocking sends must be used (see com::latencybusters←↩
::lbm::LBM::SRC_NONBLOCK). And the code should be written to handle a send failure of com←↩
::latencybusters::lbm::LBMEWouldBlockException.

• It is not allowed to create/delete sources or receivers, or subscribe/unsubscribe from a Spectrum channel
from a callback function executed by the context thread.

• You may schedule UM timers.

Note the requirement to call msg.dispose() on every message. Prior to UM version 6.7, calling dispose() on
every message was considered best practice, but was only required for certain use cases. UM version 6.7 intro-
duced significant performance improvements with Java, but these improvements made calling msg.dispose()
mandatory.

If this is a Persistent receiver, see Persistence Message Consumption.

Java: Message Is Fully Processed by the Application's Receiver Callback, Called by an Event Queue Dis-
patch Thread

The code is identical to the context thread case above.

The rules are similar, with some important differences (in bold):

• The function must return 0.

9.2 Message Reception 133

• The function must not be allowed to pass an unhandled exception back into UM. For example, you could have
your entire callback function enclosed in a large try/catch. (This is true of all UM callbacks, not just receiver.)

• The passed-in message must not be modified.

• The passed-in message must be disposed. In Java, every message must explicitly be disposed, to properly
clean up the native memory. Do not assume that GC will clean it up.

• The application is permitted to perform operations that are time consuming and/or blocking, as long
as the average message processing rate is greater than the average message sending rate. Any
temporary delays will buffer messages in the event queue.

• Blocking or non-blocking sends may be used, according to the application's preferences.

• You may create/delete sources or receivers, or subscribe/unsubscribe from a Spectrum channel.
However, the receiver which is delivering the current message should not be deleted.

• You may schedule UM timers.

• Informatica strongly recommends monitoring event queue length. See Event Queue Monitor for more infor-
mation.

If this is a Persistent receiver, see Persistence Message Consumption.

Java: Message Is Retained by the Receiver Callback for Further Processing by a Different Application
Thread

public void init_UM()
{

// During initialization, the UM context and receiver(s) are
// configured to use a recycler.
LBMObjectRecycler objRec = new LBMObjectRecycler();

...
// Preparing to create context - set up attribute.
LBMContextAttributes ctx_attr = new LBMContextAttributes();
ctx_attr.setObjectRecycler(objRec, null);
// Proceed with creating context, using ctx_attr.

...
// Preparing to create receiver - set up attribute.
LBMReceiverAttributes rcv_attr = new LBMReceiverAttributes();
rcv_attr.setObjectRecycler(objRec, null);
// Proceed with creating receiver, using rcv_attr.

...
}

...

public int onReceive(Object cbArg, LBMMessage msg)
{

try {
switch (msg.type())
{

case LBM.MSG_DATA:
msg.promote(); // Tell UM: not finished with "msg".
saveMessageForMoreProcessing(msg);
break;

/* Handle other receiver events. */
} /* switch */

} catch (Exception e) {
/* Handle exception. */

}
return 0;

} /* onReceive */

...

public int myAdditionalProcessing(LBMMessage msg)
{

ByteBuffer message = msg.dataBuffer();
long msgLen = msg.dataLength();

// Process "msgLen" bytes in "message".
...

// Tell UM: finished with "msg".
msg.dispose();
objRec.doneWithMessage(msg);

} /* myAdditionalProcessing */

134 Application Design Principles

This demonstrates the use of:

• com.latencybusters.lbm.LBMMessage.promote()

– informs UM that the message is retained after the return of the receiver callback.

• com.latencybusters.lbm.LBMMessage.dataBuffer()

• com.latencybusters.lbm.LBMMessage.dataLength()

• com.latencybusters.lbm.LBMMessage.dispose()

• com.latencybusters.lbm.LBMObjectRecycler

• com.latencybusters.lbm.LBMObjectRecycler.doneWithMessage()

These functions prevent unnecessary garbage and are strongly recommended by Informatica (see Zero Object
Delivery).

The mySaveMessageForMoreProcessing() function is just whatever you use to transfer the message to your pro-
cessing thread. The myAdditionalProcessing() function is typically called by you when you are ready to complete
processing of the message.

The rules for the message processing code are the same as the event queue case. However, the application must
ensure that every message promoted is eventually disposed.

If this is a Persistent receiver, see Persistence Message Consumption.

9.2.3 .NET Message Reception

Except where indicated, .NET coding for message reception is identical to that of Java.

Note

Historically, .NET programs that receive UM messages were not required to call the message object's
dispose() method. However, it is now strongly recommended. Not calling dispose() will introduce sig-
nificant latency outliers (jitter) when GC runs, and also makes persistence acknowledgements to the Store
non-deterministic. Finally, in the future, performance improvements for .NET might require the use of "dis-
pose()". Informatica strongly recommends that .NET subscribers call "dispose()" for every message.

.NET: Message Is Fully Processed by the Application's Receiver Callback, Called by a Context or XSP
Thread

public int onReceive(Object cbArg, LBMMessage msg)
{

try {
switch (msg.type())
{

case LBM.MSG_DATA:
byte * message = msg.dataPointer(); // Different from java!
uint msgLen = msg.length(); // Different from java!

// Process "msgLen" bytes in "message".
...

// Tell UM: finished with "msg".
msg.dispose();
break;

/* Handle other receiver events. */
} /* switch */

} catch (Exception e) {
/* Handle exception. */

}
return 0;

} /* onReceive */

9.2 Message Reception 135

This demonstrates the use of:

• dataPointer()

• length()

• dispose()

These functions prevent unnecessary garbage and are strongly recommended by Informatica (see Zero Object
Delivery).

Important rules regarding the receiver callback function when called by the context thread:

• The function must return 0.

• The function must not be allowed to pass an unhandled exception back into UM. For example, you could have
your entire callback function enclosed in a large try/catch. (This is true of all UM callbacks, not just receiver.)

• The passed-in message must not be modified.

• The passed-in message must be disposed. In .NET, every message should explicitly be disposed, to properly
clean up the native memory. Do not assume that GC will clean it up.

• The function should not perform any operation that might be time consuming or put the thread to sleep (block).
This is because any delays in your callback prevents the context thread from servicing its sockets, increasing
the risk of packet loss.

• If the receiver callback sends a message, non-blocking sends must be used (see SRC_NONBLOCK()). And
the code should be written to handle a send failure of LBMEWouldBlockException().

• It is not allowed to create/delete sources or receivers, or subscribe/unsubscribe from a Spectrum channel
from a callback function executed by the context thread.

• You may schedule UM timers.

If this is a Persistent receiver, see Persistence Message Consumption.

.NET: Message Is Fully Processed by the Application's Receiver Callback, Called by an Event Queue Dis-
patch Thread

The code is identical to the context thread case above.

The rules are similar, with some important differences (in bold):

• The function must return 0.

• The function must not be allowed to pass an unhandled exception back into UM. For example, you could have
your entire callback function enclosed in a large try/catch. (This is true of all UM callbacks, not just receiver.)

• The passed-in message must not be modified.

• The passed-in message must be disposed. In .NET, every message should explicitly be disposed, to properly
clean up the native memory. Do not assume that GC will clean it up.

• The application is permitted to perform operations that are time consuming and/or blocking, as long
as the average message processing rate is greater than the average message sending rate. Any
temporary delays will buffer messages in the event queue.

• Blocking or non-blocking sends may be used, according to the application's preferences.

• You may create/delete sources or receivers, or subscribe/unsubscribe from a Spectrum channel.
However, the receiver which is delivering the current message should not be deleted.

• You may schedule UM timers.

136 Application Design Principles

• Informatica strongly recommends monitoring event queue length. See Event Queue Monitor for more infor-
mation.

If this is a Persistent receiver, see Persistence Message Consumption.

.NET: Message Is Retained by the Receiver Callback for Further Processing by a Different Application
Thread

public void init_UM()
{

// During initialization, the UM context and receiver(s) must be
// configured to use a recycler.
LBMObjectRecycler objRec = new LBMObjectRecycler();

...
// Preparing to create context - set up attribute.
LBMContextAttributes ctx_attr = new LBMContextAttributes();
ctx_attr.setObjectRecycler(objRec, null);
// Proceed with creating context, using ctx_attr.

...
// Preparing to create receiver - set up attribute.
LBMReceiverAttributes rcv_attr = new LBMReceiverAttributes();
rcv_attr.setObjectRecycler(objRec, null);
// Proceed with creating receiver, using rcv_attr.

...
}

...

public int onReceive(Object cbArg, LBMMessage msg)
{

try {
switch (msg.type())
{

case LBM.MSG_DATA:
msg.promote();
// Tell UM: not finished with "msg".
saveMessageForMoreProcessing(msg);
break;

/* Handle other receiver events. */
} /* switch */

} catch (Exception e) {
/* Handle exception. */

}
return 0;

} /* onReceive */

...

public int myAdditionalProcessing(LBMMessage msg)
{

byte * message = msg.dataPointer(); // Different from java!
uint msgLen = msg.length(); // Different from java!

// Process "msgLen" bytes in "message".
...

// Tell UM: finished with "msg".
msg.dispose();
objRec.doneWithMessage(msg);

} /* myAdditionalProcessing */

This demonstrates the use of:

• promote()

– informs UM that the message is retained after the return of the receiver callback.

• dataPointer()

• length()

• dispose()

• LBMObjectRecycler

• LBMObjectRecycler.doneWithMessage()

9.2 Message Reception 137

These functions prevent unnecessary garbage and are strongly recommended by Informatica (see Zero Object
Delivery).

The mySaveMessageForMoreProcessing() function is just whatever you use to transfer the message to your pro-
cessing thread. The myAdditionalProcessing() function is typically called by you when you are ready to complete
processing of the message.

The rules for the message processing code are the same as the event queue case. However, the application must
ensure that every message promoted is eventually disposed.

If this is a Persistent receiver, see Persistence Message Consumption.

138 Application Design Principles

Chapter 10

UM Features

Except where otherwise indicated, the features described in this section are available in the UMS, UMP, and UMQ
products.

10.1 Transport Services Provider (XSP)

Starting with UM version 6.11, a new receive-side object is available to the user: the Transport Services Provider
Object.

The earlier feature, Multi-Transport Threads (MTT), is removed from UM in favor of XSP.

By default, a UM context combines all network data reception into a single context thread. This thread is responsible
for reception and processing of application messages, topic resolution, and immediate message traffic (UIM and
MIM). The context thread is also used for processing timers. This single-threaded model conserves CPU core
resources, and can simplify application design. However, it can also introduce significant latency outliers (jitter) if a
time-sensitive user message is waiting behind, say, a topic resolution message, or a timer callback.

Using an XSP object, an application can reassign the processing of a subscribed Transport Session to an indepen-
dent thread. This allows concurrent processing of received messages with topic resolution and timers, and even
allows different groups Transport Sessions to be processed concurrently with each other.

An application creates one or more XSP objects, owned by a parent context object. By default, when an XSP object
is created, UM creates a new thread associated with the XSP. Alternatively, the XSP can be created with Sequential
Mode, which gives the responsibility of thread creation to the application. Either way, the XSP uses its independent
thread to read data from the sockets associated with one or more subscribed Transport Sessions. That thread then
delivers received messages to the application via a normal receive application callback function.

Creation of an XSP does not by itself cause any receiver Transport Sessions to be assigned to it. Central to the
use of XSPs is an application-supplied mapping callback function which tells UM which XSP to associate with
subscribed Transport Sessions as they are discovered and joined. This callback allows the application to examine
the newly-joined Transport Session, if desired. Then the callback returns, informing UM which XSP, if any, to assign
the receiver Transport Session to.

10.1.1 XSP Handles Transport Sessions, Not Topics

Conceptually, an application designer might want to assign the reception and processing of received data to XSPs
on a topic basis. This is not always possible. The XSP thread must process received data on a socket basis, and
sockets map to Transport Sessions. As mentioned in UM Transports, a publishing application maps one or more

140 UM Features

topic-based sources to a Transport Session.

Consider the following example:

Publisher A and B are two separate application instances, both of which create a source for topic "X". A sub-
scriber application might create two XSPs and assign one Transport Session to each. In this case, you have two
independent threads delivering messages to the subscriber's receiver callback, which may not be what the devel-
oper wanted. If the developer wants topic X to be serialized, a single XSP should be created and mapped to both
Transport Sessions:

Now let's introduce a second topic. The developer might want to create two XSPs so that each topic will be handled
by an independent thread. However, this is not possible, given the way that the topics are mapped to Transport
Sessions in the following example:

10.1 Transport Services Provider (XSP) 141

In this case, XSP 1 is delivering both topics X and Y from Publisher A, and XSP 2 is delivering topics X and Y from
Publisher B. Once again, the receiver callback for topic X will be called by two independent threads, which is not
desired.

The only way to achieve independent processing of topics is to design the publishers to map their topics to Transport
Sessions carefully. For example:

10.1.2 XSP Threading Considerations

When contexts are used single-threaded, the application programmer can assume serialization of event delivery to
the application callbacks. This can greatly simplify the design of applications, at the cost of added latency outliers
(jitter).

142 UM Features

When XSPs are used to provide multi-threaded receivers, care must be taken in application design to account for
potential concurrent calls to application callbacks. This is especially true if multiple subscribed Transport Sessions
are assigned different XSPs, as demonstrated in XSP Handles Transport Sessions, Not Topics.

Even in the most simple case, where a single XSP is created and used for all subscribed Transport Sessions,
there are still events generated by the main context thread which can be called concurrently with XSP callbacks.
Reception of MIM or UIM messages, scheduled timers, and some topic resolution-related callbacks all come from
the main context thread, and can all be invoked concurrently with XSP callbacks.

Warning

Remember that MIM and UIM messages can be sent to a topic. If you have regular sources for a topic
assigned to an XSP, and somebody sends MIM or UIM messages to the same topic, your receiver callback
function can be called concurrently by both the XSP and the main context. Informatica recommends having a
given topic sent to by only one type of sender (UIM, MIM, Source).

Threading Example: Message Timeout

Consider as an example a common timer use case: message timeout. Application A expects to receive messages
for topic "X" every 5 seconds. If 10 seconds pass without a message, the application assumes that the publisher for
"X" has exited, so it cleans up internal state and deletes the UM receiver object. Each time a message is received,
the current timer is cancelled and re-created for 10 seconds.

Without XSPs, this can be easily coded since message reception and timer expiration events are serialized. The
timer callback can clean up and delete the receiver, confident that no receiver events might get delivered while this
is in progress.

However, if the Transport Session carrying topic "X" is assigned to an independent XSP thread, message reception
and timer expiration events are no longer serialized. Publisher of "X" might send it's message on-time, but a
temporary network outage could delay its delivery, introducing a race condition between message delivery and
timer expiration. Consider the case where the timer expiration is a little ahead of the message callback. The
timer callback might clean up application state which the message callback will attempt to use. This could lead to
unexpected behavior, possibly including segmentation faults.

In this case, proper sequencing of operations is critical. The timer should delete the receiver first. While inside
the receiver delete API, the XSP might deliver messages to the application. However, once the receiver delete API
returns, it is guaranteed that the XSP is finished making receiver callbacks.

Note that in this example case, if the message receiver callback attempts to cancel the timer, the cancel API will
return an error. This is because the timer has already expired and the execution of the callback has begun, and is
inside the receiver delete API. The message receiver callback needs to be able to handle this sequence, presumably
by not re-scheduling the timer.

10.1.3 XSP Usage

This section provides simplified C code fragments that demonstrate some of the XSP-related API calls. For full
examples of XSP usage, see Example lbmrcvxsp.c (for C) and Example lbmrcvxsp.java (for Java).

Note

Each XSP thread has its own Unicast Listener (request) port. You may need to expand the range request_←↩
tcp_port_low (context) - request_tcp_port_high (context).

The common sequence of operations during application initialization is minimally shown below. In the code frag-
ments below, error detection and handling are omitted for clarity.

1. Create a context attribute object and set the transport_mapping_function (context) option to point at the
application's XSP mapping callback function using the structure lbm_transport_mapping_func_t.

10.1 Transport Services Provider (XSP) 143

lbm_context_attr_t *ctx_attr;
err = lbm_context_attr_create_from_xml(&ctx_attr, "MyCtx");

lbm_transport_mapping_func_t mapping_func;
mapping_func.mapping_func = app_xsp_mapper_callback;
mapping_func.clientd = NULL; /* Can include app state pointer. */

err = lbm_context_attr_setopt(ctx_attr, "transport_mapping_function",
&mapping_func, sizeof(mapping_func));

2. Create the context.

err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);
err = lbm_context_attr_delete(ctx_attr); /* No longer needed. */

3. Create XSPs using lbm_xsp_create(). In this example, only a single XSP is created.

lbm_xsp_t *xsp; /* app_xsp_mapper_callback() needs this; see below. */
err = lbm_xsp_create(&xsp, ctx, NULL, NULL);

Note that the application can optionally pass in a context attribute object and an XSP attribute object. The
context attribute is because XSP is implemented as a sort of reduced-function sub-context, and so it is
possible to modify context options for the XSP. However, this is rarely needed since the default action is for
the XSP to inherit all the configuration of the main context.

4. Create a receiver for topic "X".

lbm_topic_t *topic;
err = lbm_rcv_topic_lookup(&topic, ctx, "X", NULL);

lbm_rcv_t *rcv;
err = lbm_rcv_create(&rcv, ctx, topic, app_rcv_callback, NULL, NULL);

Event queues may also be used with XSP-assigned Transport Sessions.

5. At this point, when the main context discovers a source for topic "X", it will proceed to join the Transport
Session. It will call the application's app_xsp_mapper_callback() function, which is minimally this:

lbm_xsp_t *app_xsp_mapper_callback(lbm_context_t *ctx,
lbm_new_transport_info_t *transp_info, void *clientd)

{
/* Retrieve the XSP object created in step 3. */
return xsp;

}

This minimal callback simply returns the XSP that was created during initialization (the "clientd" can be helpful
for that). By assigning all receiver Transport Sessions to the same XSP, you have effectively separated
message processing from UM housekeeping tasks, like processing of topic resolution and timers. This can
greatly reduce latency outliers (jitter).

As described in XSP Handles Transport Sessions, Not Topics, some users want to have multiple XSPs and
assign the Transport Sessions to XSPs according to application logic. Note that the passed-in lbm_new_←↩
transport_info_t structure contains information about the Transport Session, such as the IP address of the
sender. However, this structure does not contain topic information. Applications can use the resolver's source
notification callback via the resolver_source_notification_function (context) option to associate topics with
source strings.

Note

Most of the time, the application mapping callback will be invoked each time a Transport Session is joined.
However, there is one exception to this rule. If a context is already joined to a Transport Session carried on
a multicast group and destination port, joining another Transport Session on the same multicast group and
destination port does not invoke the mapping callback again. This is because the same socket is used for all
Transport Sessions that use the same group:port.

144 UM Features

10.1.4 Other XSP Operations

Starting with UM 6.12, XSP supports persistent receivers.

XSP supports Registered File Descriptors.

When an XSP object is created, an XSP attribute object can be supplied to set XSP options. The XSP options are:

• operational_mode (xsp)

• zero_transports_function (xsp)

To create and manipulate an XSP attribute object, see:

• lbm_xsp_attr_setopt()

• lbm_xsp_attr_getopt()

• lbm_xsp_attr_delete()

Before deleting an XSP, all UM objects that reference that XSP must first be delete. Bear in mind that XSPs are
generally associated with transport sessions, and a transport session can have many topics associated with it.
Conversely, a single topic can have multiple transport sessions associated with it. There can also be higher-level
associations related to receivers that maintain non-obvious associations with an XSP, even if that XSP is no longer
handling active transport sessions.

Informatica recommends maintaining all created XSPs until the parent context object is ready to be deleted. See
Deleting UM Objects.

10.1.5 XSP Restrictions

There are some restrictions and limitations on the XSP feature.

• The only transport types currently supported are LBT-RM, LBT-RU, and TCP. The XSP feature is not compat-
ible with transport types IPC, SMX, or DBL.

• An application receiver callback must not create a new XSP.

• For a persistent receiver assigned to an XSP, ume_proactive_keepalive_interval (context) must be en-
abled.

• XSP is not currently compatible with Ultra Load Balancing (ULB).

• XSP is not currently compatible with Hot Failover (HF).

• XSP is not currently compatible with DRO Hotlinks.

• XSP is not currently compatible with Receive-Side Batching.

10.2 Using Late Join

This section introduces the use of Ultra Messaging Late Join in default and specialized configurations. See Late
Join Options for more information.

10.2 Using Late Join 145

Note

If your application is running within a Ultra Messaging context with configuration option request_tcp_bind_←↩
request_port (context) set to zero, then UIM port binding has been turned off, which also disables the Late
Join feature.
With the UMQ product, you cannot use Late Join with Queuing (both Brokered and ULB).

The Late Join feature enables newly created receivers to receive previously transmitted messages. Sources con-
figured for Late Join maintain a retention buffer (not to be confused with a transport retransmission window), which
holds transmitted messages for late-joining receivers.

A Late Join operation follows the following sequence:

1. A new receiver configured for Late Join with use_late_join (receiver) completes topic resolution. Topic
advertisements from the source contain a flag that indicates the source is configured for Late Join with late←↩
_join (source).

2. The new receiver sends a Late Join Information Request (LJIR) to request a previously transmitted messages.
The receiver configuration option, retransmit_request_outstanding_maximum (receiver), determines the
number of messages the receiver requests.

3. The source responds with a Late Join Information (LJI) message containing the sequence numbers for the
retained messages that are available for retransmission.

4. The source unicasts the messages.

5. When Configuring Late Join for Large Numbers of Messages, the receiver issues additional requests, and
the source retransmits these additional groups of older messages, oldest first.

The source's retention buffer's is not pre-allocated and occupies an increasing amount of memory as the source
sends messages and adds them to the buffer. If a retention buffer grows to a size equal to the value of the source
configuration option, retransmit_retention_size_threshold (source), the source deletes older messages as it
adds new ones. The source configuration option retransmit_retention_age_threshold (source), controls mes-
sage deletion based on message age.

UM uses control-structure overhead memory on a per-message basis for messages held in the retention buffer,
in addition to the retention buffer's memory. Such memory usage can become significantly higher when retained
messages are smaller in size, since more of them can then fit in the retention buffer.

146 UM Features

Note

If you set the receiver configuration option ordered_delivery (receiver) to 1, the receiver must deliver mes-
sages to your application in sequence number order. The receiver holds out-of-order messages in an ordered
list cache until messages arrive to fill the sequence number gaps. If an out-of-order message arrives with a
sequence number that creates a message gap greater than the value of retransmit_message_caching_←↩
proximity (receiver), the receiver creates a burst loss event and terminates the Late Join recovery operation.
You can increase the value of the proximity option and restart the receiver, but a burst loss is a significant
event and you should investigate your network and message system components for failures.

10.2.1 Late Join With Persistence

With the UMP/UMQ products, late Join can be implemented in conjunction with the persistent Store, however in this
configuration, it functions somewhat differently from Streaming. After a late-Join-enabled receiver has been created,
resolved a topic, and become registered with a Store, it may then request older messages. The Store unicasts the
retransmission messages. If the Store does not have these messages, it requests them of the source (assuming
option retransmission-request-forwarding is enabled), thus initiating Late Join.

10.2.2 Late Join Options Summary

• late_join (source)

• retransmit_retention_age_threshold (source)

• retransmit_retention_size_limit (source)

• retransmit_retention_size_threshold (source)

• use_late_join (receiver)

• retransmit_initial_sequence_number_request (receiver)

• retransmit_message_caching_proximity (receiver)

• retransmit_request_message_timeout (receiver)

• retransmit_request_interval (receiver)

• retransmit_request_maximum (receiver)

• retransmit_request_outstanding_maximum (receiver)

10.2.3 Using Default Late Join Options

To implement Late Join with default options, set the Late Join configuration options to activate the feature on both a
source and receiver in the following manner.

1. Create a configuration file with source and receiver Late Join activation options set to 1. For example, file
cfg1.cfg containing the two lines:

source late_join 1
receiver use_late_join 1

10.2 Using Late Join 147

2. Run an application that starts a Late-Join-enabled source. For example:

lbmsrc -c cfg1.cfg -P 1000 topicName

3. Wait a few seconds, then run an application that starts a Late-Join-enabled receiver. For example:

lbmrcv -c cfg1.cfg -v topicName

The output for each should closely resemble the following:

LBMSRC

$ lbmsrc -c cfg1.cfg -P 1000 topicName
LOG Level 5: NOTICE: Source "topicName" has no retention settings (1 message

retained max)
Sending 10000000 messages of size 25 bytes to topic [topicName]
Receiver connect [TCP:10.29.3.77:34200]

LBMRCV

$ lbmrcv -c cfg1.cfg -v topicName
Immediate messaging target: TCP:10.29.3.77:4391
[topicName][TCP:10.29.3.76:4371][2]-RX-, 25 bytes
1.001 secs. 0.0009988 Kmsgs/sec. 0.1998 Kbps
[topicName][TCP:10.29.3.76:4371][3], 25 bytes
1.002 secs. 0.0009982 Kmsgs/sec. 0.1996 Kbps
[topicName][TCP:10.29.3.76:4371][4], 25 bytes
1.003 secs. 0.0009972 Kmsgs/sec. 0.1994 Kbps
[topicName][TCP:10.29.3.76:4371][5], 25 bytes
1.003 secs. 0.0009972 Kmsgs/sec. 0.1994 Kbps
...

Note that the source only retained 1 Late Join message (due to default retention settings) and that this message
appears as a retransmit (-RX-). Also note that it is possible to sometimes receive 2 RX messages in this scenario
(see Retransmitting Only Recent Messages.)

10.2.4 Specifying a Range of Messages to Retransmit

To receive more than one or two Late Join messages, increase the source's retransmit_retention_size_threshold
(source) from its default value of 0. Once the buffer exceeds this threshold, the source allows the next new message
entering the retention buffer to bump out the oldest one. Note that this threshold's units are bytes (which includes a
small overhead per message).

While the retention threshold endeavors to keep the buffer size close to its value, it does not set hard upper limit
for retention buffer size. For this, the retransmit_retention_size_limit (source) configuration option (also in bytes)
sets this boundary.

Follow the steps below to demonstrate how a source can retain about 50MB of messages, but no more than 60MB:

1. Create a second configuration file (cfg2.cfg) with the following options:

source late_join 1
source retransmit_retention_size_threshold 50000000
source retransmit_retention_size_limit 60000000
receiver use_late_join 1

2. Run lbmsrc -c cfg2.cfg -P 1000 topicName.

3. Wait a few seconds and run lbmrcv -c cfg2.cfg -v topicName. The output for each should
closely resemble the following:

148 UM Features

LBMSRC

$ lbmsrc -c cfg2.cfg -P 1000 topicName
Sending 10000000 messages of size 25 bytes to topic [topicName]
Receiver connect [TCP:10.29.3.76:34444]

LBMRCV

$ lbmrcv -c cfg2.cfg -v topicName
Immediate messaging target: TCP:10.29.3.76:4391
[topicName][TCP:10.29.3.77:4371][0]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][1]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][2]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][3]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][4]-RX-, 25 bytes
1.002 secs. 0.004991 Kmsgs/sec. 0.9981 Kbps
[topicName][TCP:10.29.3.77:4371][5], 25 bytes
1.002 secs. 0.0009984 Kmsgs/sec. 0.1997 Kbps
[topicName][TCP:10.29.3.77:4371][6], 25 bytes
1.002 secs. 0.0009983 Kmsgs/sec. 0.1997 Kbps
[topicName][TCP:10.29.3.77:4371][7], 25 bytes
...

Note that lbmrcv received live messages with sequence numbers 7, 6, and 5, and RX messages going from 4 all
the way back to Sequence Number 0.

10.2.5 Retransmitting Only Recent Messages

Thus far we have worked with only source late join settings, but suppose that you want to receive only the last 10
messages. To do this, configure the receiver option retransmit_request_maximum (receiver) to set how many
messages to request backwards from the latest message.

Follow the steps below to set this option to 10.

1. Add the following line to cfg2.cfg and rename it cfg3.cfg:

receiver retransmitrequestmaximumreceiver 10

2. Run:

lbmsrc -c cfg3.cfg -P 1000 topicName

3. Wait a few seconds and run lbmrcv -c cfg3.cfg -v topicName. The output for each should
closely resemble the following.

LBMSRC

$ lbmsrc -c cfg3.cfg -P 1000 topicName
Sending 10000000 messages of size 25 bytes to topic [topicName]
Receiver connect [TCP:10.29.3.76:34448]

LBMRCV

$ lbmrcv -c cfg3.cfg -v topicName
Immediate messaging target: TCP:10.29.3.76:4391
[topicName][TCP:10.29.3.77:4371][13]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][14]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][15]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][16]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][17]-RX-, 25 bytes

10.2 Using Late Join 149

[topicName][TCP:10.29.3.77:4371][18]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][19]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][20]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][21]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][22]-RX-, 25 bytes
[topicName][TCP:10.29.3.77:4371][23]-RX-, 25 bytes
1.002 secs. 0.01097 Kmsgs/sec. 2.195 Kbps
[topicName][TCP:10.29.3.77:4371][24], 25 bytes
1.002 secs. 0.0009984 Kmsgs/sec. 0.1997 Kbps
[topicName][TCP:10.29.3.77:4371][25], 25 bytes
1.002 secs. 0.0009984 Kmsgs/sec. 0.1997 Kbps
[topicName][TCP:10.29.3.77:4371][26], 25 bytes
...

Note that 11, not 10, retransmits were actually received. This can happen because network and timing circum-
stances may have one RX already in transit while the specific RX amount is being processed. (Hence, it is not
possible to guarantee one and only one RX message for every possible Late Join recovery.)

10.2.6 Configuring Late Join for Large Numbers of Messages

Suppose you have a persistent receiver that comes up at midday and must gracefully catch up on the large number
of messages it has missed. The following discussion explains the relevant Late Join options and how to use
them. (The discussion also applies to streaming-based late join, but since streaming sources must hold all retained
messages in memory, there are typically far fewer messages available.)

Option: retransmit_request_outstanding_maximum (receiver)

When a receiver comes up and begins requesting Late Join messages, it does not simply request messages starting
at Sequence Number 0 through 1000000. Rather, it requests the messages a little at a time, depending upon how
option retransmit_request_outstanding_maximum (receiver) is set. For example, when set to the default of 10,
the receiver sends requests the first 10 messages (Sequence Number 0 - 9). Upon receiving Sequence Number 0,
it then requests the next message (10), and so on, limiting the number of outstanding unfulfilled requests to 10.

Note that higher for values retransmit_request_outstanding_maximum can increase the rate of RXs received, which
can reduce the time required for receiver recovery. However, this can lead to heavy loading of the Store, potentially
making it unable to sustain the incoming data rate.

Also, be aware that increasing retransmit_request_outstanding_maximum may require a corresponding increase to
retransmit_request_interval (receiver). Otherwise you can have a situation where messages time out because
it takes a Store longer than retransmit_request_interval to process all retransmit_request_outstanding_maximum
requests. When this happens, you can see messages needlessly requested and sent many times (generates
warnings to the receiver application log file).

Option: retransmit_message_caching_proximity (receiver)

When sequence number delivery order is used, long recoveries of active sources can create receiver memory cache
problems due to the processing of both new and retransmitted messages. This option provides a method to control
caching and cache size during recovery.

It does this by comparing the option value (default 2147483647) to the difference between the newest (live) received
sequence number and the latest received RX sequence number. If the difference is less than the option's value,
the receiver caches incoming live new messages. Otherwise, new messages are dropped and not cached (with the
assumption that they can be requested later as retransmissions).

For example, as shown in the diagram below, a receiver may be receiving both live streaming messages (latest,
#200) and catch-up retransmissions (latest, #100). The difference here is 100. If retransmit_message_caching←↩
_proximity (receiver) is 75, the receiver caches the live messages and will deliver them when it is all caught up
with the retransmissions. However, if this option is 150, streamed messages are dropped and later picked up again
as a retransmission.

150 UM Features

The default value of this option is high enough to still encourage caching most of the time, and should be optimal
for most receivers.

If your source streams faster than it retransmits, caching is beneficial, as it ensures new data are received only
once, thus reducing recovery time. If the source retransmits faster than it streams, which is the optimal condition,
you can lower the value of this option to use less memory during recovery, with little performance impact.

10.3 Off-Transport Recovery (OTR)

Off-Transport Recovery (OTR) is a lost-message-recovery feature that provides a level of hedging against the pos-
sibility of brief and incidental unrecoverable loss at the transport level or from a DRO. This section describes the
OTR feature.

Note

With the UMQ product, you cannot use OTR with Queuing (both Brokered and ULB).

When a transport cannot recover lost messages, OTR engages and looks to the source for message recovery. It
does this by accessing the source's retention buffer (used also by the Late Join feature) to re-request messages
that no longer exist in a transport's transmission window, or other places such as a persistent Store or redundant
source.

OTR functions in a manner very similar to that of Late Join, but differs mainly in that it activates in message loss
situations rather than following the creation of a receiver, and shares only the late_join (source) option setting.

Upon detecting loss, a receiver initiates OTR by sending repeated, spaced, OTR requests to the source, until it
recovers lost messages or a timeout period elapses.

OTR operates independently from transport-level recovery mechanisms such as NAKs for LBT-RU or LBT-RM.
When you enable OTR for a receiver with use_otr (receiver), the otr_request_initial_delay (receiver) period
starts as soon as the Delivery Controller detects a sequence gap. If the gap is not resolved by the end of the delay
interval, OTR recovery initiates. OTR recovery can occur before, during or after transport-level recovery attempts.

When a receiver initiates OTR, the intervals between OTR requests increases twofold after each request, until
the maximum interval is reached (assuming the receiver is still waiting to receive the retransmission). You use
configuration options otr_request_minimum_interval (receiver) and otr_request_maximum_interval (receiver)
to set the initial (minimum) and maximum intervals, respectively.

The source retransmits lost messages to the recovered receiver via unicast.

10.3 Off-Transport Recovery (OTR) 151

10.3.1 OTR with Sequence Number Ordered Delivery

When sequence number delivery order is used and a gap of missing messages occurs, a receiver buffers the new
incoming messages while it attempts to recover the earlier missing ones. Long recoveries of actively streaming
sources can cause excessive receiver cache memory growth due to the processing of both new and retransmitted
messages. You can control caching and cache size during recovery with options otr_message_caching_threshold
(receiver) and retransmit_message_caching_proximity (receiver).

The option otr_message_caching_threshold (receiver) sets the maximum number of messages a receiver can
buffer. When the number of cached messages hits this threshold, new streamed messages are dropped and not
cached, with the assumption that they can be requested later as retransmissions.

The retransmit_message_caching_proximity (receiver), which is also used by Late Join (see retransmit_←↩
message_caching_proximity (receiver)), turns off this caching if there are too many messages to buffer between
the last delivered message and the currently streaming messages.

Both of these option thresholds must be satisfied before caching resumes.

10.3.2 OTR With Persistence

With the UMP/UMQ products, you can implement OTR in conjunction with the persistent Store, however in this
configuration, it functions somewhat differently from Streaming. If an OTR-enabled receiver registered with a Store
detects a sequence gap in the live stream and that gap is not resolved by other means within the next otr_request←↩
_initial_delay (receiver) period, the receiver requests those messages from the Store(s). If the Store does not have
some of the requested messages, the receiver requests them from the source. Regardless of whether the messages
are recovered from a Store or from the source, OTR delivers all recovered messages with the LBM_MSG_OTR flag,
unlike Late Join, which uses the LBM_MSG_RETRANSMIT flag.

10.3.3 OTR Options Summary

• late_join (source)

• retransmit_retention_age_threshold (source)

• retransmit_retention_size_limit (source)

• retransmit_retention_size_threshold (source)

• use_otr (receiver)

• otr_request_message_timeout (receiver)

• otr_request_initial_delay (receiver)

• otr_request_log_alert_cooldown (receiver)

• otr_request_maximum_interval (receiver)

• otr_request_minimum_interval (receiver)

• otr_request_outstanding_maximum (receiver)

• otr_message_caching_threshold (receiver)

• retransmit_message_caching_proximity (receiver)

152 UM Features

Note

With Smart Sources, the following configuration options have limited or no support:

• retransmit_retention_size_threshold (source)

• retransmit_retention_size_limit (source)

• retransmit_retention_age_threshold (source)

10.4 Encrypted TCP

This section introduces the use of Transport Layer Security (TLS), sometimes known by its older designation Secure
Sockets Layer (SSL).

The goal of the Ultra Messaging (UM) TLS feature is to provide encrypted transport of application data. TLS sup-
ports authentication (through certificates), data confidentiality (through encryption), and data integrity (ensuring data
are not changed, removed, or added-to). UM can be configured to apply TLS security measures to all Streaming
and/or Persisted TCP communication, including DRO peer links. Non-TCP communication is not encrypted (e.g.
topic resolution).

TLS is a family of standard protocols and algorithms for securing TCP communication between a client and a server.
It is sometimes referred as "SSL", which technically is the name of an older (less secure) version of the protocol.
Over the years, security researchers (and hackers) have discovered flaws in SSL/TLS. However, the vast majority
of the widely publicized security vulnerabilities have been flaws in the implementations of TLS, not in the recent TLS
protocols or algorithms themselves. Starting with UM version 6.9, there are no known security weaknesses in TLS
version 1.2, the version used by UM.

TLS is generally implemented by several different software packages. UM makes use of OpenSSL, a widely de-
ployed and actively maintained open-source project.

10.4.1 TLS Authentication

TLS authentication uses X.509 digital certificates. Certificate creation and management is the responsibility of the
user. Ultra Messaging's usage of OpenSSL expects PEM encoded certificates. There are a variety of generally
available tools for converting certificates between different encodings. Since user infrastructures vary widely, the
UM package does not include tools for creation, formatting, or management of certificates.

Although UM is designed as a peer-to-peer messaging system, TLS has the concept of client and server. The client
initiates the TCP connection and the server accepts it. In the case of a TCP source, the receiver initiates and is
therefore the client, with the source (sender of data) being the server. However, with unicast immediate messages,
the sender of data is the client, and the recipient is the server. Due to the fact that unicast immediate messages are
used by UM for internal control and coordination, it is typically not possible to constrain a given application to only
operate as a pure client or pure server. For this reason, UM requires all applications participating in encryption to
have a certificate. Server-only authentication (anonymous client, as is used by web browsers) is not supported. It
is permissible for groups of processes, or even all processes, to share the same certificate.

A detailed discussion of certificate usage is beyond the scope of the Ultra Messaging documentation. However,
you can find a step-by-step procedure for creating a self-signed X.509 security certificate here: https://kb.←↩
informatica.com/howto/6/Pages/18/432752.aspx

https://kb.informatica.com/howto/6/Pages/18/432752.aspx
https://kb.informatica.com/howto/6/Pages/18/432752.aspx

10.4 Encrypted TCP 153

10.4.2 TLS Backwards Compatibility

The TLS protocol was designed to allow for a high degree of backwards compatibility. During the connection
establishment phase, the client and server perform a negotiation handshake in which they identify the highest
common versions of various security options. For example, an old web browser might pre-date the introduction of
TLS and only support the older SSL protocol. OpenSSL is often configured to allow clients and servers to "negotiate
down" to those older, less-secure protocols or algorithms.

Ultra Messaging has the advantage of not needing to communicate with old versions of SSL or TLS. UM's default
configuration directs OpenSSL to require both the client and the server to use protocols and algorithms which were
highly regarded, as of UM's release date. If vulnerabilities are discovered in the future, the user can override UM's
defaults and chose other protocols or algorithms.

10.4.3 TLS Efficiency

When a TLS connection is initiated, a handshake takes place prior to application data encryption. Once the hand-
shake is completed, the CPU effort required to encrypt and decrypt application data is minimal. However, the
handshake phase involves the use of much less efficient algorithms.

There are two factors under the user's control, which greatly affect the handshake efficiency: the choice of cipher
suite and the key length. We have seen an RSA key of 8192 bits take 4 seconds of CPU time on a 1.3GHz SparcV9
processor just to complete the handshake for a single TLS connection.

Users should make their choices with an understanding of the threat profiles they are protecting against. For
example, it is estimated that a 1024-bit RSA key can be broken in about a year by brute force using specialized
hardware (see http://www.tau.ac.il/∼tromer/papers/cbtwirl.pdf). This may be beyond the
means of the average hacker, but well within the means of a large government. RSA keys of 2048 bits are generally
considered secure for the foreseeable future.

10.4.4 TLS Configuration

TLS is enabled on a context basis. When enabled, all Streaming and Persistence related TCP-based communication
into or out of the context is encrypted by TLS. A context with TLS enabled will not accept source creation with
transports other than TCP.

Subscribers will only successfully receive data if the receiver's context and the source's context share the same
encryption settings. A receiver created in an encrypted enabled context will ignore topic resolution source advertise-
ments for non-encrypted sources, and will therefore not subscribe. Similarly, a receiver created in a non-encrypted
context will ignore topic resolution source advertisements for encrypted sources. Topic resolution queries are also
ignored by mismatched contexts. No warning will be logged when these topic resolution datagrams are ignored, but
each time this happens, the context-level statistic tr_dgrams_dropped_type is incremented.

TLS is applied to unicast immediate messages as well, as invoked either directly by the user, or internally by
functions like late join, request/response, and Persistence-related communication between sources, receivers, and
Stores.

Brokered Queuing using AMQP does not use the UM TLS feature. A UM brokered context does not allow TLS to
be enabled.

http://www.tau.ac.il/~tromer/papers/cbtwirl.pdf

154 UM Features

10.4.5 TLS Options Summary

• use_tls (context)

• tls_cipher_suites (context)

• tls_certificate (context)

• tls_certificate_key (context)

• tls_certificate_key_password (context)

• tls_trusted_certificates (context)

• tls_compression_negotiation_timeout (context)

The tls_cipher_suites (context) configuration option defines the list of one or more (comma separated) cipher
suites that are acceptable to this context. If more than one is supplied, they should be in descending order of
preference. When a remote context negotiates encrypted TCP, the two sides must find a cipher suite in common,
otherwise the connection will be canceled.

OpenSSL uses the cipher suite to define the algorithms and key lengths for encrypting the data stream. The
choice of cipher suite is critical for ensuring the security of the connection. To achieve a high degree of backwards
compatibility, OpenSSL supports old cipher suites which are no longer considered secure. The user is advised to
use UM's default suite.

OpenSSL follows its own naming convention for cipher suites. See OpenSSL's Cipher Suite Names for the
full list of suite names. When configuring UM, use the OpenSSL names (with dashes), not∗ the IANA names (with
underscores).

10.4.6 TLS and Persistence

TLS is designed to encrypt a TCP connection, and works with TCP-based persisted data Transport Sessions and
control traffic. However, TLS is not intended to encrypt data at rest. When a persistent Store is used with the UM
TLS feature, the user messages are written to disk in plaintext form, not encrypted.

10.4.7 TLS and Queuing

The UM TLS feature does not apply to the AMQP connection to the brokered queue. UM does not currently support
security on the AMQP connection.

However, the ULB form of queuing does not use a broker. For ULB sources that are configured for TCP, the UM
TLS feature will encrypt the application data.

10.4.8 TLS and the DRO

When a DRO is used to route messages across Topic Resolution Domains (TRDs), be aware that the TLS session
is terminated at the DRO's proxy receiver/source. Because each endpoint portal on a DRO is implemented with its
own context, care must be taken to ensure end-to-end security. It is possible to have a TLS source publishing in one
TRD, received by a DRO (via an endpoint portal also configured for TLS), and re-published to a different TRD via
an endpoint portal configured with a non-encrypted context. This would allow a non-encrypted receiver to access

https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html#CIPHER-SUITE-NAMES

10.4 Encrypted TCP 155

messages that the source intended to be encrypted. As a message is forwarded through a DRO network, it does
not propagate the security settings of the originator, so each portal needs to be appropriately encrypted. The user
is strongly encouraged to configure ALL portals on an interconnected network of DROs with the same encryption
settings.

The encryption feature is extended to DRO peer links, however peer links are not context-based and are not config-
ured the same way. The following XML elements are used by the DRO to configure a peer link:

• Router Element "<tls>"

• Router Element "<cipher-suites>"

• Router Element "<certificate>"

• Router Element "<certificate-key>"

• Router Element "<certificate-key-password>"

• Router Element "<trusted-certificates>"

As with sources and receivers, the portals on both sides of a peer link must be configured for compatible encryption
settings.

Notice that there is no DRO element corresponding to the context option tls_compression_negotiation_timeout
(context). The DRO peer link's negotiation timeout is hard-coded to 5 seconds.

See DRO Configuration DTD for details.

10.4.9 TLS and Compression

Many users have advanced network equipment (switches/routers), which transparently compress packets as they
traverse the network. This compression is especially valued to conserve bandwidth over long-haul WAN links.
However, when packets are encrypted, the network compressors are typically not able to reduce the size of the
data. If the user desires UM messages to be compressed and encrypted, the data needs to be compressed before
it is encrypted.

The UM compression feature (see Compressed TCP) accomplishes this. When both TLS and compression are
enabled, the compression is applied to user data first, then encryption.

Be aware that there can be information leakage when compression is applied and an attacker is able to inject data
of known content over a compressed and encrypted session. For example, this leakage is exploited by the CRIME
attack, albeit primarily for web browsers. Users must weigh the benefits of compression against the potential risk of
information leakage.

Version Interoperability

It is not recommended to mix pre-6.9 contexts with encrypted contexts on topics of shared interest. If a process
with a pre-6.9 version of UM creates a receiver, and another process with UM 6.9 or beyond creates a TLS source,
the pre-6.9 receiver will attempt to join the TLS source. After a timeout, the handshake will fail and the source will
disconnect. The pre-6.9 receiver will retry the connection, leading to flapping.

Note that in the reverse situation, a 6.9 TLS receiver will simply ignore a pre-6.9 source. No attempt will be made to
join, and no flapping will occur.

10.4.10 OpenSSL Dependency

For UM versions 6.9 through 6.12, the UM dynamic library was linked with OpenSSL in such a way as to require its
presence in order for UM to load and initialize. It was a load-time dependency.

https://en.wikipedia.org/wiki/CRIME

156 UM Features

Starting with UM version 6.12.1, the linkage with OpenSSL is made at run-time. If encryption features are not used,
the OpenSSL libraries do not need to be present on the system. UM is able to initialize without OpenSSL.

There are two UM features which utilize encryption provided by OpenSSL:

• Encrypted TCP.

• UM Manager (UMM) with secure communication enabled.

10.5 Compressed TCP

This section introduces the use of Compression with TCP connections.

The goal of the Ultra Messaging (UM) compression feature is to decrease the size of transmitted application data.
UM can be configured to apply compression to all Streaming and/or Persisted TCP communication.

Non-TCP communication is not compressed (e.g. topic resolution).

Compression is generally implemented by any of several different software packages. UM makes use of LZ4, a
widely deployed open-source project.

While the UM compression feature is usable for TCP-based sources and receivers, it is possibly most useful when
applied to DRO peer links.

10.5.1 Compression Configuration

Compression is enabled on a context basis. When enabled, all Streaming and Persistence related TCP-based
communication into or out of the context is compressed by LZ4. A context with compression enabled will not accept
source creation with transports other than TCP.

Subscribers will only successfully receive data if the receiver's context and the source's context share the same
compression settings. A receiver created in a compression-enabled context will ignore topic resolution source ad-
vertisements for non-compressed sources, and will therefore not subscribe. Similarly, a receiver created in an non-
compressed context will ignore topic resolution source advertisements for compressed sources. Topic resolution
queries are also ignored by mismatched contexts. No warning will be logged when these topic resolution datagrams
are ignored, but each time this happens, the context-level statistic tr_dgrams_dropped_type is incremented.

Compression is applied to unicast immediate messages as well, as invoked either directly by the user, or internally
by functions like late join, request/response, and Persistence-related communication between sources, receivers,
and Stores.

Brokered Queuing using AMQP does not use the UM compression feature. A UM brokered context does not allow
compression to be enabled.

The compression-related configuration options used by the Ultra Messaging library are:

• compression (context)

• tls_compression_negotiation_timeout (context)

10.5 Compressed TCP 157

10.5.2 Compression and Persistence

Compression is designed to compress a data Transport Session. It is not intended to compress data at rest. When
a persistent Store is used with the UM compression feature, the user messages are written to disk in uncompressed
form.

10.5.3 Compression and Queuing

The UM compression feature does not apply to the AMQP connection to the brokered queue. UM does not currently
support compression on the AMQP connection.

However, the ULB form of queuing does not use a broker. For ULB sources that are configured for TCP, the UM
compression feature will compress the application data.

10.5.4 Compression and the DRO

When a DRO is used to route messages across Topic Resolution Domains (TRDs), be aware that the compression
session is terminated at the DRO's proxy receiver/source. Because each endpoint portal on a DRO is implemented
with its own context, care must be taken to ensure end-to-end compression (if desired). As a message is forwarded
through a DRO network, it does not propagate the compression setting of the originator, so each portal needs to be
appropriately compressed.

Possibly the most-useful application of the UM compression feature is not TCP sources, but rather DRO peer links.
The compression feature is extended to DRO peer links, however peer links are not context-based and are not
configured the same way. The following XML elements are used by the DRO to configure a peer link:

• Router Element "<compression>"

As with sources and receivers, the portals on both sides of a peer link must be configured for the same compression
setting.

Notice that there is no DRO element corresponding to the context option tls_compression_negotiation_timeout
(context). The DRO peer link's negotiation timeout is hard-coded to 5 seconds.

See DRO Configuration DTD for details.

10.5.5 Compression and Encryption

See TLS and Compression.

10.5.6 Version Interoperability

It is not recommended to mix pre-6.9 contexts with compressed contexts on topics of shared interest. As mentioned
above, if a compressed and an uncompressed context connect via TCP, the connection will fail and retry, resulting
in flapping.

158 UM Features

10.6 High-resolution Timestamps

This section introduces the use of high-resolution timestamps with LBT-RM.

The Ultra Messaging (UM) high-resolution message timestamp feature leverages the hardware timestamping func-
tion of certain Solarflare network interface cards (NICs) to measure sub-microsecond times that packets are trans-
mitted and received. Solarflare's NICs and Onload kernel-bypass driver implement PTP to synchronize timestamps
across the network, allowing very accurate one-way latency measurements. The UM timestamp feature requires
Onload version 201509 or later.

For subscribers, each message's receive timestamp is delivered in the message's header structure (for C programs,
lbm_msg_t field hr_timestamp, of type lbm_timespec_t). Each timestamp is a structure of 32 bits worth of
seconds and 32 bits worth of nanoseconds. When both values are zero, the timestamp is not available.

For publishers, each message's transmit timestamp is delivered via the source event callback (for C programs, event
type LBM_SRC_EVENT_TIMESTAMP). The same timestamp structure as above is delivered with the event, as well
as the message's sequence number. Sending applications can be informed of the outgoing sequence number range
of each message by using the extended form of the send function and supplying the LBM_SRC_SEND_EX_FL←↩
AG_SEQUENCE_NUMBER_INFO flag. This causes the LBM_SRC_EVENT_SEQUENCE_NUMBER_INFO event
to be delivered to the source event handler.

10.6.1 Timestamp Restrictions

Due to the specialized nature of this feature, there are several restrictions in its use.

• Operating system: Linux only. No timestamps will be delivered on other operating systems. Also, since the
feature makes use of the rcvmmsg() function, no timestamps will be delivered on Linux kernels prior to 2.6.33
and glibc libraries prior to 2.12 (which was released in 2010).

• Transport: Source-based LBT-RM (multicast) Transport Sessions only. No timestamps will be delivered for
MIM or other transport types.

• Queuing: Timestamps are not supported for broker-based queuing. If a ULB source is configured for LBT-←↩
RM, send-side timestamps are not supported and will not be delivered if one or more receivers are registered.
However, on the receive side, ULB messages are time stamped.

• Loss: If packet loss triggers LBT-RM's NAK/retransmit sequence, the send side will have multiple timestamps
delivered, one for each multicast transmission. On the receive side, the timestamp of the first successfully
received multicast datagram will be delivered.

• Recovery: For missed messages which are recovered via Late Join, Off-Transport Recovery (OTR), or the
persistent Store, no timestamp will be delivered, either on the send side or the receive side.

• Implicit batching: If implicit batching is being used, only the first message in a batch will have a send-side
timestamp delivered. When implicit batching is used, the sender must be prepared for some messages to not
have timestamps delivered. On the receive side, all messages in a batch will have the same timestamp.

• UM Fragmentation, send-side: If user messages are too large to be contained in a single datagram, UM
will fragment the message into multiple datagrams. On the send side, each datagram will trigger delivery of a
timestamp.

– UM Fragmentation, receive-side with ordered_delivery (receiver) set to 0 (arrival): Arrival-order deliv-
ery will result in each fragment being delivered separately, as it is received. Each fragment's message
header will contain a timestamp. Arrival order delivery provides an accurate timestamp of when the
complete message is received (although, as mentioned above, any fragment recovered via OTR or the
persistent Store will not have a timestamp).

10.7 Unicast Immediate Messaging 159

– UM Fragmentation, receive-side with ordered_delivery (receiver) set to 1 or -1, (reassembly): Delivery
with reassembly results in a single timestamp included in the message header. That timestamp corre-
sponds to the arrival of the last fragment of the message (although, as mentioned above, any fragment
recovered via OTR or the persistent Store will not have a timestamp). Note that this is not necessarily
the last fragment received; if an intermediate datagram is lost and subsequently re-transmitted after a
delay, that intermediate datagram will be the last one received, but its timestamp will not be used for the
message. For example, if a three-fragment message is received in the order of F0, F2, F1, the times-
tamp for the message will correspond to F2, the last fragment of the message. If fragmented messages
are being sent, and an accurate time of message completion is needed, arrival order delivery must be
used.

• UM Fragmentation plus implicit batching: If user messages vary widely in size, some requiring fragmen-
tation, and implicit batching is used be aware that a full fragment does not completely fill a datagram. For
example, if a small message (less than 300 bytes) is sent followed by a large message requiring fragmen-
tation, the first fragment of the large message will fit in the same datagram as the small message. In that
case, on the send side, a timestamp will not be delivered for that first fragment. However, a timestamp will
be delivered for the second fragment. On the receive side, the same restrictions apply as described with UM
fragmentation.

• Local loopback: If an LBT-RM source and receiver share the same physical machine, the receive side will
not have timestamps delivered.

10.6.2 Timestamp Configuration Summary

• transport_lbtrm_source_timestamp (context)

• transport_lbtrm_receiver_timestamp (context)

10.7 Unicast Immediate Messaging

Unicast Immediate Messaging (UIM) deviates from the normal publish/subscribe paradigm by allowing the publisher
to send messages to a specific destination application context. Various features within UM make use of UIMs
transparently to the application. For example, a persistent receiver sends consumption acknowledgements to the
Store using UIM messages.

The application can make direct use of UIM in two ways:

• Calling a UIM send API function. See lbm_unicast_immediate_message() and lbm_unicast_immediate←↩
_request().

• Sending a response to a message using the Request/Response feature. See lbm_send_response().

A UIM message can be associated with a topic string, but that topic is not used to determine where the message is
sent to. Instead, the topic string is included in the message header, and the application must specify the destination
of the desired context in the UIM send call.

Alternatively, an application can send a UIM message without a topic string. This so-called "topicless" message
is not delivered to the receiving application via the normal receiver callback. Instead it is delivered by an optional
context callback. See Receiving a UIM.

UIM messages are sent using the TCP protocol; no other protocol is supported for UIM. The TCP connection is
created dynamically as-needed, when a message is sent. That is, when an application sends its first UIM message

160 UM Features

to a particular destination context, the sender's context holds the message and initiates the TCP connection. When
the connection is accepted by the destination context, the sender sends the message. When the message is fully
sent, the sender will keep the TCP connection open for a period of time in case more UIMs are sent to the same
destination context. See UIM Connection Management.

10.7.1 UIM Reliability

Although UIM is implemented using TCP, it should not be considered "reliable" in the same way that UM sources
are. There are a variety of ways that a UIM message can fail to be delivered to the destination. For example, if an
overloaded DRO must forward the message to the destination TRD, the DRO might have to drop the message.

Note that the success or failure of delivery of a UIM cannot be determined by the sender. For example, calling
lbm_unicast_immediate_message() or lbm_send_response() might return a successful status, but the message
might have been queued internally for later transmission. So the success status only means that it was queued
successfully. A subsequent failure may or may not trigger an error log; it depends on what the nature of the failure
is.

As a result, applications are responsible for detecting failures (typically using timeouts) and implementing retry logic.
If a higher degree of messaging reliability is required, normal UM sources should be used.

(For UIM messages that are sent transparently by UM features, various timeout/retry mechanisms are implemented
internally.)

UIMs can also be lost as a result of TCP disconnections. See TCP Disconnections for more information.

10.7.2 UIM Addressing

There are three ways to specify the destination address of a UIM:

• Implicit – this method is used when a response is sent using the Request/Response feature. See lbm_←↩
send_response() for details.

• Explicit – this method uses a string of the form: "TCP:ip:port" (no DRO) or "TCP:domain:ip:port" (DRO in
use). See lbm_unicast_immediate_message() for details.

• Source – this method uses a source string to send messages to the context which hosts a given source. See
Sending to Sources for details.

In the Explicit addressing method, the "ip" and "port" refer to the binding of the destination context's UIM port (also
called "request port"). By default, when a context is created, UM will select values from a range of possibilities for ip
and port. However, this makes it difficult for a sender to construct an explicit address since the ip and port are not
deterministic.

One solution is to explicitly set the ip and port for the context's UIM port using the configuration options: request←↩
_tcp_port (context) and request_tcp_interface (context).

10.7.3 Receiving a UIM

There are two kinds of UIM messages:

• UIMs with a topic.

10.7 Unicast Immediate Messaging 161

• UIMs with no topic (topicless).

To receive UIM messages with a topic, an application simply creates a normal receiver for that topic. Alternatively,
it can create a wildcard receiver for a matching topic pattern. Finally, the application can also register a callback
specifically for UIM messages that contain a topic but for which no matching receiver exists, using immediate_←↩
message_topic_receiver_function (context). Alternatively, lbm_context_rcv_immediate_topic_msgs() can be
used.

To receive UIM messages with no topic (topicless), the application must register a callback with the context for topi-
cless messages, using immediate_message_receiver_function (context)). Alternatively, the API lbm_context←↩
_rcv_immediate_msgs() can be used to register that callback.

Note that only the specified destination context will deliver the message. If other applications have a receiver for
that same topic, they will not receive a copy of that UIM message.

UIM Port

To receive UIMs, a context must bind to and listen on the "UIM Port", also known as the "Request Port". See UIM
Addressing for details.

10.7.4 Sending a UIM

The following APIs are used to send application UIM messages:

• lbm_unicast_immediate_message()

• lbm_unicast_immediate_request()

• lbm_send_response() – see Request/Response for more information.

•

For the lbm_unicast_immediate_message() and lbm_unicast_immediate_request() APIs, the user has a choice
between sending messages with a topic or without a topic (topicless). With the C API, passing a NULL pointer for
the topic string sends a topicless message.

10.7.5 UIM Connection Management

The act of sending a UIM message will check to see if the context already has a TCP connection open to the
destination context. If so, the existing connection is used to send the UIM. Otherwise, UM will initiate a new TCP
connection to the destination context.

Once the message is sent, an activity deletion timer is started for the connection; see response_tcp_deletion_←↩
timeout (context). If another UIM message is sent to the same destination, the activity deletion timer is canceled
and restarted. Thus, if messages are sent periodically with a shorter period than the activity deletion timer, the TCP
connection will remain established.

However, if no messages are sent for more time than the activity deletion timer, the timer will expire and the TCP
connection will be deleted and resources cleaned up.

An exception to this workflow exists for the Request/Response feature. When a request message is received by a
context, the context automatically initiates a connection to the requester, even though the application has not yet
sent its response UIM. The activity deletion timer is not started at this time. When the application's receiver callback
is invoked with the request message, the message contains a reference to a response object. This response object
is used for sending response UIMs back to the requester. However, the act of sending these responses also does
not start the activity deletion timer for the TCP connection. The activity deletion timer is only started when the

162 UM Features

response object is deleted (usually implicitly when the message itself is deleted, usually as a result of returning from
the receiver callback).

Note that the application that receives a request has the option of retaining the message, which delays deletion of
the message until the application explicitly decides to delete it. In this case, the TCP connection is held open for
as long as the application retains the response object. When the application has finished sending any and all of its
responses to the request and does not need the request object any more, it deletes the request object. This starts
the activity deletion timer running.

Finally, note that there is a queue in front of the UIM connection which holds messages when the connection is
slow. It is possible that messages are still held in the queue for transmission after the response object is deleted,
and if the response message is very large and/or the destination application is slow processing responses, it is
possible for data to still be queued when the activity deletion timer expires. In that case, UM does not delete the
TCP connection, and instead restarts the activity deletion timer for the connection.

10.8 Multicast Immediate Messaging

Warning

Multicast Immediate Messaging (MIM) is not recommended for general use. It is inefficient and can affect
the operation of all applications on a UM network. This is partly because every message sent via the MIM
protocol is distributed to every other application on the network, regardless of that application's interest in such
messages.

MIM uses the same reliable multicast protocol as normal LBT-RM sources. MIM messages can be sent to a topic,
in which case each receiving context will filter that message, discarding it if no receiver exists for that topic. MIM
avoids using Topic Resolution by including the full topic string in the message, and sending it to a multicast group
that all application contexts are configured to use.

Attention

MIM reception is disabled by default. If you want an application to be able to receive MIM messages, you must
set the configuration option mim_address (context) to the desired multicast group address.

A receiving context will receive the message and check to see if the application created a receiver for the topic. If so,
then the message is delivered. However, if no receiver exists for that topic, the context checks to see if immediate←↩
_message_topic_receiver_function (context) is configured. If so, then the message is delivered. But if neither
exists, then the receiving context discards the message.

It is also possible to send a "topicless" message via MIM. The recipient context must have configured a topicless
receiver using immediate_message_receiver_function (context); otherwise the message is discarded.

A valid use case for MIM might be an application that starts running, sends a request message, gets back a
response, and then exits. With this kind of short-lived application, it can be a burden to create a source and wait for
it to resolve. With MIM, topic resolution is skipped, so no delay is needed prior to sending.

MIM is typically not used for normal Streaming data because messages are somewhat less efficiently handled than
source-based messages. Inefficiencies derive from larger message sizes due to the inclusion of the topic name,
and on the receiving side, the MIM Delivery Controller hashing of topic names to find receivers, which consumes
some extra CPU. If you have a high-message-rate stream, you should use a source-based method and not MIM. If
head-loss is a concern and delay before sending is not feasible, then consider using late join (although this replaces
head-loss with some head latency).

Multicast Immediate Messaging can benefit from hardware acceleration. See Transport Acceleration Options for
more information

10.8 Multicast Immediate Messaging 163

Note

MIM is not compatible with Queuing, including ULB.

10.8.1 Temporary Transport Session

MIM uses the same reliable multicast algorithms as LBT-RM. When a publisher sends a message with lbm_←↩
multicast_immediate_message(), MIM creates a temporary Transport Session. Note that no topic-level source
object is created.

MIM automatically deletes the temporary Transport Session after a period of inactivity defined by mim_src_←↩
deletion_timeout (context) which defaults to 30 seconds. A subsequent send creates a new Transport Session.
Due to the possibility of head-loss in the switch, it is recommended that publisher use a long deletion timeout if they
continue to use MIM after significant periods of inactivity.

MIM forces all topics across all publishers to be concentrated onto a single multicast address to which ALL applica-
tions listen, even if they aren't interested in any of the topics. Thus, all topic filtering must happen in UM.

MIM can also be used to send an UM request message with lbm_multicast_immediate_request(). For example,
an application can use MIM to request initialization information right when it starts up. MIM sends the response
directly to the initializing application, avoiding the topic resolution delay inherent in the normal source-based lbm←↩
_send_request() function.

10.8.2 MIM Notifications

MIM notifications differ in the following ways from normal UM source-based sending.

• When a publisher's MIM Transport Session times out and is deleted, the receiving applications do not receive
an EOS notification.

• Applications with a source notification callback (resolver_source_notification_function (context)) are not
informed of a MIM sender. This is because source notification is based on Topic Resolution, and MIM does
not use it.

• MIM sending supports the non-blocking flag. However, it does not provide an LBM_SRC_EVENT_WAKEUP
notification when the MIM session becomes writable again.

• MIM sends unrecoverable loss notifications to a context callback, not to a receiver callback. See MIM Loss
Handling.

10.8.3 Receiving Immediate Messages

To receive MIM messages with a topic, an application simply creates a normal receiver for that topic. Alternatively,
it can create a wildcard receiver for a matching topic pattern. Finally, the application can also register a callback
specifically for UIM messages that contain a topic but for which no matching receiver exists, using immediate_←↩
message_topic_receiver_function (context). Alternatively, lbm_context_rcv_immediate_topic_msgs() can be
used.

To receive MIM messages with no topic (topicless), the application must register a callback for topicless messages,
using immediate_message_receiver_function (context)). Alternatively, lbm_context_rcv_immediate_msgs()
can be used.

164 UM Features

If needed, an application can send topicless messages using MIM. A MIM sender passes in a NULL string instead
of a topic name. The message goes out on the MIM multicast address and is received by all other receivers. A
receiving application can use lbm_context_rcv_immediate_msgs() to set the callback procedure and delivery
method for topicless immediate messages.

10.8.4 MIM and Wildcard Receivers

When an application receives an immediate message, it's topic is hashed to see if there is at least one regular (non-
wildcard) receiver object listening to the topic. If so, then MIM delivers the message data to the list of receivers.

However, if there are no regular receivers for that topic in the receive hash, MIM runs the message topic through
all existing wildcard patterns and delivers matches to the appropriate wildcard receiver objects without creating
sub-receivers. The next MIM message received for the same topic will again be run through all existing wildcard
patterns. This can consume significant CPU resources since it is done on a per-message basis.

10.8.5 MIM Loss Handling

The receiving application can set up a context callback to be notified of MIM unrecoverable loss (lbm_mim_←↩
unrecloss_function_cb()). It is not possible to do this notification on a topic basis because the receiving UM has
no way of knowing which topics were affected by the loss.

10.8.6 MIM Configuration

• Starting with UM 3.1, MIM supports ordered delivery.

• Starting with UM 3.3.2, the MIM configuration option, mim_ordered_delivery (context) defaults to ordered
delivery.

• IMPORTANT: Starting with UM 6.8, MIM reception is disabled by default. If you want an application to be
able to receive MIM messages, you must set the configuration option mim_address (context) to the desired
multicast group address.

The configuration options for MIM are described here:

• Multicast Immediate Messaging Network Options

• Multicast Immediate Messaging Reliability Options

• Multicast Immediate Messaging Operation Options

10.8.7 MIM Example Applications

UM includes two example applications that illustrate MIM.

• Example lbmimsg.c - application that sends immediate messages as fast as it can to a given topic (single
source). See also the Java example, Example lbmimsg.java, and the .NET example, Example lbmimsg.cs.

10.9 HyperTopics 165

• Example lbmireq.c - application that sends immediate requests to a given topic (single source) and waits for
responses.

10.9 HyperTopics

Warning

The HyperTopics feature is deprecated and may be removed in a future release. Users should use
normal wildcard receivers with "PCRE" regular expression pattern matching. See UM Wildcard Receivers.

For information regarding HyperTopics, see C HyperTopics Details.

10.10 Application Headers

The Application Headers feature is an older method of adding untyped, unstructured metadata to messages.

Warning

The Application Headers feature is deprecated and may be removed in a future version. Informatica recom-
mends using Message Properties.

10.10.1 Application Headers Usage

Send Message with Application Headers

To send a message with one or more application headers attached, follow these steps:

1. Create an application header chain object using lbm_apphdr_chain_create().

lbm_apphdr_chain_t *chain_obj;
...
err = lbm_apphdr_chain_create(&chain_obj);

2. Declare a chain element structure lbm_apphdr_chain_elem_t.

lbm_apphdr_chain_elem_t chain_el;

3. Set lbm_apphdr_chain_elem_t_stct::type to LBM_CHAIN_ELEM_USER_DATA.

4. Set lbm_apphdr_chain_elem_t_stct::subtype to a desired integer.

5. Set lbm_apphdr_chain_elem_t_stct::data to point to the desired bytes of data.

6. Set lbm_apphdr_chain_elem_t_stct::len to the number of bytes of data.

chain_el.type = LBM_CHAIN_ELEM_USER_DATA;
chain_el.subtype = MY_SUBTYPE;
chain_el.data = "abc";
chain_el.len = 4;

166 UM Features

7. Declare an extended send information structure lbm_src_send_ex_info_t.

lbm_src_send_ex_info_t ex_info;

8. Set the LBM_SRC_SEND_EX_FLAG_APPHDR_CHAIN bit in the lbm_src_send_ex_info_t_stct::flags
field.

9. Set the lbm_src_send_ex_info_t_stct::apphdr_chain field with the application header chain object created
in step 1.

memset(&ex_info, 0, sizeof(ex_info));
ex_info.flags = LBM_SRC_SEND_EX_FLAG_APPHDR_CHAIN;
ex_info.apphdr_chain = chain_obj;

10. Call lbm_src_send_ex() passing the extended send information structure.

err = lbm_src_send_ex(src, my_buffer, my_len, LBM_MSG_FLUSH, &ex_info)

11. Delete the application header chain object using lbm_apphdr_chain_delete().

err = lbm_apphdr_chain_delete(chain_obj);

Instead of creating and deleting the application header chain with each message, it may be retained and re-used.
However, it may not be modified.

Receive Message with Application Headers

To handle a received message that may contain application headers, follow these steps:

1. In the receiver callback, create an application header iterator using lbm_apphdr_chain_iter_create_from←↩
_msg(). If it returns LBM_FAILURE then the message has no application headers.

lbm_apphdr_chain_iter_t *apphdr_itr;
...
err = lbm_apphdr_chain_iter_create_from_msg(&apphdr_itr, msg);
if (err == LBM_OK) { /* App header exists. */

2. If lbm_apphdr_chain_iter_create_from_msg() returns LBM_OK, declare a chain element structure lbm_←↩
apphdr_chain_elem_t pointer and set it using lbm_apphdr_chain_iter_current().

do { /* Loop through each app header. */
lbm_apphdr_chain_elem_t *chain_el;
chain_el = lbm_apphdr_chain_iter_current(&apphdr_itr);

3. Access the chain element subtype through the chain element structure using lbm_apphdr_chain_elem_t←↩
_stct::subtype.

4. Access the chain element length through the chain element structure using lbm_apphdr_chain_elem_t_←↩
stct::len.

5. Access the chain element data through the chain element structure using lbm_apphdr_chain_elem_t_←↩
stct::data.

printf(" chain_el.type=%d, chain_el.len=%lu, chain_el.data=’%s’\n",
chain_el->type, chain_el->len, (char *)chain_el->data);

6. To step to the next application header (if any), call lbm_apphdr_chain_iter_next(). This function returns
LBM_OK if there is another application header; go to step 3.

err = lbm_apphdr_chain_iter_next(&apphdr_itr);
while (err == LBM_OK);

7. If there are no more application headers, it returns LBM_FAILURE.

8. Delete the iterator using lbm_apphdr_chain_iter_delete().

10.11 Message Properties 167

err = lbm_apphdr_chain_iter_delete(apphdr_itr);

Application Headers are not compatible with the following UM features:

• Smart Sources.

• Request/Response

• Unicast Immediate Messaging

• Multicast Immediate Messaging

Note that the user data provided for the application header is not typed. UM cannot reformat messages for architec-
tural differences in a heterogeneous environment. For example, UM does not do byte-swapping between big and
little endian CPUs.

10.11 Message Properties

The Message Properties feature allows your application to add typed metadata to messages as name/value pairs.
UM allows eight property types: boolean, byte, short, int, long, float, double, and string. See Message Properties
Data Types.

With the UMQ product, the UM message property object supports the standard JMS message properties specifica-
tion.

Message properties are not compatible with the following UM features:

• Arrival Order, Fragments Not Reassembled (ordered_delivery 0).

• Transport LBT-SMX.

10.11.1 Message Properties Usage

Send Message with Message Properties

For sending messages with message properties using Smart Sources, see Smart Sources and Message Properties.

To send a message with one or more message properties attached using normal sources (not Smart Sources),
follow these steps:

1. Create a message properties object using lbm_msg_properties_create().

lbm_msg_properties_t *prop_obj;
...
err = lbm_msg_properties_create(&prop_obj);

2. Add one or more properties using lbm_msg_properties_set().

lbm_uint32_t int_prop_val = MY_VAL;
...
err = lbm_msg_properties_set(prop_obj, "My Prop 1", &int_prop_val,

LBM_MSG_PROPERTY_INT, sizeof(int_prop_val));

3. Declare an extended send information structure lbm_src_send_ex_info_t.

168 UM Features

lbm_src_send_ex_info_t ex_info;

4. Set the LBM_SRC_SEND_EX_FLAG_PROPERTIES bit in the lbm_src_send_ex_info_t_stct::flags field.

5. Set the lbm_src_send_ex_info_t_stct::properties field with the properties object created in step 1.

memset(&ex_info, 0, sizeof(ex_info));
ex_info.flags = LBM_SRC_SEND_EX_FLAG_PROPERTIES;
ex_info.properties = prop_obj;

6. Call lbm_src_send_ex() passing the extended send information structure.

err = lbm_src_send_ex(src, my_buffer, my_len, LBM_MSG_FLUSH, &ex_info);

7. Delete the message properties object using lbm_msg_properties_delete().

err = lbm_msg_properties_delete(prop_obj);

Instead of creating and deleting the properties object with each message, it may be retained and re-used. It can
also be modified using lbm_msg_properties_clear() and lbm_msg_properties_set().

Receive Message with Message Properties

To handle a received message that may contain message properties, follow these steps:

1. In the receiver callback, check the message's properties field lbm_msg_t_stct::properties. If it is NULL, the
message has no properties.

if (msg->properties != NULL) {
/* Handle message properties. */

2. If lbm_msg_t_stct::properties is non-null, create a property iterator object using lbm_msg_properties_←↩
iter_create().

lbm_msg_properties_iter_t *prop_itr;
...
err = lbm_msg_properties_iter_create(&prop_itr);

3. Set the iterator to the first property in the message using lbm_msg_properties_iter_first().

err = lbm_msg_properties_iter_first(prop_itr, msg->properties);
do { /* Loop through the properties. */

4. Access that property's name through the iterator using lbm_msg_properties_iter_t_stct::name.

5. Access that property's type through the iterator using lbm_msg_properties_iter_t_stct::type.

6. Access that property's value through the iterator using lbm_msg_properties_iter_t_stct::data (must be cast
to the appropriate data type).

if (prop_itr->type == LBM_MSG_PROPERTY_INT) {
printf(" prop_itr.data=%d\n", *((lbm_uint32_t *)(prop_itr->data)));

7. To step to the next property (if any), call lbm_msg_properties_iter_next(). This function returns LBM_OK if
there is another property; go to step 4. If there are no more properties, it returns LBM_FAILURE.

err = lbm_msg_properties_iter_next(prop_itr);
} while (err == LBM_OK);

8. Delete the iterator using lbm_msg_properties_iter_delete().

err = lbm_msg_properties_iter_delete(prop_itr);

10.11 Message Properties 169

Instead of iterating through the properties, it is also possible to access properties by name using lbm_msg_←↩
properties_get(). However, this can be less efficient.

For a C example on how to iterate received message properties, see Example lbmrcv.c.

Note that if a publisher sends a message with no properties set, best practice is to not pass the property object
to the send function. It is permissible to pass a property object with no properties set, but it adds latency and
overhead. Also, it causes the receiver to get a non-null msg->properties field. When the receiver calls lbm_msg←↩
_properties_iter_first(), it will return an error because there isn't a "first" property. It is better for the publisher to
not pass an empty properties object so that the receiver will get a NULL msg->properties field.

10.11.2 Message Properties Data Types

Due to differences in the integer variable sizes on different compilers on different platforms, Informatica recommends
using the following C data types for the corresponding message property data types:

Property Type C Type
LBM_MSG_PROPERTY_BOOLEAN char
LBM_MSG_PROPERTY_BYTE char
LBM_MSG_PROPERTY_SHORT lbm_uint16←↩

_t
LBM_MSG_PROPERTY_INT lbm_int32_t
LBM_MSG_PROPERTY_LONG lbm_int64_t
LBM_MSG_PROPERTY_FLOAT float
LBM_MSG_PROPERTY_DOUBLE double
LBM_MSG_PROPERTY_STRING char array

10.11.3 Message Properties Performance Considerations

Ultra Messaging sends property names on the wire with every message. To reduce bandwidth requirements, mini-
mize the length and number of properties. When coding sources, consider the following sequence of guidelines:

1. Allocate a data structure to store message properties objects. This can be a thread-local structure if you use
a relatively small number of threads, or a thread-safe pool of objects.

2. Before sending, retrieve a message properties object from the pool. If an object is not available, create a new
object.

3. Set properties for the message.

4. Send the message using the appropriate API call, passing in the properties object.

5. After the send completes, clear the message properties object and return it to the pool.

When coding receivers in Java or .NET, call Dispose() on messages before returning from the application callback.
This allows Ultra Messaging to internally recycle objects, and limits object allocation.

170 UM Features

10.11.4 Smart Sources and Message Properties

Smart Sources support a limited form of message properties. Only 32-bit integer property types are allowed with
Smart Sources. Also, property names are limited to 7 ASCII characters. Finally, the normal message properties
object lbm_msg_properties_t and its APIs are not used on the sending side. Rather a streamlined method of
specifying message properties for sending is used.

As with most of Smart Source's internal design, the message header for message properties must be pre-allocated
with the maximum number of desired message properties. This is done at creation time for the Smart Source using
the configuration option smart_src_message_property_int_count (source).

Sending messages with message properties must be done using the lbm_ssrc_send_ex() API, passing it the
desired properties with the lbm_ssrc_send_ex_info_t structure. The first call to send with message properties will
serialize the supplied properties and encode them into the pre-allocated message header.

Subsequent calls to send with message properties will ignore the passed-in properties and simply re-send the
previously-serialized header.

If an application needs to change the message property values after that initial send, the "update" flag flag can be
used, which will trigger modification of the property values. This "update" flag cannot be used to change the number
of properties, or the key names of the properties.

If an application needs messages with different numbers of properties and/or different key names of properties, the
most efficient way to accomplish this is with multiple message buffers. Each buffer should be associated with a
desired set of properties. When a message needs to be sent, the proper buffer is selected for building the message.
This avoid the overhead of serializing the properties with each send call.

However, if the application requires dynamic construction of properties, a single buffer can be used along with the
"rebuild" flag to trigger a full serialization of the properties.

Note

If using both message properties and Spectrum with a single Smart Source, there is an added restriction: it
is not possible to send a message omitting only one of those features. If both are enabled when the Smart
Source is created, it is not possible to send a message with a message property and not a channel, and it is
not possible to send a message with a channel and not a property. This is because the message header is
defined at Smart Source creation, and the header either must contain both or neither.

10.11.5 Smart Source Message Properties Usage

For a full example of message property usage with Smart Source, see Example lbmssrc.c or Example lbmssrc.←↩
java.

The first message with a message property sent to a Smart Source follows a specific sequence:

1. Create the topic object with the configuration option smart_src_message_property_int_count (source) set
to the maximum number of properties desired on a message.

2. Create the Smart Source with lbm_ssrc_create().

3. Allocate one or more message buffers with lbm_ssrc_buff_get(). You might allocate one for messages that
have properties, and another for messages that don't.

4. When preparing the first message with message properties to be sent, define the properties using a lbm_←↩
ssrc_send_ex_info_t structure:

char *prop_name_array[3]; /* Array of property names. */
prop_name_array[0] = "abc"; /* 7 ascii characters or less. */
prop_name_array[1] = "XYZ";
prop_name_array[2] = "123";

10.11 Message Properties 171

lbm_int32_t prop_value_array[3]; /* Array of property values. */
prop_value_array[0] = 29;
prop_value_array[1] = -300;
prop_value_array[2] = 0;

lbm_ssrc_send_ex_info_t ss_send_info;
memset((char *)&ss_send_info, 0, sizeof(ss_send_info));
ss_send_info.mprop_int_cnt = 3;
ss_send_info.mprop_int_keys = prop_name_array;
ss_send_info.mprop_int_vals = prop_value_array;

5. Send the message using lbm_ssrc_send_ex() and the LBM_SSRC_SEND_EX_FLAG_PROPERTIES
flag:

ss_send_info.flags = LBM_SSRC_SEND_EX_FLAG_PROPERTIES;
err = lbm_ssrc_send_ex(ss, msg_buff, msg_size, 0, &ss_send_info);

Since this is the first send with message properties, UM will serialize the properties and set up the message
header. (It is not valid to set the LBM_SSRC_SEND_EX_FLAG_UPDATE_PROPERTY_VALUES flag on
this first send with message properties.)

For subsequent sends, there are different use cases:

• Send the message with the same properties and values. You can re-use the same message buffer and
lbm_ssrc_send_ex_info_t structure:

/* The ss_send_info.flags still has LBM_SSRC_SEND_EX_FLAG_PROPERTIES set */
err = lbm_ssrc_send_ex(ss, msg_buff, msg_size, 0, &ss_send_info);

• Send with message properties after having made changes to the property values (but not the keys or the
number of properties) by setting the LBM_SSRC_SEND_EX_FLAG_UPDATE_PROPERTY_VALUES flag:

prop_value_array[0] = 28; /* Change property value. */
ss_send_info.flags |= LBM_SSRC_SEND_EX_FLAG_UPDATE_PROPERTY_VALUES;
err = lbm_ssrc_send_ex(ss, msg_buff, msg_size, 0, &ss_send_info);
ss_send_info.flags &= ~LBM_SSRC_SEND_EX_FLAG_UPDATE_PROPERTY_VALUES;

• Send a message with either a different number of properties, and/or different key names by setting the LB←↩
M_SSRC_SEND_EX_FLAG_REBUILD_BUFFER flag:

/* Send with only the first 2 properties. */
ss_send_info.mprop_int_cnt = 2;
ss_send_info.flags |= LBM_SSRC_SEND_EX_FLAG_REBUILD_BUFFER;
err = lbm_ssrc_send_ex(ss, msg_buff, msg_size, 0, &ss_send_info);
ss_send_info.flags &= ~ LBM_SSRC_SEND_EX_FLAG_REBUILD_BUFFER;

• Send a message without any message properties. This is a subset of the previous case (changing the number
of properties). Use the LBM_SSRC_SEND_EX_FLAG_REBUILD_BUFFER flag and clear the LBM_SSR←↩
C_SEND_EX_FLAG_PROPERTIES flag:

/* Clear the properties flag so no properties will be sent. */
ss_send_info.flags &= ~ LBM_SSRC_SEND_EX_FLAG_PROPERTIES;
ss_send_info.flags |= LBM_SSRC_SEND_EX_FLAG_REBUILD_BUFFER;
err = lbm_ssrc_send_ex(ss, msg_buff, msg_size, 0, &ss_send_info);
ss_send_info.flags &= ~ LBM_SSRC_SEND_EX_FLAG_REBUILD_BUFFER;

To be more efficient, instead of using the LBM_SSRC_SEND_EX_FLAG_REBUILD_BUFFER flag, you can use
different message buffers (allocated with lbm_ssrc_buff_get()) for each message property structure. This saves
the time required to re-serialize the message properties each time you want to use a different property structure.

172 UM Features

10.12 Request/Response Model

Request/response is a very common messaging model whereby a client sends a "request" message to a server and
expects a response. The server processes the request and return a response message to the originating client.

The UM request/response feature simplifies implementation of this model in the following ways:

• Handling the request's "return address", eliminating the need for the client to create an artificial guaranteed-
unique topic for the response.

• Establishing a linkage between a request and its response(s), allowing multiple requests to be outstanding,
and associating each response message with its corresponding request message.

• Supporting multiple responses per request, both by allowing multiple servers to receive the request and each
one responding, and by allowing a given server to respond with multiple messages.

Attention

Although the response messages are sent by TCP, there are still failure scenarios where a response can
be lost. The use of DROs can make it even more likely. Informatica recommends applications that use
request/response implement timeout/retry logic. See UIM Reliability.

10.12.1 Request Message

UM provides three ways to send a request message.

• lbm_send_request() to send a request to a topic via a source object. Uses the standard source-based
transports (TCP, LBT-RM, LBT-RU).

• lbm_multicast_immediate_request() to send a request to a topic as a multicast immediate message. See
Multicast Immediate Messaging.

• lbm_unicast_immediate_request() to send a request to a topic as a unicast immediate message.

When the client application sends a request message, it references an application callback function for responses
and a client data pointer for application state. The send call returns a "request object". As one or more responses
are returned, the callback is invoked to deliver the response messages, associated with the request's client data
pointer. The requesting application decides when its request is satisfied (perhaps by completeness of a response,
or by timeout), and it calls lbm_request_delete() to delete the request object. Even if the server chooses to send
additional responses, they will not be delivered to the requesting application after it has deleted the corresponding
request object.

10.12.2 Response Message

The server application receives a request via the normal message receive mechanism, but the message is identified
as type "request". Contained within that request message's header is a response object, which serves as a return
address to the requester. The server application responds to an UM request message by calling lbm_send_←↩
response(). The response message is sent unicast via a dynamic TCP connection managed by UM.

10.12 Request/Response Model 173

Warning

The lbm_send_response() function may not be called from a context thread callback. If the application needs
to send the response from the receiver callback (or any other UM callback), it must associate that callback
with an event queue.

10.12.3 Response Size

A UM response message can be of any arbitrary size. However, given that responses are sent as UIMs, and U←↩
IMs are not guaranteed, UM responses can be lost. This is especially true if DROs are being used. Larger UM
responses have a higher probability of being lost than smaller UM responses. In particular, UM responses larger
than 65,000 bytes can be lost even if network packets are simply delivered out of order, as might happen if the
DROs are configured to use a UDP Peer Link.

This does not mean that you must avoid sending large response messages. Rather it emphasizes the importance of
using an application-level timeout/retry algorithm for request/response. In practice, even multi-megabyte responses
would be lost only rarely, but it can happen.

10.12.4 Response Deletion

Since the response object is part of the message header, it is normally deleted at the same time that the message is
deleted, which typically happens automatically when the receiver callback returns. However, there are times when
the application needs the scope of the response object to extend beyond the execution of the receiver callback. One
method of extending the lifetime of the response object is to "retain" the request message, using lbm_msg_retain().

However, there are times when the size of the request message makes retention of the entire message undesir-
able. In those cases, the response object itself can be extracted and retained separately by saving a copy of the
response object pointer and setting the message header's response pointer to NULL (to prevent UM from deleting
the response object when the message is deleted).

There are even occasions when an application needs to transfer the responsibility of responding to a request
message to a different process entirely. The server which receives the request is not itself able to respond, and
needs to send a message (not necessarily the original request message) to a different server. In that case, the first
server which receives the request must serialize the response object to type lbm_serialized_response_t by calling
lbm_serialize_response(). It includes the serialized response object in the message forwarded to the second
server. That server de-serializes the response object by calling lbm_deserialize_response(), allowing it to send a
response message to the original requesting client.

10.12.5 TCP Management

UM creates and manages the special TCP connections for responses, maintaining a list of active response con-
nections. When an application sends a response, UM scans that list for an active connection to the destination. If
it doesn't find a connection for the response, it creates a new connection and adds it to the list. After the lbm_←↩
send_response() function returns, UM schedules the response_tcp_deletion_timeout (context), which defaults
to 2 seconds. If a second request comes in from the same application before the timer expires, the responding
application simply uses the existing connection and restarts the deletion timer.

It is conceivable that a very large response could take more than the response_tcp_deletion_timeout (context)
default (2 seconds) to send to a slow-running receiver. In this case, UM automatically increases the deletion timer
as needed to ensure the last message completes.

174 UM Features

10.12.6 Request/Response Configuration

See the UM Configuration Guide for the descriptions of the Request/Response configuration options:

• Unicast Immediate Messaging Network Options

• Unicast Immediate Messaging Operation Options

Note

If your application is running within an UM context where the configuration option, request_tcp_bind_←↩
request_port (context) has been set to zero, UIM port binding has been turned off, which also disables the
Request/Response feature.

10.12.7 Request/Response Example Applications

UM includes two example applications that illustrate Request/Response.

• Example lbmreq.c - application that sends requests on a given topic (single source) and waits for responses.
See also the Java example, Example lbmreq.java and the .NET example Example lbmreq.cs.

• Example lbmresp.c - application that waits for requests and sends responses back on a given topic (single
receiver). See also the Java example, Example lbmresp.java and the .NET example Example lbmresp.cs.

We can demonstrate a series of 5 requests and responses with the following procedure:

• Run lbmresp -v topicname

• Run lbmreq -R 5 -v topicname

LBMREQ

Output for lbmreq should resemble the following:

$ lbmreq -R 5 -q topicname
Event queue in use
Using TCP port 4392 for responses
Delaying requests for 1000 milliseconds
Sending request 0
Starting event pump for 5 seconds.
Receiver connect [TCP:10.29.1.78:4958]
Done waiting for responses. 1 responses (25 bytes) received. Deleting request.

Sending request 1
Starting event pump for 5 seconds.
Done waiting for responses. 1 responses (25 bytes) received. Deleting request.

Sending request 2
Starting event pump for 5 seconds.
Done waiting for responses. 1 responses (25 bytes) received. Deleting request.

Sending request 3
Starting event pump for 5 seconds.
Done waiting for responses. 1 responses (25 bytes) received. Deleting request.

Sending request 4
Starting event pump for 5 seconds.
Done waiting for responses. 1 responses (25 bytes) received. Deleting request.
Quitting...

10.13 Self Describing Messaging 175

LBMRESP

Output for lbmresp should resemble the following:

$ lbmresp -v topicname
Request [topicname][TCP:10.29.1.78:14371][0], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
Request [topicname][TCP:10.29.1.78:14371][1], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
Request [topicname][TCP:10.29.1.78:14371][2], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
Request [topicname][TCP:10.29.1.78:14371][3], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
Request [topicname][TCP:10.29.1.78:14371][4], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
[topicname][TCP:10.29.1.78:14371], End of Transport Session

10.13 Self Describing Messaging

The UM Self-Describing Messaging (SDM) feature provides an API that simplifies the creation and use of messages
by your applications. An SDM message contains one or more fields and each field consists of the following:

• A name

• A type

• A value

Each named field may appear only once in a message. If multiple fields of the same name and type are needed,
array fields are available. A field in a nested message may have the same name as a field in the outer message.

SDM is particularly helpful for creating messages sent across platforms by simplifying the creation of data formats.
SDM automatically performs platform-specific data translations, eliminating endian conflicts.

Using SDM also simplifies message maintenance because the message format or structure can be independent
of the source and receiver applications. For example, if your receivers query SDM messages for particular fields
and ignore the order of the fields within the message, a source can change the field order if necessary with no
modification of the receivers needed.

See the C, Java, and .NET API references for details.

Informatica generally recommends the use of Pre-Defined Messages, which is more efficient than self-describing
messages.

10.14 Pre-Defined Messages

The UM Pre-Defined Messages (PDM) feature provides an API similar to the SDM API, but allows you to define
messages once and then use the definition to create messages that may contain self-describing data. Eliminating
the need to repeatedly send a message definition increases the speed of PDM over SDM. The ability to use arrays
created in a different programming language also improves performance.

176 UM Features

The PDM library lets you create, serialize, and deserialize messages using pre-defined knowledge about the pos-
sible fields that may be used. You can create a definition that a) describes the fields to be sent and received in a
message, b) creates the corresponding message, and c) adds field values to the message. This approach offers
several performance advantages over SDM, as the definition is known in advance. However, the usage pattern is
slightly different from the SDM library, where fields are added directly to a message without any type of definition.

A PDM message contains one or more fields and each field consists of the following:

• A name

• A type

• A value

Each named field may appear only once in a message. If multiple fields of the same name and type are needed,
array fields are available. A field in a nested message may have the same name as a field in the outer message.

See the C, Java, and .NET API references for details.

The C API also has information and code samples about how to create definitions and messages, set field values
in a message, set the value of array fields in a message, serialize, deserialize and dispose of messages, and fetch
values from a message.

See C PDM Details.

10.14.1 Typical PDM Usage Patterns

The typical PDM usage patterns can usually be broken down into two categories: sources (which need to serialize
a message for sending) and receivers (which need to deserialize a message to extract field values). However, for
optimum performance for both sources and receivers, first set up the definition and a single instance of the message
only once during a setup or initialization phase, as in the following example workflow:

1. Create a definition and set its id and version.

2. Add field information to the definition to describe the types of fields to be in the message.

3. Create a single instance of a message based on the definition.

4. Set up a source to do the following:

• Add field values to the message instance.

• Serialize the message so that it can be sent.

5. Likewise, set up a receiver to do the following:

• Deserialize the received bytes into the message instance.

• Extract the field values from the message.

10.14.2 Getting Started with PDM

PDM APIs are provided in C, Java, and C#, however, the examples in this section are Java based.

PDM Code Example, Source

Translating the Typical PDM Usage Patterns to Java for a source produces the following:

10.14 Pre-Defined Messages 177

private PDMDefinition defn;
private PDMMessage msg;
private PDMFieldInfo fldInfo100;
private PDMFieldInfo fldInfo101;
private PDMFieldInfo fldInfo102;

public void setupPDM() {
//Create the definition with 3 fields and using int field names
defn = new PDMDefinition(3, true);

//Set the definition id and version
defn.setId(1001);
defn.setMsgVersMajor((byte)1);
defn.setMsgVersMinor((byte)0);

//Create information for a boolean, int32, and float fields (all required)
fldInfo100 = defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
fldInfo101 = defn.addFieldInfo(101, PDMFieldType.INT32, true);
fldInfo102 = defn.addFieldInfo(102, PDMFieldType.FLOAT, true);

//Finalize the definition and create the message defn.finalizeDef();
msg = new PDMMessage(defn);

}

public void sourceUsePDM() {
//Call the function to setup the definition and message
setupPDM();

//Example values for the message boolean
fld100Val = true;
int fld101Val = 7;
float fld102Val = 3.14F;

//Set each field value in the message
msg.setFieldValue(fldInfo100, fld100Val);
msg.setFieldValue(fldInfo101, fld101Val);
msg.setFieldValue(fldInfo102, fld102Val);

//Serialize the message to bytes
byte[] buffer = msg.toBytes();

}

PDM Code Example, Receiver

Translating the Typical PDM Usage Patterns to Java for a receiver produces the following:

private PDMDefinition defn;
private PDMMessage msg;
private PDMFieldInfo fldInfo100;
private PDMFieldInfo fldInfo101;
private PDMFieldInfo fldInfo102;

public void setupPDM() {
//Create the definition with 3 fields and using int field names
defn = new PDMDefinition(3, true);

//Set the definition id and version
defn.setId(1001);
defn.setMsgVersMajor((byte)1);
defn.setMsgVersMinor((byte)0);

//Create information for a boolean, int32, and float field (all required)
fldInfo100 = defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
fldInfo101 = defn.addFieldInfo(101, PDMFieldType.INT32, true);
fldInfo102 = defn.addFieldInfo(102, PDMFieldType.FLOAT, true);

//Finalize the definition and create the message
defn.finalizeDef();
msg = new PDMMessage(defn);

}

public void receiverUsePDM(byte[] buffer) {
//Call the function to setup the definition and message
setupPDM();

//Values to be retrieved from the message
boolean fld100Val;
int fld101Val;
float fld102Val;

//Deserialize the bytes into a message
msg.parse(buffer);

//Get each field value from the message
fld100Val = msg.getFieldValueAsBoolean(fldInfo100);

178 UM Features

fld101Val = msg.getFieldValueAsInt32(fldInfo101);
fld102Val = msg.getFieldValueAsFloat(fldInfo102);

}

PDM Code Example Notes

In the examples above, the setupPDM() function is called once to set up the PDM definition and message. It is
identical in both the source and receiver cases and simply sets up a definition that contains three required fields with
integer names (100, 101, 102). Once finalized, it can create a message that leverages its pre-defined knowledge
about these three required fields. The source example adds the three sample field values (a boolean, int32, and
float) to the message, which is then serialized to a byte array. In the receiver example, the message parses a byte
array into the message and then extracts the three field values.

10.14.3 Using the PDM API

The following code snippets expand upon the previous examples to demonstrate the usage of additional PDM
functionality (but use "..." to eliminate redundant code).

Reusing the Message Object

Although the examples use a single message object (which provides performance benefits due to reduced message
creation and garbage collection), it is not explicitly required to reuse a single instance. However, multiple threads
should not access a single message instance.

Number of Fields

Although the number of fields above is initially set to 3 in the PDMDefinition constructor, if you add more fields to
the definition with the addFieldInfo method, the definition grows to accommodate each field. Once the definition is
finalized, you cannot add additional field information because the definition is now locked and ready for use in a
message.

String Field Names

The examples above use integer field names in the setupPDM() function when creating the definition. You can
also use string field names when setting up the definition. However, you still must use a FieldInfo object to set or
get a field value from a message, regardless of field name type. Notice that false is passed to the PDMDefinition
constructor to indicate string field names should be used. Also, the overloaded addFieldInfo function uses string
field names (.Field100.) instead of the integer field names.

...
public void setupPDM() {

//Create the definition with 3 fields and using string field names
defn = new PDMDefinition(3, false);
...
//Create information for a boolean, int32, and float field (all required)
fldInfo100 = defn.addFieldInfo("Field100", PDMFieldType.BOOLEAN, true);
fldInfo101 = defn.addFieldInfo("Field101", PDMFieldType.INT32, true);
fldInfo102 = defn.addFieldInfo("Field102", PDMFieldType.FLOAT, true);
...

}
...

Retrieving FieldInfo from the Definition

At times, it may be easier to lookup the FieldInfo from the definition using the integer name (or string name if used).
This eliminates the need to store the reference to the FieldInfo when getting or setting a field value in a message,
but it does incur a performance penalty due to the lookup in the definition to retrieve the FieldInfo. Notice that there
are no longer FieldInfo objects being used when calling addFieldInfo and a lookup is being done for each call to
msg.getFieldValueAs∗ to retrieve the FieldInfo by integer name.

private PDMDefinition defn;
private PDMMessage msg;

public void setupPDM() {
...

10.14 Pre-Defined Messages 179

//Create information for a boolean, int32, and float field (all required)
defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
defn.addFieldInfo(101, PDMFieldType.INT32, true);
defn.addFieldInfo(102, PDMFieldType.FLOAT, true);
...

}

public void receiverUsePDM(byte[] buffer) {
...
//Get each field value from the message
fld100Val = msg.getFieldValueAsBoolean(defn.getFieldInfo(100));
fld101Val = msg.getFieldValueAsInt32(defn.getFieldInfo(101));
fld102Val = msg.getFieldValueAsFloat(defn.getFieldInfo(102));

}

Required and Optional Fields

When adding field information to a definition, you can indicate that the field is optional and may not be set for every
message that uses the definition. Do this by passing false as the third parameter to the addFieldInfo function. Using
required fields (fixed-required fields specifically) produces the best performance when serializing and deserializing
messages, but causes an exception if all required fields are not set before serializing the message. Optional fields
allow the concept of sending "null" as a value for a field by simply not setting that field value on the source side
before serializing the message. However, after parsing a message, a receiver should check the isFieldValueSet
function for an optional field before attempting to read the value from the field to avoid the exception mentioned
above.

...
private PDMFieldInfo fldInfo103;
...
public void setupPDM() {

...
//Create information for a boolean, int32, and float field (all required)
// as well as an optional int8 field
fldInfo100 = defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
fldInfo101 = defn.addFieldInfo(101, PDMFieldType.INT32, true);
fldInfo102 = defn.addFieldInfo(102, PDMFieldType.FLOAT, true);
fldInfo103 = defn.addFieldInfo(103, PDMFieldType.INT8, false);
...

}

public void sourceUsePDM() {
...
//Set each field value in the message
// except do not set the optional field
msg.setFieldValue(fldInfo100, fld100Val);
msg.setFieldValue(fldInfo101, fld101Val);
msg.setFieldValue(fldInfo102, fld102Val);
...

}

...
private PDMFieldInfo fldInfo103;
...
public void setupPDM() {

...
//Create information for a boolean, int32, and float field (all required)
// as well as an optional int8 field
fldInfo103 = defn.addFieldInfo(103, PDMFieldType.INT8, false);
...

}

public void receiverUsePDM(byte[] buffer) {
...
byte fld103Val;
...
if(msg.isFieldValueSet(fldInfo103)) {
fld103Val = msg.getFieldValueAsInt8(fldInfo103);

}
}

Fixed String and Fixed Unicode Field Types

A variable length string typically does not have the performance optimizations of fixed-required fields. However, by
indicating "required", as well as the field type FIX_STRING or FIX_UNICODE and specifying an integer number of
fixed characters, PDM sets aside an appropriate fixed amount of space in the message for that field and treats it
as an optimized fixed-required field. Strings of a smaller length can still be set as the value for the field, but the
message allocates the specified fixed number of bytes for the string. Specify Unicode strings in the same manner
(with FIX_UNICODE as the type) and in "UTF-8" format.

180 UM Features

...
private PDMFieldInfo fldInfo104;
...
public void setupPDM() {

...
fldInfo104 = defn.addFieldInfo(104, PDMFieldType.FIX_STRING, 12, true);
...

}

public void sourceUsePDM() {
...
String fld104Val = "Hello World!";

//Set each field value in the message
// except do not set the optional field
msg.setFieldValue(fldInfo100, fld100Val);
msg.setFieldValue(fldInfo101, fld101Val);
msg.setFieldValue(fldInfo102, fld102Val);
msg.setFieldValue(fldInfo104, fld104Val);
...

}

...
private PDMFieldInfo fldInfo104;
...
public void setupPDM() {

...
fldInfo104 = defn.addFieldInfo(104, PDMFieldType.FIX_STRING, 12, true);
...

}
public void receiverUsePDM(byte[] buffer) {

...
String fld104Val;
...

fld104Val = msg.getFieldValueAsString(fldInfo104);
}

Variable Field Types

The field types of STRING, UNICODE, BLOB, and MESSAGE are all variable length field types. They do not require
a length to be specified when adding field info to the definition. You can use a BLOB field to store an arbitrary binary
objects (in Java as an array of bytes) and a MESSAGE field to store a PDMMessage object,

which enables "nesting" PDMMessages inside other PDMMessages. Creating and using a variable length string
field is nearly identical to the previous fixed string example.

...
private PDMFieldInfo fldInfo105;
...
public void setupPDM() {

...
fldInfo105 = defn.addFieldInfo(105, PDMFieldType.STRING, true);
...

}

public void sourceUsePDM() {
...
String fld105Val = "variable length value";
...
msg.setFieldValue(fldInfo105, fld105Val);
...

}

...
private PDMFieldInfo fldInfo105;
...
public void setupPDM() {

...
fldInfo105 = defn.addFieldInfo(105, PDMFieldType.STRING, true);
...

}
public void receiverUsePDM(byte[] buffer) {

...
String fld105Val;
...

fld105Val = msg.getFieldValueAsString(fldInfo105);
}

Retrieve the BLOB field values with the getFieldValueAsBlob function, and the MESSAGE field values with the
getFieldValueAsMessage function.

10.14 Pre-Defined Messages 181

Array Field Types

For each of the scalar field types (fixed and variable length), a corresponding array field type uses the convention
∗_ARR for the type name (ex: BOOLEAN_ARR, INT32_ARR, STRING_ARR, etc.). This lets you set and get Java
values such as an int[] or string[] directly into a single field. In addition, all of the array field types can specify a
fixed number of elements for the size of the array when they are defined, or if not specified, behave as variable size
arrays. Do this by passing an extra parameter to the addFieldInfo function of the definition.

To be treated as a fixed-required field, an array type field must be required as well as be specified as a fixed size
array of fixed length elements. For instance, a required BOOLEAN_ARR field defined with a size of 3 would be
treated as a fixed-required field. Also, a required FIX_STRING_ARR field defined with a size of 5 and fixed string
length of 7 would be treated as a fixed-required field. However, neither a STRING_ARR field nor a BLOB_ARR field
are treated as a fixed length field even if the size of the array is specified, since each element of the array can be
variable in length. In the example below, field 106 and field 108 are both treated as fixed-required fields, but field
107 is not because it is a variable size array field type.

...
private PDMFieldInfo fldInfo106;
private PDMFieldInfo fldInfo107;
private PDMFieldInfo fldInfo108;
...

public void setupPDM() {
...
//Create information for a boolean, int32, and float field (all required)
// as well as an optional int8 field
...
//A required, fixed size array of 3 boolean elements
fldInfo106 = defn.addFieldInfo(106, PDMFieldType.BOOLEAN_ARR, true, 3);
//An optional, variable size array of int32 elements
fldInfo107 = defn.addFieldInfo(107, PDMFieldType.INT32_ARR, false);
//A required, fixed size array of 2 element which are each 5 character strings
fldInfo108 = defn.addFieldInfo(108, PDMFieldType.FIX_STRING_ARR, 5, true, 2);
...

}

public void sourceUsePDM() {
...
//Example values for the message
...
boolean fld106Val[] = {true, false, true};
int fld107Val[] = {1, 2, 3, 4, 5};
String fld108Val[] = {"aaaaa", "bbbbb"};

//Set each field value in the message
...
msg.setFieldValue(fldInfo106, fld106Val);
msg.setFieldValue(fldInfo107, fld107Val);
msg.setFieldValue(fldInfo108, fld108Val);
...

}

...
private PDMFieldInfo fldInfo106;
private PDMFieldInfo fldInfo107;
private PDMFieldInfo fldInfo108;
...
public void setupPDM() {

...
//Create information for a boolean, int32, and float field (all required)
// as well as an optional int8 field
...
//A required, fixed size array of 3 boolean elements
fldInfo106 = defn.addFieldInfo(106, PDMFieldType.BOOLEAN_ARR, true, 3);
//An optional, variable size array of int32 elements
fldInfo107 = defn.addFieldInfo(107, PDMFieldType.INT32_ARR, false);
//A required, fixed size array of 2 element which are each 5 character strings
fldInfo108 = defn.addFieldInfo(108, PDMFieldType.FIX_STRING_ARR, 5, true, 2);
...

}

public void receiverUsePDM(byte[] buffer) {
...
//Values to be retrieved from the message
...
boolean fld106Val[];
int fld107Val[];
String fld108Val[];

//Deserialize the bytes into a message
msg.parse(buffer);

182 UM Features

//Get each field value from the message
...
fld106Val = msg.getFieldValueAsBooleanArray(fldInfo106);
if(msg.isFieldValueSet(fldInfo107)) {
fld107Val = msg.getFieldValueAsInt32Array(fldInfo107);

}

fld108Val = msg.getFieldValueAsStringArray(fldInfo108);
}

Definition Included In Message

Optionally, a PDM message can also include the definition when it is serialized to bytes. This enables receivers to
parse a PDM message without having pre-defined knowledge of the message, although including the definition with
the message affects message size and performance of message deserialization. Notice that the setIncludeDefinition
function is called with an argument of true for a source that serializes the definition as part of the message.

private PDMDefinition defn;
private PDMMessage msg;

public void setupPDM() {
//Create the definition with 3 fields and using int field names
defn = new PDMDefinition(3, true);
...

//Finalize the definition and create the message
defn.finalizeDef();
msg = new PDMMessage(defn);

//Set the flag to indicate that the definition should also be serialized
msg.setIncludeDefinition(true);

}
...

For a receiver, the setupPDM function does not need to set any flags for the message but rather should define a
message without a definition, since we assume the source provides the definition. If a definition is set for a message,
it will attempt to use that definition instead of the definition on the incoming message (unless the ids are different).

private PDMDefinition defn;
private PDMMessage msg;

public void setupPDM() {
//Don’t define a definition

//Create a message without a definition since the incoming message will have it
msg = new PDMMessage();

}
...

The PDM Field Iterator

You can use the PDM Field Iterator to check all defined message fields to see if set, or to extract their values. You
can extract a field value as an Object using this method, but due to the casting involved, we recommend you use
the type specific get method to extract the exact value. Notice the use of field.isValueSet to check to see if the field
value is set and the type specific get methods such as getBooleanValue and getFloatValue.

...

public void setupPDM() {
//Create the definition with 3 fields and using int field names
defn = new PDMDefinition(3, true);

//Set the definition id and version
defn.setId(1001);
defn.setMsgVersMajor((byte)1);
defn.setMsgVersMinor((byte)0);

//Create information for a boolean, int32, and float field (all required)
// as well as an optional int8 field
fldInfo100 = defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
fldInfo101 = defn.addFieldInfo(101, PDMFieldType.INT32, true);
fldInfo102 = defn.addFieldInfo(102, PDMFieldType.FLOAT, true);
fldInfo103 = defn.addFieldInfo(103, PDMFieldType.INT8, false);
fldInfo104 = defn.addFieldInfo(104, PDMFieldType.FIX_STRING, 12, true);
fldInfo105 = defn.addFieldInfo(105, PDMFieldType.STRING, true);

10.14 Pre-Defined Messages 183

//A required, fixed size array of 3 boolean elements
fldInfo106 = defn.addFieldInfo(106, PDMFieldType.BOOLEAN_ARR, true, 3);
//An optional, variable size array of int32 elements
fldInfo107 = defn.addFieldInfo(107, PDMFieldType.INT32_ARR, false);
//A required, fixed size array of 2 element which are each 5 character strings
fldInfo108 = defn.addFieldInfo(108, PDMFieldType.FIX_STRING_ARR, 5, true, 2);

//Finalize the definition and create the message
defn.finalizeDef();
msg = new PDMMessage(defn);

}

public void receiveAndIterateMessage(byte[] buffer) {
msg.parse(buffer);
PDMFieldIterator iterator = msg.createFieldIterator();
PDMField field = null;
while(iterator.hasNext()) {
field = iterator.next();
System.out.println("Field set? " +field.isValueSet());
switch(field.getIntName()) {

case 100:
boolean val100 = field.getBooleanValue();
System.out.println("Field 100’s value is: " + val100);
break;

case 101:
int val101 = field.getInt32Value();
System.out.println("Field 101’s value is: " + val101);
break;

case 102:
float val102 = field.getFloatValue();
System.out.println("Field 102’s value is: " + val102);
break;

default:
//Casting to object is possible but not recommended
Object value = field.getValue();
int name = field.getIntName();
System.out.println("Field " + name + "’s value is: " + value);
break;

}
}

}

Sample Output (106, 107, 108 are array objects as expected):

Field set? true
Field 100’s value is: true
Field set? true
Field 101’s value is: 7
Field set? true
Field 102’s value is: 3.14
Field set? false
Field 103’s value is: null
Field set? true
Field 104’s value is: Hello World!
Field set? true
Field 105’s value is: Variable
Field set? true
Field 106’s value is: [Z@527736bd
Field set? true
Field 107’s value is: [I@10aadc97
Field set? true
Field 108’s value is: [Ljava.lang.String;@4178460d

Using the Definition Cache

The PDM Definition Cache assists with storing and looking up definitions by their id and version. In some scenarios,
it may not be desirable to maintain the references to the message and the definition from a setup phase by the
application. A source could optionally create the definition during the setup phase and store it in the definition
cache. At a later point in time, it could retrieve the definition from the cache and use it to create the message
without needing to maintain any references to the objects.

public void createAndStoreDefinition() {
PDMDefinition myDefn = new PDMDefinition(3, true);
//Set the definition id and version
myDefn.setId(2001);
myDefn.setMsgVersMajor((byte)1);

184 UM Features

myDefn.setMsgVersMinor((byte)0);

//Create information for a boolean, int32, and float field (all required)
myDefn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
myDefn.addFieldInfo(101, PDMFieldType.INT32, true);
myDefn.addFieldInfo(102, PDMFieldType.FLOAT, true);

myDefn.finalizeDef();

PDMDefinitionCache.getInstance().put(myDefn);
}

public void createMessageUsingCache() {
PDMDefinition myFoundDefn = PDMDefinitionCache.getInstance().get(2001, 1, 0);
if(myFoundDefn != null) {
PDMMessage myMsg = new PDMMessage(myFoundDefn);
//Get FieldInfo from defn and then set field values in myMsg
//...

}
}

A more advanced use of the PDM Definition Cache is by a receiver which may need to receive messages with
different definitions and the definitions are not being included with the messages. The receiver can create the
definitions in advance and then set a flag that allows automatic lookup into the definition cache when parsing a
message (which is not on by default). Before receiving messages, the receiver should do something similar to
createAndStoreDefinition (shown below) to set up definitions and put them in the definition cache. Then the flag
to allow automatic lookup should be set as shown below in the call to setTryToLoadDefFromCache(true). This
allows the PDMMessage to be created without a definition and still successfully parse a message by leveraging the
definition cache.

public void createAndStoreDefinition() {
PDMDefinition myDefn = new PDMDefinition(3, true);
//Set the definition id and version
myDefn.setId(2001);
myDefn.setMsgVersMajor((byte)1);
myDefn.setMsgVersMinor((byte)0);

//Create information for a boolean, int32, and float field (all required)
myDefn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
myDefn.addFieldInfo(101, PDMFieldType.INT32, true);
myDefn.addFieldInfo(102, PDMFieldType.FLOAT, true);

myDefn.finalizeDef();
PDMDefinitionCache.getInstance().put(myDefn);

//Create and store other definitions
//...

}

public void receiveKnownMessages(byte[] buffer) {
PDMMessage myMsg = new PDMMessage();
//Set the flag that enables messages to try
// looking up the definition in the cache automatically
// when parsing a byte buffer
myMsg.setTryToLoadDefFromCache(true);
myMsg.parse(buffer);

if (myMsg.getDefinition().getId() == 2001
&& myMsg.getDefinition().getMsgVersMajor() == 1
&& myMsg.getDefinition().getMsgVersMinor() == 0) {

PDMDefinition myDefn = PDMDefinitionCache.getInstance().get(2001, 1, 0);
PDMFieldInfo fldInfo100 = myDefn.getFieldInfo(100);
PDMFieldInfo fldInfo101 = myDefn.getFieldInfo(101);
PDMFieldInfo fldInfo102 = myDefn.getFieldInfo(102);

boolean fld100Val;
int fld101Val;
float fld102Val;

//Get each field value from the message
fld100Val = myMsg.getFieldValueAsBoolean(fldInfo100);
fld101Val = myMsg.getFieldValueAsInt32(fldInfo101);
fld102Val = myMsg.getFieldValueAsFloat(fldInfo102);

System.out.println(fld100Val + " " + fld101Val + " " + fld102Val);
}

}

10.14 Pre-Defined Messages 185

10.14.4 Migrating from SDM

Applications using SDM with a known set of message fields are good candidates for migrating from SDM to PDM.
With SDM, the source typically adds fields to an SDM message without a definition. But, as shown above in the
PDM examples, creating/adding a PDM definition before adding field values is fairly straightforward.

However, certain applications may be incapable of building a definition in advance due to the ad-hoc nature of their
messaging needs, in which case a self-describing format like SDM may be preferred.

Simple Migration Example

The following source code shows a basic application that serializes and deserializes three fields using SDM and
PDM. The setup method in both cases initializes the object instances so they can be reused by the source and
receiver methods.

The goal of the sourceCreateMessageWith functions is to produce a byte array by setting field values in a message
object. With SDM, actual Field classes are created, values are set, the Field classes are added to a

Fields class, and then the Fields class is added to the SDMessage. With PDM, FieldInfo objects are created during
the setup phase and then used to set specific values in the PDMMessage.

The goal of the receiverParseMessageWith functions is to produce a message object by parsing the byte array and
then extract the field values from the message. With SDM, the specific field is located and casted to the correct
field class before getting the field value. With PDM, the appropriate getFieldValueAs function is called with the
corresponding FieldInfo object created during the setup phase to extract the field value.

public class Migration {
//SDM Variables
private LBMSDMessage srcSDMMsg;
private LBMSDMessage rcvSDMMsg;

//PDM Variables
private PDMDefinition defn;
private PDMFieldInfo fldInfo100;
private PDMFieldInfo fldInfo101;
private PDMFieldInfo fldInfo102;
private PDMMessage srcPDMMsg;
private PDMMessage rcvPDMMsg;

public static void main(String[] args) {
Migration app = new Migration();
System.out.println("Setting up PDM Definition and Message");
app.setupPDM();
System.out.println("Setting up SDM Messages");
app.setupSDM();

byte[] sdmBuffer;
sdmBuffer = app.sourceCreateMessageWithSDM();
app.receiverParseMessageWithSDM(sdmBuffer);

byte[] pdmBuffer;
pdmBuffer = app.sourceCreateMessageWithPDM();
app.receiverParseMessageWithPDM(pdmBuffer);

}

public void setupSDM() {
rcvSDMMsg = new LBMSDMessage();
srcSDMMsg = new LBMSDMessage();

}

public void setupPDM() {
//Create the definition with 3 fields and using int field names
defn = new PDMDefinition(3, false);

//Set the definition id and version
defn.setId(1001);
defn.setMsgVersMajor((byte)1);
defn.setMsgVersMinor((byte)0);

//Create information for a boolean, int32, and float field (all required)
// as well as an optional int8 field
fldInfo100 = defn.addFieldInfo("Field100", PDMFieldType.INT8, true);
fldInfo101 = defn.addFieldInfo("Field101", PDMFieldType.INT16, true);
fldInfo102 = defn.addFieldInfo("Field102", PDMFieldType.INT32, true);

//Finalize the definition and create the message defn.finalizeDef();
srcPDMMsg = new PDMMessage(defn);
rcvPDMMsg = new PDMMessage(defn);

}

186 UM Features

public byte[] sourceCreateMessageWithSDM() {
byte[] buffer = null;

LBMSDMField fld100 = new LBMSDMFieldInt8("Field100", (byte)0x42);
LBMSDMField fld101 = new LBMSDMFieldInt16("Field101", (short)0x1ead);
LBMSDMField fld102 = new LBMSDMFieldInt32("Field102", 12345);
LBMSDMFields fset = new LBMSDMFields();

try {
fset.add(fld100);
fset.add(fld101);
fset.add(fld102);

} catch (LBMSDMException e) {
System.out.println (e);

}

srcSDMMsg.set(fset);
try {

buffer = srcSDMMsg.data();
} catch (IndexOutOfBoundsException e) {

System.out.println ("SDM Exception occurred during build of message:");
System.out.println (e.toString());

} catch (LBMSDMException e) {
System.out.println (e.toString());

}
return buffer;

}

public byte[] sourceCreateMessageWithPDM() {
//Set each field value in the message
srcPDMMsg.setFieldValue(fldInfo100, (byte)0x42);
srcPDMMsg.setFieldValue(fldInfo101, (short)0x1ead);
srcPDMMsg.setFieldValue(fldInfo102, 12345);

//Serialize the message to bytes
byte[] buffer = srcPDMMsg.toBytes();
return buffer;

}

public void receiverParseMessageWithSDM(byte[] buffer) {
//Values to be retrieved from the message byte fld100Val;
short fld101Val;
int fld102Val;

//Deserialize the bytes into a message
try {

rcvSDMMsg.parse(buffer);
} catch (LBMSDMException e) {

System.out.println(e.toString());
}

LBMSDMField fld100 = rcvSDMMsg.locate("Field100");
LBMSDMField fld101 = rcvSDMMsg.locate("Field101");
LBMSDMField fld102 = rcvSDMMsg.locate("Field102");

//Get each field value from the message
fld100Val = ((LBMSDMFieldInt8)fld100).get();
fld101Val = ((LBMSDMFieldInt16)fld101).get();
fld102Val = ((LBMSDMFieldInt32)fld102).get();

System.out.println("SDM Results: Field100=" + fld100Val +
", Field101=" + fld101Val +
", Field102=" + fld102Val);

}

public void receiverParseMessageWithPDM(byte[] buffer) {
//Values to be retrieved from the message
byte fld100Val;
short fld101Val;
int fld102Val;

//Deserialize the bytes into a message
rcvPDMMsg.parse(buffer);

//Get each field value from the message
fld100Val = rcvPDMMsg.getFieldValueAsInt8(fldInfo100);
fld101Val = rcvPDMMsg.getFieldValueAsInt16(fldInfo101);
fld102Val = rcvPDMMsg.getFieldValueAsInt32(fldInfo102);

System.out.println("PDM Results: Field100=" + fld100Val +
", Field101=" + fld101Val +
", Field102=" + fld102Val);

}
}

10.15 Sending to Sources 187

Notice that with sourceCreateMessageWithSDM function, the three fields (name and value) are created and added
to the fset variable, which is then added to the SDM message. On the other hand, the sourceCreateMessage←↩
WithPDM function uses the FieldInfo object references to add the field values to the message for each of the three
fields.

Also notice that the receiverParseMessageWithSDM requires a cast to the specific field class (like LBMSDMField←↩
Int8) once the field has been located. After the cast, calling the get method returns the expected value. On the other
hand the receiverParseMessageWithPDM uses the FieldInfo object reference to directly retrieve the field value using
the appropriate getFieldValueAs∗ method.

SDM Raw Classes

Several SDM classes with Raw in their name could be used as the value when creating an LBMSDMField. For
example, an LBMSDMRawBlob instance could be created from a byte array and then that the LBMSDMRawBlob
could be used as the value to a LBMSDMFieldBlob as shown in the following example.

byte[] blob = new byte[25];
LBMSDMRawBlob rawSDMBlob = new LBMSDMRawBlob(blob);
try {

LBMSDMField fld103 = new LBMSDMFieldBlob("Field103",rawSDMBlob);
} catch (LBMSDMException e1) {

System.out.println(e1);
}

The actual field named "Field103" is created in the try block using the rawSDMBlob variable which has been created
to wrap the blob byte array. This field can be added to a LBMSDMFields object, which then uses it in a LBMSD←↩
Message.

In PDM, there are no "Raw" classes that can be created. When setting the value for a field for a message, the
appropriate variable type should be passed in as the value. For example, setting the field value for a BLOB field
would mean simply passing the byte array directly in the setValue method as shown in the following code snippet
since the field is defined as type BLOB.

private PDMFieldInfo fldInfo103;
public void setupPDM() {

...
fldInfo103 = defn.addFieldInfo("Field103", PDMFieldType.BLOB, true);
...
byte[] blob = new byte[25];

srcPDMMsg.setFieldValue(fldInfo103, blob);
...

}

The PDM types of DECIMAL, TIMESTAMP, and MESSAGE expect a corresponding instance of PDMDecimal, P←↩
DMTimestamp, and PDMMessage as the field value when being set in the message so those types do require an
instantiation instead of using a native Java type. For example, if "Field103" had been of type PDMFieldType.DEC←↩
IMAL, the following code would be used to set the value.

PDMDecimal decimal = new PDMDecimal((long)2, (byte)32);
srcPDMMsg.setFieldValue(fldInfo103, decimal);

10.15 Sending to Sources

There are many use cases where a subscriber application wants to send a message to a publisher application. For
example, a client application which subscribes to market data may want to send a refresh request to the publishing
feed handler. While this is possible to do with normal sources and receivers, UM supports a streamlined method of
doing this.

Starting with UM version 6.10, a Source String can be used as a destination for sending a unicast immediate
message. The UM library will establish a TCP connection to the publisher's context via its UIM port (also known as

188 UM Features

"request port"). The publishing application can receive this message either from a normal Receiver Object, or from
a context immediate message callback via configuration options immediate_message_topic_receiver_function
(context) or immediate_message_receiver_function (context) (for topicless messages).

10.15.1 Source String from Receive Event

A receiving application's receiver callback function can obtain a source's source string from the message structure.
However, that string is not suitable to being passed directly to the unicast immediate message send function.

Here's a code fragment in C for receiving a message from a source, and sending a message back to the originating
source. For clarity, error detection and handling code is omitted.

int user_receiver_callback(lbm_rcv_t *rcv, lbm_msg_t *msg, void *clientd)
{

...
switch (msg->type) {
...

case LBM_MSG_DATA:
/* user code which processes received message and sets up "msg_for_src" */
...
/* A valid UIM destination is "SOURCE:" + source string. */
char destination[LBM_MSG_MAX_SOURCE_LEN + 8];
strcpy(destination, "SOURCE:");
strcat(destination, msg->source);

err = lbm_unicast_immediate_message(ctx, destination, NULL, /* no topic */
msg_for_src, sizeof(msg_for_src),
LBM_SRC_NONBLOCK); /* Called from context thread. */

...
} /* switch msg->type */
...

} /* user_receiver_callback */

The lbm_msg_t structure supplies the source string, and lbm_unicast_immediate_message() is used to send a
topicless immediate message to the source's context. Alternatively, a request message could be sent with lbm_←↩
unicast_immediate_request(). If the receive events are delivered without an event queue, then LBM_SRC_NO←↩
NBLOCK is needed.

The example above uses the LBM_MSG_DATA message type. Most receiver event (message) types also contain
a valid source string. Other likely candidates for this use case might be: LBM_MSG_BOS, LBM_MSG_UNREC←↩
OVERABLE_LOSS, LBM_MSG_UNRECOVERABLE_LOSS_BURST.

Note that in this example, a topicless message is sent. This requires the publishing application to use the
immediate_message_receiver_function (context) option to set up a callback for receipt of topicless immedi-
ate messages. Alternatively, a topic name can be supplied to the unicast immediate message function, in which
case the publishing application would either create a normal Receiver Object for that topic, or would configure a
callback with immediate_message_topic_receiver_function (context).

A Java program obtains the source string via LBMMessage::source(), and sends topicless unicast immediate
messages via LBMContext::sendTopicless().

A .NET implementation is essentially the same as Java.

10.15.2 Source String from Source Notification Function

Some subscribing applications need to send a message to the publisher as soon as possible after the publisher
is subscribed. Receiver events can sometimes take significant time to be delivered. The source string can be
obtained via the source_notification_function (receiver) configuration option. This defines a callback function
which is called at the start of the process of subscribing to a source.

Here's a code fragment in C for sending a message to a newly-discovered source. For clarity, error detection and
handling code is omitted.

10.15 Sending to Sources 189

During initialization, when the receiver is defined, the callback must be configured using the lbm_rcv_src_←↩
notification_func_t_stct structure:

lbm_rcv_src_notification_func_t src_notif_callback_info;
src_notif_callback_info.create_func = src_notif_callback_create; /* User function. */
src_notif_callback_info.delete_func = src_notif_callback_delete; /* User function. */
src_notif_callback_info.clientd = NULL; /* Can be user’s receiver-specific state. */
...
lbm_rcv_topic_attr_t *rcv_topic_attr;
err = lbm_rcv_topic_attr_create_from_xml(&rcv_topic_attr, "MyCtx", receiver_topic_name);

err = lbm_rcv_topic_attr_setopt(rcv_topic_attr, "source_notification_function",
&src_notif_callback_info, sizeof(src_notif_callback_info));

lbm_topic_t *receiver_topic;
err = lbm_rcv_topic_lookup(&receiver_topic, ctx, receiver_topic_name, rcv_topic_attr);

lbm_rcv_t *receiver;
err = lbm_rcv_create(&receiver, ctx, receiver_topic, ...);

This creates the Receiver Object with the source notification callback configured. Note that the source notification
callback has both a create and a delete function, to facilitate state management by the user.

void * src_notif_callback_create(const char *source_name, void *clientd)
{

/* This function is called when the subscription is being set up. */

/* user code which sets up "msg_for_src" */
...
/* A valid UIM destination is "SOURCE:" + source string. */
char destination[LBM_MSG_MAX_SOURCE_LEN + 8];
strcpy(destination, "SOURCE:");
strcat(destination, source_name);

err = lbm_unicast_immediate_message(ctx, destination, NULL, /* no topic */
msg_for_src, sizeof(msg_for_src),
LBM_SRC_NONBLOCK); /* Called from context thread. */

...
return NULL; /* Can be per-source state. */

} /* src_notif_callback_create */

int src_notif_callback_delete(const char *source_name, void *clientd, void *source_clientd) {
/* This function not used for anything in this example, but could be used to

* to clean up per-source state. */
return 0;

} /* src_notif_callback_delete */

A Java program configures the source notification callback via com::latencybusters::lbm::LBMReceiver←↩
Attributes::setSourceNotificationCallbacks.

A .NET implementation is essentially the same as Java.

10.15.3 Sending to Source Readiness

In most use cases for sending messages to a source, there is an implicit assumption that a subscribing receiver is
fully set up and ready to receive messages from the publisher. However, due to the asynchronous nature of UM,
there is no straight-forward way for a receiver to know the earliest point in time when messages sent by the source
will be delivered to the receiver. For example, in a routed network (using the DRO), a receiver might deliver BOS to
the application, but that just means that the connection to the proper DRO is complete. There could still be delays
in the entire end-to-end path being able to deliver messages.

Also, be aware that although unicast immediate messages are delivered via TCP, these messages are not guaran-
teed. Especially in a routed network, there exists the possibility that a message will fail to reach the publisher.

In most cases, the immediate message is received by the publisher, and by the time the publisher reacts, the end-
to-end source-to-receiver path is active. However, in the unlikely event that something goes wrong, a subscribing
application should implement a timeout/retry mechanism. This advice is not specific to the "sending to source" use
cases, and should be built into any kind of request/response-oriented use case.

190 UM Features

10.16 Spectrum

UM Spectrum, which refers to a "spectrum of channels", allows the application designer to sub-divide a topic into
any number of channels, which can be individually subscribed to by a receiving application. This provides an extra
level of message filtering.

The publisher first allocates the desired number of source channel objects using lbm_src_channel_create(). Then
it creates a topic source in the normal way. Finally, the application sends messages using lbm_src_send_ex(),
specifying the source channel object in the lbm_src_send_ex_info_t's channel_info field.

A receiving application first creates a topic receiver in the normal way. Then it subscribes to channels using lbm←↩
_rcv_subscribe_channel() or lbm_wrcv_subscribe_channel(). Since each channel requires a different receiver
callback, the receiver application can achieve more granular filtering of messages. Moreover, messages are re-
ceived in-order across channels since all messages are part of the same topic stream.

It should be noted that a regular topic receiver (one for which no spectrum channels are subscribed) delivers all
received messages from a matching spectrum topic source to the receiver's callback without creating the channel←↩
_info object.

You can accomplish the same level of filtering with a topic space design that creates separate topics for each
channel, however, UM cannot guarantee the delivery of messages from multiple sources/topics in any particular
order. Not only can UM Spectrum deliver the messages over many channels in the order they were sent by the
source, but it also reduces topic resolution traffic since UM advertises only topics, not channels.

Note

With the UMQ product, you cannot use UM Spectrum with Queuing (both Brokered and ULB).

10.16.1 Spectrum Performance Advantages

The use of separate callbacks for different channels improves filtering and also relieves the source application of
the task of including filtering information in the message data.

Java and .NET performance also receives a boost because messages not of interest can be discarded before they
transition to the Java or .NET level.

10.16.2 Spectrum Configuration Options

Spectrum's default behavior delivers messages on any channels the receiver has subscribed to on the callbacks
specified when subscribing, and all other messages on the receiver's default callback. This behavior can be changed
with the following configuration options.

• null_channel_behavior (receiver) - behavior for messages delivered with no channel information.

• unrecognized_channel_behavior (receiver) - behavior for messages delivered with channel information but
are on a channel for which the receiver has not registered interest.

• channel_map_tablesz (receiver) - controls the size of the table used by a receiver to store channel sub-
scriptions.

10.16 Spectrum 191

10.16.3 Spectrum Receiver Callback

When an application subscribes to a spectrum channel, it uses the spectrum subscribe API:

• lbm_rcv_subscribe_channel() - C/C++

• com::latencybusters::lbm::LBMReceiver::subscribeChannel() - Java/.NET

Note that when subscribing to a channel, the receiver callback function is optional. If null is supplied as the callback,
UM will invoke the underlying receiver's callback.

If a separate callback is supplied for the channel, be aware that only data message event types (LBM_MSG_DATA,
LBM_MSG_REQUEST) will be delivered to it. Non-data events (LBM_MSG_BOS, LBM_MSG_EOS, LBM_MS←↩
G_UNRECOVERABLE_LOSS, etc.) will be delivered to the underlying receiver's callback.

10.16.4 Smart Sources and Spectrum

Smart Sources support Spectrum, but via different API functions. You need to tell UM that you intend to use
spectrum at Smart Source creation time using the smart_src_enable_spectrum_channel (source) configuration
option. This pre-allocates space in the message header for the spectrum channel.

With Smart Sources, there is no need to allocate a Spectrum source object with lbm_src_channel_create(). In-
stead, you simply set the LBM_SSRC_SEND_EX_FLAG_CHANNEL flag and the spectrum channel number in the
lbm_ssrc_send_ex_info_t passed to the lbm_ssrc_send_ex() API function. It is also usually necessary to tell UM
to rebuild the header. For example:

lbm_ssrc_send_ex_info_t ss_send_info;
memset((char *)&ss_send_info, 0, sizeof(ss_send_info));
ss_send_info.flags = LBM_SSRC_SEND_EX_FLAG_CHANNEL |

LBM_SSRC_SEND_EX_FLAG_REBUILD_BUFFER;
ss_send_info.channel = desired_channel_number;

err = lbm_ssrc_send_ex(ss, msg_buff, msg_size, 0, &ss_send_info);

Note that if you are sending multiple messages in a row to the same spectrum channel, you can get a small
performance boost by leaving the header alone and code subsequent calls as:

lbm_ssrc_send_ex_info_t ss_send_info;
ss_send_info.flags = LBM_SSRC_SEND_EX_FLAG_CHANNEL;

err = lbm_ssrc_send_ex(ss, msg_buff, msg_size, 0, &ss_send_info);

When a Smart Source is created with Spectrum enabled, it is possible to send messages without a Spectrum
channel, either by clearing the LBM_SSRC_SEND_EX_FLAG_CHANNEL flag in lbm_ssrc_send_ex_info_t, or
by simply not supplying a lbm_ssrc_send_ex_info_t object by passing NULL for the info parameter. This sup-
presses all features enabled by that structure.

Note

If using both Spectrum and Message Properties with a single Smart Source, there is an added restriction: it
is not possible to send a message omitting only one of those features. If both are enabled when the Smart
Source is created, it is not possible to send a message with a message property and not a channel, and it is
not possible to send a message with a channel and not a property. This is because the message header is
defined at Smart Source creation, and the header either must contain both or neither.

192 UM Features

10.17 Hot Failover (HF)

UM Hot Failover (HF) lets you implement sender redundancy in your applications. You can create multiple HF
senders in different UM contexts, or, for even greater resiliency, on separate machines. There is no hard limit to the
number of HF sources, and different HF sources can use different transport types.

Hot Failover receivers filter out the duplicate messages and deliver one message to your application. Thus, sources
can drop a few messages or even fail completely without causing message loss, as long as the HF receiver receives
each message from at least one source.

The following diagram displays Hot Failover operation.

In the figure above, HF sources send copies of Message X. An HF receiver delivers the first copy of Message X it
receives to the application, and discards subsequent copies coming from the other sources.

Attention

See Hot Failover Restrictions.

10.17.1 Implementing Hot Failover Sources

You create Hot Failover sources with lbm_hf_src_create(). This returns a source object with internal state informa-
tion that lets it send HF messages. You delete HF sources with the lbm_src_delete() function.

HF sources send HF messages via lbm_hf_src_send_ex() or lbm_hf_src_sendv_ex(). These functions take a
sequence number, supplied via the exinfo object, that HF receivers use to identify the same message sent from
different HF sources. The exinfo has an hf_sequence_number, with a flag (LBM_SRC_SEND_EX_FLAG_HF_32
or LBM_SRC_SEND_EX_FLAG_HF_64) that identifies whether it's a 32- or 64-bit number. Each HF source sends
the same message content for a given sequence number, which must be coordinated by your application.

10.17 Hot Failover (HF) 193

If the source needs to restart its sequence number to an earlier value (e.g. start of day; not needed for normal
wraparound), delete and re-create the source and receiver objects. Without re-creating the objects, the receiver
sees the smaller sequence number, assumes the data are duplicate, and discards it. In (and only in) cases where
this cannot be done, use lbm_hf_src_send_rcv_reset().

Note

Your application must synchronize calling lbm_hf_src_send_ex() or lbm_hf_src_sendv_ex() with all threads
sending on the same source. (One symptom of not doing so is messages appearing at the receiver as inside
intentional gaps and being erroneously discarded.)

Please be aware that non-HF receivers created for an HF topic receive multiple copies of each message. We
recommend you establish local conventions regarding the use of HF sources, such as including "HF" in the topic
name.

For an example source application, see Example lbmhfsrc.c.

10.17.2 Implementing Hot Failover Receivers

You create HF receivers with lbm_hf_rcv_create(), and delete them using lbm_hf_rcv_delete() and lbm_hf_rcv←↩
_delete_ex().

Incoming messages have an hf_sequence_number field containing the sequence number, and a message flag
(LBM_MSG_FLAG_HF_32 or LBM_MSG_FLAG_HF_64) noting the bit size.

Note

Previous UM versions used sequence_number for HF message identification. This field holds a 32-bit value
and is still set for backwards compatibility, but if the HF sequence numbers are 64-bit lengths, this non-←↩
HF sequence number is set to 0. Also, you can retrieve the original (non-HF) topic sequence number via
lbm_msg_retrieve_original_sequence_number() or, in Java and .NET, via LBMMessage.osqn().

For the maximum time period to recover lost messages, the HF receiver uses the minimum of the LBT-RM and
LBT-RU NAK generation intervals (transport_lbtrm_nak_generation_interval (receiver), transport_lbtru_nak←↩
_generation_interval (receiver)). Each transport protocol is configured as normal, but the lost message recovery
timer is the minimum of the two settings.

Some lbm_msg_t objects coming from HF receivers may be flagged as having "passed through" the HF receiver.
This means that the message has not been ordered with other HF messages. These messages have the LBM_←↩
MSG_FLAG_HF_PASS_THROUGH flag set. UM flags messages sent from HF sources using lbm_src_send() in
this manner, as do all non-HF sources. Also, UM flags EOS, no source notification, and requests in this manner as
well.

For an example receiver application, see Example lbmhfrcv.c.

10.17.3 Implementing Hot Failover Wildcard Receivers

To create an HF wildcard receiver, set option hf_receiver (wildcard_receiver) to 1, then create a wildcard receiver
with lbm_wildcard_rcv_create(). This actually creates individual HF receivers on a per-topic basis, so that each
topic can have its own set of HF sequence numbers. Once the HF wildcard receiver detects that all sources for
a particular topic are gone it closes the individual topic HF receivers and discards the HF sequence information
(unlike a standard HF receiver). You can extend or control the delete timeout period of individual HF receivers with
option resolver_no_source_linger_timeout (wildcard_receiver).

194 UM Features

10.17.4 HF with Java and .NET

For information on implement the HF feature in a Java application, go to UM Java API and see the documentation
for classes LBMHotFailoverReceiver and LBMHotFailoverSource.

For information on implement the HF feature in a .NET application, go to UM .NET API and navigate to Namespaces-
>com.latencybusters.lbm->LBMHotFailoverReceiver and LBMHotFailoverSource.

10.17.5 Using Hot Failover with Persistence

When implementing Hot Failover with Persistence, you must consider the following impact on hardware resources:

• Additional storage space required for a persistent Store

• Higher disk activity

• Higher network activity

• Increased application complexity regarding message filtering

Also note that you must enable Explicit Acknowledgments and "Hot Failover duplicate delivery" (hf_duplicate_←↩
delivery (receiver)) in each Hot Failover receiving application.

For detailed information on using Hot Failover with Persistence, see the Knowledge Base article FAQ: Is UMP
compatible with Hot Failover?

10.17.6 Hot Failover Intentional Gap Support

UM supports intentional gaps in HF message streams. Your HF sources can supply message sequence numbers
with number gaps up to 1073741824. HF receivers automatically detect the gaps and consider any missing message
sequence numbers as not sent and do not attempt recovery for these missing sequence numbers. See the following
example.

1. HF source 1 sends message sequence numbers: 10, 11, 12, 13, 25, 26, 38

2. HF source 2 sends message sequence numbers: 10, 11, 12, 13, 25, 26, 38

HF receiver 1 receives message sequence numbers in order with no pause between any messages: 10, 11, 12, 13,
25, 26, 38

10.17.7 Hot Failover Optional Messages

Hot Failover sources can send optional messages that HF receivers can be configured to receive or not receive
(hf_optional_messages (receiver)). HF receivers detect an optional message by checking lbm_msg_t.flags for
LBM_MSG_FLAG_HF_OPTIONAL. HF sources indicate an optional message by passing LBM_SRC_SEND_EX←↩
_FLAG_HF_OPTIONAL in the lbm_src_send_ex_info_t.flags field to lbm_hf_src_send_ex() or lbm_hf_src_←↩
sendv_ex(). In the examples below, optional messages appear with an "o" after the sequence number.

1. HF source 1 sends message sequence numbers: 10, 11, 12, 13o, 14o, 15, 16o, 17o, 18o, 19o, 20

https://kb.informatica.com/faq/5/Pages/80173.aspx
https://kb.informatica.com/faq/5/Pages/80173.aspx

10.17 Hot Failover (HF) 195

2. HF source 2 sends message sequence numbers: 10, 11, 12, 13o, 14o, 15, 16o, 17o, 18o, 19o, 20

HF receiver 1 receives: 10, 11, 12, 13o, 14o, 15, 16o, 17o, 18o, 19o, 20

HF receiver 2, configured to ignore optional messages, receives: 10, 11, 12, 15, 20

10.17.8 Using Hot Failover with Ordered Delivery

An HF receiver takes some of its operating parameters directly from the receive topic attributes. The ordered_←↩
delivery (receiver) setting indicates the ordering for the HF receiver.

Note

UM supports Arrival Order with HF only when all sources use the same transport type.

10.17.9 Hot Failover Restrictions

• With the UMQ product, you cannot use Hot Failover with Queuing (both Brokered and ULB).

• The XSP feature does not support Hot Failover.

• The Smart Sources feature does not support Hot Failover.

• You cannot combine Hot Failover with the similar feature, DRO Hotlinks.

10.17.10 Hot Failover Across Multiple Contexts (HFX)

Warning

The HFX feature is deprecated and may be removed in a future release. Users of HFX are advised to
contact UM Support.

If you have a receiving application on a multi-homed machine receiving HF messages from HF sources, you can set
up the Hot Failover Across Contexts (HFX) feature. This involves setting up a separate UM context to receive HF
messages over each NIC and then creating an HFX Object, which drops duplicate HF messages arriving over all
contexts. Your receiving application then receives only one copy of each HF message. The HFX feature achieves
the same effect across multiple contexts as the normal Hot Failover feature does within a single context.

The following diagram displays Hot Failover operation across UM contexts.

https://ultramessaging.github.io/UM_Support.html

196 UM Features

For each context that receives HF messages, create one HFX Receiver per topic. Each HFX Receiver can be
configured independently by passing in a UM Receiver attributes object during creation. A unique client data pointer
can also be associated with each HFX Receiver. The HFX Object is a special Ultra Messaging object and does not
live in any UM context.

Note: You never have to call lbm_topic_lookup() for a HFX Receiver. If you are creating HFX Receivers along
with normal UM receivers for the same topic, do not interleave the calls. For example, call lbm_hfx_create() and
lbm_hfx_rcv_create() for the topic. Then call lbm_topic_lookup() and lbm_rcv_create() for the topic to create the
normal UM receivers.

The following outlines the general procedure for HFX.

1. Create an HFX Object for every HF topic of interest with lbm_hfx_create(), passing in an attributes object
created with lbm_hfx_attr_create_from_xml() to specify any attributes desired.

2. Create a context for the first NIC receiving HF messages with lbm_context_create().

3. Create a HFX Receiver for every HF topic with lbm_hfx_rcv_create(), passing in UM Receive Topic At-
tributes.

4. Repeat steps 2 and 3 for all NICs receiving HF message

5. Receive messages. The HFX Object identifies and drops all duplicates, delivering messages through a single
callback (and optional event queue) specified when you created the HFX Object.

Delete each HFX Receiver with lbm_hfx_rcv_delete() or lbm_hfx_rcv_delete_ex(). Delete the HFX Object with
lbm_hfx_delete().

Note

When writing source-side HF applications for HFX, be aware that HFX receivers do not support hf_sequence,
64-bit sequence numbers, the lbm_hf_src_send_rcv_reset() function, or HF wildcard receivers. See Hot
Failover Operation Options, especially HFX-specific options.

10.18 NAK Cutoff 197

10.18 NAK Cutoff

The "NAK cutoff" feature allows an application to force its context(s) to stop sending NAKs (LBT-RM only), even if
packet loss is detected.

This feature was first added to UM in version 6.16.1 with the C API lbm_context_set_nak_cutoff.

10.18.1 Why NAK Cutoff?

NAK-based network protocols, like LBT-RM and LBT-RU, can be susceptible to NAK storms. UM's algorithms
enable the user to control the risk of NAK storms, reducing it close to zero if desired. However, be aware that these
algorithms present a trade-off between performance and stability that needs to be considered.

Many users prevent NAK storms by simply provisioning their systems to be able to handle their worst-case load. In
this case, there can be no overload (unless the calculation of "worst case" was faulty), and without overload, there
can be no NAK storm.

But for some users, designing for theoretical worst-case is not practical, so other strategies must be used. For
example, to reduce the chances of a NAK storm close to zero, it might be necessary to establish Rate Controls that
will, under periods of stress, limit a publisher's ability to send messages when it is ready to. This is essentially an
intentional use of latency to prevent overload.

But again, many of our customers consider those latency costs too high, so they live with increased risk. For
example, they may establish rate controls that "overbook" the network's capacity under the assumption that not all
publishers will send at their maximum allowed rate at the same time. This is generally a safe assumption, but still
leaves open the possibility of overload.

UM version 6.16.1 introduced a feature called the NAK Cutoff. This is an API that allows an application to force
its context(s) to stop sending NAKs, even if packet loss is detected. This API may be useful to users who cannot
reduce the changes of NAK storms low enough, and want a contingency for the unlikely event that a NAK storm
does happen. Note that employing this feature will result in some amount of Unrecoverable Loss.

If the operations team concludes that they are having a NAK storm, they can command their applications to invoke
the NAK cutoff feature (call the API) to disable NAKS long enough to allow the network to stabilize.

Attention

This API does not control remote contexts. Only the context(s) of the application calling it are affected. In
most UM-based systems, there is an independent network used for command and control, separate from the
low-latency network used for application data. It is the user's responsibility to implement centralized command
and control to instruct their applications to call the cutoff API.

10.18.2 What Is a NAK Storm?

When applications send NAKs, that is typically not a NAK storm. NAKs are simply part of the UM lost packet
recovery protocols. But in a worst-case scenario, the increased load of the lost-packet recovery protocols can
cause additional packet loss, leading to a self-reinforcing feedback loop where loss triggers loss recovery, which
causes additional loss, which triggers more loss recovery, etc.

This self-reinforcing feedback loop is a NAK storm. If not controlled, they can cripple a network for minutes or even
hours, potentially requiring a shutdown / restart of the core parts of your system.

See NAK Storms for detailed explanation of NAK storm causes, prevention, and avoidance.

https://ultramessaging.github.io/um_kb/html/nak-storms.html

198 UM Features

10.18.3 NAK Storm Prevention

You can reduce the chances of a NAK storm by avoiding packet loss. Since the vast majority of packet loss is
caused by overload, the basic methods of avoiding packet loss are to maximize the efficiency of data consumers
and to control the sending of messages by data sources.

See Packet Loss for detail and loss avoidance strategies.

See Configuring UDP-Based Transports for specific UM configuration advice.

10.19 Binary Daemon Statistics

Note

the C-style binary structure format of daemon statistics is DEPRECATED and may be removed in a future
release. Informatica requests that users migrate to protobuf-based format. See Monitoring UM Daemons.

The Persistence Store daemon and the DRO daemon each have a simple web server which provides operational
information. This information is important for monitoring the operation and performance of these daemons. However,
while the web-based presentation is convenient for manual, on-demand monitoring, it is not suitable for automated
collection and recording of operational information for historical analysis.

(The UMDS product also supports Daemon Statistics as of UMDS version 6.12; see UMDS documentation for
details.)

Starting with UM version 6.11, a feature called "Daemon Statistics" has been added to the Store and DRO dae-
mons. The Stateful Resolver Service (SRS), added in UM version 6.12, supports Daemon Statistics only (no web
server). The Daemon Statistics feature supports the background publishing of their operational information via UM
messages. Monitoring systems can now subscribe to this information in much the same way that UM transport
statistics can be subscribed.

While the information published by the Store, DRO, and SRS daemon statistics differ in their content, the general
feature usage is the same between them. When the feature is configured, the daemon will periodically collect and
publish its operational information.

The following sections give general information which is common across daemons, followed by links to daemon-
specific details.

10.19.1 Daemon Controller

With the introduction of the Daemon Statistics feature, a new context is added to the daemons: the Daemon
Controller. This context publishes the statistics and also can be configured to accept daemon control requests
from external applications. These control requests are primarily used for controlling the Daemon Statistics feature
(see Daemon Control Requests), but are also used for a few daemon-specific control functions that are unrelated
to Daemon Statistics (for example, Request: Mark Stored Message Invalid).

Note that in every UM component that supports the Daemon Statistics feature, the Daemon Controller defaults to
disabled. Each component's Daemon Statistics configuration must be set to enable the function of the Daemon
Controller.

10.19.2 Daemon Statistics Structures

https://ultramessaging.github.io/um_kb/html/packet-loss.html
https://ultramessaging.github.io/um_kb/html/configuring-udp-based-transports.html

10.19 Binary Daemon Statistics 199

Note

the C-style binary structure format of daemon statistics is DEPRECATED and may be removed in a future
release. Informatica requests that users migrate to protobuf-based format. See Monitoring UM Daemons.

The operational information is published as messages of different types sent over a normal UM topic source (topic
name configurable). For the Store and DRO daemons, each message is in the form of a binary, C-style data
structure.

There are generally two categories of messages: config and stats. A given instance of a category "config" message
does not have content which changes over time. An instance of a category "stats" message has content that does
change over time. The daemon-specific documentation indicates which messages are in which category.

Each message type is configured for a publishing interval. When the publishing interval for a message type expires,
the possible messages are checked to see if its content has materially changed since the last interval. If not, then
the message is not republished. The publishing interval for a stat message is typically set to shorter periods to see
those changes as they occur.

Note that the SRS message format is JSON, and therefore the granularity of published data is finer. A given
message type might be published, but only a subset of the fields within the message might be included. In contrast,
the daemons which publish binary structures send the structures complete.

Finally, note that while the contents of a given instance of a config message does not change over time, new
instances of the message type can be sent as a result of state changes. For example, a new instance of umestore←↩
_repo_dmon_config_msg_t is published each time a new source registers with the Store.

More detailed information is available in the daemon-specific documentation referenced below.

10.19.3 Daemon Statistics Binary Data

Note

the C-style binary structure format of daemon statistics is DEPRECATED and may be removed in a future
release. Informatica requests that users migrate to protobuf-based format. See Monitoring UM Daemons.

For the Store and DRO daemons, the messages published are in binary form and map onto the C data structures
defined for each message type.

For the SRS service, the messages are formatted as JSON, so this section does not apply to the SRS.

The byte order of the structure fields is defined as the host endian architecture of the publishing daemon. Thus,
if a monitoring host receiving the messages has the same endian architecture, the binary structures can be used
directly. If the monitoring host has the opposite endian architecture, the receiver must byte-swap the fields.

The message structure is designed to make it possible for a monitoring application to detect a mismatch in endian
architecture. Detection and byte swapping is demonstrated with daemon-specific example monitoring applications.

More detailed information is available in the daemon-specific documentation referenced below.

10.19.4 Daemon Statistics Versioning

Note

the C-style binary structure format of daemon statistics is DEPRECATED and may be removed in a future
release. Informatica requests that users migrate to protobuf-based format. See Monitoring UM Daemons.

For the Store and DRO daemons, each message sent by the daemon consists of a standard header followed by a
message-type-specific set of fields. The standard header contains a version field which identifies the version of
the C include file used to build the daemon.

200 UM Features

For the SRS service, the messages are formatted as JSON, so this section does not apply to the SRS.

For example, the Store daemon is built with the include file umedmonmsgs.h. With each daemon statistics mes-
sage sent by the Store daemon, it sets the header version field to LBM_UMESTORE_DMON_VERSION. With each
new release of the UM package, if that include file changes in a substantive way, the value of LBM_UMESTORE_←↩
DMON_VERSION is increased. In this way, a monitoring application can determine if it is receiving messages from
a Store daemon whose data structures match the monitoring application's structure definitions.

More detailed information is available in the daemon-specific documentation referenced below.

10.19.5 Daemon Control Requests

Note

the C-style binary structure format of daemon statistics is DEPRECATED and may be removed in a future
release. Informatica requests that users migrate to protobuf-based format. See Monitoring UM Daemons.

Each daemon publishing binary daemon stats can optionally be configured to accept command-and-control requests
from administrative applications. These command-and-control requests are handled by the daemon's Daemon
Controller, a context added to support Daemon Statistics.

Warning

If misused, the Daemon Control Requests feature allows a user to interfere with the messaging infrastructure
in potentially disruptive ways. By default, this feature is disabled. However, specially if "config" requests are
enabled, Informatica recommends Securing Daemon Control Requests.

There are different categories of these requests. All daemons have in common categories "snapshot" and "config",
which are related to Daemon Statistics. Other categories are specific to the daemon type.

"Snapshot" requests tell the daemon to immediately republish the desired stats and/or configs without waiting until
the next publishing interval. These requests might be sent by a monitoring application which has only just started
running and needs a full snapshot of the operational information.

"Config" requests tell the daemon to modify an operational parameter of the running daemon.

An application sends a request to the daemon, and the daemon sends status messages in response. The ex-
changes are made via standard UM topicless immediate Request/Response messaging. These requests should be
sent using the Unicast Immediate Messaging (UIM) API for sending the requests using lbm_unicast_immediate←↩
_request(). See Unicast Immediate Messaging for details on UIM.

To use UIM effectively, Informatica recommends configuring the daemon monitor context for a specific UIM interface
and port using: request_tcp_port (context) and request_tcp_interface (context). This enables the monitoring
application to know how to address the request UIMs to the proper daemon.

For the Store and DRO daemons, The request message is formatted as a simple ASCII string. For the SRS service,
the request message is formatted as a JSON message. The request is sent as a topicless unicast immediate request
message. The daemon reacts by parsing the request and sending a UM response with a success/failure response.
If the request was parsed successfully, the daemon then performs the requested operation (republishing the data or
modifying the operational parameter). There are daemon-specific example applications which demonstrate the use
of this request feature.

More detailed information is available in the daemon-specific documentation referenced below.

10.19.6 Securing Daemon Control Requests

10.19 Binary Daemon Statistics 201

Note

the C-style binary structure format of daemon statistics is DEPRECATED and may be removed in a future
release. Informatica requests that users migrate to protobuf-based format. See Monitoring UM Daemons.

UM Daemon Statistics are implemented using normal UM messaging. In particular, the Daemon Controller capabil-
ity allows a remote application to send requests to a daemon that modify its behavior. If misused, these behaviors
can be disruptive to normal operation. For example, the "umedmon" program can instruct a persistent Store to flag
stored messages as invalid, which would prevent their delivery to a recovering receiver.

Note that the UM daemons default to rejecting these command-and-control messages, so taking special security
precautions is only necessary if you have configured daemons to enable the Daemon Control requests.

One common way to prevent unauthorized use is to tightly control access to your production network so that no
unauthorized users can accidentally or maliciously use Daemon Control requests to interfere with normal operation.

Additionally, you can configure the Daemon Control context for encryption, which supports certificate-based access
control. This requires the use of an encrypted TRD for Daemon Statistics. If your normal message data is unen-
crypted, you will need to define one or more new TRDs for Daemon Statistics that are separate from the normal
TRDs (an encrypted TRD must not have unencrypted contexts assigned to it).

Use the use_tls (context) configuration option in the UM configuration file you supply for the Daemon Statistics.
For example, for the Store Daemon use the UMP Element "<lbm-config>" contained within the UMP Element
"<daemon-monitor>".

Note that the use of an encrypted TRD will require that the Daemon Statistics data be configured for the TCP
transport.

Since UM's encryption feature is certificate-based. A user wanting to use a Daemon Control request tool must have
access to the proper certificate file(s). This means that unauthorized users must not have access to the certificate
file(s).

Finally, be aware that a partially-encrypted DRO network can break the security of an encrypted TRD; see TLS and
the DRO.

See Encrypted TCP for details on using encryption.

10.19.7 Daemon Statistics Details

Note

the C-style binary structure format of daemon statistics is DEPRECATED and may be removed in a future
release. Informatica requests that users migrate to protobuf-based format. See Monitoring UM Daemons.

For details on the persistent Store's daemon statistics feature, see Store Binary Daemon Statistics.

For details on the DRO's daemon statistics feature, see DRO Binary Daemon Statistics.

For details on the SRS's daemon statistics feature, see SRS Daemon Statistics.

202 UM Features

Chapter 11

Advanced Optimizations

The internal design of UM has many compromises between performance and flexibility. For example, there are
critical sections which maintain state information which must be kept internally consistent. Since UM allows the ap-
plication the flexibility of multi-threaded use, those critical sections are protected with Mutex locks. These locks add
very little overhead to UM's execution, but "very little" is not the same as "zero". The use of locks is a compromise
between efficiency and flexibility. Similar lines of reasoning explain why UM makes use of dynamic memory (malloc
and free), and bus-interlocked read/modify/write operations (e.g. atomic increment).

UM provides configuration options which improve efficiency, at the cost of reduced application design flexibility.
Application designers who are able to constrain their programs within certain restrictions can take advantage of
improved performance and reduced latency outliers (jitter).

RECEIVE-SIDE

• Receive Thread Busy Waiting.

• Receive Buffer Recycling.

• Single Receiving Thread - not generally applicable.

• Extended Context Process Events - not generally applicable.

• Receive Multiple Datagrams.

• Transport Demultiplexer Table Size.

• XSP Latency Reduction.

• Receive-Side Batching - for use with event queues.

SEND-SIDE

• Smart Sources.

• Zero-Copy Send API (not recommended; see Comparison of Zero Copy and Smart Sources).

GENERAL (both receivers and senders)

• Core Pinning.

• Memory Latency Reduction.

• Zero Object Delivery (Java and .NET).

204 Advanced Optimizations

11.1 Receive Thread Busy Waiting

Busy looping is a method for reducing latency and especially latency outliers (jitter) by preventing threads from
going to sleep. In an event-driven system, if a thread goes to sleep waiting for an event, and the event happens,
the operating system needs to wake the thread back up and schedule its execution on a CPU core. This can take
several microseconds. Alternatively, if the thread avoids going to sleep and "polls" for the event in a tight loop, it will
detect and be able to start processing the event without the operating system scheduling delay.

However, remember that a thread that never goes to sleep will fully consume a CPU core. If you have more busy
threads than you have CPU cores in your computer, you can have CPU thrashing, where threads are forced to
time-share the cores. This can produce worse latency than sleep-based waits.

Only use busy waiting if there are enough cores to allocate a core exclusively to each busy thread. Also, pinning
threads to cores is highly recommended to prevent thread migration across cores, which can introduce latency and
significant jitter.

11.1.1 Network Socket Busy Waiting

The UM receive code performs socket calls to wait for network events, like received data. By default, UM does
sleep-based waiting for events. For example, if there are no packets waiting to be read from any of the sockets, the
operating system will put the receive thread to sleep until a packet is received.

However, the file_descriptor_management_behavior (context) configuration option can be used to change the
behavior of the receive thread to not sleep. Instead, the socket is checked repeatedly in a tight loop - busy waiting.
With most use cases, enabling "busy wait" will typically reduce average latency only a little, but it can significantly
reduce latency outliers (jitter).

For network-based transports, a receive thread can either be the main context thread, or it can be an XSP thread.
A given application can have more than one context, and a given context can have zero or more XSPs. The threads
of each context and XSP can be independently configured to have either busy waiting or sleep waiting.

Note that when creating an XSP, it is not unusual to simply let the XSP inherit the parent context's attributes.
However, a common XSP use case is to create a single XSP for user data, and leave the parent context for Topic
Resolution and other overhead. In this case, you may want to configure the parent context to use sleep-based
waiting ("pend"), and configure the XSP to use busy waiting ("busy-wait"). You will need to pass a context attribute
to the lbm_xsp_create() API.

A Better Alternative

Kernel bypass network drivers typically have a busy waiting mode of operation which happens inside the driver
itself. For example Solarflare's Onload driver can be configured to do busy waiting. This can produce even greater
improvement than UM receive thread busy waiting. When using a busy waiting kernel bypass network driver like
Onload, the file_descriptor_management_behavior (context) configuration option should be left at its default,
"pend".

11.1.2 IPC Transport Busy Waiting

The Transport LBT-IPC does not use the context or XSP threads for receiving messages. It has its own internal
thread which can be configured for busy waiting with the transport_lbtipc_receiver_thread_behavior (context)
option.

11.2 Zero Object Delivery 205

11.1.3 SMX Transport Busy Waiting

The Transport LBT-SMX does not use the context or XSP threads for receiving messages. It has its own internal
thread which always operates in busy waiting. It cannot be configured to sleep waiting.

11.2 Zero Object Delivery

Zero Object Delivery is a set of Java and .NET programming conventions to avoid garbage.

In Java and .NET, garbage collection (GC) can be a very useful feature to simplify programming. However, for low
latency applications, GC is a problem. Most JVMs impose milliseconds of latency when GC runs. Also, unnecessary
object creation introduces additional overhead.

Most high-performance Java and .NET programs avoid GC by saving objects that are no longer needed and reusing
them. Most of this is the responsibility of the application programmer. However, UM application callbacks represent
a special case. When UM needs to deliver an event, like a received message, to a Java or .NET program, it typically
passes to the callback one or more objects containing the pertinent event data. UM needs to know when the
application is finished with those passed-in objects so that UM can re-use them.

This requires the application to follow a set of conventions. Applications that deviate from these conventions will
typically suffer from higher latency due to unnecessary object creation and garbage collection. These programming
conventions are collectively called "Zero Object Delivery" (ZOD).

The ZOD programming convention are the same between Java and .NET. (ZOD does not apply to the C API.)

1. Special data access methods must be used to access the received message's data.

2. If a message needs to be processed outside of the application receiver callback, it must be "promoted". A
UM recycler must be used to ensure no garbage is created.

3. Every message must be explicitly deleted when the application is finished processing it. This is true for
messages fully processed by the receiver callback, and for promoted messages that are processed outside
of the receiver callback. This is done by calling the "dispose()" method.

Details of these coding conventions can be found at:

• Java Message Reception

• .NET Message Reception

Note

While the coding conventions of ZOD are most often seen with the receiver callback, many of the same
conventions exist with other event delivery callbacks. For example, source events should be disposed. Source
events must also be promoted before they are passed to another thread for processing, after which they should
be disposed and recycled.

11.3 Receive Buffer Recycling

By default, the UM receive code base allocates a fresh buffer for each received datagram. This allows the user a
great degree of threading and buffer utilization flexibility in the application design.

206 Advanced Optimizations

For transport types RM (reliable multicast), RU (Reliable Unicast), and IPC (shared memory), you can set a configu-
ration option to enable reuse of receive buffers, which can avoid per-message dynamic memory calls (malloc/free).
This produces a modest reduction in average latency, but more importantly, can significantly reduce occasional
latency outliers (jitter).

See the configuration options:

• RM - transport_lbtrm_recycle_receive_buffers (context)

• RU - transport_lbtru_recycle_receive_buffers (context)

• IPC - transport_lbtipc_recycle_receive_buffers (context)

Note that setting the option does not guarantee the elimination of per-message malloc and free except in fairly
restrictive use cases.

Also note that this feature is different from the Java and .NET ZOD recycler. See Zero Object Delivery.

11.3.1 Receive Buffer Recycling Restrictions

There are no hard restrictions to enabling buffer recycling. It is not functionally not compatible with any use patterns
or UM features. However, some use patterns will prevent the recycling of the receive buffer, and therefore not deliver
the benefit, even if the configuration option is set.

• Event Queues - Event Queues prevent the recycling of receive buffers. When the UM library transfers a
received message to an event queue for later processing, it allocates (malloc) a new message receive buffer.

• Message Object Retention - Message retention prevents the recycling. For context-thread receive message
callbacks, the act of retaining a message allocates (mallocs) a new message receive buffer.

• Persistence - For a persistent receiver, enabling receive buffer recycling will reduce dynamic memory us-
age (malloc/free), but does not eliminate it. Certain persistence-related features require the use of dynamic
memory.

• Packet Loss - Applications typically use Ordered Delivery. When packets are lost, UM needs to internally
retain newly received messages so that they can be delivered after the missing messages are retransmitted.
This internal retention prevents the newly received message buffers from being recycled.

• Message Fragmentation and Reassembly - Large application messages must be split into smaller frag-
ments and sent serially. The receiver must internally retain these fragments so that the original large message
can be reassembled and delivered to the application. This internal retention prevents the fragment message
buffers from being recycled.

Note that in spite of the restrictions that can prevent recycling of receive message buffers, UM dynamically takes
advantage of recycling as much as it can. E.g. if there is a loss event which suppresses recycling while waiting for
retransmission, once the gap is filled and pending messages are delivered, UM will once again be able to recycle
its receive buffers.

Of specific interest for persistent receivers is the use of Explicit Acknowledgments, either to batch ACKs, or simply
defer them. Instead of retaining the messages, which prevents message buffer recycling, you can extract the ACK
information from a message and allow the return from the receiver callback to delete and recycle the message buffer
without acknowledging it.

See Object-free Explicit Acknowledgments for details.

11.4 Single Receiving Thread 207

11.4 Single Receiving Thread

This feature optimizes the execution of UM receive-path code by converting certain thread-safe operations to more-
efficient thread-unsafe operations. For example, certain bus-locked operations (e.g. atomic increment) are replaced
by non-bus-locked equivalents (e.g. non-atomic increment). This can reduce the latency of delivering received
messages to the application, but does so at the expense of thread safety.

This feature is often used in conjunction with the Context Lock Reduction feature.

The transport_session_single_receiving_thread (context) configuration option enables this feature.

Except as listed in the restrictions below, the Single Receiving Thread feature should be compatible with all other
receive-side UM features.

11.4.1 Single Receiving Thread Restrictions

It is very important for applications using this feature to be designed within certain restrictions.

• Threading - The intended use case is for each received message to be fully processed by the UM thread
that delivers the message to the application. Note that the Transport Services Provider (XSP) feature is
compatible with the Single Receiving Thread feature.

• No Event Queues - Event queues cannot be used with Single Receiving Thread.

• Message Object Retention - Most traditional uses of message retention are related to giving a message to
an alternate thread for processing. This is not compatible with Single Receiving Thread feature.

However, there are some use cases where message retention is viable when used with Single Receiving
Thread: when a message must be held for future processing, and that processing will be done by the same
thread.

For example, a persistent application might use Explicit Acknowledgments to delay message acknowledge-
ment until the application completes a handshake with a remote service. As long as it is the same thread
which initially receives and retains the message as that which completes the explicit acknowledgement of the
message, it is supported to use message retain / message delete.

Note

If the Transport Services Provider (XSP) feature is used, care must be taken to ensure that the same
XSP thread is used to perform all processing for a received message. A different XSP or the main
context may not be used to complete processing on a deferred retained message. For example, a user-
scheduled timer event will be delivered using the main context thread, and therefore cannot complete
processing of a retained message.

• Transport Type - The Single Receiving Thread feature does not enhance the operation of Broker or S←↩
MX transport types. These transport types use somewhat different internal buffer handling. Note that these
transport types are technically compatible with the Single Receiving Thread feature, they just don't benefit
from it.

11.5 Extended Context Process Events

Most developers of UM applications use a multi-threaded approach to their application design. For example, they
typically have one or more application threads, and they create a UM context with embedded mode, which creates
a separate context thread.

208 Advanced Optimizations

However, there is a model of application design in which a single thread is used for the entire application. In this
case, the UM context must be created with Sequential Mode and the application must regularly call the UM event
processor API, usually with the msec parameter set to zero. In this design, there is no possibility that application
code, UM API code, and/or UM context code will be executing concurrently.

The lbm_context_process_events_ex() API allows the application to enable specialized optimizations. (For Java
and .NET use the context object's "processEvents()" method with 2 or more input parameters. See com←↩
::latencybusters::lbm::LBMContext::processEvents.)

11.5.1 Context Lock Reduction

The application can improve performance by suppressing the taking of certain mutex locks within the UM context
processing code. This can reduce the latency of delivering received messages to the application, but does so at the
expense of thread safety.

This feature is often used in conjunction with the Single Receiving Thread feature.

Warning

It is very important for the application to ensure that UM code related to a given context cannot be executed
concurrently by multiple threads when this feature is used. This includes UM object creation and send-path
API functions. The application may not call a UM message send API by one thread while another thread is
calling lbm_context_process_events_ex(). However, it is permissible for a context thread callback to call a
UM message send API, within the restrictions of the send API being used.

To enable this feature, call lbm_context_process_events_ex(), passing in the lbm_process_events_info_t struc-
ture with the LBM_PROC_EVENT_EX_FLAG_NO_MAIN_LOOP_MUTEX bit set in the flags field. (Sequential
Mode is required for this feature.)

11.5.2 Context Lock Reduction Restrictions

It is very important for applications using this feature to be designed within certain restrictions.

• Threading - It is critical that Context Lock Reduction be used only if Sequential Mode is used and there is no
possibility of concurrent execution of UM code for a given context.

It is further strongly advised that the same thread be used for all UM execution within a given context. It is
not guaranteed to be safe if the application has multiple threads which can operate on a context, even if the
application guarantees that only one thread at a time will execute the UM code.

Note that if an application maintains two contexts, it is acceptable for a different thread to be used to operate
on each context. However, it is not supported to pass UM objects between the threads.

• No Transport Services Provider (XSP) - The Context Lock Reduction feature is not compatible with XSP.

• No Event Queues - Event queues cannot be used with Context Lock Reduction.

• No SMX or DBL - Context Lock Reduction is not compatible with SMX or DBL transports. This is because
these transports create independent threads to monitor their respective transport types.

• Transport LBT-IPC - Context Lock Reduction was not designed with the IPC transport in mind. By default,
IPC creates an independent thread to monitor the shared memory, which is not compatible with Context
Lock Reduction. However, in principle, it is possible to specify that the IPC receiver should use sequential
mode (see transport_lbtipc_receiver_operational_mode (context)), and then write your application to use
the same thread to call the context and IPC event processing APIs. However, be aware that the IPC event

11.5 Extended Context Process Events 209

processing API does not have an extended form, so IPC will simply continue to take the locks it is designed
to take.

• Message Object Retention - Most traditional uses of Message Object Retention are related to handing a
message to an alternate thread for processing. This is not compatible with Context Lock Reduction because
the alternate thread is responsible for deleting the message when it is done. This represents two threads
making API calls for the same context, which is not allowed for the Context Lock Reduction feature.

However, there are some use cases where message retention is viable when used with Context Lock
Reduction: when a message must be held for future processing, and that processing will be done by the
same thread.

For example, a persistent application might use Explicit Acknowledgments to delay message acknowledge-
ment until the application completes a handshake with a remote service. As long as it is the same thread
which initially receives and retains the message as that which completes the explicit acknowledgement of the
message, it is supported to use message retain / message delete.

• No LBM_SRC_BLOCK - All forms of UM send message must be done non-blocking (with LBM_SRC_NO←↩
NBLOCK). This is because of the way UM blocks calls that cannot be completed; the context thread explicitly
wakes up the blocked call when appropriate. But if the same thread is being used to run the context (via the
process events API) and also sending messages, a blocked send call will never be woken up.

11.5.3 Gettimeofday Reduction

UM's main context loop calls gettimeofday() in strategic places to ensure that its internal timers are processed
correctly. However, there is a "polling" model of application design in which Sequential Mode is enabled and the
context event processing API is called in a fast loop with the msec parameter set to zero. This results in the internal
context call to gettimeofday() to happen unnecessarily frequently.

A polling application can improve performance by suppressing the internal context calls to gettimeofday(). This can
reduce the latency of delivering received messages to the application.

To enable this feature, call lbm_context_process_events_ex(), passing in the lbm_process_events_info_t struc-
ture with the LBM_PROC_EVENT_EX_FLAG_USER_TIME bit set in the flags field. In addition, the application
must set the time_val field in lbm_process_events_info_t with the value returned by gettimeofday(). (Sequen-
tial Mode is required for this feature.)

Note

The internal UM timers generally use millisecond precision. Users of the gettimeofday() reduction feature
typically design their application to fetch a new value for time_val only a few times per millisecond.

11.5.4 Gettimeofday Reduction Restrictions

• Monotonically Increasing Time - The application is responsible for ensuring that each call to lbm_context←↩
_process_events_ex() has a time_val field value which is greater than or equal to the previous time←↩
_val.

• "msec" must be 0 - You must call lbm_context_process_events_ex() with the "msec" parameter set to
zero. You can't tell lbm_context_process_events_ex() to loop for a period of time, and also tell it not to call
gettimeofday(); UM won't see the passage of time.

210 Advanced Optimizations

11.6 Receive Multiple Datagrams

A UM receiver for UDP-based protocols normally retrieves a single UDP datagram from the socket with each socket
read. Setting multiple_receive_maximum_datagrams (context) to a value greater than zero directs UM to retrieve
up to that many datagrams with each socket read. When receive socket buffers accumulate multiple messages, this
feature improves CPU efficiency, which reduces the probability of loss, and also reduces total latency for those
buffered datagrams. Note that UM does not need to wait for that many datagrams to be received before processing
them; if fewer datagrams are in the socket's receive buffer, only the available datagrams are retrieved.

The multiple_receive_maximum_datagrams (context) configuration option defaults to 0 so as to retain previous
behavior, but users are encouraged to set this to a value between 2 and 10. (Having too large a value during a
period of overload can allow starvation of low-rate Transport Sessions by high-rate Transport Sessions.)

Note that in addition to increasing efficiency, setting multiple_receive_maximum_datagrams (context) greater
than one can produce changes in the dynamic behavior across multiple sockets. For example, let's say that a
receiver is subscribed to two Transport Sessions, A and B. Let's further say that Transport Session A is sending
message relatively quickly and has built up several datagrams in its socket buffer. But in this scenario, B is sending
slowly. If multiple_receive_maximum_datagrams (context) is zero or one, the two sockets will compete equally
for UM's attention. B's socket will still have a chance to be read after each A datagram is read and processed.

However, if multiple_receive_maximum_datagrams (context) is 10, then UM can process up to 10 of A's mes-
sages before giving B a chance to be read. This is desirable if low message latency is equally important across all
Transport Sessions; the efficiency improvement derived by retrieving multiple datagrams with each read operation
results in lower overall latency. However, if different transport sessions' data have different priorities in terms of
latency, then processing 10 messages of a low priority transport session can unnecessarily delay processing of
messages from a higher priority transport session.

In this case, the Transport Services Provider (XSP) feature can be used to prioritize different transport sessions
differently and prevent low-priority messages from delaying high-priority messages.

Note that UM versions prior to 6.13 could see occasional increases in latency outliers when this feature was used.
Starting with UM version 6.13, those outliers have been fixed (see bug10726).

11.6.1 Receive Multiple Datagrams Compatibility

The Receive Multiple Datagrams feature modifies the behavior of the UDP-based transport protocols: LBT-RM and
LBT-RU.

(Note: prior to UM version 6.13, the Receive Multiple Datagrams feature also affected MIM and UDP-based Topic
Resolution. But this could introduced undesired latencies, so starting with UM 6.13, MIM and Topic Resolution no
longer use Receive Multiple Datagrams.)

11.6.2 Receive Multiple Datagrams Restrictions

The Receive Multiple Datagrams feature does not affect the following UM features:

• Non-UDP Transport Protocols (TCP, IPC, SMX).

• MIM (as of UM version 6.13).

• UDP-based Topic Resolution (as of UM version 6.13).

• All TCP-based features (Unicast Immediate Message, Late Join, Persistent Store Recovery, UM Response
messages).

• Non-Linux.

11.7 Transport Demultiplexer Table Size 211

• Linux prior to kernel version 2.6.33, and glibc in version 2.12 (released in May, 2010).

11.7 Transport Demultiplexer Table Size

A UM Transport Session can have multiple sources (topics) mapped to it. For example, if a publishing application
creates two sources with the same multicast address and destination port, both sources will be carried on the same
transport session. A receiver joined to that transport session must separate (demultiplex) the topics, either for
delivery to the proper receiver callback, or for discarding.

The demultiplexing of the topics is managed by a hash table (not the same kind of hash table that manages the
Topic Resolution cache). As a result, the processing of received messages can be made more efficient by optimally
sizing the hash table. This is done using the configuration option transport_demux_tablesz (receiver).

Unlike many hash tables, the transport demultiplexer needs to have a number of buckets which is a power of two.
The demultiplexing code will be most efficient if the number of buckets is equal to or greater than the number of
sources created on the transport session. In that case, the hash function is "perfect", which is to say that there
will never be any collisions. Note that if the number of buckets is smaller than the number of sources, the collision
resolution process is O(log N) where N is the length of the collision chain.

The only disadvantage of increasing the size of the hash table is memory usage (each bucket is 16 bytes on 64-bit
architectures). Having a larger than optimal table does not make performance worse.

Note that if the number of sources is small, only a small degree of efficiency improvement results from optimally
sizing the hash table.

11.8 Smart Sources

The normal lbm_src_send() function (and its Java and .NET equivalents) are very flexible and support the full range
of UM's rich feature set. To provide this level of capability, it is necessary to make use of dynamic (malloc/free)
memory, and critical section locking (mutex) in the send path. While modern memory managers and thread locks
are very efficient, they do introduce some degree of variability of execution time, leading to latency outliers (jitter)
potentially in the millisecond range.

For applications which require even higher speed and very consistent timing, and are able to run within certain
constraints, UM has an alternate send feature called Smart Source. This is a highly-optimized send path with no
dynamic memory operations or locking; all allocations are done at source creation time, and lockless algorithms
are used throughout. To achieve these improvements, Smart Source imposes a number of restrictions (see Smart
Sources Restrictions).

The Smart Source feature provides the greatest benefit when used in conjunction with a kernel bypass network
driver.

Note

the Smart Source feature is not the same thing as the Zero-Copy Send API feature; see Comparison of Zero
Copy and Smart Sources.

One design feature that is central to Smart Sources is the pre-allocation of a fixed number of carefully-sized buffers
during source creation. This allows deterministic algorithms to be used for the management of message buffers
throughout the send process. To gain the greatest benefit from Smart Sources, the application builds its outgoing
messages directly in one of the pre-allocated buffers and submits the buffer to be sent.

To use Smart Sources, a user application typically performs the following steps:

212 Advanced Optimizations

1. Create a context with lbm_context_create(), as normal.

2. Create the topic object and the Smart Source with lbm_src_topic_alloc() and lbm_ssrc_create(), respec-
tively. Use Smart Sources Configuration to pre-allocate the desired number of buffers.

3. Get the desired number of messages buffers with lbm_ssrc_buff_get() and initialize them if desired. The
application typically constructs outgoing messages directly in these buffers for transmission.

4. Send messages with lbm_ssrc_send_ex(). The buffers gotten in the previous step must be used.

5. While most applications manage the message buffers internally, it is also possible to give the buffers back
to UM with lbm_ssrc_buff_put(), and then getting them again for subsequent sends. Getting and putting
messages buffers can simplify application design at the expense of extra overhead.

6. To clean up, delete the Smart Source with lbm_ssrc_delete(). It is not necessary to "put" the message
buffers back to UM; they will be freed automatically when the Smart Source is deleted.

For details, see the example applications Example lbmssrc.c or Example lbmssrc.java.

Warning

To avoid the overhead of locking, the Smart Source API functions are not thread-safe. Applications must be
written to avoid concurrent calls. In particular, the application is restricted to sending messages on a given
Transport Session with one thread. If Smart Source Defensive Checks are enabled, the first call to send a
message on a newly-created Transport Session captures the ID of the calling thread. Subsequently, only
that thread is allowed to call send for Smart Sources on that Transport Session. For applications which have
multiple sending threads, Smart Source topics must be mapped to Transport Sessions carefully such that all
of the topics on a given Transport Session are managed by the same sending thread.

Note

There are no special requirements on the receive side when using Smart Sources. Normal receiving code is
used.

11.8.1 Smart Source Message Buffers

When a Smart Source is created, UM pre-allocates a set of user buffers according to the configuration options
smart_src_max_message_length (source) and smart_src_user_buffer_count (source).

Starting with UM version 6.12, Smart Source supports UM fragmentation. Which is to say that messages larger
than the transport's Datagram Max Sizes can be sent, which the Smart Source will split into multiple datagrams.

For example, an application can configure smart_src_max_message_length (source) to be 2000, while the data-
gram max size is set to 1500 (network MTU size). During operation, the application might send a 500-byte message.
This will not require any fragmentation; the message is sent in a single network packet. However, when the appli-
cation sends a 2000-byte message, the Smart Source will split it into two datagrams. This avoids IP fragmentation.
The precise sizes of those datagrams will depend on the space reserved for headers, and is subject to change with
different versions of UM.

Another feature available as of UM version 6.12 is the user-specified buffer. This allows an application to send
messages larger than the configured smart_src_max_message_length (source). Instead of building the message
in a pre-allocated Smart Source buffer, the application must allocate and manage its own user-supplied buffer. To
use this feature, the application supplies both a pre-allocated buffer and a user-supplied buffer. The Smart Source
will use the supplied pre-allocated buffer as a "work area" for building the datagram with proper headers, and use
the user-supplied buffer for message content.

For example to use the buffer "ubuffer", you simply set the LBM_SSRC_SEND_EX_FLAG_USER_SUPP←↩
LIED_BUFFER flag and the usr_supplied_buffer field in the lbm_ssrc_send_ex_info_t passed to the
lbm_ssrc_send_ex() API function, as shown below:

11.8 Smart Sources 213

char *ubuffer = malloc(65536); /* Large user-supplied buffer. */
lbm_ssrc_send_ex_info_t info;
info.flags = 0;
char *ss_buffer = NULL; /* Smart Source pre-allocated buffer. */
...
lbm_ssrc_buff_get(ssrc, &ss_buffer, 0); /* Get Smart Source pre-alloc buff. */
...
/* Application puts message data into ubuffer. */
info.flags |= LBM_SSRC_SEND_EX_FLAG_USER_SUPPLIED_BUFFER;
info.usr_supplied_buffer = ubuffer;
lbm_ssrc_send_ex(ssrc, ss_buffer, message_len, 0, &info);

Note that the Smart Source pre-allocated buffer ss_buffer also has to be passed in.

Also note that sending messages with the user-supplied message buffer is slightly less CPU efficient than using
the pre-allocated buffers. But making pre-allocated buffers larger to accommodate occasional large messages can
be very wasteful of memory, depending on the counts of user buffers, transmission window buffers, and retention
buffers.

UM Fragment Sizes

A traditional source will split application messages into "N" fragments when those messages (plus worst-case
header) are greater than the Datagram Max Sizes. The size of the first "N-1" fragments will be (approximately)
the datagram max size.

With Smart Sources, fragmentation is done somewhat differently. Consider as an example a configuration with a
datagram max size of 8192 and a Smart Source max message length of 2000. No UM message fragmentation will
happen when the application uses the Smart Source pre-allocated buffers to build outgoing messages. However, if
a user-supplied buffer is used, the user can send arbitrarily large application message, and the Smart Source will
split the message into "N" fragments. But those fragments will be limited in size to the Smart Source max message
length of 2000 bytes of application data (plus additional bytes for headers).

This can lead to unexpected inefficiencies. Continuing the above example, suppose case the application sends a
6000-byte message. The Smart Source will spit it into three 2000-byte datagrams. The underlying IP stack will
perform IP fragmentation and send each datagram as two packets of 1500 and 500 bytes respectively, for a total
of 6 packets. Whereas if the Smart Source max message length were set to 1500, then the message would be
split into 4 fragments of 1500 bytes each, and each fragment would fit in a single packet, for a total of 4 packets.
(The calculations above were simplified for clarity, but are not accurate because they do not take into consideration
headers.)

When a kernel bypass network driver is being used, users will sometimes set the datagram max size to approxi-
mately an MTU. In that case, it could easily happen that the Smart Source pre-allocated buffers are larger than the
datagram max size. In that case, the Smart Source will behave more like a traditional source, splitting the application
message into datagrams of (approximately) datagram max size fragments. See Datagram Max Size and Network
MTU.

11.8.2 Smart Sources and Memory Management

Starting with UM 6.11, there are new C APIs that give the application greater control over the allocation of memory
when Smart Sources are being created. Since creation of a Smart Source pre-allocates buffers used for application
message data as well as internal retransmission buffers, an application can override the stock malloc/free to ensure,
for example, that memory is local to the CPU core that will be sending messages.

When the application is ready to create the Smart Source, it should set up the configuration option mem_mgt_←↩
callbacks (source), which uses the lbm_mem_mgt_callbacks_t structure to specify application callback functions.

11.8.3 Smart Sources Configuration

The following configuration options are used to control the creation and operation of Smart Sources:

214 Advanced Optimizations

• smart_src_max_message_length (source) - should be set to the maximum expected size for messages
sent to on the source.

• smart_src_user_buffer_count (source) - number of buffers to be pre-created at Smart Source create time.
Deleting a Smart Source also frees these buffers, so applications must not access these buffers after their
corresponding Smart Source is deleted.

• smart_src_retention_buffer_count (source) - enables Late Join and Off-Transport Recovery (OTR) func-
tionality. Takes the place of the normal late join / OTR options "retransmit_retention_∗". (On the receive side,
the normal late join options apply.)

• transport_lbtrm_smart_src_transmission_window_buffer_count (source) - size of the LBT-RM trans-
mission window. Takes the place of the normal window options "transport_lbtrm_transmission_window_∗".

• transport_lbtru_smart_src_transmission_window_buffer_count (source) - size of the LBT-RU transmis-
sion window. Takes the place of the normal window options "transport_lbtru_transmission_window_∗".

• smart_src_enable_spectrum_channel (source) - should be set if Spectrum channels will be used.
See Smart Sources and Spectrum.

• smart_src_message_property_int_count (source) - should be set if Message Properties will be used.
See Smart Sources and Message Properties.

The option smart_src_max_message_length (source) is used to size the window transmission buffers. This
means that the first Smart Source created on the session defines the maximum possible size of user messages
for all Smart Sources on the Transport Session. It is not legal to create a subsequent Smart Source on the same
Transport Session that has a larger smart_src_max_message_length (source), although smaller values are per-
missible.

11.8.4 Smart Source Defensive Checks

Ultra Messaging generally includes defensive checks in API functions to verify validity of input parameters. In
support of faster operation, deep defensive checks for Smart Sources are optional, and are disabled by default.
Users should enable them during application development, and can leave them disabled for production.

To enable deep Smart Source defensive checks, set the environment variable LBM_SMART_SOURCE_CHECK to
the numeric sum of desired values. Hexadecimal values may be supplied with the "0x" prefix. Each value enables
a class of defensive checking:

Numeric Value Deep Check

1 Send argument checking

2 Thread checking

4 User buffer pointer checking

8 User buffer structure checking

16, 0x10 user message length checking

32, 0x20 application header checking, including Spectrum and Message Properties.

64, 0x40 null check for User Supplied Buffer (see Smart Source Message Buffers)

To enable all checking, set the environment variable LBM_SMART_SOURCE_CHECK to "0xffffffff".

11.9 Zero-Copy Send API 215

11.8.5 Smart Sources Restrictions

• No Hotlinks - Smart Sources do not support the DRO Hotlinks feature.

• Linux and Windows 64-bit Only - Smart Sources is only supported on the 64-bit Linux and 64-bit Windows
platforms, C and Java APIs.

• LBT-RM And LBT-RU Sources Only - Smart Sources can only be created with the LBT-RM and LBT-RU
transport types. Smart Sources are not compatible with the UM features Multicast Immediate Messaging,
Unicast Immediate Messaging, or sending responses with Request/Response.

• Persistence - Starting with UM 6.11, Smart Sources support Persistence, but with some restrictions. See
Smart Sources and Persistence for details.

• Spectrum - Starting with UM 6.11, Smart Sources support Spectrum, but with some API changes. See Smart
Sources and Spectrum for details.

• Single-threaded Only - It is the application's responsibility to serialize calls to Smart Source APIs for a given
Transport Session. Concurrent sends to different Transport Sessions are permitted.

• No Application Headers - Application Headers are not compatible with Smart Sources.

• Limited Message Properties - Message Properties may be included, but their use has restrictions. See
Smart Source Message Properties Usage.

• No Queuing - Queuing is not currently supported, although support for ULB is a possibility in the future.

• No Send Request for Java - The Java API does not support sending UM Requests. (Starting with UM
version 6.14, the C API does: lbm_ssrc_send_request_ex()).

• No Data Rate Limit - Smart Source data messages are not rate limited, although retransmissions are rate
limited. Care must be taken in designing and provisioning systems to prevent overloading network and host
equipment, and overrunning receivers.

• No Hot Failover - Smart Sources are not compatible with Hot Failover (HF).

• No Batching - Smart Sources are not compatible with Implicit Batching or Explicit Batching.

Note

It is not permitted to mix Smart Source API calls with standard source API calls for a given Transport Session.

11.9 Zero-Copy Send API

This section introduces the use of the zero-copy send API for LBT-RM.

Note

the Zero-Copy Send API feature is not the same thing as the Smart Sources feature; see Comparison of Zero
Copy and Smart Sources.

The zero-copy send API modifies the lbm_src_send() function for sending messages such that the UM library does
not copy the user's message data before handing the datagram to the socket layer. These changes reduce CPU
overhead and provide a minor reduction in latency. The effects are more pronounced for larger user messages,
within the restrictions outlined below.

Application code using the zero-copy send API must call lbm_src_alloc_msg_buff() to request a message buffer
into which it will build its outgoing message. That function returns a message buffer pointer and also a separate

216 Advanced Optimizations

buffer handle. When the application is ready to send the message, it must call lbm_src_send(), passing the buffer
handle as the message (not the message buffer) and specify the LBM_MSG_BUFF_ALLOC send flag.

Once the message is sent, UM will process the buffer asynchronously. Therefore, the application must not make
any further reference to either the buffer or the handle.

11.9.1 Zero-Copy Send Compatibility

The zero-copy send API is compatible with the following UM features:

• C language, Streaming, source-based publishing applications using LBT-RM.

• Messages sent with the zero-copy API can be received by any UM product or daemon. No special restrictions
apply to receivers of messages sent with the zero-copy send API.

• Compatible with implicit batching and message flushing.

• Compatible with non-blocking sends and wakeup source event handling.

• Compatible with hardware timestamps (see section High-resolution Timestamps).

• Compatible with UD Acceleration.

11.9.2 Zero-Copy Restrictions

Due to the specialized nature of this feature, there are several restrictions in its use:

• Languages. Java and .NET are not supported at this time.

• Transport LBT-RM only. Sourced-based LBT-RM (multicast) only. Zero-copy sends are not compatible with
LBT-RU, TCP, IPC, SMX, Unicast Immediate Messaging, or Multicast Immediate Messaging. Note that an
application that uses zero-copy sends for certain sources may also have other sources configured for other
transport types.

• Applications only. UM daemons (e.g. DRO, Stored, etc.) cannot be configured to use the zero-copy API.

• Streaming only. Zero-copy sends are not compatible with Persistence or Queuing. Note that an application
that uses zero-copy sends for certain sources may also have other sources mapped to Persistence and/or
queuing.

• lbm_src_send() only. zero-copy sends are not compatible with send APIs not supported: lbm_src←↩
_sendv(), lbm_src_send_ex(), lbm_src_sendv_ex(), lbm_hf_src_send(), lbm_hf_src_sendv(), lbm←↩
_hf_src_send_ex(), lbm_hf_src_sendv_ex(), lbm_send_request(), lbm_send_request_ex(), lbm_←↩
send_response(), lbm_multicast_immediate_message(), lbm_multicast_immediate_request(), lbm←↩
_unicast_immediate_message(), lbm_unicast_immediate_request(). Applications may still use these
APIs, but not with the zero-copy send feature.

• Send order. It is recommended that zero-copy buffers be sent in the same order that they are allocated. A
future version may require this.

• Late Join. Not compatible with zero-copy sends. Note that an application that uses zero-copy sends on
certain sources may also use late join on other sources.

• Request/Response. Not compatible with zero-copy sends.

11.10 Comparison of Zero Copy and Smart Sources 217

• Message Metadata. Not compatible with Message Properties or Application Headers. Note that an application
that uses zero-copy sends for messages without metadata may also send messages with metadata using
other send APIs, even to the same source.

• Hot Failover (HF). Not supported. Note that an application that uses zero-copy sends for certain sources may
use hot failover for other sources.

• Explicit Batching. not compatible with zero-copy sends. Note that implicit batching is supported. Also note
that an application that uses zero-copy sends for certain sources may use explicit batching for other sources.

• Message Fragmentation and Reassembly. not compatible with zero-copy sends. Messages sent zero-copy
must fit within a single datagram, as defined by the LBT-RM Datagram Max Sizes. No special restrictions
apply to IP fragmentation. Note that an application that uses zero-copy sends for single-datagram messages
may also send multi-datagram messages using other send APIs, even to the same source.

11.10 Comparison of Zero Copy and Smart Sources

There are two UM features that are intended to reduce latency and jitter when sending messages:

• Smart Sources

• Zero-Copy Send API

These two features use different approaches to latency and jitter reduction, and are not compatible with each other.
There are trade-offs explained below, and users seeking latency and/or jitter reduction will sometimes need to try
both and empirically measure which is better for their use case.

The zero-copy send API removes a copy of the user's data buffer, as compared to a normal send. For small
messages of a few hundred bytes, a malloc and a data copy represent a very small amount of time, so unless your
messages are large, the absolute latency reduction is minimal.

The Smart Source has the advantage of eliminating all mallocs and frees from the send path. In addition, all thread
locking is eliminated. This essentially removes all sources of jitter from the UM send path. Also, the Smart Source
feature supports UM fragmentation, which zero-copy sends do not. However, because of the approach taken,
sending to a Smart Source is somewhat more restrictive than sending with the zero-copy API.

In general, Informatica recommends Smart Sources to achieve the maximum reduction in jitter. For example, the
zero-copy send API supports the use of batching to combine multiple messages into a single network datagram.
Batching can be essential to achieve high throughputs. Some application designers may determine that the through-
put advantages of zero-copy with batching outweigh the jitter advantages of Smart Sources.

See the sections Zero-Copy Send API and Smart Sources for details of their restrictions.

11.11 XSP Latency Reduction

A common source of latency outliers is when Topic Resolution packets are received at the same time that user data
messages are received. The UM context thread might process those Topic Resolution packets before processing
the user data messages.

By using the XSP feature, user data reception can be moved to a different thread than topic resolution reception.
See Transport Services Provider (XSP) for details, paying careful attention to XSP Threading Considerations.

218 Advanced Optimizations

11.12 Receive-Side Batching

The receive-side batching feature can improve throughput of subscribers that use UM event queues and/or are
written in Java.

See also source-side Message Batching.

UM event queues introduce a small overhead which adds latency and reduces maximum sustainable throughput.
UM's Java API also introduces a small overhead to deliver received messages from the UM library. Both of these
overheads can usually be mitigated with the receive-side batching feature.

This feature is enabled via the configuration option delivery_control_message_batching (context).

The feature works by collecting receiver events into bundles. For an event queue, the bundle is sent to the dispatch
thread as a single queue item. For Java, the bundle is passed to the Java language as a single object. In both
cases, the overhead is amortized across the multiple messages in the bundle.

This feature is most effective when used along with the Receive Multiple Datagrams feature (Linux only), which
will increase the bundle size automatically if the receiver falls behind. A publisher using Message Batching also
increases the bundle size. Larger bundles means greater efficiency gains.

Note

If you enable receive-side batching and you use an event queue that is in polling mode (using LBM_EVEN←↩
T_QUEUE_POLL), a single call to lbm_event_dispatch() can result in multiple events being dispatched.

11.12.1 Receive-Side Batching Restrictions

• The XSP feature does not support receive-side batching. Note that users of XSP are typically trying to
maximize the performance of UM, and probably should not be using event queues. For alternatives, please
contact UM Support.

• Do not use receive-side batching for C or .NET programs that are not using event queues. The feature does
not increase efficiency and can actually reduce it.

11.13 Core Pinning

The Unix and Windows operating systems attempt to balance CPU utilization across all available CPU cores. They
often do this without regard to the architectural design of the system hardware, which can introduce significant inef-
ficiencies. For example, if a thread's execution migrates from one NUMA node to another, the code will frequently
need to access memory located in the other NUMA zone, which happens over a slower memory interconnect.

Fortunately, Unix and Windows support pinning processes and threads to specific CPU cores. It is the user's
responsibility to understand the host architecture sufficiently to know which cores are grouped into NUMA zones.
Pinning a group of related threads to cores within the same NUMA zone is important to maintain high performance.

However, even letting the operating system migrate a thread from one core to another within a single NUMA zone
has the side effect of invalidating the cache, which introduces latency. You get the best performance when each
thread is pinned to its own core, with no other threads contending for that core. This approach obviously severely
limits the number of threads that can run on a host.

UM does not have a general feature that pins threads to cores for applications. It is the user's responsibility to pin
(set affinity) using the appropriate operating system APIs.

https://ultramessaging.github.io/UM_Support.html
https://queue.acm.org/detail.cfm?id=2513149

11.14 Memory Latency Reduction 219

The Persistent Store allows the user to assign individual threads to specific cores. See Store Thread Affinity for
details.

For the DRO, it is not possible to identify specific threads and assign them to individual cores. But the user can use
the operating system's user interface to assign the entire DRO process to a group of cores known to be in the same
NUMA zone.

11.14 Memory Latency Reduction

UM makes use of dynamic memory allocation/deallocation using malloc() and free(). The default memory allocator
included with Linux and Windows can sometimes introduce latency outliers of multiple milliseconds. It is rare, but
we have seen outliers as long as 10 milliseconds.

There are higher-performing allocators available, many of them open-source. For example, Hoard. There are
many others.

A good commercial product is MicroQuill's SmartHeap. In fact, the Persistent Store is built and ships
with SmartHeap. Note that licensing Ultra Messaging does not grant a license to the customer for general use of
SmartHeap. Users who want to use SmartHeap in applications should contact MicroQuill directly.

None of these products can guarantee that there will never be millisecond-long latencies, but they can greatly
reduce the frequency.

http://hoard.org/
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation#Implementations
http://microquill.com/smartheap/
http://microquill.com/

220 Advanced Optimizations

Chapter 12

Man Pages for SRS

TCP-based resolver services for UM messaging products are provided by SRS.

For more information on TCP-based TR, see TCP-Based Topic Resolution Details. For more information on Topic
Resolution general, see Topic Resolution Description.

There are two executables for the SRS, each with it's own man page:

• SRS Man Page - Unix and Windows command-line interface.

• Srsds Man Page - Windows Service interface.

Note that these executables are not in the same "bin" directory as the platform native UM executables. Since it is a
Java program, it has its own directory sub-tree, "SRS", with sub-directories "bin" and "lib". For example, the UMS
SRS executables are under "UMS_6.17/SRS/bin". For instructions on using a different directory structure, see the
"Usage Notes" sections in SRS Man Page and Srsds Man Page.

Note also that the SRS uses the underlying platform-specific UM library, so your proper paths should be set up.

12.1 SRS Man Page

Unix and Windows command-line interface.

Usage: SRS [options] [configfile]
Available options:

-d, --dump dump the user configuration to stdout and exit
-D, --Debug=PATH:MASK set debug PATH and MASK
-h, --help display this help message and exit
-j, --java print Java properties to the SRS log file (-j -j = print

more Java properties)
-v, --validate validate config file and exit
-x, --xsd dump the configuration XSD to stdout and exit

Description

The SRS command runs the Stateful Resolver Service (SRS). It can be run interactively from a shell or com-
mand prompt, or from a script or batch file. (For use as a Windows Service, see Srsds Man Page.)

The "configfile" parameter is optional. If supplied, it specifies the file path for the SRS's XML configuration file.
if omitted, the SRS defaults all configurable options. See SRS Configuration File for configuration details.

222 Man Pages for SRS

The "-D" option sets enables debugging output. This output is intended primarily for Informatica Support, not
end-users.

The "-j" option prints Java properties to the SRS log file. It can be repeated ('-j -j') to increase the output. This
output is intended primarily for Informatica Support, not end-users.

The "-d" option dumps (prints) to standard out the full SRS configuration. After printing, the SRS exits. (Note,
this is different from other UM daemons in which "-d" dumps the daemon's DTD. But the SRS does not use a
DTD, it uses an XSD. See the "-x" option below.)

The "-x" option prints the XSD which is used to validate the configuration file. After printing, the SRS exits.

The "-v" validates the XML structure of the given configuration file against the SRS's XML XSD. After validating
the configuration file's XML structure, SRS exits with status 0 for no errors, or non-zero if errors were found.
For example:

SRS -v /um/srs_cfg.xml

Note that valid XML structure does not guarantee that the configuration file is completely correct. It must be
tested on a running SRS.

The "-h" option prints the man page and exits.

Exit Status

The exit status from SRS is 0 for success and some non-zero value for failure.

Usage Notes

• When shutting down a Unix-based SRS Process, use a SIGINT to trigger a clean shutdown, which attempts
to cleanly finish outstanding IO requests before shutting down.

• Given how the SRS was implemented, there are scripts, binary executables, and Java JAR files associated
with the service. By default, the scripts and executables assume a certain directory structure, with the scripts
and executables stored in a "bin" sub-directory, and JAR files stored in a "lib" sub-directory. This corresponds
to how the UM package installation structures the files.

Starting with UM version 6.17, the user can adopt a different directory structure. To assist the scripts and
executables in finding the JAR files, the user can define an environment variable, "UM_SRS_DIR", which
contains the full path for the directory containing the JAR files.

12.2 Srsds Man Page

Windows Service interface.

See UM Daemons as Windows Services for general information about UM daemons as Windows Services.

12.2 Srsds Man Page 223

Note

In the descriptions below, three different log files are referenced: "service log", "process log", and "SRS log".
It is important that all three of these be specified, and that they be separate files. In normal use, only the "SRS
log" will be written to; the other two are only necessary to record unusual error conditions.

Usage: srsds [options] srs_cfgfile_name
Available options:

-h, --help display this help and exit
-l, --service-log=FILE set a logfile name for the service log.
-p, --process-log=FILE set a logfile name for the srs process output.
-s, --service=request Install, remove or add a configuration file.

Examples: ’-s install’ to install the service with no
config file

’-s install cfgfile.xml’ to install the service
with a configuration file of cfgfile.xml

’-s remove’ to remove the service
’-s config cfg2.xml’ to change or add a

configuration file
-e, --event-log-level Update/set service logging level. This is the

minimum logging
level to send to the Windows event log. Valid values

are:
NONE - Send no events
INFO
WARN - default
ERROR

-E, --env_var_file update/set the environment Variable File
-f, --flatdir specify that binaries and java libraries are in the

same directory
Note: This sets UM_SRS_DIR environment variable to

the directory path of this executable
-U, --noenv_var_file unset env_var_file (-E) entry

Note: -U and -E are not supported on the same
command line

Description

The srsds command has two functions:

• First, it lets the user supply Windows Service operating parameters, which the command saves into
the Windows registry. Those operating parameters are subsequently used by the SRS Service. See
Configure the Windows Service.

• Second, it provides Windows with the SRS daemon executable to run as a Service.

The "srs_cfgfile_name" parameter specifies the file path for the SRS's XML configuration file. It is supplied in
conjunction with the "-s config" option (see below). See SRS Configuration File for configuration details.

The "-l" option specifies a "service" log file path, which is saved in the Windows registry and subsequently by
the Windows Service. Under normal circumstances, this log file will never be written to. It will be written if the
SRS is unsuccessful in starting up as a service. (The normal SRS log file is configured differently, using the
<log> element in the configuration file.)

The "-p" option specifies a "process" log file path, which is saved in the Windows registry and subsequently by
the Windows Service. Under normal circumstances, this log file will never be written to. It will be written if the
Java JVM writes to standard out or standard error, of if the SRS is not able to write to its configured log file.

224 Man Pages for SRS

Warning

By default, the SRS's configuration file uses <log type="console">. In this case, normal SRS logs are written
to standard out and will be captured in the "process" log file. This is not recommended as it leads to
unbounded growth of the log file. Users should set <log type="file"> and related attributes to control the
log file sizes.

For "-s install" see Install the Windows Service.

For "-s remove" see Remove the Windows Service.

For "-s config" and "-e", see Configure the Windows Service.

The "-h" option prints the man page and exits.

The "-E env_var_file" option provides a convenient method to specify environment variables for the service
without having to modify the system-level environment. The SRS service will read this file and define variables
in its own environment.

The "-U" option removes a previously set "env_var_file" ("-E") so that the next time the Windows service is
started, that file will not be read. (New in UM version 6.17)

The "-f" option is a short cut for telling the SRS that its JAR files are in the same directory as the executables,
without the need to define the "UM_SRS_DIR" environment variable. (New in UM version 6.17)

Exit Status

The exit status from SRS is 0 for success and some non-zero value for failure.

Usage Notes

• When installing the SRS as a Microsoft Windows service, use only local disk devices and fully qualified path
names for all filenames. This is because Windows services run by default under a Local System account,
which has reduced privileges and is not allowed access to network devices.

• Given how the SRS Windows service was implemented, there are binary executables and Java JAR files
associated with the service. By default, the executables assume a certain directory structure, with the exe-
cutables stored in a "bin" sub-directory, and JAR files stored in a "lib" sub-directory. This corresponds to how
the UM package installation structures the files.

Starting with UM version 6.17, the user can use their own directory structure. To assist the executables in
finding the JAR files, the user can define an environment variable, "UM_SRS_DIR", which contains the full
path for the directory containing the JAR files. This environment variable can either be made at the system
level, or can be defined in a disk file, specified by the "-E" command-line option to mcsds.

Alternatively, if you plan to store the executables in the same directory as the JAR files, you can instead use
the "-f" command-line option to mcsds.

• Stopping the SRS service triggers a clean shutdown, which attempts to cleanly finish outstanding IO requests
before shutting down.

12.2 Srsds Man Page 225

Attention

Do not use the task manager or the "kill" command to stop a UM daemon running as a Windows service. Use
the Windows service control panel to stop the service.

226 Man Pages for SRS

Chapter 13

SRS Configuration File

For general information about TCP-based topic resolution, see TCP-Based Topic Resolution Details.

The SRS configuration file must start with this line:

<?xml version="1.0" encoding="UTF-8" ?>

After that, the '<um-srs>' element contains the rest of the configuration.

The SRS configuration does not support the XInclude feature.

Here is a sample short configuration:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon>
<log type="file" frequency="hourly" size="10" max-history="10"

total-size-cap="10000" compression="zip">SRS.log</log>
<pid-file>SRS.pid</pid-file>

</daemon>
<srs>
<interface>10.12.34.56</interface>
<port>27000</port>
<state-lifetime>3600</state-lifetime>

</srs>
<daemon-monitor topic="/29west/statistics">
<publishing-interval>

<default>2000</default>
<config-opts>20000</config-opts>
<internal-config-opts>0</internal-config-opts>

</publishing-interval>
<lbm-attributes>

<option scope="context" name="operational_mode" value="embedded" />
<option scope="context" name="mim_incoming_address" value="0.0.0.0" />
<option scope="context" name="transport_tcp_port_low" value="14381" />
<option scope="context" name="transport_tcp_port_high" value="15381" />
<option scope="source" name="transport_tcp_interface" value="10.29.3.0/24" />

</lbm-attributes>
<monitor-format>pb</monitor-format>

</daemon-monitor>
</um-srs>

Attention

It is important to configure the SRS with SRS Element "<interface>", even if the SRS is running on a single-
homed host (one network connection).

When the daemon monitor is enabled, the first two lbm attribute option setting are recommended for conserving
resources.

228 SRS Configuration File

13.1 SRS Configuration Elements

13.1.1 SRS Element "<um-srs>"

Container element which holds the SRS configuration. Also defines the version of the configuration format used by
the file.

• Children: <daemon>, <srs>, <debug-monitor>, <daemon-monitor>

XML Attributes:

Attribute Description Valid Values Default Value

version Version number of user's configuration file. nonEmptyString "1.0"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

...
</um-srs>

13.1.2 SRS Element "<daemon-monitor>"

Contains elements which configure the SRS monitoring capability. This feature is used to monitor the SRS's health
and performance. It can also be useful to monitor activity in the entire Topic Resolution Domain.

Note that the "topic" attribute must be supplied, otherwise no statistics will be published. Also note that if using the
protobuf format, other UM components default to the topic "/29west/statistics".

See child elements for details.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <um-srs>

• Children: <ping-interval>, <publishing-interval>, <lbm-attributes>, <publish-connection-events>,
<remote-snapshot-request>, <remote-config-changes-request>, <monitor-format>

XML Attributes:

Attribute Description Valid Values Default Value

topic Set the name of the topic on which the SRS
publishes its daemon stats.

nonEmptyString (no default; must be specified)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
...
<monitor-format>pb</monitor-format>

13.1 SRS Configuration Elements 229

</daemon-monitor>
...

</um-srs>

13.1.3 SRS Element "<monitor-format>"

Specifies the desired format of monitoring data. For use with the Monitoring Collector Service (MCS), use the
format "pb" (proto buff).

Valid values are "pb" (recommended) or "json" (deprecated). See SRS Monitoring.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <daemon-monitor>

• Default Value: json

Example: (SRS publishes monitoring stats every 10 seconds)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
...
<monitor-format>pb</monitor-format>
...

</daemon-monitor>
...

</um-srs>

13.1.4 SRS Element "<remote-config-changes-request>"

Controls whether the SRS daemon monitor accepts Request Type: SET_PUBLISHING_INTERVAL. This allows
remote monitoring applications to change operational parameters of the SRS Daemon Monitoring feature.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <daemon-monitor>

XML Attributes:

Attribute Description Valid Values Default Value

allow Enable or disable this function. "true" - Enabled
"false" - Disabled

"false"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<remote-config-changes-request allow="true"/>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

230 SRS Configuration File

13.1.5 SRS Element "<remote-snapshot-request>"

Controls whether the SRS daemon monitor accepts Request Type: REPORT_MONITOR_INFO. This allows remote
monitoring applications to trigger immediate publishing of monitoring data.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <daemon-monitor>

XML Attributes:

Attribute Description Valid Values Default Value

allow Enable or disable this function. "true" - Enabled
"false" - Disabled

"false"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<remote-snapshot-request allow="true"/>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.6 SRS Element "<publish-connection-events>"

Controls whether the SRS reports connection-oriented events from UM contexts as part of the daemon stats. See
SRS Daemon Statistics for more information.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <daemon-monitor>

XML Attributes:

Attribute Description Valid Values Default Value

allow Enable or disable this function. "true" - Enabled
"false" - Disabled

"false"

Example: (SRS includes connection-oriented events in monitoring stats)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publish-connection-events allow="true"/>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1 SRS Configuration Elements 231

13.1.7 SRS Element "<lbm-attributes>"

Container element containing any number of <option> elements. Each <option> element supplies an LBM config-
uration option to the UM context that the SRS creates to publish daemon stats. Any number of <option> elements
can be supplied in the <lbm-attributes> container element.

See SRS Daemon Statistics for more information on daemon statistics.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <daemon-monitor>

• Children: <option>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<lbm-attributes>

...
</lbm-attributes>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.8 SRS Element "<option>"

Supplies an LBM configuration option to the UM context that the SRS creates to publish daemon stats. Any number
of <option> elements can be supplied in the <lbm-attributes> container element.

See the UM Configuration Guide for the full list of LBM configuration options.

See SRS Daemon Statistics for more information on daemon statistics.

• Cardinality (number of times element can be supplied): 0 .. unbounded

• Parent: <lbm-attributes>

XML Attributes:

Attribute Description Valid Values Default Value

scope Scope for the LBM configuration option being
set. One of:
"context"
"source"
"receiver"
(The normal LBM scopes wildcard_←↩
receiver, event_queue, and hfx are
not applicable to the SRS monitor context.)

nonEmptyString (no default; must be specified)

name Name of LBM configuration option being set. nonEmptyString (no default; must be specified)

value Value of LBM configuration option being set. nonEmptyString (no default; must be specified)

232 SRS Configuration File

Example: (SRS publishes monitoring stats using LBT-RU transport)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<lbm-attributes>

<option scope="context" name="operational_mode" value="embedded" />
<option scope="context" name="mim_incoming_address" value="0.0.0.0" />
<option scope="context" name="transport_tcp_port_low" value="14381" />
<option scope="context" name="transport_tcp_port_high" value="15381" />
<option scope="source" name="transport_tcp_interface" value="10.29.3.0/24" />
...

</lbm-attributes>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

The first two option settings above are recommended for conserving resources.

13.1.9 SRS Element "<publishing-interval>"

Set how often the SRS publishes its daemon stats. See SRS Daemon Statistics for more information. The child
elements set the intervals for each class of monitoring data. For any class of data omitted, the <default> element
sets the interval.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <daemon-monitor>

• Children: <default>, <srs-stats>, <um-client-stats>, <connection-events>, <srs-error-stats>, <um-
client-error-stats>, <config-opts>, <internal-config-opts>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publishing-interval>

...
</publishing-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.10 SRS Element "<internal-config-opts>"

Sets how often (in milliseconds) the SRS publishes certain internal configuration data. These data are primarily of
interest to Informatica Support. The value zero disables publishing that class of daemon stats.

Valid range: 0, 200 .. 7776000000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <publishing-interval>

• Default Value: 10

13.1 SRS Configuration Elements 233

Example: (SRS publishes monitoring stats every 10 seconds)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publishing-interval>

<internal-config-opts>10000</internal-config-opts>
...

</publishing-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.11 SRS Element "<config-opts>"

Sets how often (in milliseconds) the SRS publishes its configuration data. The special value zero disables publishing
that class of daemon stats.

Valid range: 0, 200 .. 7776000000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <publishing-interval>

• Default Value: Value supplied by <default>.

Example: (SRS publishes monitoring stats every 10 seconds)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publishing-interval>

<config-opts>10000</config-opts>
...

</publishing-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.12 SRS Element "<um-client-error-stats>"

Sets how often (in milliseconds) the SRS publishes statistics related to internal client-facing software errors. These
statistics are primarily of interest to Informatica Support. The special value zero disables publishing that class of
daemon stats.

Valid range: 0, 200 .. 7776000000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <publishing-interval>

• Default Value: Value supplied by <default>.

Example: (SRS publishes monitoring stats every 10 seconds)

234 SRS Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publishing-interval>

<um-client-error-stats>10000</um-client-error-stats>
...

</publishing-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.13 SRS Element "<srs-error-stats>"

Sets how often (in milliseconds) the SRS publishes statistics related to internal SRS software errors. These statistics
are primarily of interest to Informatica Support. The value zero disables publishing that class of daemon stats.

Valid values: 0, 200 - 7776000000

Valid range: 0, 200 .. 7776000000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <publishing-interval>

• Default Value: Value supplied by <default>.

Example: (SRS publishes monitoring stats every 10 seconds)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publishing-interval>

<srs-error-stats>10000</srs-error-stats>
...

</publishing-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.14 SRS Element "<connection-events>"

Sets how often (in milliseconds) the SRS publishes client connect and disconnect events. The value zero disables
publishing that class of daemon stats.

Valid range: 0, 200 .. 7776000000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <publishing-interval>

• Default Value: Value supplied by <default>.

Example: (SRS publishes monitoring stats every 10 seconds)

13.1 SRS Configuration Elements 235

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publishing-interval>

<connection-events>10000</connection-events>
...

</publishing-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.15 SRS Element "<um-client-stats>"

Sets how often (in milliseconds) the SRS publishes statistics related to Topic Resolution clients. The special value
zero disables publishing that class of daemon stats.

Valid range: 0, 200 .. 7776000000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <publishing-interval>

• Default Value: Value supplied by <default>.

Example: (SRS publishes monitoring stats every 10 seconds)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publishing-interval>

<um-client-stats>10000</um-client-stats>
...

</publishing-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.16 SRS Element "<srs-stats>"

Sets how often (in milliseconds) the SRS publishes internal SRS operational statistics. The special value zero
disables publishing that class of daemon stats.

Valid range: 0, 200 .. 7776000000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <publishing-interval>

• Default Value: Value supplied by <default>.

Example: (SRS publishes monitoring stats every 10 seconds)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publishing-interval>

236 SRS Configuration File

<srs-stats>10000</srs-stats>
...

</publishing-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.17 SRS Element "<default>"

Sets how often (in milliseconds) the SRS publishes those classes of daemon stats which are not explicitly set
by other elements. The special value zero disables publishing that class of daemon stats. See SRS Element
"<publishing-interval>" for the classes.

Valid range: 0, 200 .. 7776000000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <publishing-interval>

• Default Value: 0

Example: (SRS publishes monitoring stats every 10 seconds)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<publishing-interval>

<default>10000</default>
...

</publishing-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.18 SRS Element "<ping-interval>"

Controls the period (in milliseconds) at which SRS internal statistics are sampled and made available. The special
value zero disables this sampling.

The ping-interval control is available under the <daemon-monitor> element and the <debug-monitor> element.
Unless otherwise directed by Informatica Support, only the <daemon-monitor> instance is of interest to users.

Note that there can only be one ping interval across both functions. A <daemon-monitor> setting for ping-interval
will override a <debug-monitor> setting.

See SRS Monitoring.

Valid range: 100 .. 3600000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <debug-monitor>, <daemon-monitor>

• Default Value: 60000 (1 minute)

Example:

13.1 SRS Configuration Elements 237

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon-monitor topic="/29west/statistics">
<ping-interval>10000</ping-interval>
...
<monitor-format>pb</monitor-format>

</daemon-monitor>
...

</um-srs>

13.1.19 SRS Element "<debug-monitor>"

Contains elements which configure the optional web-based debug monitor for the SRS. The debug monitor is pri-
marily for use by Informatica support, and is not intended for end users. Unless otherwise instructed by Informatica
support, users should not enable the debug monitor.

Omit this element to disable the debug monitor.

See Webmon Security for important security information.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <um-srs>

• Children: <interface>, <port>, <ping-interval>, <enabled>

This is NOT related to monitoring the SRS health and performance. See <daemon-monitor>.

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<debug-monitor>
...

</debug-monitor>
...

</um-srs>

13.1.20 SRS Element "<enabled>"

Controls whether the debug monitor is active. Can be set to true or false. See <debug-monitor>.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <debug-monitor>

• Default Value: false

Example: (disable debug-monitor explicitly)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<debug-monitor>
<enabled>false</enabled>
...

</debug-monitor>
...

</um-srs>

238 SRS Configuration File

13.1.21 SRS Element "<port>"

Supplies network port to bind the socket required by the parent element. This is the port that a UM context should
use when TCP-based TR is configured with the option resolver_service (context). The value contained within the
<port>...</port> is an integer.

Valid range: 0 .. 65535

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <debug-monitor>, <srs>

• Default Value: 27000

Example: (UM clients use port 12000 with resolver_service (context) option)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
<port>12000</port>
...

</srs>
...

</um-srs>

13.1.22 SRS Element "<interface>"

Specifies the network interface to bind the socket required by the parent element.

Attention

It is important to configure the SRS with SRS Element "<interface>", even if the SRS is running on a single-
homed host (one network connection).

For the <srs> element, this is the IP address that a UM context should use when TCP-based TR is configured with
the option resolver_service (context). The value contained within the <interface>...</interface>
can be a fully-qualified dotted-decimal IP address or a DNS host name.

Warning

Unlike UM library configurations, the SRS configuration does not support CIDR specification of an IP network
to match an interface by network number. This interface specification must include the host number.

For the <debug-monitor> element, this is the host for the URL that a web browser should use to display the debug
monitor page.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <debug-monitor>, <srs>

• Default Value: localhost

Example: (UM clients use 10.12.34.56 with resolver_service (context) option)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
<interface>10.12.34.56</interface>
...

</srs>
...

</um-srs>

13.1 SRS Configuration Elements 239

13.1.23 SRS Element "<srs>"

Defines network and operational settings of the SRS service.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <um-srs>

• Children: <interface>, <port>, <state-lifetime>, <source-state-lifetime>, <interest-state-lifetime>,
<route-state-lifetime>, <context-name-state-lifetime>, <source-leave-backoff>, <otidmap>, <topicmap>,
<routemap>, <namemap>, <clientactor>, <application-id>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
...

</srs>
...

</um-srs>

13.1.24 SRS Element "<application-id>"

Adds an "Application ID" for SRS monitoring statistics. Used with monitoring format "pb" (proto buff).

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Default Value: (none)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
<application-id>SRS1</application-id>
...

</srs>
...

</um-srs>

13.1.25 SRS Element "<clientactor>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Children: <request-stream-max-msg-count>, <record-queue-service-interval>, <batch-frame-max-
record-count>, <batch-frame-max-datagram-size>

240 SRS Configuration File

13.1.26 SRS Element "<batch-frame-max-datagram-size>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <clientactor>

13.1.27 SRS Element "<batch-frame-max-record-count>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <clientactor>

13.1.28 SRS Element "<record-queue-service-interval>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

Valid range: 1 .. 1000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <clientactor>

13.1.29 SRS Element "<request-stream-max-msg-count>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <clientactor>

13.1.30 SRS Element "<namemap>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Children: <shards>

13.1 SRS Configuration Elements 241

13.1.31 SRS Element "<shards>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <otidmap>, <topicmap>, <routemap>, <namemap>

13.1.32 SRS Element "<routemap>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Children: <shards>

13.1.33 SRS Element "<topicmap>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Children: <shards>

13.1.34 SRS Element "<otidmap>"

This is for Informatica internal use only. Do not set unless directed to do so by Informatica Support.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Children: <shards>

242 SRS Configuration File

13.1.35 SRS Element "<source-leave-backoff>"

Set how long an SRS delays before informing receivers about certain state changes in sources. There are conditions
related to sources being deleted or timing out which can cause a receiver to "flap" - repeating cycling between
connect (BOS) and disconnect (EOS). These conditions are usually related connectivity problems in the network.
This element can eliminate, or at least slow down the flapping.

Valid range: 0 .. 60000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Default Value: 500 (half sec)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
<source-leave-backoff>1000</source-leave-backoff>
...

</srs>
...

</um-srs>

13.1.36 SRS Element "<context-name-state-lifetime>"

Sets the value (in seconds) of a Store's context name information lifetime.

If a Store loses connection with SRS, the Context Name Information Record (CNIR) will be remembered by the
SRS for a limited amount of time: the context name state lifetime. After that time expires, the SRS deletes the CNIR
associated with that lost endpoint connection.

Zero is a special value which disables the timing of context name information of disconnected Stores. With zero,
the CNIR of a lost Store is never deleted. This is generally not recommended as it can lead to unlimited memory
growth in both the SRS and client contexts.

Note that SRS Element "<state-lifetime>" has no effect on this option.

See SRS State Lifetime for more information.

Valid range: 0 .. 20736000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Default Value: 86400 (24 hours)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
<context-name-state-lifetime>120</context-name-state-lifetime>
...

</srs>
...

</um-srs>

13.1 SRS Configuration Elements 243

13.1.37 SRS Element "<route-state-lifetime>"

Sets the value (in seconds) of a DRO's routing information lifetime.

If a DRO endpoint loses connection with SRS, the Domain Information Record (DIR) and the Route Information
Record (RTIR) will be remembered by the SRS for a limited amount of time: the route state lifetime. After that time
expires, the SRS deletes the DIR and RTIR associated with that lost endpoint connection.

Zero is a special value which disables the timing of routing information of disconnected DROs. With zero, the DIR
and RTIR of a lost DRO are never deleted. This is generally not recommended as it can lead to unlimited memory
growth in both the SRS and client contexts.

Note that SRS Element "<state-lifetime>" has no effect on this option.

See SRS State Lifetime for more information.

Valid range: 0 .. 20736000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Default Value: 30 (seconds)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
<route-state-lifetime>120</route-state-lifetime>
...

</srs>
...

</um-srs>

13.1.38 SRS Element "<interest-state-lifetime>"

Sets the value (in seconds) of the client interest state lifetime.

If a client context loses connection with SRS, the topic interest of that context will be remembered by the SRS for
a limited amount of time: the interest state lifetime. If the context does not re-connect within that time, the SRS
deletes all of the topic interest owned by that lost context.

Zero is a special value which disables the timing of interest of disconnected contexts. With zero, the interest of a
lost context is never deleted. This is generally not recommended as it can lead to unlimited memory growth in both
the SRS and client contexts.

If this element is not supplied, the interest state lifetime defaults to the current value for SRS Element "<state-
lifetime>".

See SRS State Lifetime for more information.

Valid range: 0 .. 20736000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Default Value: Current value for SRS Element "<state-lifetime>"

Example: (SRS deletes a lost context's interest after 120 seconds)

244 SRS Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
<interest-state-lifetime>120</interest-state-lifetime>
...

</srs>
...

</um-srs>

13.1.39 SRS Element "<source-state-lifetime>"

Sets the value (in seconds) of the client source state lifetime.

If a client context loses connection with SRS, the sources contained by that context will be remembered by the
SRS for a limited amount of time: the source state lifetime. If the context does not re-connect within that time, the
SRS deletes all of the sources owned by that lost context. Those deletions will be shared with all connected client
contexts.

Zero is a special value which disables the timing of sources of disconnected contexts. With zero, the sources from
a lost context are never deleted. This is generally not recommended as it can lead to unlimited memory growth in
both the SRS and client contexts.

If this element is not supplied, the source state lifetime defaults to the current value for SRS Element "<state-
lifetime>"

See SRS State Lifetime for more information.

Valid range: 0 .. 20736000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

• Default Value: Current value for SRS Element "<state-lifetime>"

Example: (SRS deletes a lost context's sources after 120 seconds)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
<source-state-lifetime>120</source-state-lifetime>
...

</srs>
...

</um-srs>

13.1.40 SRS Element "<state-lifetime>"

Sets the default (in seconds) of the client SRS Element "<source-state-lifetime>" and SRS Element "<interest-
state-lifetime>". Note that it does not affect SRS Element "<route-state-lifetime>" or SRS Element "<context-
name-state-lifetime>".

See SRS State Lifetime for more information.

Valid range: 0 .. 20736000

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <srs>

13.1 SRS Configuration Elements 245

• Default Value: 86400 (24 hours)

Example: (SRS deletes a lost context's sources and interest after 120 seconds)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<srs>
<state-lifetime>120</state-lifetime>
...

</srs>
...

</um-srs>

13.1.41 SRS Element "<daemon>"

Contains elements which define logging behavior and sets a file name for the service's Process ID.

See child elements for details.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <um-srs>

• Children: <log>, <pid-file>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon>
...

</daemon>
...

</um-srs>

13.1.42 SRS Element "<pid-file>"

Supplies the desired name of file in which the SRS writes its Process ID (PID).

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <daemon>

Example: (SRS writes process ID to "srs_pid.txt" file)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon>
<pid-file>srs_pid.txt</pid-file>
...

</daemon>
...

</um-srs>

246 SRS Configuration File

13.1.43 SRS Element "<log>"

Configures SRS logging behavior. The value contained within the <log>...</log> is a file name, but is only
used if the "type" attribute is set to "file".

When the type attribute is set to "file", the SRS supports "rolling" the log file, which consists a series of files
over time so that no one file grows too large.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

type Where to write log mes-
sages.

"file" - Write log mes-
sages to a file.
"console" - Write log
messages to standard out-
put.

"console"

frequency Time-frame by which to roll
the log file.

"disable" - Do not roll the
log file based on time.
"daily" - Roll the log file at
midnight.
"hourly" - Roll the log file
each hour.

"disable"

size Size (in MB, that is 2∗∗20,
or 1,048,576 bytes) of current
log file at which it is rolled.
Specify 0 to disable rolling by
log file size.

positiveInteger "10" (10,485,760 bytes)

max-history Number of rolled log files
at which the oldest file is
deleted when the current log
file is rolled.

positiveInteger "10"

total-size-cap Total disk space consumed
(in MB, that is 2∗∗20, or
1,048,576 bytes) by rolled log
files at which the oldest file is
deleted to make room for the
next log roll.

positiveInteger "1000" (1,048,576,000
bytes)

compression Enables compression for
rolled log files.

"none" - Do not compress
log files.
"zip" - Compress log files
using "zip" format.
"gzip" - Compress log files
using "gzip" format.

"none"

Example 1: (write log messages to standard out)

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon>
<log type="console"/>
...

</daemon>
...

</um-srs>

Example 2: (write log messages to "srs.log" file)

13.2 SRS XSD file 247

<?xml version="1.0" encoding="UTF-8" ?>
<um-srs version="1.0">

<daemon>
<log type="file" frequency="daily">srs.log</log>
...

</daemon>
...

</um-srs>

13.2 SRS XSD file

The XSD file is used to validate the user's configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" xmlns:xs="

http://www.w3.org/2001/XMLSchema">
<xs:element name="um-srs" type="um-srsType"/>

<!-- Custom types and restrictions -->
<xs:simpleType name="nonEmptyString">
<xs:restriction base="xs:string">

<xs:minLength value="1"/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name="logTypeEnumeration">
<xs:restriction base="xs:string">

<xs:enumeration value="file"/>
<xs:enumeration value="console"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="logFrequencyEnumeration">
<xs:restriction base="xs:string">

<xs:enumeration value="disable"/>
<xs:enumeration value="daily"/>
<xs:enumeration value="hourly"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="compressionEnumeration">
<xs:restriction base="xs:string">

<xs:enumeration value="none"/>
<xs:enumeration value="zip"/>
<xs:enumeration value="gzip"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="portInteger">
<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>
<xs:maxInclusive value="65535"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="booleanEnumeration">
<xs:restriction base="xs:string">

<xs:enumeration value="true"/>
<xs:enumeration value="false"/>

</xs:restriction>
</xs:simpleType>

<!-- Acceptable values for publishingIntervalLong type are 0 or >= 200 -->
<xs:simpleType name="publishingIntervalLong">
<xs:union>

<xs:simpleType>
<xs:restriction base="xs:long">
<xs:pattern value="0"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType>

<xs:restriction base="xs:long">
<xs:minInclusive value="200"/>
<xs:maxInclusive value="7776000000"/> <!-- 90 days in milliseconds -->

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>

<!-- Acceptable values for stateLifetimeInteger type are 0, ..., 20736000 -->
<xs:simpleType name="stateLifetimeInteger">
<xs:restriction base="xs:nonNegativeInteger">

248 SRS Configuration File

<xs:minInclusive value="0"/>
<xs:maxInclusive value="20736000"/> <!-- 240 days in seconds -->

</xs:restriction>
</xs:simpleType>

<!-- Acceptable values for sourceLeaveBackoffInteger type are 0, ..., 60000 -->
<xs:simpleType name="sourceLeaveBackoffInteger">
<xs:restriction base="xs:nonNegativeInteger">

<xs:minInclusive value="0"/>
<xs:maxInclusive value="60000"/> <!-- 1 minute in milliseconds -->

</xs:restriction>
</xs:simpleType>

<!-- Acceptable values for recordQueueServiceIntervalInteger type are 1, ..., 1000 -->
<xs:simpleType name="recordQueueServiceIntervalInteger">
<xs:restriction base="xs:positiveInteger">

<xs:minInclusive value="1"/>
<xs:maxInclusive value="1000"/> <!-- 1 second in milliseconds -->

</xs:restriction>
</xs:simpleType>

<!-- Acceptable values for pingIntervalInteger type are 100, ..., 3600000 -->
<xs:simpleType name="pingIntervalInteger">
<xs:restriction base="xs:nonNegativeInteger">

<xs:minInclusive value="100"/>
<xs:maxInclusive value="3600000"/> <!-- 1 hour in milliseconds -->

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="monitorFormatEnumeration">
<xs:restriction base="xs:string">

<xs:enumeration value="json"/>
<xs:enumeration value="pb"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="logType" >
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute type="logTypeEnumeration" name="type" use="required"/>
<xs:attribute type="logFrequencyEnumeration" name="frequency"/>
<xs:attribute type="xs:positiveInteger" name="size"/>
<xs:attribute type="xs:positiveInteger" name="max-history"/>
<xs:attribute type="xs:positiveInteger" name="total-size-cap"/>
<xs:attribute type="compressionEnumeration" name="compression"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
<xs:complexType name="otidmapType">
<xs:all>

<xs:element type="xs:positiveInteger" name="shards" minOccurs="0" maxOccurs="1"/>
</xs:all>

</xs:complexType>
<xs:complexType name="topicmapType">
<xs:all>

<xs:element type="xs:positiveInteger" name="shards" minOccurs="0" maxOccurs="1"/>
</xs:all>

</xs:complexType>
<xs:complexType name="routemapType">
<xs:all>
<xs:element type="xs:positiveInteger" name="shards" minOccurs="0" maxOccurs="1"/>

</xs:all>
</xs:complexType>
<xs:complexType name="namemapType">
<xs:all>

<xs:element type="xs:positiveInteger" name="shards" minOccurs="0" maxOccurs="1"/>
</xs:all>

</xs:complexType>
<xs:complexType name="clientActorType">
<xs:all>

<xs:element type="xs:positiveInteger" name="request-stream-max-msg-count" minOccurs="0" maxOccurs="1"
/>
<xs:element type="recordQueueServiceIntervalInteger" name="record-queue-service-interval" minOccurs="
0" maxOccurs="1"/>
<xs:element type="xs:positiveInteger" name="batch-frame-max-record-count" minOccurs="0" maxOccurs="1"
/>
<xs:element type="xs:positiveInteger" name="batch-frame-max-datagram-size" minOccurs="0" maxOccurs="1
"/>

</xs:all>
</xs:complexType>
<xs:complexType name="daemonType" >
<xs:all>

<xs:element type="logType" name="log" minOccurs="0" maxOccurs="1"/>
<xs:element type="nonEmptyString" name="pid-file" minOccurs="0" maxOccurs="1"/>

</xs:all>
</xs:complexType>

13.2 SRS XSD file 249

<xs:complexType name="debugMonitorType">
<xs:all>

<xs:element type="nonEmptyString" name="interface" minOccurs="0" maxOccurs="1"/>
<xs:element type="portInteger" name="port" minOccurs="0" maxOccurs="1"/>
<xs:element type="pingIntervalInteger" name="ping-interval" minOccurs="0" maxOccurs="1"/>
<xs:element type="booleanEnumeration" name="enabled" minOccurs="0" maxOccurs="1"/>

</xs:all>
</xs:complexType>
<xs:complexType name="lbmOptionType" >
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute type="nonEmptyString" name="scope" use="required"/>
<xs:attribute type="nonEmptyString" name="name" use="required"/>
<xs:attribute type="nonEmptyString" name="value" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
<xs:complexType name="lbmAttributesType">
<xs:sequence>

<xs:element type="lbmOptionType" name="option" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="daemonMonitorType" mixed="true">
<xs:all>

<xs:element type="pingIntervalInteger" name="ping-interval" minOccurs="0" maxOccurs="1"/>
<xs:element type="publishingIntervalType" name="publishing-interval" minOccurs="0" maxOccurs="1"/>
<xs:element type="lbmAttributesType" name="lbm-attributes" minOccurs="0" maxOccurs="1"/>
<xs:element type="allowType" name="publish-connection-events" minOccurs="0" maxOccurs="1"/>
<xs:element type="allowType" name="remote-snapshot-request" minOccurs="0" maxOccurs="1"/>
<xs:element type="allowType" name="remote-config-changes-request" minOccurs="0" maxOccurs="1"/>
<xs:element type="monitorFormatEnumeration" name="monitor-format" minOccurs="0" maxOccurs="1"/>

</xs:all>
<xs:attribute type="nonEmptyString" name="topic"/>

</xs:complexType>
<xs:complexType name="publishingIntervalType">
<xs:all>

<xs:element type="publishingIntervalLong" name="default" minOccurs="0" maxOccurs="1"/>
<xs:element type="publishingIntervalLong" name="srs-stats" minOccurs="0" maxOccurs="1"/>
<xs:element type="publishingIntervalLong" name="um-client-stats" minOccurs="0" maxOccurs="1"/>
<xs:element type="publishingIntervalLong" name="connection-events" minOccurs="0" maxOccurs="1"/>
<xs:element type="publishingIntervalLong" name="srs-error-stats" minOccurs="0" maxOccurs="1"/>
<xs:element type="publishingIntervalLong" name="um-client-error-stats" minOccurs="0" maxOccurs="1"/>
<xs:element type="publishingIntervalLong" name="config-opts" minOccurs="0" maxOccurs="1"/>
<xs:element type="publishingIntervalLong" name="internal-config-opts" minOccurs="0" maxOccurs="1"/>

</xs:all>
</xs:complexType>
<xs:complexType name="allowType" >
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute type="booleanEnumeration" name="allow" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
<xs:complexType name="um-srsType">
<xs:all>

<xs:element type="daemonType" name="daemon" minOccurs="0" maxOccurs="1"/>
<xs:element type="srsType" name="srs" minOccurs="0" maxOccurs="1"/>
<xs:element type="debugMonitorType" name="debug-monitor" minOccurs="0" maxOccurs="1"/>
<xs:element type="daemonMonitorType" name="daemon-monitor" minOccurs="0" maxOccurs="1"/>

</xs:all>
<xs:attribute type="nonEmptyString" name="version"/>

</xs:complexType>
<xs:complexType name="srsType">
<xs:all>

<xs:element type="nonEmptyString" name="interface" minOccurs="0" maxOccurs="1"/>
<xs:element type="portInteger" name="port" minOccurs="0" maxOccurs="1"/>
<xs:element type="stateLifetimeInteger" name="state-lifetime" minOccurs="0" maxOccurs="1"/>
<xs:element type="stateLifetimeInteger" name="source-state-lifetime" minOccurs="0" maxOccurs="1"/>
<xs:element type="stateLifetimeInteger" name="interest-state-lifetime" minOccurs="0" maxOccurs="1"/>
<xs:element type="stateLifetimeInteger" name="route-state-lifetime" minOccurs="0" maxOccurs="1"/>
<xs:element type="stateLifetimeInteger" name="context-name-state-lifetime" minOccurs="0" maxOccurs="1
"/>
<xs:element type="sourceLeaveBackoffInteger" name="source-leave-backoff" minOccurs="0" maxOccurs="1"/
>
<xs:element type="otidmapType" name="otidmap" minOccurs="0" maxOccurs="1"/>
<xs:element type="topicmapType" name="topicmap" minOccurs="0" maxOccurs="1"/>
<xs:element type="routemapType" name="routemap" minOccurs="0" maxOccurs="1"/>
<xs:element type="namemapType" name="namemap" minOccurs="0" maxOccurs="1"/>
<xs:element type="clientActorType" name="clientactor" minOccurs="0" maxOccurs="1"/>
<xs:element type="nonEmptyString" name="application-id" minOccurs="0" maxOccurs="1"/>

</xs:all>
</xs:complexType>

</xs:schema>

250 SRS Configuration File

Chapter 14

SRS Daemon Statistics

This section contains details on the SRS's Daemon Statistics feature. You should already be familiar with the
general information contained in daemonstatistics.

The SRS Daemon Statistics are published in the form of JSON messages. These are ASCII text messages which
represent internal SRS data structures containing statistical and configuration information.

The following sub-sections describe the content of the messages. Note that while the sample messages shown are
"beautified" (whitespace inserted for readability), a receiver of these messages should make no assumption about
the presence or absence of whitespace. Also, as it true generally with JSON, the order of the fields is not fixed and
can vary.

The message types are:

• Message Type: SRS_STATS

• Message Type: SRS_ERROR_STATS

• Message Type: UM_CLIENT_STATS

• Message Type: UM_CLIENT_ERROR_STATS

• Message Type: CONNECTION_EVENTS

• Message Type: CONFIG_OPTS

• Message Type: INTERNAL_CONFIG_OPTS

• Request Type: REPORT_SRS_VERSION

• Request Type: REPORT_MONITOR_INFO

• Request Type: SET_PUBLISHING_INTERVAL

14.1 Message Type: SRS_STATS

Message type SRS_STATS contains information about the overall state of the SRS service.

EXAMPLE:

{
"monitorInfoCategory": "SRS_STATS",
"stats": [
{

"name": "clients.inactive.SIR.count",

252 SRS Daemon Statistics

"value": 0
},
{

"name": "clients.next.client.ID",
"value": 17

}
]

}

This example has two statistics. Be aware that a given message can have any number of statistic entries.

Overall structure of message:

Field Description

monitorInfoCategory Message type. Set to the string "SRS_STATS".

stats Array of sub-structures, one per statistic. The number and order of the contained
statistics is not fixed.

. . stats[].name Name of statistic (see below).

. . stats[].value Value of statistic.

Meaning of each statistic:

Statistic Description

clients.next.client.ID Unique session ID that will be assigned to the next context to
connect.

active.clients.count Number of currently connected contexts.

clients.connects.count Number of contexts that have connected since this SRS
started.

clients.disconnects.count Number of contexts that have disconnected since this SRS
started.

clients.max.concurrent.connections.count High water mark of simultaneous connections since the SRS
service was started.

clients.active.SIR.count Number of sources being maintained from connected contexts.

clients.active.RIR.count Number of receivers being maintained from connected con-
texts.

clients.active.WIR.count Number of wildcard receivers being maintained from connected
contexts.

clients.active.DIR.count Number of Domain Information Records (DIRs) being main-
tained from connected DRO endpoints.

clients.inactive.SIR.count Number of sources being temporarily maintained from discon-
nected contexts. These get cleaned up after the state lifetime
expires.

clients.inactive.RIR.count Number of receivers being temporarily maintained from discon-
nected contexts. These get cleaned up after the state lifetime
expires.

14.1 Message Type: SRS_STATS 253

Statistic Description

clients.inactive.WIR.count Number of wildcard receivers being temporarily maintained
from disconnected contexts. These get cleaned up after the
state lifetime expires.

clients.inactive.DIR.count Number of Domain Information Records (DIRs) being tem-
porarily maintained from disconnected DRO endpoints. These
get cleaned up after the state lifetime expires.

clients.expired.SIR.count Number of times the SRS deleted source records due to the
state lifetime being expired. This will happen when applications
exit without deleting their sources, which is not recommended.
If this number increases frequently, consider modifying your ap-
plications to clean up before exiting.

clients.expired.RIR.count Number of times the SRS deleted receiver records due to the
state lifetime being expired. This will happen when applications
exit without deleting their receivers, which is not recommended.
If this number increases frequently, consider modifying your ap-
plications to clean up before exiting.

clients.expired.WIR.count Number of times the SRS deleted wildcard receiver records due
to the state lifetime being expired. This will happen when appli-
cations exit without deleting their receivers, which is not recom-
mended. If this number increases frequently, consider modify-
ing your applications to clean up before exiting.

clients.expired.DIR.count Number of times the SRS deleted Domain Information Records
(DIRs) due to the state lifetime being expired. This will hap-
pen when DROs exit abnormally. Informatica support should
be informed if this count increments frequently.

clients.expired.CNIR.count Number of times the SRS deleted Context Name Information
Records (CNIRs) due to the state lifetime being expired. This
will happen when Stores exit abnormally. Informatica support
should be informed if this count increments frequently.

clients.DR.inactive.SIR.count If DROs are involved, it is normal for this count to increment.
Otherwise, this should not increment, and Informatica support
should be informed if it does. (A context disconnected while it
has SIRs that were inactive.)

clients.SLR.no.OTID.match.count If the system is otherwise behaving normally, increments in this
count are most likely harmless. (A receiver sent a source leave
record for a source that the SRS does not know about.)

clients.active.RTIR.count Number of Route Information Records (RTIR) being maintained
from all connected DRO endpoint contexts. Should be equal to
the number of active DRO endpoints in this TRD.

clients.inactive.RTIR.count Number of Route Information Records (RTIR) being temporarily
maintained from disconnected DRO endpoint contexts.

clients.expired.RTIR.count Number of inactive Route Information Records (RTIR) deleted
due to expiration of their state lifetimes. This value is cumulative
since the SRS was started.

254 SRS Daemon Statistics

Statistic Description

clients.active.CNIR.count Number of Context Name Information Records (CNIRs) being
maintained from connected contexts. This is for Stores identi-
fied by their context names; see Identifying Persistent Stores.

clients.inactive.CNIR.count Number of Context Name Information Records (CNIRs) being
temporarily maintained from disconnected contexts. Currently,
this is only for Stores identified by their context names; see
Identifying Persistent Stores.

clients.duplicate.CNIR.count Number of duplicate Context Name Information Records (CN←↩
IRs) received from all Store endpoints. While not a fatal condi-
tion, Informatica support should be informed if this is non-zero.

All of the above statistics are included in a snapshot. Only the changed statistics are included during a periodic
update.

14.2 Message Type: SRS_ERROR_STATS

Message type SRS_ERROR_STATS contains counters for errors detected by the SRS service. These types of
errors should not be happening in a properly configured network; contact UM Support if the counters are
increasing frequently.

EXAMPLE:

{
"monitorInfoCategory": "SRS_ERROR_STATS",
"stats": [
{

"name": "clients.duplicate.SIR.count",
"value": 0

},
{

"name": "clients.invalid.SDR.no.OTID.match.count",
"value": 17

}
]

}

This example has two statistics. Be aware that a given message can have any number of statistic entries.

Overall structure of message:

Field Description

monitorInfoCategory Message type. Set to the string "SRS_ERROR_STATS".

stats Array of sub-structures, one per statistic. The number and order of the contained
statistics is not fixed.

. . stats[].name Name of statistic (see below).

. . stats[].value Value of statistic.

https://ultramessaging.github.io/UM_Support.html

14.2 Message Type: SRS_ERROR_STATS 255

Meaning of each statistic:

Statistic Description

clients.duplicate.SIR.count While not a fatal condition, Informatica support should be in-
formed if this count increments frequently. (Number of times
that the SRS is informed about a source when it didn't need
to be informed because the SRS already knew about it.)

clients.duplicate.RIR.count While not a fatal condition, Informatica support should be in-
formed if this count increments frequently. (Number of times
that the SRS is informed about a receiver when it didn't need
to be informed because the SRS already knew about it.)

clients.duplicate.WIR.count While not a fatal condition, Informatica support should be in-
formed if this count increments frequently. (Number of times
that the SRS is informed about a wildcard receiver when it
didn't need to be informed because the SRS already knew
about it.)

clients.invalid.SDR.no.topic.match.count While not a fatal condition, Informatica support should be in-
formed if this count increments frequently. (A context deleted
a source that the SRS does not know about, which should
never happen.)

clients.invalid.SDR.no.OTID.match.count While not a fatal condition, Informatica support should be in-
formed if this count increments frequently. (A context deleted
a source that the SRS does not know about, which should
never happen.)

clients.invalid.SDR.no.transport.match.count While not a fatal condition, Informatica support should be in-
formed if this count increments frequently. (A context deleted
a source that the SRS does not know about, which should
never happen.)

clients.invalid.DR.no.topic.match.count While not a fatal condition, Informatica support should be
informed if this count increments frequently. (A source that
the SRS does not know about disconnected, which should
never happen.)

clients.invalid.DR.no.OTID.match.count While not a fatal condition, Informatica support should be in-
formed if this count increments frequently. (A context deleted
a source that the SRS does not know about, which should
never happen.)

clients.invalid.DR.no.transport.match.count While not a fatal condition, Informatica support should be in-
formed if this count increments frequently. (A context deleted
a source that the SRS does not know about, which should
never happen.)

clients.invalid.SLR.no.topic.match.count While not a fatal condition, Informatica support should be
informed if this count increments frequently. (A receiver no-
tified source leave for a source that the SRS does not know
about, which should never happen.)

clients.invalid.DR.inactive.SIR.count This counter should never be greater than zero. While not a
fatal condition, Informatica support should be informed if this
count increments frequently. (A context disconnected while
it has SIRs that were inactive, which should never happen.)

256 SRS Daemon Statistics

Statistic Description

clients.duplicate.DIR.count Number of duplicate Domain Information Records (DIRs) the
SRS generated. This should never happen. While not a fatal
condition, Informatica support should be informed if this is
non-zero.

clients.mismatched.DIR.count A non-zero count indicates that at least two DRO endpoints
have reported different domain IDs, which is illegal. All DRO
endpoints servicing the same TRD must be configured for
the same domain ID value.
If all DRO endpoints being services by this SRS are con-
figured for the same <domain-id> value, contact UM
Support.

clients.duplicate.RTIR.count Number of duplicate Route Information Records (RTIRs) re-
ceived from all DRO endpoints. While not a fatal condition,
Informatica support should be informed if this is non-zero.
See also statistic "client.duplicate.RTIR.received.count" in
Message Type: UM_CLIENT_ERROR_STATS.

clients.invalid.CNIR.name.mismatch.count Number of Context Name Information Records (CNIRs) re-
ceived from a context that are different from the initial CNIR.
This should never happen. While not a fatal condition, Infor-
matica support should be informed if this is non-zero.

14.3 Message Type: UM_CLIENT_STATS

Message type UM_CLIENT_STATS contains information related to an individual connected context. Multiple in-
stances of this message can be sent, one per connected context.

EXAMPLE:

{
"monitorInfoCategory": "UM_CLIENT_STATS",
"srsRegistrationInfo": {
"ip": "10.29.3.43",
"port": "60681",
"sessionId": "0x9739b88f"

},
"stats": [
{

"name": "client.SIR.received.count",
"value": 1

},
{

"name": "client.SDR.received.count",
"value": 0

}
]

}

This example has two statistics. Be aware that a given message can have any number of statistic entries.

Overall structure of message:

https://ultramessaging.github.io/UM_Support.html
https://ultramessaging.github.io/UM_Support.html

14.3 Message Type: UM_CLIENT_STATS 257

Field Description

monitorInfoCategory Message type. Set to the string "UM_CLIENT_STATS".

srsRegistrationInfo Structure containing identifying information about the connected context.

. . srsRegistrationInfo.ip IP address of the context.

. . srsRegistrationInfo.port TCP "source port" the context used locally for its SRS connection. See
resolver_service (context).

. . srsRegistrationInfo.sessionId The unique identifier assigned by the SRS to this connection.

stats Array of sub-structures, one per statistic. The number and order of the
contained statistics is not fixed.

. . stats[].name Name of statistic (see below).

. . stats[].value Value of statistic.

Meaning of each statistic:

Statistic Description

record.queue.depth Snapshot of the context's SRS worker thread's work queue con-
taining Topic Resolution updates that need to be sent to the con-
text. This number should normally be zero. If it remains above
zero for significant time contact UM Support.

client.SIR.sent.count Number of sources that the SRS has informed the context of.

client.SER.sent.count Number of source deletions that the SRS has informed the context
of. Either the application explicitly deleted a source, or the context
abnormally disconnected and the state lifetime expired.

client.RIR.sent.count Number of receivers that the SRS has informed the context of.

client.RER.sent.count Number of receiver deletions that the SRS has informed the con-
text of. Either the application explicitly deleted a receiver, or the
context abnormally disconnected and the state lifetime expired.

client.WIR.sent.count Number of wildcard receivers that the SRS has informed the con-
text of.

client.WER.sent.count Number of wildcard receiver deletions that the SRS has informed
the context of. Either the application explicitly deleted a receiver,
or the context abnormally disconnected and the state lifetime ex-
pired.

client.SIR.received.count Number of created sources that the context has informed the SRS.
This number is not necessarily the current number of sources; for
example, the counter does not decrease as sources are deleted.

client.SDR.received.count Number of sources deleted that the context has informed the SRS.

client.RIR.received.count Number of created receivers (one per topic even if more than one
receivers on a topic) that the context has informed the SRS. This
number is not necessarily the current number of receivers; for ex-
ample the counter does not decrease as receivers are deleted.

https://ultramessaging.github.io/UM_Support.html

258 SRS Daemon Statistics

Statistic Description

client.WIR.received.count Number of created wildcard receivers (one per pattern even if
more than one receivers on a pattern) that the context has in-
formed the SRS. This number is not necessarily the current num-
ber of wildcard receivers; for example the counter does not de-
crease as wildcard receivers are deleted.

client.RDR.received.count Number of deleted receivers (one per topic even if more than one
receivers on a topic) that the context has informed the SRS. This
number is not necessarily the current number of receivers; for ex-
ample the counter does not decrease as receivers are deleted.

client.WDR.received.count Number of deleted wildcard receivers (one per pattern even if
more than one receivers on a pattern) that the context has in-
formed the SRS. This number is not necessarily the current num-
ber of wildcard receivers; for example the counter does not de-
crease as wildcard receivers are deleted.

client.SLR.received.count Number of source leave records that the receiver context has in-
formed the SRS.

client.active.SIR.count Number of sources that currently exist in the context.

client.max.concurrent.SIR.count High water mark of simultaneous sources managed since the SRS
service started.

client.DIR.sent.count Number of Domain Information Records (DIRs) that the SRS has
sent to the context.

client.RTIR.sent.count Number of Route Information Records (RTIRs) the SRS has sent
to the context.

client.RTIR.received.count Number of Route Information Records (RTIRs) the context has
sent to the SRS.

client.RTER.sent.count Number of Route End Records (RTERs) the SRS has sent to the
context. This is incremented if a DRO disconnects from an SRS
and that DRO's Route Information Record state lifetime expires.

client.CNIR.sent.count Number of Context Name Information Records (CNIRs) sent to the
context.

client.CNIR.received.count Number of Context Name Information Records (CNIRs) received
from the context. This should normally be 1 or 2.

client.CNQR.received.count Number of Context Name Query Records (CNQRs) received from
the context. This should normally be 1.

client.unexpected.CNER.received.count Number of Context Name End Records (CNERs) received from
the context. This should normally be 0, but if the client is UM
version 6.14, this counter can increase.

14.4 Message Type: UM_CLIENT_ERROR_STATS 259

14.4 Message Type: UM_CLIENT_ERROR_STATS

Message type UM_CLIENT_ERROR_STATS contains error counters related to an individual connected context.
Multiple instances of this message can be sent, one per connected context. These types of errors should not be
happening in a properly configured network; contact UM Support if the counters are increasing frequently.

EXAMPLE:

{
"monitorInfoCategory": "UM_CLIENT_ERROR_STATS",
"srsRegistrationInfo": {
"ip": "10.29.3.43",
"port": "60681",
"sessionId": "0x9739b88f"

},
"stats": [
{

"name": "client.invalid.SRS.message.received.count",
"value": 1

},
{

"name": "client.invalid.SDR.received.count",
"value": 0

}
]

}

This example has two statistics. Be aware that a given message can have any number of statistic entries.

Overall structure of message:

Field Description

monitorInfoCategory Message type. Set to the string "UM_CLIENT_ERROR_STATS".

srsRegistrationInfo Structure containing identifying information about the connected context.

. . srsRegistrationInfo.ip IP address of the context.

. . srsRegistrationInfo.port TCP "source port" the context used locally for its SRS connection. See
resolver_service (context).

. . srsRegistrationInfo.sessionId The unique identifier assigned by the SRS to this connection.

stats Array of sub-structures, one per statistic. The number and order of the
contained statistics is not fixed.

. . stats[].name Name of statistic (see below).

. . stats[].value Value of statistic.

Meaning of each statistic:

Statistic Description

client.duplicate.RIR.received.count Number of created duplicate receivers that the context has
informed the SRS.

client.duplicate.WIR.received.count Number of created duplicate wildcard receivers that the con-
text has informed the SRS.

client.invalid.SRS.message.received.count This counter should never be greater than zero. While not a
fatal condition, Informatica support should be informed if this
count increments frequently. (Number of messages received
from this context that could not be processed.)

https://ultramessaging.github.io/UM_Support.html

260 SRS Daemon Statistics

Statistic Description

client.invalid.SDR.received.count This counter should never be greater than zero. While not
a fatal condition, Informatica support should be informed if
this count increments frequently. (Number of source delete
messages received from this context which could not be pro-
cessed correctly.)

client.duplicate.RTIR.received.count Number of duplicate Route Information Records (RTIRs) re-
ceived from this DRO endpoint. This should never happen.
While not a fatal condition, Informatica support should be in-
formed if this is non-zero.
See also statistic "clients.duplicate.RTIR.count" in Message
Type: SRS_ERROR_STATS.

client.unexpected.SRS.message.sent.count Number of unexpected messages sent to the context. This
should never happen. While not a fatal condition, Informatica
support should be informed if this is non-zero.

client.duplicate.CNIR.received.count Number of duplicate Context Name Information Records (C←↩
NIRs) received from this context. This should never happen.
While not a fatal condition, Informatica support should be in-
formed if this is non-zero.

client.duplicate.CNQR.received.count Number of duplicate Context Name Query Records (CNQRs)
received from this context. This should never happen. While
not a fatal condition, Informatica support should be informed if
this is non-zero.

14.5 Message Type: CONNECTION_EVENTS

14.5.1 Message Subtype: UM_CLIENT_CONNECT

Message type CONNECTION_EVENTS, sub-type UM_CLIENT_CONNECT, logs a single connect of a context to
the SRS.

{
"monitorInfoCategory": "CONNECTION_EVENTS",
"srsRegistrationInfo": {
"ip": "10.29.3.42",
"port": "41873",
"sessionId": "0xaecbff98"

},
"connectionEventType": "UM_CLIENT_CONNECT",
"events": [
{

"connectionEventType": "UM_CLIENT_CONNECT",
"connectionEventTime": "Thu Jan 24 00:28:26 CET 2019",

}
]

}

Overall structure of message:

14.5 Message Type: CONNECTION_EVENTS 261

Field Description

monitorInfoCategory Message type. Set to the string "CONNECTION_EVENTS".

srsRegistrationInfo Structure containing identifying information about the connected context.

. . srsRegistrationInfo.ip IP address of the context.

. . srsRegistrationInfo.port TCP "source port" the context used locally for its SRS connection. See
resolver_service (context).

. . srsRegistrationInfo.sessionId The unique identifier assigned by the SRS to this connection.

connectionEventType type of event contained in the events sub-structure. Set to "UM_CLI←↩
ENT_CONNECT".

events Technically events is constructed as an array of sub-structures, how-
ever each CONNECTION_EVENTS message contains exactly one event
log.

. . events[].connectionEventType type of event contained in the events sub-structure. Set to "UM_CLI←↩
ENT_CONNECT".

. . events[].connectionEventTime ASCII time/date stamp of event.

14.5.2 Message Subtype: UM_CLIENT_DISCONNECT

Message type CONNECTION_EVENTS, sub-type UM_CLIENT_DISCONNECT, logs a single disconnect of a con-
text to the SRS.

{
"monitorInfoCategory": "CONNECTION_EVENTS",
"srsRegistrationInfo": {
"ip": "10.29.3.42",
"port": "35350",
"sessionId": "0x0388cf20"

},
"connectionEventType": "UM_CLIENT_DISCONNECT",
"events": [
{

"srsRegistrationInfo": {
"ip": "10.29.3.42",
"port": "35350",
"sessionId": "0x0388cf20"

},
"connectionEventType": "UM_CLIENT_DISCONNECT",
"connectionEventTime": "Wed Jan 30 23:50:30 CET 2019",

}
]

}

Overall structure of message:

Field Description

monitorInfoCategory Message type. Set to the string "CONNECTION_EVENTS".

srsRegistrationInfo Structure containing identifying information about the connected
context.

262 SRS Daemon Statistics

Field Description

. . srsRegistrationInfo.ip IP address of the context.

. . srsRegistrationInfo.port TCP "source port" the context used locally for its SRS connec-
tion. See resolver_service (context).

. . srsRegistrationInfo.sessionId The unique identifier assigned by the SRS to this connection.

connectionEventType type of event contained in the events sub-structure. Set to
"UM_CLIENT_DISCONNECT".

events Technically events is constructed as an array of sub-
structures, however each CONNECTION_EVENTS message
contains exactly one event log.

. . events[].srsRegistrationInfo Structure containing identifying information about the connected
context.

. . . . events[].srsRegistrationInfo.ip IP address of the context.

. . . . events[].srsRegistrationInfo.port TCP "source port" the context used locally for its SRS connec-
tion. See resolver_service (context).

. . . . event[].srsRegistrationInfo.sessionId The unique identifier assigned by the SRS to this connection.

. . events[].connectionEventType type of event contained in the events sub-structure. Set to
"UM_CLIENT_DISCONNECT".

. . events[].connectionEventTime ASCII time/date stamp of event.

14.5.3 Message Subtypes: SIR and SDR

Message type CONNECTION_EVENTS, sub-types SIR and SDR, log a single context source creation or deletion
message to the SRS.

{
"monitorInfoCategory": "CONNECTION_EVENTS",
"srsRegistrationInfo": {
"ip": "10.29.3.43",
"port": "60809",
"sessionId": "0x1c668bad"

},
"connectionEventType": "SIR" or "SDR",
"events": [
{

"topic": "srs_topic",
"source": "LBTRM:10.29.3.43:24000:47b87920:225.11.28.85:14400",
"connectionEventType": "SIR" or "SDR",
"connectionEventTime": "Fri Feb 1 02:16:06 CET 2019",

}
]

}

Overall structure of message:

14.6 Message Type: CONFIG_OPTS 263

Field Description

monitorInfoCategory Message type. Set to the string "CONNECTION_EVENTS".

srsRegistrationInfo Structure containing identifying information about the connected context.

. . srsRegistrationInfo.ip IP address of the context.

. . srsRegistrationInfo.port TCP "source port" the context used locally for its SRS connection. See
resolver_service (context).

. . srsRegistrationInfo.sessionId The unique identifier assigned by the SRS to this connection.

connectionEventType type of event contained in the events sub-structure. Set to "SIR" or
"SDR".

events Technically events is constructed as an array of sub-structures, how-
ever each CONNECTION_EVENTS message contains exactly one event
log.

. . events[].connectionEventType type of event contained in the events sub-structure. Set to "SIR" or
"SDR".

. . events[].connectionEventTime ASCII time/date stamp of event.

14.6 Message Type: CONFIG_OPTS

Message type CONFIG_OPTS contains SRS configuration information.

EXAMPLE:

{
"monitorInfoCategory": "CONFIG_OPTS",
"configOptions": [
{

"name": "um-srs.daemon-monitor.lbm-attributes.context.context_name",
"value": "statsLbmContext",

},
{

"name": "um-srs.daemon-monitor.lbm-attributes.context.default_interface",
"value": "192.168.0.0/24",

}
]

}

This example has two options. Be aware that a given message can have any number of option entries.

Overall structure of message:

Field Description

monitorInfoCategory Message type. Set to the string "CONFIG_OPTS".

configOptions Array of sub-structures, one per configuration option. The number and order of the
contained options is not fixed.

. . configOptions[].name Name of option (see below).

. . configOptions[].value Value of option.

264 SRS Daemon Statistics

Meaning of each option:

Option Name Description

um-srs.version Value for 'version' attribute to SRS configuration ele-
ment <um-srs>.

um-srs.daemon.log Value for the SRS configuration element <log>.

um-srs.daemon.log.type Value for 'type' attribute to SRS configuration element
<log>.

um-srs.daemon.log.frequency Value for 'frequency' attribute to SRS configuration el-
ement <log>.

um-srs.daemon.log.size Value for 'size' attribute to SRS configuration element
<log>.

um-srs.daemon.log.max-history Value for 'max-history' attribute to SRS configuration
element <log>.

um-srs.daemon.log.total-size-cap Value for 'total-size-cap' attribute to SRS configuration
element <log>.

um-srs.daemon.log.compression Value for 'compression' attribute to SRS configuration
element <log>.

um-srs.daemon.pid-file Value for the SRS configuration element <request-
stream-max-msg-count>.

um-srs.srs.interface Value for the SRS configuration element <interface>
inside <srs>.

um-srs.srs.port Value for the SRS configuration element <port> in-
side <srs>.

um-srs.srs.state-lifetime Value for the SRS configuration element <state-
lifetime>.

um-srs.srs.source-state-lifetime Value for the SRS configuration element <source-
state-lifetime>.

um-srs.srs.interest-state-lifetime Value for the SRS configuration element <interest-
state-lifetime>.

um-srs.srs.route-state-lifetime Value for the SRS configuration element <context-
name-state-lifetime>.

um-srs.srs.context-name-state-lifetime Value for the SRS configuration element <context-
name-state-lifetime>.

um-srs.srs.source-leave-backoff Value for the SRS configuration element <source-
leave-backoff>.

um-srs.srs.application-id Value for the SRS configuration element <application-
id>.

um-srs.srs.clientactor.request-stream-max-msg-
count

Value for the SRS configuration element <request-
stream-max-msg-count>.

14.6 Message Type: CONFIG_OPTS 265

Option Name Description

um-srs.srs.clientactor.record-queue-service-
interval

Value for the SRS configuration element <record-
queue-service-interval>.

um-srs.srs.clientactor.batch-frame-max-record-
count

Value for the SRS configuration element <batch-
frame-max-record-count>.

um-srs.srs.clientactor.batch-frame-max-datagram-
size

Value for the SRS configuration element <batch-
frame-max-datagram-size>.

um-srs.debug-monitor.interface Value for the SRS configuration element <interface>
inside <debug-monitor>.

um-srs.debug-monitor.port Value for the SRS configuration element <port> in-
side <debug-monitor>.

um-srs.debug-monitor.enabled Value for the SRS configuration element <enabled>.

um-srs.debug-monitor.ping-interval Value for the SRS configuration element <ping-
interval> for debug-monitor.

um-srs.daemon-monitor.ping-interval Value for the SRS configuration element <ping-
interval> for daemon-monitor.

um-srs.daemon-monitor.topic Value for 'topic' attribute to SRS configuration element
<daemon-monitor>.

um-srs.daemon-monitor.publishing-interval.←↩
default

Value for the SRS configuration element <default>.

um-srs.daemon-monitor.publishing-interval.srs-
stats

Value for the SRS configuration element <srs-stats>.

um-srs.daemon-monitor.publishing-interval.um-
client-stats

Value for the SRS configuration element <um-client-
stats>.

um-srs.daemon-monitor.publishing-interval.←↩
connection-events

Value for the SRS configuration element <connection-
events>.

um-srs.daemon-monitor.publishing-interval.srs-
error-stats

Value for the SRS configuration element <srs-error-
stats>.

um-srs.daemon-monitor.publishing-interval.um-
client-error-stats

Value for the SRS configuration element <um-client-
error-stats>.

um-srs.daemon-monitor.publishing-interval.←↩
config-opts

Value for the SRS configuration element <config-
opts>.

um-srs.daemon-monitor.publishing-interval.←↩
internal-config-opts

Value for the SRS configuration element <internal-
config-opts>.

um-srs.daemon-monitor.publish-connection-
events.allow

Value for 'allow' attribute to SRS configuration element
<publish-connection-events>.

um-srs.daemon-monitor.remote-snapshot-
request.allow

Value for 'allow' attribute to SRS configuration element
<remote-snapshot-request>.

um-srs.daemon-monitor.remote-config-changes-
request.allow

Value for 'allow' attribute to SRS configuration element
<remote-config-changes-request>.

um-srs.daemon-monitor.monitor-format Value for the SRS configuration element <monitor-
format>.

266 SRS Daemon Statistics

Option Name Description

um-srs.daemon-monitor.lbm-attributes.lbm←↩
ConfigOptionScope.lbmConfigOptionName

A UM configuration option, as documented in Config-
uration Overview, where 'lbmConfigOptionScope' is
the option scope ('context', 'source', etc) and 'lbm←↩
ConfigOptionName' is the option name.

14.7 Message Type: INTERNAL_CONFIG_OPTS

Message type INTERNAL_CONFIG_OPTS contains SRS internal configuration information. These options are not
intended for application use.

EXAMPLE:

{
"monitorInfoCategory": "INTERNAL_CONFIG_OPTS",
"configOptions": [
{

"name": "um-srs.srs.otidmap.async-receiver-distribution",
"value": "false",

},
{

"name": "um-srs.srs.otidmap.shards",
"value": "4",

}
]

}

This example has two options. Be aware that a given message can have any number of option entries.

Overall structure of message:

Field Description

monitorInfoCategory Message type. Set to the string "INTERNAL_CONFIG_OPTS".

configOptions Array of sub-structures, one per configuration option. The number and order of the
contained options is not fixed.

. . configOptions[].name Name of option (see below).

. . configOptions[].value Value of option.

Meaning of each option:

Option Name Description

um-srs.srs.otidmap.shards Value for the SRS configuration element <shards> within element
<otidmap>.

um-srs.srs.topicmap.shards Value for the SRS configuration element <shards> within element
<topicmap>.

14.8 Request Type: REPORT_SRS_VERSION 267

Option Name Description

um-srs.srs.routemap.shards Value for the SRS configuration element <shards> within element
<routemap>.

um-srs.srs.namemap.shards Value for the SRS configuration element <shards> within element
<namemap>.

14.8 Request Type: REPORT_SRS_VERSION

Request type REPORT_SRS_VERSION is sent by a monitoring application to determine the software version of
the SRS.

{
"commandMessageType": "REPORT_SRS_VERSION"

}

The SRS will send a response of the form:

SRS Version 6.17

14.9 Request Type: REPORT_MONITOR_INFO

Request type REPORT_MONITOR_INFO is sent by a monitoring application to initiate an immediate publishing of
monitoring data.

The SRS will only process this request if the configuration contains <remote-snapshot-request allow="true"/>.

{
"commandMessageType": "REPORT_MONITOR_INFO",
"monitorInfoCategory": "SRS_STATS"

}

Where the "monitorInfoCategory" field is set to one of the following:

• SRS_STATS

• UM_CLIENT_STATS

• CONNECTION_EVENTS

• SRS_ERROR_STATS

• UM_CLIENT_ERROR_STATS

• CONFIG_OPTS

• INTERNAL_CONFIG_OPTS

The SRS will send a response of the form:

snap SRS_STATS - OK!

268 SRS Daemon Statistics

Note that "SRS_STATS" is replaced by the requested category.

14.10 Request Type: SET_PUBLISHING_INTERVAL

Request type SET_PUBLISHING_INTERVAL is sent by a monitoring application to Modify the publishing intervals
for a running SRS. Note that SRS does not persist the new interval value; if the SRS is restarted, the value returns
to the value configured via <daemon-monitor>.

The SRS will only process this request if the configuration contains <remote-config-changes-request
allow="true"/>.

{
"commandMessageType": "SET_PUBLISHING_INTERVAL",
"monitorInfoCategory": "SRS_STATS",
"publishingInterval": 60000

}

Where the "monitorInfoCategory" field is set to one of the following:

• SRS_STATS

• UM_CLIENT_STATS

• CONNECTION_EVENTS

• SRS_ERROR_STATS

• UM_CLIENT_ERROR_STATS

• CONFIG_OPTS

• INTERNAL_CONFIG_OPTS

The SRS will send a response of the form:

SRS_STATS 60000 - OK!

Note that "SRS_STATS" is replaced by the requested category.

14.10 Request Type: SET_PUBLISHING_INTERVAL 269

270 SRS Daemon Statistics

Chapter 15

Man Pages for Lbmrd

Unicast UDP-based Topic Resolution services are provided by the Lbm Resolver Daemon (lbmrd).

For more information on UDP-based TR, see UDP-Based Topic Resolution Details. For more information on Topic
Resolution general, see Topic Resolution Description.

There are two executables for the lbmrd, each with it's own man page:

• Lbmrd Man Page - Unix and Windows command-line interface.

• Lbmrds Man Page - Windows Service interface.

15.1 Lbmrd Man Page

Unix and Windows command-line interface.

UMResolver daemon
Usage: lbmrd [options] [config-file]
Available options:

-a, --activity=IVL interval between client activity checks (in
milliseconds)(default 60000)

-d, --dump-dtd dump the configuration DTD to stdout and exit
-h, --help display this help and exit
-i, --interface=ADDR listen for unicast topic resolution messages on interface

ADDR
ADDR accepts CIDR eg:10.0.0.0/8, Quoted device name

eg:"eth0", DNS Host name eg:host.mydomain.com/24.
-L, --logfile=FILE use FILE as the log file
-p, --port=PORT use UDP port PORT for topic resolution messages (default

15380)
-t, --ttl=TTL use client time-to-live of TTL seconds (default 60)
-r, --rcv-buf=SIZE set the receive buffer to SIZE bytes.
-s, --snd-buf=SIZE set the send buffer to SIZE bytes.
-v, --validate validate config-file then exit

Description

The lbmrd command runs the Lbm Resolver Daemon. It can be run interactively from a shell or command
prompt, or from a script or batch file. (For use as a Windows Service, see Lbmrds Man Page.)

The "config-file" parameter is optional. If supplied, it specifies the file path for the lbmrd's XML configuration
file. If omitted, the lbmrd defaults all configuration details. See lbmrd Configuration File for configuration details.

272 Man Pages for Lbmrd

The "-i" and "-p" options identify the network interface IP address and port that lbmrd opens to listen for unicast
topic resolution traffic. The defaults are 0.0.0.0 and 15380, respectively. Note that 0.0.0.0 is not interpreted
as INADDR_ANY, it is a directive for UM to choose the first interface it finds. See Specifying Interfaces for
methods of specifying the interface. Alternatively, the LBMRD Element "<interface>" and LBMRD Element
"<port>" can be used in the lbmrd Configuration File.

WARNING: It is strongly recommended to specify an interface when running lbmrd, either via the "-i" command-
line option, or the <interface> XML tag. Otherwise, UM will select the first interface it finds, potentially 127.←↩
0.0.1 (loopback), which is rarely a good choice. Note that CIDR notation can make it easier. For example,
"10.0.0.0/8" will match any interface on the 10 network.

The "-a" and "-t" options interact to detect and remove "dead" clients, that is client applications that are in
the lbmrd active client list, but have stopped sending topic resolution queries, advertisements, or keepalives,
usually due to early termination or looping. These are described in detail below.

The "-t" option describes the length of time (in seconds), during which no messages have been received
from a given client, that will cause that client to be marked "dead" and removed from the active client list. Ultra
Messaging recommends a value at least 5 seconds longer than the longest network outage you wish to tolerate.
Alternatively, the LBMRD Element "<ttl>" can be used in the lbmrd Configuration File.

Option "-a" describes a repeating time interval (in milliseconds), after which lbmrd checks for these "dead"
clients. Ultra Messaging recommends a value not larger than "-t" ∗ 1000. Alternatively, the LBMRD Element
"<activity>" can be used in the lbmrd Configuration File.

Note that even clients that send no topic resolution advertisements or queries will still send keepalive messages
to lbmrd every 5 seconds. This value is hard-coded and not configurable.

The "-s" option sets the send socket buffer size in bytes. Alternatively, the LBMRD Element "<resolver_←↩
unicast_send_socket_buffer>" can be used in the lbmrd Configuration File.

The "-r" option sets the receive socket buffer size in bytes. Alternatively, the LBMRD Element "<resolver_←↩
unicast_receiver_socket_buffer>" can be used in the lbmrd Configuration File.

The "-L" option specifies the file path name for the lbmrd log file. Alternatively, the LBMRD Element "<log>"
can be used in the lbmrd Configuration File.

The "-d" option dumps (prints) the lbmrd's XML DTD to standard output. After dumping the DTD, lbmrd exits.

The "-h" option prints the man page and exits.

Exit Status

The exit status from lbmrd is 0 for success and some non-zero value for failure.

15.2 Lbmrds Man Page 273

15.2 Lbmrds Man Page

Windows Service interface.

See UM Daemons as Windows Services for general information about UM daemons as Windows Services.

Note that many operating parameters that are available in the lbmrd command are not available in the lbmrds
command. For example, "-p", "-t", "-r", etc. If it is desired to set these parameters, the corresponding XML elements
must be used in an lbmrd configuration file.

UMResolver service
Usage: lbmrds [options] [config-file]
Available options:

-h, --help display this help and exit
-E, --env-var-file update/set environment variable file
-U, --unset-env-var-file unset the environment variable file
-S, --service=install install the service passing configfile
-S, --service=remove delete/remove the service
-S, --service=config update configfile info to use configfile passed
-e, --event-log-level update/set service logging level. This is the minimum

logging
level to send to the Windows event log. Valid values

are:
NONE - Send no events
INFO
WARN - default
ERROR

configfile XML config file (if not present, looks in registry)

Description

The lbmrds command has two functions:

• First, it lets the user supply Windows Service operating parameters, which the command saves into
the Windows registry. Those operating parameters are subsequently used by the lbmrd Service. See
Configure the Windows Service.

• Second, it provides Windows with the lbmrd Daemon executable to run as a Service.

The "config-file" parameter provides the file path for the lbmrd's XML configuration file. It is supplied in
conjunction with the "-s config" option (see below). See lbmrd Configuration File for configuration details.

For "-S install" see Install the Windows Service (note that lbmrds uses upper-case "-S").

For "-S remove" see Remove the Windows Service (note that lbmrds uses upper-case "-S").

For "-S config", "-e", "-E", and "-U", see Configure the Windows Service (note that lbmrds uses upper-
case "-S").

The "-h" option prints the man page and exits.

Exit Status

The exit status from lbmrd is 0 for success and some non-zero value for failure.

274 Man Pages for Lbmrd

Attention

Do not use the task manager or the "kill" command to stop a UM daemon running as a Windows service. Use
the Windows service control panel to stop the service.

Chapter 16

lbmrd Configuration File

The lbmrd configuration file must start with this line:

<?xml version="1.0" encoding="UTF-8" ?>

After that, the '<lbmrd>' element contains the rest of the configuration.

The lbmrd configuration does not support the XInclude feature.

Note

The configuration file must contain a '<domains>' element and a '<transformations>' element (and their
contents), even if there is no NAT. See Dummy lbmrd Configuration File. The '<daemon>' element and its
contents are optional.

16.1 lbmrd Configuration Elements

16.1.1 LBMRD Element "<lbmrd>"

Container element which holds the lbmrd configuration. Also defines the version of the configuration format used
by the file.

• Children: <daemon>, <domains>, <transformations>

XML Attributes:

Attribute Description Valid Values Default Value

version Version number of user's configuration file. "1.0" - Initial version "1.0"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

...
</lbmrd>

276 lbmrd Configuration File

16.1.2 LBMRD Element "<transformations>"

Container element for definitions of NAT translations applied to TIRs. Translations are used to help lbmrd know how
to modify source advertisements when Network Address Translation (NAT) is being used.

See LBMRD NAT Transit for more information on NAT.

• Parent: <lbmrd>

• Children: <transform>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<transformations>
...

</transformations>
...

</lbmrd>

For a full example of an lbmrd NAT configuration, see Example NAT Configuration.

16.1.3 LBMRD Element "<transform>"

Defines a set of transformation tuples. Each tuple applies to a TIR sent from a specific network domain (specified
using the source attribute), and destined for a specific network domain (specified using the destination
attribute). The source and destination attributes must specify network domain names as defined by the
<domain> elements.

See LBMRD NAT Transit for more information on NAT.

• Parent: <transformations>

• Children: <rule>

XML Attributes:

Attribute Description Valid Values Default Value

source Name of source network domain, defined in
<domain>.

IDREF (no default; must be specified)

destination Name of receiver network domain, defined in
<domain>.

IDREF (no default; must be specified)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<transformations>
<transform source="Net-NYC" destination="Net-NJC">

...
</transform>
...

</transformations>
...

</lbmrd>

16.1 lbmrd Configuration Elements 277

For a full example of an lbmrd NAT configuration, see Example NAT Configuration.

16.1.4 LBMRD Element "<rule>"

Container for a transformation rule which maps one address and port to another.

See LBMRD NAT Transit for more information on NAT.

• Parent: <transform>

• Children: <match>, <replace>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<transformations>
<transform source="Net-NYC" destination="Net-NJC">

<rule>
...

</rule>
...

</transform>
...

</transformations>
...

</lbmrd>

For a full example of an lbmrd NAT configuration, see Example NAT Configuration.

16.1.5 LBMRD Element "<replace>"

Defines the address and port which are to replace those matched in the TIR originating from a UM context within
the source network (as specified by <transform>), and being delivered to contexts within the destination
network.

• Parent: <rule>

XML Attributes:

Attribute Description Valid Values Default Value

address IP address within a TIR. Address must be speci-
fied only in dotted-decimal and refer to a specific
host. For LBMRD Element "<match>", the IP
address should be within the network specified
by <transform> source attribute. For LBM←↩
RD Element "<replace>", the IP address should
be within the network specified by <transform>
destination attribute.

string (no default; must be specified)

port Port number to match or replace. To match any
port, use value "∗". To replace with same port
as matched, use value "∗".

string "∗"

Example:

278 lbmrd Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<transformations>
<transform source="Net-NYC" destination="Net-NJC">

<rule>
<match address="10.1.1.50" port="*"/>
<replace address="192.168.1.1" port="*"/>
...

</rule>
...

</transform>
...

</transformations>
...

</lbmrd>

For a full example of an lbmrd NAT configuration, see Example NAT Configuration.

16.1.6 LBMRD Element "<match>"

Defines the address and port to match within a TIR originating from a UM context within the source network (as
specified by <transform>), and being delivered to contexts within the destination network.

• Parent: <rule>

XML Attributes:

Attribute Description Valid Values Default Value

address IP address within a TIR. Address must be speci-
fied only in dotted-decimal and refer to a specific
host. For LBMRD Element "<match>", the IP
address should be within the network specified
by <transform> source attribute. For LBM←↩
RD Element "<replace>", the IP address should
be within the network specified by <transform>
destination attribute.

string (no default; must be specified)

port Port number to match or replace. To match any
port, use value "∗". To replace with same port
as matched, use value "∗".

string "∗"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<transformations>
<transform source="Net-NYC" destination="Net-NJC">

<rule>
<match address="10.1.1.50" port="*"/>
<replace address="192.168.1.1" port="*"/>
...

</rule>
...

</transform>
...

</transformations>
...

</lbmrd>

For a full example of an lbmrd NAT configuration, see Example NAT Configuration.

16.1 lbmrd Configuration Elements 279

16.1.7 LBMRD Element "<domains>"

Container element for definitions of network domains. Network domains are used to help lbmrd recognize networks
and/or subnetworks which connect via Network Address Translation (NAT).

See LBMRD NAT Transit for more information on NAT.

• Parent: <lbmrd>

• Children: <domain>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<domains>
...

</domains>
...

</lbmrd>

For a full example of an lbmrd NAT configuration, see Example NAT Configuration.

16.1.8 LBMRD Element "<domain>"

Defines a network domain. The domain must be given a unique name via the name attribute. This name is
referenced in <transform> elements. The <domain> element contains one or more <network> elements.

See LBMRD NAT Transit for more information on NAT.

• Parent: <domains>

• Children: <network>

XML Attributes:

Attribute Description Valid Values Default Value

name Unique name assigned to the defined network. ID (no default; must be specified)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<domains>
<domain name="Net-NYC">

...
</domain>
<domain name="Net-NJC">

...
</domain>
...

</domains>
...

</lbmrd>

For a full example of an lbmrd NAT configuration, see Example NAT Configuration.

280 lbmrd Configuration File

16.1.9 LBMRD Element "<network>"

Defines a single network specification which is to be considered part of the enclosing <domain> element. The
network specification must contain either an IP address, or a network specification in CIDR notation. DNS
host names are not supported in the lbmrd configuration file.

See LBMRD NAT Transit for more information on NAT.

• Parent: <domain>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<domains>
<domain name="Net-NYC">

<network>10.1.0.0/16</network>
...

</domain>
<domain name="Net-NJC">

<network>192.168.1/24</network>
...

</domain>
...

</domains>
...

</lbmrd>

For a full example of an lbmrd NAT configuration, see Example NAT Configuration.

16.1.10 LBMRD Element "<daemon>"

Container element for configuration related to the overall lbmrd process.

• Cardinality (number of times element can be supplied): 0 .. 1

• Parent: <lbmrd>

• Children: <activity>, <interface>, <port>, <ttl>, <log>, <resolver_unicast_receiver_socket_buffer>,
<resolver_unicast_send_socket_buffer>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
...

</daemon>
...

</lbmrd>

16.1.11 LBMRD Element "<resolver_unicast_send_socket_buffer>"

Sets the send-side socket buffer size (in bytes).

• Parent: <daemon>

• Default Value: 1048576

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation

16.1 lbmrd Configuration Elements 281

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
<resolver_unicast_send_socket_buffer>

1048576
</resolver_unicast_send_socket_buffer>
...

</daemon>
...

</lbmrd>

16.1.12 LBMRD Element "<resolver_unicast_receiver_socket_buffer>"

Sets the receive-side socket buffer size (in bytes).

• Parent: <daemon>

• Default Value: 1048576

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
<resolver_unicast_receiver_socket_buffer>

1048576
</resolver_unicast_receiver_socket_buffer>
...

</daemon>
...

</lbmrd>

16.1.13 LBMRD Element "<log>"

Specifies the file name used for lbmrd logging.

• Parent: <daemon>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
<log>lbmrd.log</log>
...

</daemon>
...

</lbmrd>

282 lbmrd Configuration File

16.1.14 LBMRD Element "<ttl>"

Interval (in milliseconds) between keep alive checks between the lbmrd and the UM contexts.

• Parent: <daemon>

• Default Value: 60000

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
<ttl>60000</ttl>
...

</daemon>
...

</lbmrd>

16.1.15 LBMRD Element "<port>"

Supplies network port to bind the socket for receiving TR traffic from UM contexts. This is the port that a UM context
should use when TCP-based TR is configured with the option resolver_unicast_daemon (context). The value
contained within the <port>...</port> is an integer between 1 and 65535.

• Parent: <daemon>

• Default Value: 15380

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
<port>15380</port>
...

</daemon>
...

</lbmrd>

16.1.16 LBMRD Element "<interface>"

Specifies the network interface to bind the socket for receiving TR traffic from UM contexts. This is the IP
address that a UM context should use when Unicast UDP-based TR is configured with the option resolver←↩
_unicast_daemon (context). See Specifying Interfaces for methods of specifying the interface within
<interface>...</interface>.

If not specified, UM chooses the first interface it finds.

WARNING: It is strongly recommended to specify an interface when running lbmrd, either via the "-i" command-line
option, or the <interface> XML tag. Otherwise, UM will select the first interface it finds, potentially 127.0.0.1
(loopback), which is rarely a good choice. Note that CIDR notation can make it easier. For example, "10.0.0.0/8"
will match any interface on the 10 network.

• Parent: <daemon>

16.2 Dummy lbmrd Configuration File 283

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
<interface>10.1.1.50</interface>
...

</daemon>
...

</lbmrd>

16.1.17 LBMRD Element "<activity>"

Interval between client activity checks (in milliseconds)

• Parent: <daemon>

• Default Value: 60000

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
<activity>60000</activity>
...

</daemon>
...

</lbmrd>

16.2 Dummy lbmrd Configuration File

If no NAT is present, and it is desired to use the XML configuration file for it's '<daemon>' contents, a "dummy"
NAT configuration should be used.

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

<daemon>
...

</daemon>
<domains>
<domain name="dummy">

<network>0.0.0.0/32</network>
</domain>

</domains>
<transformations>
<transform source="dummy" destination="dummy">

<rule>
<match address="0.0.0.0" port="0"/>
<replace address="0.0.0.0" port="0"/>

</rule>
</transform>

</transformations>
</lbmrd>

284 lbmrd Configuration File

16.3 Lbmrd DTD file

The DTD file is used to validate the user's configuration file.

<!ELEMENT lbmrd (daemon?, domains, transformations)>
<!ATTLIST lbmrd

version (1.0) #REQUIRED
>
<!ELEMENT daemon (activity|interface|port|ttl|log|resolver_unicast_receiver_socket_buffer|

resolver_unicast_send_socket_buffer)*>
<!ELEMENT activity (#PCDATA) >
<!ELEMENT interface (#PCDATA) >
<!ELEMENT port (#PCDATA) >
<!ELEMENT ttl (#PCDATA) >
<!ELEMENT log (#PCDATA) >
<!ELEMENT resolver_unicast_receiver_socket_buffer (#PCDATA) >
<!ELEMENT resolver_unicast_send_socket_buffer (#PCDATA) >
<!ELEMENT domains (domain+)>
<!ELEMENT domain (network+)>
<!ATTLIST domain name ID #REQUIRED>
<!ELEMENT network (#PCDATA)>
<!ELEMENT transformations (transform+)>
<!ELEMENT transform (rule+)>
<!ATTLIST transform

source IDREF #REQUIRED
destination IDREF #REQUIRED

>
<!ELEMENT rule (match, replace)>
<!ELEMENT match EMPTY>
<!ATTLIST match

address CDATA #REQUIRED
port CDATA "*"

>
<!ELEMENT replace EMPTY>
<!ATTLIST replace

address CDATA #REQUIRED
port CDATA "*"

>

16.3 Lbmrd DTD file 285

286 lbmrd Configuration File

Chapter 17

Packet Loss

This section is about packet loss. It applies primarily to UDP-based network protocols used by UM: LBT-RM, LB←↩
T-RU, and UDP-based topic resolution.

(Packet loss also affects TCP-based protocols, but UM has no control over how it is handled by the IP stack. "←↩
Packet" loss can also happen with the IPC transport type if source-pacing is selected, but most of this section's
discussion doesn't apply to IPC.)

Packet loss is almost always caused when some part of the system is receiving packets at a higher rate than it is
able to process them. This might be a router, a switch, a subscribing host's kernel, or the subscribing process itself.
This typically results in queuing of incoming packets within the router, switch, kernel, or socket buffer. But queues
do not have unlimited size. If the incoming packets exceed the processing speed for too long a period of time, the
queue will fill and packets will be dropped.

Packet loss is a fact of life in networks. Some users are able to provision and tune their systems such that they
might only lose a few packets per week. Other users routinely live with several lost packets per minute. Many users
do not monitor their system for loss and have no idea how frequent it is.

Packet loss is undesirable for many reasons. For reliable protocols (TCP, LBT-RM, etc), detection and retransmission
of lost packets introduces significant latency. If packet rates are too high for too long a period of time, the transport
protocol can give up trying to recover the lost data. For Streaming, this can cause disconnects or Unrecoverable
Loss, where application messages can be lost forever.

Informatica recommends that you:

1. Design your system to prevent packet loss.

2. Configure UM for proper recovery from packet loss.

3. Monitor your network for packet loss.

4. Diagnose the cause of the observed packet loss and fine-tune your design and configuration to better prevent
loss and optimize recovery from it.

17.1 Design to Prevent Loss

There are two complementary methods of avoiding packet loss:

• Decrease Packet Flow through Loss Points.

• Increase Efficiency of Packet Consumers.

288 Packet Loss

17.1.1 Decrease Packet Flow through Loss Points

• Message Batching. At most loss points, the number of packets is usually more important than the sizes of
the packets. 100 packets of 60 bytes each is much more burdensome to packet consumers than 10 packets of
600 bytes each. For latency-sensitive applications, consider implementing an Intelligent Batching algorithm.

• Reduce discards. Due to the way publishers map topics to Transport Sessions, it is often the case that
the receiver will have to discard messages that it hasn't subscribed to. The LBT-RM transport statistics
structure for each transport type contains the field "lbm_msgs_no_topic_rcved" which counts the number of
data messages discarded. Also, the context statistics structure contains the field "lbtrm_unknown_msgs←↩
_rcved", which also counts data messages discarded.

For the LBT-RU transport type, you can get similar discards. See the LBT-RU transport statistics structure
field "lbm_msgs_no_topic_rcved", and the context statistics structure field "lbtru_unknown_msgs_rcved".

For the TCP or LBT-RU transport types, you can often decrease discards by turning on Source Side Filtering.

With Multicast, the Source Side Filtering feature is not possible. So it is usually necessary to change the
topic-to-transport session mapping. Ideally, this can be done by taking into account the topic interests of the
subscribers. But often it simply means increasing the number of transport sessions. In the case of LBT-RM,
increasing the number of multicast groups is preferred, but is often limited by the network hardware. In that
case, you can multiply the number of transport sessions by varying the destination port.

17.1.2 Increase Efficiency of Packet Consumers

Here are some methods for increasing the efficiency of subscribers: Use a kernel-bypass driver. For Linux, use
Receive Multiple Datagrams. Use Receive Buffer Recycling. For Java and .NET, use Zero Object Delivery.

17.2 UM Recovery of Lost Packets

See Messaging Reliability for a high-level description of message loss as it relates to UM.

UM recovers lost packets at multiple levels:

• Transport - TCP, LBT-RU, LBT-RM have low-level handshakes to detect and retransmit lost packets.

• OTR/Late Join - independent of transport, OTR and Late Join will recover data, typically after the transport
layer is unable to recover.

• Persistence - closely-associated with OTR and Late Join, the persistent Store provides a much greater
capacity to recover lost data. UM persistence provides a guarantee of message delivery, subject to a set of
configurable constraints.

One common goal for most UM use cases is that users want the flow of new messages to continue unimpeded in
parallel with recovery efforts of lost packets. Given that packet loss is almost always a result of high packet rates
overloading one or more queuing points along a messaging path, the addition of packet recovery efforts can make
the overload even worse. "Pouring gasoline on a fire" is an often-repeated metaphor.

Fortunately, packet rate overload tends to be temporary, associated with short-term traffic bursts. That is one reason
why the UM lost packet recovery algorithms use time delays. For example: transport_lbtrm_nak_initial_backoff←↩
_interval (receiver) and otr_request_initial_delay (receiver). By waiting before requesting retransmissions, the
burst is allowed some time to subside before we add retransmission to the normal traffic load. These delays do add
to latency, but shortening the delay too much risks making the loss worse, which can make the overall latency worse
than having a longer delay.

17.3 Packet Loss Points 289

One limiting factor related to data recovery is UM's use of retransmission rate limits. After a short period of severe
packet loss due to overload, many receivers will be requesting retransmission. It would make no sense for the
initial request delay to successfully bypass the original traffic burst, only to create its own overloading burst of re-
transmissions. Older NAK-based systems can get into a positive feedback loop where loss leads to retransmission,
which leads to more loss, which leads to more retransmission, etc. Even once new data rates return to normal,
networks can be locked into this kind of NAK/Retransmission storm. UM's retransmission rate limiter throttles the
retransmission of lost packets over time without worsening the loss.

Another limiting factor related to data recovery is the amount of data which the sender buffers and is available for
retransmission. Applications need to continue sending new data while recovery takes place. Since the buffer is of
limited size, older buffered messages will eventually be overwritten with new messages.

For streaming applications, these buffers are held in memory, and the sizes are usually measured in megabytes.
For persistent applications, the Store writes its buffer to disk, allowing for buffer sizes orders of magnitude larger
than memory-based buffers. But even the Store's disk-based buffer is of finite size, and is susceptible to being
overwritten if it takes too long to recover data.

Note that the Receiver Paced Persistence (RPP) feature seeks to maximize the reliability of messaging by allowing
the publisher to be blocked from sending rather than overwriting unacknowledged data.

Given these limiting factors for data recovery, a sufficiently-overloaded network can reach a point where lost data
can no longer be recovered, a situation called "unrecoverable loss".

Finally, it is very important for UM users to make use of UM's extensive monitoring capabilities. Since UM does a
good job of recovering lost packets, you may be experiencing high latency spikes without knowing it. And recovered
loss today can be a warning of unrecoverable loss tomorrow. User are strongly advised to monitor transport statistics
and pay special attention to receivers that repeatedly experience loss. Even if that loss is successfully recovered,
you should diagnose and treat the loss before it gets worse and becomes unrecoverable.

See Monitoring for more information.

17.3 Packet Loss Points

There are just a few common points at which packets are normally lost:

The red buffers/queues are the most common locations where packets are typically lost during a packet burst.

17.3.1 Loss: Switch Egress Port

The switch egress port can come under pressure if data flows from multiple sources need to be merged onto a
single outgoing link. The outgoing link can be an internal trunk or communication link connecting two pieces of
network equipment, but more typically it is link to a destination host.

290 Packet Loss

It is easy to understand how loss can happen here. Suppose three remote hosts are sending UDP data streams
at the destination host. If each stream is carrying 0.5 gigabit/sec of throughput, the switch needs to send 1.5
gigabit/sec over a 1 gigabit link, a clear overload. If this is a very short-term burst, the egress queue will hold the
data until the incoming data flows subside and the outgoing port can get caught up. But if the burst lasts too long
and the egress queue fills, the switch has no choice but to drop packets.

Note that the switch will not count these drops as "errors". There is a separate drop counter which should be
examined to diagnose switch egress port loss.

MITIGATION

The only solution is to reduce the packet rate being sent to the destination host. See Decrease Packet Flow through
Loss Points.

17.3.2 Loss: NIC Ring Buffer

As packets are received by the host's NIC (Network Interface Card), they are copied into host memory in a structure
called the Receive Ring Buffer. The NIC interrupts the OS, which has the responsibility to unload the packet buffers
from the Ring Buffer. If the incoming packet rate is faster than the OS can unload the Ring Buffer, it will fill and
packets will be dropped.

Normally, the kernel is able to service NIC interrupts without any trouble. However, there is one situation which can
put the Ring Buffer under pressure: When multiple processes on the host are subscribed to the same multicast
stream, the kernel must replicate and deliver the packets to each process. For a small number of processes (5-10),
the kernel will still be able to keep up with the incoming packets.

However, as companies consolidation servers by moving to large, many-core hosts (often virtualized), we see the
same multicast stream subscribed to by increasing numbers of processes on the same physical server. We have
seen NIC Ring Buffer loss (also called "overrun") with as few as 15 processes subscribed to a heavy stream of
multicast packets.

(Note that this is generally only a problem for multicast. With Unicast data distribution to many recipients, the
source essentially does the packet replication work. The receive-side work for the kernel for each unicast packet is
minimal.)

MITIGATION

Users should maximize the size of the NIC's Receive Ring Buffer. For many NICs, the size of the ring buffer is
configured by the number of receive descriptors. This should be set to the maximum allowable value.

The mitigators listed in Loss: Switch Egress Port will also help this problem by reducing the incoming packet rate.

Another solution is to spread processes across more physical hosts. This has the additional advantage of reducing
latency, since multicast replication within a host must be done in software by the kernel and is serial in nature,
whereas replication in the network is done by specialized hardware in parallel.

Another possible solution involves the use of the DRO as the primary receiver of the multicast data, which then re-
publishes it on the host using the IPC transport. This has the disadvantage of introducing some additional latency
since the messages must be received by the DRO and then forwarded to the application receivers. It also requires
separating the applications to their own Topic Resolution Domains (TRDs).

Onload users can get more information at Solarflare Tips.

17.3.3 Loss: Socket Buffer

The Socket Buffer represents the interface between the OS kernel and the user process. Received data is trans-
ferred from the NIC Ring Buffer to the destination Socket Buffer(s). The Socket Buffers are then emptied by the
application process (in this case, the UM Context Thread). Socket buffer sizes are configurable, according to the

17.4 Verifying Loss Detection Tools 291

transport type. For example, see transport_lbtrm_receiver_socket_buffer (context).

The TCP protocol is designed to ensure that the socket buffer cannot be overflowed. However, UDP-based protocols
(LBT-RU and LBT-RM) are susceptible to socket buffer overflow, which leads to datagram loss.

MITIGATION

All of the mitigators listed Loss: NIC Ring Buffer will help this problem by reducing the incoming packet rate.

An obvious mitigator is to increase the sizes of the receive socket buffers. Informatica usually recommends at least
8MB for UDP-based protocols. But this only works if the problem is related to short-term traffic bursts. Simply
increasing the size of the buffer will not avoid loss if the average message rate exceeds the average consumption
and processing rate of the receiving program.

A very useful method for mitigating socket buffer loss is to increase the efficiency of the receiving application. The
Receive Multiple Datagrams can increase that efficiency without sacrificing latency.

Also, the Transport Services Provider (XSP) feature can help by splitting the work of unloading multiple sockets
across multiple threads.

17.3.4 Loss: Other

The three loss locations described above are all related to high packet rates causing fixed-sized packet buffers to
overflow. These represent by far the most common reasons for packet loss. However, it is possible that you will
experience loss that cannot be diagnosed to those three causes.

For example, we have seen reports of NIC hardware malfunctioning such that most packets are successfully re-
ceived and delivered, but some percentage of packets fail. At least one user reported that a misconfigured router
"flapped" a route, resulting in periodic, short-term loss of connectivity between two sub-networks. We have seen a
case where the use of kernel bypass drivers for high-performance NICs (specifically Solarflare) can cause multicast
deafness if both accelerated and non-accelerated processes are run on the same host. We have even seen a case
where replacing the Ethernet cable between a host and the switch resolved packet loss.

It is not possible to have a step-by-step diagnostic procedure which will pinpoint every possible cause of packet loss.
The techniques described in this document should successfully diagnose a large majority of packet loss causes,
but nothing can replace your infrastructure network engineers expertise at tracking down problems.

17.4 Verifying Loss Detection Tools

The preceding techniques for mitigating loss are best deployed after you have identified the type of loss. Unfortu-
nately, we have found that the tools available to detect and identify the location of loss to be problematic. Informatica
does not provide such tools, and does not follow the market for such tools to find a reliable supplier.

However, we have a starting point that has given us some measure of success in diagnosing the loss points. It is
important that you try out these tools to verify that they properly detect the different types of loss. In order to verify
them, you need to be able to reproduce on demand loss at each of the points: switch, NIC, and socket buffer.

Fortunately, this is reasonably easy using the msend and mdump tools provided in the "mtools" package offered
by Informatica free of charge. Download the mtools package from https://community.informatica.←↩
com/solutions/informatica_mtools The source files for msend and mdump are provided, as well as
pre-built binaries for most major platforms.

Informatica recommends verifying your loss diagnosis tools before you have a serious loss event that disrupts
your application system, preferably before your system goes into full production usage. Periodically running and
recording the results of these tools during normal operation will make it possible to diagnose loss after the fact.
Detecting and identifying non-severe (recoverable) loss can be used to prevent serious (unrecoverable) loss events
in the future.

https://community.informatica.com/solutions/informatica_mtools
https://community.informatica.com/solutions/informatica_mtools

292 Packet Loss

17.4.1 Prepare to Verify

1. Download and install mtools on two hosts, designated "sender" and "receiver". Informatica recommends
that the hosts be "bare metal" (not virtual machines), and that they be connected to the same switch. This
minimizes the chances that the verification tests will cause any disruption to normal operation.

2. Contact your system and network administrators and set up some time that they can work with your during
the verification process. They will need to perform operations that you probably do not have the ability to do.

3. Have the network administrator allocate a multicast group that you can use for this test. That multicast group
should be otherwise unused in your organization. Warn the administrator that you will be pushing intense
traffic bursts between the two hosts.

17.4.2 Verifying Switch Loss

A possible Unix command that a network administrator could use is:

snmpwalk -v 1 -c public SWITCH_ADDR IF-MIB::ifOutDiscards

Note that the above community string ("public") is probably not enabled; the network administrator will know the
appropriate value. Ideally, the network administrator would run that command every 5 or 10 minutes, logging to a
file, with a time stamp. If this log file could be shared read-only to the project groups, they can time-correlate any
unusual application event with loss reported by the switch.

To verify that you properly detect switch loss, follow these steps:

1. Work with your system and network administrators to enable Ethernet flow control in both the switch port and
the NIC.

2. Use the above snmpwalk command (or equivalent) to record the current drop counts for the switch ports.

3. On the receiving host, run 30 copies of the following command:
mdump -q MCAST_ADDR 12000 INTFC_ADDR
where MCAST_ADDR is the multicast group for the test, and INTFC_ADDR is the IP address of the receiving
host.

4. On the sending host, run the following command:
msend -5 MCAST_ADDR 12000 15 INTFC_ADDR
where MCAST_ADDR is the multicast group for the test, and INTFC_ADDR is the IP address of the sending
host.

5. When the test completes, use the snmpwalk command again (or equivalent) to record another set of drop
counters. The receiving host's drop count should be larger.

This test works by making the receiving host's kernel work very hard for each received datagram. It should be
unable to keep up. (If you don't see any drops caused by the test, try doubling the number of copies of mdump on
the receiving host.) The Ethernet flow control settings on the NIC and switch will prevent NIC loss in its ring buffer
by slowing down the switch's egress port. Thus, the switch's egress queue will fill and should overflow.

17.4 Verifying Loss Detection Tools 293

17.4.3 Verifying NIC Loss

Unix

On some Unix systems, the "ifconfig" command will accurately report receive overrun on the NIC. For example:
ifconfig eth0

But in many Unix systems, the values reported by "ifconfig" remain at zero, even when the NIC has in fact overrun
its receive ring buffer. We recommend also trying the "ethtool" command. For example:
ethtool -s eth0

Windows

To the best of our knowledge, there is no standard Windows tool for detecting NIC loss. Some drivers might provide
that information from the interface control panel. Otherwise, you might need to download a management application
from the NIC or system vendor.

If you know of a widely-available method to detect NIC overrun on Windows, please let us know at our D←↩
LMessagingBuilds email account on informatica.com (that awkward wording used to avoid spam address har-
vesters).

To verify that you properly detect NIC loss, follow these steps:

1. Work with your system and network administrators to disable Ethernet flow control in both the switch port
and the NIC.

2. Use your NIC loss tool to get the current receive overrun count.

3. On the receiving host, run 30 copies of the following command:
mdump -q MCAST_ADDR 12000 INTFC_ADDR
where MCAST_ADDR is the multicast group for the test, and INTFC_ADDR is the IP address of the receiving
host.

4. On the sending host, run the following command:
msend -5 MCAST_ADDR 12000 15 INTFC_ADDR
where MCAST_ADDR is the multicast group for the test, and INTFC_ADDR is the IP address of the sending
host.

5. When the test completes, use the NIC loss tool again to record the receive overrun count.

This test works by making the receiving host's kernel work very hard for each received datagram. It should be
unable to keep up. (If you don't see any drops caused by the test, try doubling the number of copies of mdump on
the receiving host.) The lack of Ethernet flow control means that the switch will send the packets at full line rate,
which should overflow the NIC ring buffer.

17.4.4 Verifying Socket Buffer Loss

On most systems, the netstat command can be used to detect socket buffer overflow. For example:
netstat -s
Look in the UDP section for "receive errors". This normally represents the number of datagrams dropped due to the
receive socket buffer being full.

Note that Windows prior to version 7 does not increment that field for socket buffer overflows. If you have pre-←↩
Windows 7, we don't know of any command to detect socket buffer overflow.

To verify that you properly detect socket buffer overflow, follow these steps:

1. Use netstat -s to get the current receive error count.

294 Packet Loss

2. On the receiving host, run a single copy of the command:
mdump -q -p1000/5 MCAST_ADDR 12000 INTFC_ADDR
where MCAST_ADDR is the multicast group for the test, and INTFC_ADDR is the IP address of the receiving
host.

3. On the sending host, run the following command:
msend -5 -s2200 MCAST_ADDR 12000 15 INTFC_ADDR
where MCAST_ADDR is the multicast group for the test, and INTFC_ADDR is the IP address of the sending
host.

4. When the test completes, use netstat -s again to get the new receive error count.

This test works by introducing a short sleep in the "mdump" command between reception of datagrams. This causes
the socket buffer to overflow.

17.5 TCP Disconnections

The TCP protocol is generally very good at recovering from periods of packet loss. However, if no packets at all can
get through for an extended period, TCP will reach its retry limit and disconnect. This can affect the TCP transport
and UIMs.

This can happen if there is a network fault that lasts for an extended period.

Another potential root cause of TCP disconnections can be a stateful firewall. These devices monitor
traffic on active TCP connections and will time out idle connections if no packets are sent for a configurable period,
typically measured in minutes. The firewall typically does not inform the hosts using the TCP connection, so the
hosts think the connection is still valid. However, when the sending host tries to transmit, the firewall will simply drop
the packets, leading to the sender timing out the TCP connection and disconnecting.

Note that the other side of the connection often does not detect this disconnection, leading to a half-open con-
nection. For the TCP transport, this can prevent a receiver from restarting topic resolution, which can be necessary
for the receiver to recover from a temporary outage.

One solution to this problem is to enable TCP keepalives by setting transport_tcp_activity_method (receiver) to
"SO_KEEPALIVE" and transport_tcp_activity_timeout (source) to a greater-than-zero value for TCP transports,
and setting request_tcp_activity_timeout (context) and response_tcp_activity_timeout (context) to greater-
than-zero values for UIMs. These keepalives prevent the firewall from timing out a quiet TCP connection, or if the
connection is lost for some other reason, will inform both hosts in a timely fashion.

https://en.wikipedia.org/wiki/Stateful_firewall
https://en.wikipedia.org/wiki/TCP_half-open

17.5 TCP Disconnections 295

296 Packet Loss

Chapter 18

UM Glossary

18.1 Glossary A

ABI - Application Binary Interface

The execution-time interfaces presented by one software system, generally in the form of a dynamic (shared)
library, for use by other software systems. ABIs are generally considered to be in the realm of binary, compiled
code, not source code. Two versions are considered ABI compatible if the dynamic libraries can be used
interchangeably by an application without the need to rebuild or relink that application. See also API.

ACK - Acknowledge

Generally, a control message which acknowledges some event or condition. Within the context of Ultra Mes-
saging, it is often used to refer to a persistence control message sent by a subscriber to the Persistent Store to
indicate that it has completed processing of a given data message. See Persistence.

ACE - Access Control Entry

A filter specifier to control which topics are allowed to transit a DRO portal. One or more ACEs make up an
Access Control List (ACL). See Access Control Lists (ACL).

ACL - Access Control List

A method used by the DRO to control which topics are allowed to transit a DRO portal. An ACL consists of one
or more Access Control Entries (ACE). See Access Control Lists (ACL).

ActiveMQ

The name of an open-source JMS-oriented messaging system. The Ultra Messaging UMQ product contains
an enhanced form of ActiveMQ to provide queuing semantics and a JMS API. See UMQ Overview.

AMQP - Advanced Message Queuing Protocol

An open standard messaging wire protocol. See Wikipedia's write-up for more information on AMQP.
The UMQ product makes use of AMQP to provide interoperability between Ultra Messaging and ActiveMQ. See
UMQ Overview.

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol

298 UM Glossary

API - Application Programming Interface

The callable functions, classes, methods, data formats, and structures presented by one software system for
use by other software systems. APIs are generally considered to be in the realm of source code, not compiled
binaries. APIs are generally documented, and can be extended from one version to the next. Two versions are
considered API compatible if the application can be built against either version interchangeably without the need
to modify the source code. Ultra Messaging has APIs available for the C, Java, and .NET (C#) programming
languages. For example, lbm_context_create() is part of the C API. See also ABI.

18.2 Glossary B

BOS - Beginning Of Stream

An event delivered to a receiver callback indicating that the link between the source and the receiver is now
active. Be aware that in a deployment that includes the DRO, it may only indicate an active link between the
receiver and the local router portal, not necessarily full end-to-end connectivity. See also EOS

Broker

A daemon which mediates the exchange of messages. In the context of Ultra Messaging, it refers to the
ActiveMQ daemon which implements the queuing functionality and JMS. See Queuing.

Busy Waiting

Also known as "busy looping" and "polling". A method of a thread to wait for a real-time event by testing for the
event in a tight loop without giving up the CPU. Typically leads to the thread consuming 100% of a CPU core.

18.3 Glossary C

CIDR - Classless Inter-Domain Routing

Generally, CIDR refers to the division of a 32-bit IPv4 address between network and host parts. In the context
of Ultra Messaging, CIDR notation can be used to ease the specification of host network interfaces. See
Specifying Interfaces.

Context

Within the context of Ultra Messaging, a context is an object which functions conceptually as an environment in
which UM runs. Context is often abbreviated as "ctx". See Context Object.

Crybaby Receiver

Within the context of a NAK-based protocol (like LBT-RM or LBT-RU), a crybaby receiver is one that experiences
sustained loss even during periods of normal traffic load. This might be due to equipment malfunction (e.g. a
lossy NIC) or software malfunction (application which can't keep up with normal traffic). See NAK Suppression.

CTX - Context

Within the context of Ultra Messaging, a context is an object which functions conceptually as an environment in
which UM runs. See Context Object.

18.4 Glossary D 299

18.4 Glossary D

DBL - Datagram Bypass Layer

A kernel-bypass driver that accelerates sending and receiving UDP traffic and operates with Myricom 10-Gigabit
Ethernet adapter cards for Linux and Windows. See Myricom Datagram Bypass Layer (DBL).

Deafness

An informal term for a problem where a subscriber for a topic is not receiving messages sent by a publisher for
that topic.

Delivery Confirmation

An optional event generated by a persistent subscriber's receiver and delivered to a persistent publisher's
source to indicate that the subscriber has completed processing of a message. See Persistence.

Delivery Controller

An instance of the receive-side "topic layer" within the UM software stack. See UM Software Stack.

DLQ - Dead Letter Queue

With queuing, the Dead Letter Queue (DLQ) is a destination for messages that cannot be delivered to a receiver.
See Dead Letter Queue.

DRO - Dynamic Routing Option

The name of an Ultra Messaging option which provides routing of messages different Topic Resolution Domains
(TRDs). See DRO.

Dynamic Routing Option (DRO)

The name of an Ultra Messaging option which provides routing of messages different Topic Resolution Domains
(TRDs). See DRO.

18.5 Glossary E

EOS - End Of Stream

An event delivered to a receiver callback indicating that the link between the source and the receiver is deleted.
Be aware that in a deployment that includes the DRO, it may only indicate a deleted link between the receiver
and the local router portal, not necessarily a full end-to-end link. See also BOS

Event Queue

Within the context of Ultra Messaging, an event queue object is a serialization queue structure and execution
thread for delivery of other objects' events. Event queue is often abbreviated as "evq". See Event Queue Object.

EVQ - Event Queue

Within the context of Ultra Messaging, an event queue object is a serialization queue structure and execution
thread for delivery of other objects' events. See Event Queue Object.

300 UM Glossary

18.6 Glossary F

Flight Size

The number of messages that a persistent publisher can have outstanding that are not stable. A persistent
publisher generally limits the number of unstable messages it can have outstanding, and may block further
attempts to send until some outstanding messages become stable. See Persistence. See also Stability.

Fragmentation Size

The splitting of a large application message into multiple pieces. There are two forms of fragmentation: UM
fragmentation (done by UM) and IP fragmentation (done by the operating system). See Message Fragmentation
and Reassembly.

18.7 Glossary G

Gateway

An early version of a message router, replaced as of version 6.10 with the DRO. See Dynamic Routing Option
(DRO).

18.8 Glossary H

HF - Hot Failover

A form of redundancy in which multiple instances of a publisher send the same messages at the same time
to subscribers, which select for application delivery the first copy received. If one publisher instance fails, the
subscribers are able to continue operation receiving from the remaining publisher. See Hot Failover (HF).

HFX - Hot Failover eXtended

An extended form of Hot Failover. Note: HFX is deprecated. See Hot Failover Across Multiple Contexts (HFX).

HRT - High Resolution Timestamp

A feature that leverages the hardware timestamping function of certain network interface cards to measure
sub-microsecond times that packets are transmitted and received. See High-resolution Timestamps.

18.9 Glossary I

IP Fragmentation

The Operating System function of splitting UDP datagrams into MTU-sized packets. See Message Fragmen-
tation and Reassembly.

https://en.wikipedia.org/wiki/Maximum_transmission_unit

18.10 Glossary J 301

IPC - InterProcess Communication

Generally, the term simply refers to any of several mechanisms by which an operating system allows processes
to communicate or share data. Within the context of Ultra Messaging, LBT-IPC specifically refers to the shared
memory transport type. A source configured for LBT-IPC can only pass messages to receivers running on the
same machine (or virtual machine). See Transport LBT-IPC.

18.10 Glossary J

Jitter

The amount of variation from the average, usually latency. High jitter can either mean frequent small variations,
or infrequent large variations. Large latency outliers are undesirable, even if rare.

JMS - Java Message Service

A standardized API for Java applications to send and receive messages. Ultra Messaging's UMQ product allows
limited interoperability between applications using UM and applications using JMS. See JMS.

JNI - Java Native Interface

A method by which Java code can invoke code written in C.

18.11 Glossary K

Kernel-Bypass Driver

A device driver software package, normally supplied by a hardware vendor, which provides a user-space library
and API for accessing the hardware without transitioning into the kernel. Some examples: Solarflare's Onload
driver, Myricom's DBL driver, Cisco's "ExaSOCK" driver, Voltaire's VMA driver. See Datagram Max Size and
Network MTU for related information.

18.12 Glossary L

LBM - Latency Busters Messaging

An old name of the Ultra Messaging product line. Superseded by UM. "LBM" is sometimes used to refer to the
streaming product. That use is superseded by "UMS". The abbreviation "lbm" lives on in various parts of the
UM API, and was kept for backwards compatibility.

LBT - Latency Busters Transport

Usually used as a prefix for a specific transport type: LBT-RM, LBT-RU, LBT-IPC, and LBT-SMX. See transport
(source).

302 UM Glossary

LJ - Late Join

A function by which a subscriber can create a receiver for a topic, and is able to retrieve one or more messages
sent to that topic prior to the receiver being created. See Late Join.

LJIR - Late Join Information Request

A type of control message sent by a receiver to a source to request an Late Join Information control message.
See Late Join.

18.13 Glossary M

MIM - Multicast Immediate Message

Alternate send method which makes use of a pre-configured LBT-RM transport which is shared by all like-
configured applications. The "immediate" means that messages may be sent to arbitrary topic names without
the creation of source objects. See Multicast Immediate Messaging. See also glossaryuim.

18.14 Glossary N

NAK - Negative AcKnowledgement

A type of control message sent by a receiver using LBT-RM or LBT-RU transports. Sent when packet loss
causes a sequence number gap in received messages, the NAKs specify which sequence numbers are missing
and request retransmission. See Transport LBT-RM Reliability Options.

NAT - Network Address Translation

A function of a network device (typically a router or firewall) that modifies packet headers' IP addresses and
ports to enable communication between networks using different address spaces. We recommend using a pair
of DROs to transit a NAT router, but you can also use an lbmrd.

NCF - NAK ConFirmation

A type of control message sent by a source using LBT-RM transport. The LBT-RM protocol requires a source
send an NCF if it receives a NAK for which it is not willing to send a re-transmission. See LBT-RM Source
Ignoring NAKs for Efficiency.

NAK Storm

A network condition in which packet loss triggers packet recovery operations for a NAK-based protocol (like L←↩
BT-RM and LBT-RU), and the packet recovery operations themselves induce further packet loss. This can lead
to a self-reinforcing feedback loop in which the packet recovery operations trap the protocol in an unbounded
loss condition. See What Is a NAK Storm? for details and prevention.

NIC - Network Interface Card

A part of a computer which connects to one or more network cables and provides packet-level communication
to the operating system.

18.15 Glossary O 303

18.15 Glossary O

Onload

A kernel-bypass driver that accelerates sending and receiving network traffic and operates with Solarflare Eth-
ernet adapter cards for Linux. See Solarflare Onload.

OpenOnload

The open-source version of Onload, a kernel-bypass driver that accelerates sending and receiving
network traffic and operates with Solarflare Ethernet adapter cards for Linux. See Solarflare Onload.

OpenSSL - Open Secure Sockets Layer

A library which provides encryption services. OpenSSL is used by Ultra Messaging's encryption feature. See
https://www.openssl.org for general information about OpenSSL. See Encrypted TCP for information
about Ultra Messaging's encryption feature.

OTID - Originating Transport IDentifier

Control information which uniquely identifies a source object within a UM network. See More About Proxy
Sources and Receivers.

OTR - Off-Transport Recovery

A method by which are lost and are not recoverable by the source transport can be recovered by UIMs using a
method similar to Late Join. See Off-Transport Recovery (OTR).

18.16 Glossary P

Pacing

In messaging, pacing refers to the method by which the send rate is controlled (or not controlled). In general,
there is "source pacing", where the source determines the rate of message transmission, or "receiver pacing",
where the slowest receiver of a source can limit the rate of message transmission. See Transport Pacing.

PCRE - Perl Compatible Regular Expressions

An open-source library which closely implements the Perl 5 regular expression language. UM uses PCRE for
wildcard receiver pattern matching. See Wikipedia's write-up for information on PCRE. See also UM
Wildcard Receivers.

PDM - Pre-Defined Messages

A message encoding scheme based on integer field identifiers for structured messages can be assembled and
sent by applications. Includes field types and performs data marshaling across different CPU architectures.
See Pre-Defined Messages. See also SDM.

Persistence

One of the basic Messaging Paradigms supported by UM (the other two are Streaming and Queuing). Per-
sistence, sometimes called "durable" or "guaranteed" messages, saves messages sent by a publisher in non-
volatile storage so that subscribers can recover missed messages under a variety of failure scenarios. If
multiple subscribers exist for the same topic, each subscriber will get all messages sent by the publisher. See
Persistence.

https://github.com/Xilinx-CNS/onload
https://www.openssl.org
https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions

304 UM Glossary

PGM - Pragmatic General Multicast

A standards-based protocol for reliable multicast. Ultra Messaging's "LBT-RM" protocol is inspired by PGM.
See Transport LBT-RM for a list of differences between LBT-RM and PGM..

Pinning

To achieve the highest performance, users should make use of "core pinning", also called "task setting" or
"setting thread affinity". This is where time-critical threads are assigned to execute on a specific set of one or
more CPU cores. Without pinning, the operating system will sometimes migrate a thread from one NUMA zone
to another. This introduces significant latency and jitter. Core pinning prevents this from happening. See Core
Pinning.

Portal

An interface to the DRO. A DRO portal can either be an endpoint portal (interfaces with a Topic Resolution
Domain), or a peer portal (interfaces with another DRO). See DRO Portals.

PTP - Precision Time Protocol

A protocol used to synchronize clocks throughout a computer network. Used by some NICs to synchronize host
clocks (e.g. Solarflare). See Wikipedia's write-up for more information.

Pub/Sub - Publish / Subscribe

A model of messaging passing in which the publisher (sender) does not keep track of the subscribers (intended
recipients) of messages. Instead, the messages carry metadata (topic name) in which the subscribers express
interest, and the underlying messaging software forwards messages to the subscribers based on that interest.

18.17 Glossary Q

Queuing

One of the basic Messaging Paradigms supported by UM (the other two are Streaming and Persistence).
Queuing supports "load balancing" whereby published messages can be distributed across a set of subscribers
such each message is only handled by one of the subscribers. See Queuing.

18.18 Glossary R

RCV - Receiver

Within the context of Ultra Messaging, a receiver is an object used to subscribe to a topic. "Receiver" is
sometimes used to refer generally to an entire subscribing application. See Receiver Object. See also Wildcard
Receiver.

Receiver

Within the context of Ultra Messaging, a receiver is an object used to subscribe to a topic. "Receiver" is
sometimes used to refer generally to an entire subscribing application. Receiver is often abbreviated as "rcv".
See Receiver Object. See also Wildcard Receiver.

https://en.wikipedia.org/wiki/Precision_Time_Protocol

18.19 Glossary S 305

Registration

When a publisher creates a persistent source, that source must register with the configured persistent Stores
before it can start sending messages. This registration prepares the persistent Store and the source to co-
operate in the transfer of persisted messages. Likewise, when a subscriber creates a persistent receiver, that
receiver must register with the configured persistent Stores before it can start receiving messages. See Persis-
tence.

Request Port

Also known as "UIM Port". TCP port that a context listens to for incoming UIM traffic. See Unicast Immediate
Messaging for general information on UIM.

RM - Reliable Multicast

A shortening of "LBT-RM". The Ultra Messaging protocol and implementation in which user messages sent
via Multicast UDP are monitored for loss, and retransmissions are arranged to recover loss. See Transport
LBT-RM.

RPP - Receiver-Paced Persistence.

A form of persistence in which a publisher can be blocked from sending if receivers are having trouble keeping
up with the message rate. See Persistence. See also SPP.

Router

Within the context of Ultra Messaging, "\ref umrouter" generally refers to the daemon within the DRO. See
Dynamic Routing Option (DRO).

RSA - Rivest, Shamir, and Aleman

A public-key cryptosystem developed by Ron Rivest, Adi Shamir, and Leonard Adleman. Included in the Open←↩
SSL library used by Ultra Messaging's encryption feature. See Encrypted TCP.

RU - Reliable Unicast

A shortening of "LBT-RU". The Ultra Messaging protocol and implementation in which user messages sent via
Unicast (point-to-point) UDP are monitored for loss, and retransmissions are arranged to recover loss. See
Transport LBT-RU.

RX - Re-transmission

Depending on the context, RX can either mean the messages retransmitted by the LBT-RM and LBT-RU trans-
port protocols (e.g. in transport statistics), or it can mean the messages recovered via the Persistent Store or
Late Join.

18.19 Glossary S

SDM - Self-Describing Messages

A message encoding scheme based on keyword-value pairs for structured messages can be assembled and
sent by applications. Includes field types and performs data marshaling across different CPU architectures.
See Self Describing Messaging. See also PDM.

306 UM Glossary

SIR - Source Information Record

A type of control message used by the SRS to advertise sources to contexts. See TCP-Based Topic Resolution
Details.

SM - Session Message

A type of control message used by the LBT-RM protocol to keep a Transport Session alive. See Transport
LBT-RM Operation Options.

SNMP - Simple Network Management Protocol

A standardized protocol by which computers and network equipment can be monitored and managed from a
central point (management station). SNMP is also the name of an Ultra Messaging option which makes UM
application usage statistics available for monitoring by a standard SNMP management station.

Source

Within the context of Ultra Messaging, a source is an object used to send messages to a topic. "Source" is
sometimes used to refer generally to an entire publishing application. Source is often abbreviated as "src". See
Source Object.

SPP - Source-Paced Persistence.

A form of persistence in which a publisher is allowed to continue sending at its natural rate, even if one or more
receivers are falling behind to the point that the message repository's oldest messages are overwritten, leading
to unrecoverable loss. See Persistence.

SRC - Source

Within the context of Ultra Messaging, a source is an object used to send messages to a topic. "Source" is
sometimes used to refer generally to an entire publishing application. See Source Object.

SRS - Stateful Resolver Service

A daemon which provides TCP-based Topic Resolution. See Topic Resolution Description.

SRI - Source Registration Information

A type of control message used to communicate persistence information between persistent publishers and
subscribers. A subscriber of persistent messages needs an SRI to successfully register with a persistent Store.
See Persistence.

Stability

The state that a persistent publisher's sent message has been successfully persisted in the persistent Store. In
the time between message transmission and message stability, the message is at risk of being lost. The term
is also used to refer to the source event delivered to a publishing application to indicate a message's stability.
See Persistence. See also Flight Size.

Store

A shortening of "persistent Store". An Ultra Messaging component which works with persistent sources and
receivers to record messages, and also deliver previously-recorded messages for recovery. The UMP and UMQ
products include the persistent Store; the UMS product does not. See Persistence.

18.20 Glossary T 307

Streaming

One of the basic Messaging Paradigms supported by UM (the other two are Persistence and Queuing). Stream-
ing requires that the publisher and subscriber be running at the same time for messages to be delivered. Mes-
sages are not saved to non-volatile storage. If multiple subscribers exist for the same topic, each subscriber
will get all messages sent by the publisher. See Streaming.

Strong RegID

When Persistence is configured with a non-zero activity timeout, the Store prevents simultaneous use of a
registration ID by two processes. The registration ID is said to be "strong". See Activity Timeout and State
Lifetimes.

18.20 Glossary T

TIR - Topic Information Record

A type of topic resolution control message used by a source to advertise its details. Subscribers use TIRs to
discover and connect to sources of interest. See Topic Resolution Overview.

Topicless

Related to Immediate Messaging, a "topicless" message is one that has no topic associated with it.

TNWG - Twenty Nine West Gateway

A historic name for the DRO. The name was changed to DRO in UM version 6.0, but the older name of the
executable file (tnwgd) was retained for backwards compatibility.

TQR - Topic Query Record

A type of topic resolution control message used by a receiver to discover sources of interest. Publishers use
TQRs to trigger the sending of TIRs. See Topic Resolution Overview.

TR - Topic Resolution

The protocol used by Ultra Messaging components to exchange information about available topics and topic
interest. See Topic Resolution Overview. See also TIR and TQR.

Transport Session

A specific run-time instance of a transport type to carry application messages. The Transport Session can be
thought of as a communications channel. As a publishing application creates sources, it maps those sources
onto Transport Sessions. A Transport Session is fairly resource-intensive, so it is frequently the case that many
sources are mapped to each Transport Session.

TRD - Topic Resolution Domain

A group of Ultra Messaging applications and UM components which communicate with each other directly,
not through a DRO. Specifically, it refers to those applications and components which directly exchange Topic
Resolution control messages. Applications in different TRDs are not able to communicate with each other
unless one or more DROs are used to interconnect the TRDs. See Topic Resolution Domain.

308 UM Glossary

TSNI - Topic Sequence Number Information

A type of control message sent by a source to assist in the detection and recovery from certain types of packet
loss. See Loss Detection Using TSNIs.

18.21 Glossary U

UIM - Unicast Immediate Message

Alternate send method which makes use of pre-configured TCP transports. The "immediate" means that mes-
sages may be sent to arbitrary topic names without the creation of source objects. Sending a UIM bypasses
Topic Resolution, so the calling application must specify the address information for the intended recipient. Be-
cause of this, the UIM feature is rarely used directly by user applications. However, Ultra Messaging uses UIMs
internally for many of its control messages. See Multicast Immediate Messaging. See also glossarymim.

UIM Port - Unicast Immediate Messaging Port

Also known as "Request Port". TCP port that a context listens to for incoming UIM traffic. See Unicast Immedi-
ate Messaging for general information on UIM.

ULB - Ultra Load Balance

A feature of the Ultra Messaging UMQ product which provides a limited subset of queuing semantics without the
use of a central message broker. ULB is generally used to provide high-speed load balancing of UM messages.
In the Pub/Sub model, if multiple subscribers create receivers for the same topic, each subscriber will receive a
copy of every message sent. In the Queuing model, the messages are distributed to the multiple subscribers,
with each message only being acted on by one of those subscribers. See Ultra Load Balancing (ULB).

UM - Ultra Messaging

The name of the Informatica messaging middleware product line. UM is based on the pub/sub model of mes-
sage passing, which allows the components of distributed applications to communicate. Note that Ultra Mes-
saging is registered trademark of Informatica, LLC.

UM Fragmentation

The UM function of splitting large application messages into datagrams. See Message Fragmentation and
Reassembly.

UM Router

Within the context of Ultra Messaging, "\ref umrouter" generally refers to the daemon within the DRO. See
Dynamic Routing Option (DRO).

UMCache - Ultra Messaging Cache

The name of an Ultra Messaging option which provides a limited degree of message storage and retrieval.

UMDS - Ultra Messaging Desktop Services

The name of an Ultra Messaging option which consists of a server daemon and a set of client libraries which
provides simplified access to an Ultra Messaging network.

18.22 Glossary V 309

UME - Ultra Messaging, Enterprise edition

An old name of the UMP product. Superseded by UMP. The abbreviation "ume" lives on in various parts of the
UM API, and was kept for backwards compatibility.

UMM - Ultra Messaging Manager

A component of UM which allows users to centrally edit, store, and distribute configuration information to
distributed applications. NOTE: this component is deprecated as of UM version 6.17 and will be removed from
a future release. See the UM Manager Guide.

UMP - Ultra Messaging, Persistence edition

An Ultra Messaging product which supports message Streaming and Persistence. The term is sometimes used
to refer specifically to the persistence function. See Persistence.

UMQ - Ultra Messaging, Queuing edition

An Ultra Messaging product which supports message Streaming, Persistence, and Queuing. The term is
sometimes used to refer specifically to the queuing function. See Queuing.

UMS - Ultra Messaging, Streaming edition

An Ultra Messaging product which supports message Streaming. The term is sometimes used to refer specifi-
cally to the streaming function.

18.22 Glossary V

VMA - Voltaire Messaging Accelerator

A kernel-bypass driver that accelerates sending and receiving UDP traffic and operates with Mellanox 10-←↩
Gigabit Ethernet and Infiniband adapter cards for Linux. (The software used to be owned by a company called
Voltaire, which was acquired by Mellanox.) See UD Acceleration for Mellanox Hardware Interfaces.

18.23 Glossary W

Weak RegID

When Persistence is configured with a zero activity timeout, the Store does not prevent simultaneous use of a
registration ID by two processes. The registration ID is said to be "weak". See Activity Timeout and State
Lifetimes.

Wildcard Receiver

An object created by an application using the UM API to subscribe to a group of topics based on a Regular
Expression pattern match. See UM Wildcard Receivers. See also PCRE. See also Receiver.

310 UM Glossary

18.24 Glossary X

XSP - Transport Services Provider

An object created by a subscribing application to control the threading of message reception. See Transport
Services Provider Object.

18.25 Glossary Z

ZOD - Zero Object Delivery

Feature which allows a Java or .NET subscribers to have received messages delivered without per-message
object creation. This is more efficient than creating objects with each received message, and also avoids
garbage collection. See Zero Object Delivery.

18.25 Glossary Z 311

	Introduction
	Fundamental Concepts
	License Key
	License Via XML Configuration File
	License Via Environment

	Messaging Paradigms
	Streaming
	Persistence
	Queuing

	Messages
	Message Integrity
	Message Metadata

	Topic Structure and Management
	Message Ordering
	Topic Resolution Overview
	Topic Resolution Domain

	Messaging Reliability
	Unrecoverable Loss
	Head Loss
	Leading Loss
	Tail Loss
	Burst Loss

	UM Software Stack
	Delivery Controller

	UM Threading
	Embedded Mode
	Sequential Mode
	Context Sequential Mode
	XSP Sequential Mode
	IPC Sequential Mode
	Other Specialized Threads

	Deleting UM Objects
	Callback After Delete
	Event Sync
	C API Extended Delete

	DRO
	Late Join
	Request/Response
	Registered File Descriptors
	UM Transports
	Transport Sessions
	Subscribing to a Transport Session
	Transport Session Differences
	Flexible LBT-RU Topic Assignment

	Transport Pacing
	Source Pacing
	Receiver Pacing
	Receiver Queuing
	Pacing and DRO
	Pacing and Queuing
	Pacing and Persistence
	Suspended Receiver Problem

	Event Delivery
	Receiver BOS and EOS Events
	Source Connect and Disconnect Events
	Source Wakeup Event
	Source Flight Notification Event

	Rate Controls
	Transport Rate Control
	Topic Resolution Rate Control

	Operational Statistics
	Immediate Messaging

	UM Objects
	Context Object
	Topic Object
	Source Object
	Source String
	Source Strings in a Routed Network
	Source Configuration and Transport Sessions

	Receiver Object
	Receiver Configuration and Transport Sessions
	UM Wildcard Receivers
	Transport Services Provider Object
	UM Hot Failover Across Contexts Objects (HFX)

	Event Queue Object
	Using an Event Queue
	`¨Deleting an Event Queue`¨
	Event Queue Efficiency
	Event Queue Timeout
	Event Queue Monitor

	Message Object
	Message Object Deletion
	Message Object Retention

	Attributes Object
	UM Timers

	Security Considerations
	Webmon Security

	Configuration Introduction
	Transport Types
	Transport TCP
	TCP Flow Control Restrictions

	Transport LBT-RU
	Transport LBT-RM
	NAK Suppression
	Comparing LBT-RM and PGM

	Transport LBT-IPC
	Sources and LBT-IPC
	Receivers and LBT-IPC
	Similarities with Other UM Transports
	Differences from Other UM Transports
	Sending to Both Local and Remote Receivers
	LBT-IPC Configuration Example
	Required privileges
	Host Resource Usage and Limits
	LBT-IPC Resource Manager

	Transport LBT-SMX
	Sources and LBT-SMX
	Sending with SMX-specific APIs
	Sending over LBT-SMX with General APIs
	Receivers and LBT-SMX
	Similarities Between LBT-SMX and Other UM Transports
	Differences Between LBT-SMX and Other UM Transports
	LBT-SMX Configuration Example
	Java Coding for LBT-SMX
	.NET Coding for LBT-SMX
	LBT-SMX Resource Manager

	Transport Broker

	Topic Resolution Description
	Resolver Caches
	Source Resolver Cache
	Receiver Resolver Cache

	TR Protocol Comparison
	Multicast UDP TR
	Unicast UDP TR
	TCP TR

	TCP-Based Topic Resolution Details
	TCP-Based TR and Fault Tolerance
	TCP-Based TR Interest
	TCP-Based TR Version Interoperability
	TCP-Based TR Configuration
	SRS Service

	SRS Monitoring
	SRS Monitoring: Logs
	SRS Monitoring: Daemon Stats

	Architecture
	UDP-Based Topic Resolution Details
	Sources Advertise
	Receivers Query
	Wildcard Receiver Topic Resolution
	Initial Phase
	Sustaining Phase
	Quiescent Phase
	Store (context) Name Resolution
	UDP Topic Resolution Configuration Options
	Unicast UDP Topic Resolution
	LBMRD NAT Transit
	Example NAT Configuration
	Lbmrd NAT Restrictions

	UDP-Based Topic Resolution Strategies
	Default TR
	Query-Centric TR
	Known Query Threshold TR
	Advertise-Centric TR

	Message Batching
	Implicit Batching
	Intelligent Batching
	Application Batching
	Explicit Batching
	Adaptive Batching

	Message Fragmentation and Reassembly
	Datagram Max Sizes
	Datagram Max Size and Network MTU
	Setting Datagram Max Sizes High
	Changing Datagram Max Size
	Dynamic Fragmentation Reduction

	Ordered Delivery
	Sequence Number Order, Fragments Reassembled (Default Mode)
	Arrival Order, Fragments Reassembled
	Arrival Order, Fragments Not Reassembled

	Loss Detection Using TSNIs
	Receiver Keepalive Using Session Messages
	Extended Messaging Example
	Example: First Message
	Example: Batching
	Example: UM Fragmentation
	Example: Loss Recovery
	Example: Unrecoverable Loss
	Example: Transport Deletion

	Application Design Principles
	UM Monitoring
	Message Reception
	C Message Reception
	Java Message Reception
	.NET Message Reception

	UM Features
	Transport Services Provider (XSP)
	XSP Handles Transport Sessions, Not Topics
	XSP Threading Considerations
	XSP Usage
	Other XSP Operations
	XSP Restrictions

	Using Late Join
	Late Join With Persistence
	Late Join Options Summary
	Using Default Late Join Options
	Specifying a Range of Messages to Retransmit
	Retransmitting Only Recent Messages
	Configuring Late Join for Large Numbers of Messages

	Off-Transport Recovery (OTR)
	OTR with Sequence Number Ordered Delivery
	OTR With Persistence
	OTR Options Summary

	Encrypted TCP
	TLS Authentication
	TLS Backwards Compatibility
	TLS Efficiency
	TLS Configuration
	TLS Options Summary
	TLS and Persistence
	TLS and Queuing
	TLS and the DRO
	TLS and Compression
	OpenSSL Dependency

	Compressed TCP
	Compression Configuration
	Compression and Persistence
	Compression and Queuing
	Compression and the DRO
	Compression and Encryption
	Version Interoperability

	High-resolution Timestamps
	Timestamp Restrictions
	Timestamp Configuration Summary

	Unicast Immediate Messaging
	UIM Reliability
	UIM Addressing
	Receiving a UIM
	Sending a UIM
	UIM Connection Management

	Multicast Immediate Messaging
	Temporary Transport Session
	MIM Notifications
	Receiving Immediate Messages
	MIM and Wildcard Receivers
	MIM Loss Handling
	MIM Configuration
	MIM Example Applications

	HyperTopics
	Application Headers
	Application Headers Usage

	Message Properties
	Message Properties Usage
	Message Properties Data Types
	Message Properties Performance Considerations
	Smart Sources and Message Properties
	Smart Source Message Properties Usage

	Request/Response Model
	Request Message
	Response Message
	Response Size
	Response Deletion
	TCP Management
	Request/Response Configuration
	Request/Response Example Applications

	Self Describing Messaging
	Pre-Defined Messages
	Typical PDM Usage Patterns
	Getting Started with PDM
	Using the PDM API
	Migrating from SDM

	Sending to Sources
	Source String from Receive Event
	Source String from Source Notification Function
	Sending to Source Readiness

	Spectrum
	Spectrum Performance Advantages
	Spectrum Configuration Options
	Spectrum Receiver Callback
	Smart Sources and Spectrum

	Hot Failover (HF)
	Implementing Hot Failover Sources
	Implementing Hot Failover Receivers
	Implementing Hot Failover Wildcard Receivers
	HF with Java and .NET
	Using Hot Failover with Persistence
	Hot Failover Intentional Gap Support
	Hot Failover Optional Messages
	Using Hot Failover with Ordered Delivery
	Hot Failover Restrictions
	Hot Failover Across Multiple Contexts (HFX)

	NAK Cutoff
	Why NAK Cutoff?
	What Is a NAK Storm?
	NAK Storm Prevention

	Binary Daemon Statistics
	Daemon Controller
	Daemon Statistics Structures
	Daemon Statistics Binary Data
	Daemon Statistics Versioning
	Daemon Control Requests
	Securing Daemon Control Requests
	Daemon Statistics Details

	Advanced Optimizations
	Receive Thread Busy Waiting
	Network Socket Busy Waiting
	IPC Transport Busy Waiting
	SMX Transport Busy Waiting

	Zero Object Delivery
	Receive Buffer Recycling
	Receive Buffer Recycling Restrictions

	Single Receiving Thread
	Single Receiving Thread Restrictions

	Extended Context Process Events
	Context Lock Reduction
	Context Lock Reduction Restrictions
	Gettimeofday Reduction
	Gettimeofday Reduction Restrictions

	Receive Multiple Datagrams
	Receive Multiple Datagrams Compatibility
	Receive Multiple Datagrams Restrictions

	Transport Demultiplexer Table Size
	Smart Sources
	Smart Source Message Buffers
	Smart Sources and Memory Management
	Smart Sources Configuration
	Smart Source Defensive Checks
	Smart Sources Restrictions

	Zero-Copy Send API
	Zero-Copy Send Compatibility
	Zero-Copy Restrictions

	Comparison of Zero Copy and Smart Sources
	XSP Latency Reduction
	Receive-Side Batching
	Receive-Side Batching Restrictions

	Core Pinning
	Memory Latency Reduction

	Man Pages for SRS
	SRS Man Page
	Srsds Man Page

	SRS Configuration File
	SRS Configuration Elements
	SRS Element `¨<um-srs>`¨
	SRS Element `¨<daemon-monitor>`¨
	SRS Element `¨<monitor-format>`¨
	SRS Element `¨<remote-config-changes-request>`¨
	SRS Element `¨<remote-snapshot-request>`¨
	SRS Element `¨<publish-connection-events>`¨
	SRS Element `¨<lbm-attributes>`¨
	SRS Element `¨<option>`¨
	SRS Element `¨<publishing-interval>`¨
	SRS Element `¨<internal-config-opts>`¨
	SRS Element `¨<config-opts>`¨
	SRS Element `¨<um-client-error-stats>`¨
	SRS Element `¨<srs-error-stats>`¨
	SRS Element `¨<connection-events>`¨
	SRS Element `¨<um-client-stats>`¨
	SRS Element `¨<srs-stats>`¨
	SRS Element `¨<default>`¨
	SRS Element `¨<ping-interval>`¨
	SRS Element `¨<debug-monitor>`¨
	SRS Element `¨<enabled>`¨
	SRS Element `¨<port>`¨
	SRS Element `¨<interface>`¨
	SRS Element `¨<srs>`¨
	SRS Element `¨<application-id>`¨
	SRS Element `¨<clientactor>`¨
	SRS Element `¨<batch-frame-max-datagram-size>`¨
	SRS Element `¨<batch-frame-max-record-count>`¨
	SRS Element `¨<record-queue-service-interval>`¨
	SRS Element `¨<request-stream-max-msg-count>`¨
	SRS Element `¨<namemap>`¨
	SRS Element `¨<shards>`¨
	SRS Element `¨<routemap>`¨
	SRS Element `¨<topicmap>`¨
	SRS Element `¨<otidmap>`¨
	SRS Element `¨<source-leave-backoff>`¨
	SRS Element `¨<context-name-state-lifetime>`¨
	SRS Element `¨<route-state-lifetime>`¨
	SRS Element `¨<interest-state-lifetime>`¨
	SRS Element `¨<source-state-lifetime>`¨
	SRS Element `¨<state-lifetime>`¨
	SRS Element `¨<daemon>`¨
	SRS Element `¨<pid-file>`¨
	SRS Element `¨<log>`¨

	SRS XSD file

	SRS Daemon Statistics
	Message Type: SRS_STATS
	Message Type: SRS_ERROR_STATS
	Message Type: UM_CLIENT_STATS
	Message Type: UM_CLIENT_ERROR_STATS
	Message Type: CONNECTION_EVENTS
	Message Subtype: UM_CLIENT_CONNECT
	Message Subtype: UM_CLIENT_DISCONNECT
	Message Subtypes: SIR and SDR

	Message Type: CONFIG_OPTS
	Message Type: INTERNAL_CONFIG_OPTS
	Request Type: REPORT_SRS_VERSION
	Request Type: REPORT_MONITOR_INFO
	Request Type: SET_PUBLISHING_INTERVAL

	Man Pages for Lbmrd
	Lbmrd Man Page
	Lbmrds Man Page

	lbmrd Configuration File
	lbmrd Configuration Elements
	LBMRD Element `¨<lbmrd>`¨
	LBMRD Element `¨<transformations>`¨
	LBMRD Element `¨<transform>`¨
	LBMRD Element `¨<rule>`¨
	LBMRD Element `¨<replace>`¨
	LBMRD Element `¨<match>`¨
	LBMRD Element `¨<domains>`¨
	LBMRD Element `¨<domain>`¨
	LBMRD Element `¨<network>`¨
	LBMRD Element `¨<daemon>`¨
	LBMRD Element `¨<resolver_unicast_send_socket_buffer>`¨
	LBMRD Element `¨<resolver_unicast_receiver_socket_buffer>`¨
	LBMRD Element `¨<log>`¨
	LBMRD Element `¨<ttl>`¨
	LBMRD Element `¨<port>`¨
	LBMRD Element `¨<interface>`¨
	LBMRD Element `¨<activity>`¨

	Dummy lbmrd Configuration File
	Lbmrd DTD file

	Packet Loss
	Design to Prevent Loss
	Decrease Packet Flow through Loss Points
	Increase Efficiency of Packet Consumers

	UM Recovery of Lost Packets
	Packet Loss Points
	Loss: Switch Egress Port
	Loss: NIC Ring Buffer
	Loss: Socket Buffer
	Loss: Other

	Verifying Loss Detection Tools
	Prepare to Verify
	Verifying Switch Loss
	Verifying NIC Loss
	Verifying Socket Buffer Loss

	TCP Disconnections

	UM Glossary
	Glossary A
	Glossary B
	Glossary C
	Glossary D
	Glossary E
	Glossary F
	Glossary G
	Glossary H
	Glossary I
	Glossary J
	Glossary K
	Glossary L
	Glossary M
	Glossary N
	Glossary O
	Glossary P
	Glossary Q
	Glossary R
	Glossary S
	Glossary T
	Glossary U
	Glossary V
	Glossary W
	Glossary X
	Glossary Z

