
Ultra Messaging (Version 6.16)

Configuration Guide

Contents

1 Introduction 5

1.1 Configuration Overview . 5

1.1.1 Assignment Methods . 6

1.1.2 Assignment Flow . 7

1.1.3 Definitions . 8

1.1.4 Which Method Should I Use? . 9

1.1.5 Configuration Error Handling . 9

1.1.6 Host Name Resolution . 10

1.1.7 Configuration Files . 10

2 XML Configuration Files 13

2.1 XML Configuration Concepts . 13

2.2 XML Reference Names . 13

2.2.1 XML Object Names . 14

2.2.2 XML Application Names . 15

2.3 xml:space Attribute . 15

2.4 Order and Rule Specifications . 16

2.4.1 Constraining Configuration Values . 16

2.4.2 Restricting Topics . 17

2.4.3 Overlapping Topics . 18

2.5 UM Default Values . 18

2.6 Reading XML Configuration Files . 22

2.7 Using XML Configuration Files With a UM Application . 22

2.8 XML Configuration File Format . 23

2.9 Share/Merge XML Files with XInclude . 24

2.9.1 Common XInclude Use Case . 24

2.10 XML Configuration File Elements . 26

2.10.1 UM Element "<um-configuration>" . 27

2.10.2 UM Element "<applications>" . 27

2.10.3 UM Element "<application>" . 27

2.10.4 UM Element "<application-data>" . 28

4 CONTENTS

2.10.5 UM Element "<hfxs>" . 29

2.10.6 UM Element "<topic>" . 29

2.10.7 UM Element "<options>" . 31

2.10.8 UM Element "<option>" . 31

2.10.9 UM Element "<deny>" . 32

2.10.10 UM Element "<allow>" . 33

2.10.11 UM Element "<event-queues>" . 34

2.10.12 UM Element "<event-queue>" . 34

2.10.13 UM Element "<contexts>" . 35

2.10.14 UM Element "<context>" . 36

2.10.15 UM Element "<wildcard-receivers>" . 37

2.10.16 UM Element "<wildcard-receiver>" . 38

2.10.17 UM Element "<receivers>" . 39

2.10.18 UM Element "<sources>" . 40

2.10.19 UM Element "<templates>" . 41

2.10.20 UM Element "<template>" . 41

2.10.21 UM Element "<license>" . 42

2.11 XML Configuration File DTD . 42

2.12 Sample XML Configuration File . 43

3 Plain Text Configuration Files 47

3.1 Reading Plain Text Configuration Files . 47

3.2 Plain Text Configuration File Format . 47

4 Attributes Objects 49

4.1 Creating An Attributes Object . 50

4.2 Setting an Option from a Binary Value . 50

4.2.1 Setting an Option from Arrays of Binary Values . 51

4.3 Setting an Option from a String Value . 51

4.4 Getting an Option as a Binary Value . 52

4.5 Getting an Option as a String Value . 52

4.6 Deleting an Attributes Object . 53

5 Access to Current Operating Options 55

5.1 Retrieving Current Option Values . 55

5.1.1 Getting Current Option as a Binary Value . 55

5.1.2 Getting Current Option as a String Value . 56

5.2 Modifying Current Option Values . 56

5.2.1 Setting Current Option from a Binary Value . 57

5.2.2 Setting Current Option from a String Value . 57

CONTENTS 5

6 Example Configuration Scenarios 59

6.1 Highest Throughput . 59

6.2 Lowest Latency . 59

6.3 Creating Multicast Sources . 60

6.4 Disabling Aspects of Topic Resolution . 60

6.4.1 Disabling Topic Advertisements . 61

6.4.2 Disabling Receiver Topic Queries . 61

6.4.3 Disabling Wildcard Topic Queries . 61

6.4.4 Disabling Store (Context) Name Queries . 62

6.4.5 All But the Minimum Topic Resolution Traffic . 62

6.5 Unicast Resolver . 62

6.6 Re-establish Pre-4.0 Topic Resolution . 62

6.7 Re-establish Pre-LBM 3.3 (Pre-UME 2.0) Port Defaults . 63

6.8 Configure New Port Defaults . 63

7 Interrelated Configuration Options 65

7.1 Preventing NAK Storms with NAK Intervals . 65

7.2 Preventing Tail Loss With TSNI and NAK Interval Options . 66

7.3 Preventing Undetected Unrecoverable Loss . 66

7.4 Preventing Undetected Late Join Loss . 68

7.5 Preventing IPC Receiver Deafness With Keepalive Options . 68

7.6 Preventing Erroneous LBT-RM/LBT-RU Session Timeouts . 69

7.7 Preventing Errors Due to Bad Multicast Address Ranges . 70

7.8 Preventing Store Timeouts . 70

7.9 Preventing ULB Timeouts . 71

7.10 Preventing Unicast Resolver Daemon Timeouts . 71

7.11 Preventing Store Registration Hangs . 72

8 General Configuration Guidelines 75

8.1 Case Sensitivity . 75

8.2 Specifying Interfaces . 75

8.2.1 Interface Device Names and XML . 76

8.3 Socket Buffer Sizes . 76

8.4 Port Assignments . 77

8.4.1 Ephemeral Ports . 77

8.4.2 Network VS Host Order . 77

8.5 Reference Entry Format . 77

9 Special Notes 81

9.1 Configuring Multi-Homed Hosts . 81

9.2 Traversing a Firewall . 82

6 CONTENTS

10 Major Options 85

10.1 Reference . 85

10.1.1 broker (context) . 85

10.1.2 compatibility_include_pre_um_6_0_behavior (context) . 86

10.1.3 context_event_function (context) . 86

10.1.4 context_name (context) . 87

10.1.5 default_interface (context) . 87

10.1.6 dynamic_fragmentation_reduction (context) . 88

10.1.7 fd_management_type (context) . 88

10.1.8 file_descriptor_management_behavior (context) . 89

10.1.9 message_selector (receiver) . 90

10.1.10 multiple_receive_maximum_datagrams (context) . 90

10.1.11 operational_mode (context) . 91

10.1.12 operational_mode (xsp) . 92

10.1.13 ordered_delivery (receiver) . 93

10.1.14 receiver_callback_service_time_enabled (context) . 94

10.1.15 resolver_source_notification_function (context) . 94

10.1.16 source_event_function (context) . 95

10.1.17 source_includes_topic_index (context) . 95

10.1.18 transport (source) . 96

10.1.19 transport_demux_tablesz (receiver) . 97

10.1.20 transport_mapping_function (context) . 97

10.1.21 transport_session_multiple_sending_threads (context) . 98

10.1.22 transport_session_single_receiving_thread (context) . 99

10.1.23 transport_source_side_filtering_behavior (source) . 99

10.1.24 transport_topic_sequence_number_info_active_threshold (source) 100

10.1.25 transport_topic_sequence_number_info_interval (source) 101

10.1.26 transport_topic_sequence_number_info_request_interval (receiver) 101

10.1.27 transport_topic_sequence_number_info_request_maximum (receiver) 102

10.1.28 use_extended_reclaim_notifications (source) . 102

10.1.29 zero_transports_function (xsp) . 103

11 UDP-Based Resolver Operation Options 105

11.1 Minimum Values for Advertisement and Query Intervals . 105

11.2 Reference . 106

11.2.1 disable_extended_topic_resolution_message_options (context) 106

11.2.2 resolution_no_source_notification_threshold (receiver) . 106

11.2.3 resolution_number_of_sources_query_threshold (receiver) 107

11.2.4 resolver_advertisement_maximum_initial_interval (source) 108

11.2.5 resolver_advertisement_minimum_initial_duration (source) 108

CONTENTS 7

11.2.6 resolver_advertisement_minimum_initial_interval (source) 109

11.2.7 resolver_advertisement_minimum_sustain_duration (source) 109

11.2.8 resolver_advertisement_send_immediate_response (source) 110

11.2.9 resolver_advertisement_sustain_interval (source) . 110

11.2.10 resolver_cache (context) . 111

11.2.11 resolver_context_name_activity_timeout (context) . 112

11.2.12 resolver_context_name_query_duration (context) . 112

11.2.13 resolver_context_name_query_maximum_interval (context) 113

11.2.14 resolver_context_name_query_minimum_interval (context) 113

11.2.15 resolver_datagram_max_size (context) . 114

11.2.16 resolver_disable_udp_topic_resolution (context) . 114

11.2.17 resolver_domain_id_active_propagation_timeout (context) 115

11.2.18 resolver_initial_advertisement_bps (context) . 116

11.2.19 resolver_initial_advertisements_per_second (context) . 116

11.2.20 resolver_initial_queries_per_second (context) . 117

11.2.21 resolver_initial_query_bps (context) . 118

11.2.22 resolver_query_maximum_initial_interval (receiver) . 118

11.2.23 resolver_query_minimum_initial_duration (receiver) . 119

11.2.24 resolver_query_minimum_initial_interval (receiver) . 119

11.2.25 resolver_query_minimum_sustain_duration (receiver) . 120

11.2.26 resolver_query_sustain_interval (receiver) . 120

11.2.27 resolver_receiver_map_tablesz (context) . 121

11.2.28 resolver_send_final_advertisements (source) . 121

11.2.29 resolver_send_initial_advertisement (source) . 122

11.2.30 resolver_source_map_tablesz (context) . 123

11.2.31 resolver_string_hash_function (context) . 123

11.2.32 resolver_string_hash_function_ex (context) . 124

11.2.33 resolver_sustain_advertisement_bps (context) . 125

11.2.34 resolver_sustain_advertisements_per_second (context) . 125

11.2.35 resolver_sustain_queries_per_second (context) . 126

11.2.36 resolver_sustain_query_bps (context) . 126

11.2.37 resolver_unicast_activity_timeout (context) . 127

11.2.38 resolver_unicast_change_interval (context) . 127

11.2.39 resolver_unicast_check_interval (context) . 128

11.2.40 resolver_unicast_force_alive (context) . 128

11.2.41 resolver_unicast_ignore_unknown_source (context) . 129

11.2.42 resolver_unicast_keepalive_interval (context) . 130

12 Multicast Resolver Network Options 133

12.1 Reference . 133

8 CONTENTS

12.1.1 resolver_multicast_address (context) . 133

12.1.2 resolver_multicast_incoming_address (context) . 134

12.1.3 resolver_multicast_incoming_port (context) . 134

12.1.4 resolver_multicast_interface (context) . 135

12.1.5 resolver_multicast_outgoing_address (context) . 135

12.1.6 resolver_multicast_outgoing_port (context) . 136

12.1.7 resolver_multicast_port (context) . 136

12.1.8 resolver_multicast_receiver_socket_buffer (context) . 137

12.1.9 resolver_multicast_ttl (context) . 137

13 Unicast Resolver Network Options 139

13.1 Reference . 140

13.1.1 resolver_unicast_daemon (context) . 140

13.1.2 resolver_unicast_interface (context) . 141

13.1.3 resolver_unicast_port_high (context) . 141

13.1.4 resolver_unicast_port_low (context) . 142

13.1.5 resolver_unicast_receiver_socket_buffer (context) . 142

14 TCP-Based Resolver Operation Options 145

14.1 Reference . 145

14.1.1 resolver_service (context) . 145

14.1.2 resolver_service_interest_mode (context) . 147

15 Transport TCP Network Options 149

15.1 TCP Transport Session Management . 149

15.2 Reference . 150

15.2.1 transport_tcp_interface (receiver) . 150

15.2.2 transport_tcp_interface (source) . 150

15.2.3 transport_tcp_maximum_ports (context) . 151

15.2.4 transport_tcp_port (source) . 151

15.2.5 transport_tcp_port_high (context) . 152

15.2.6 transport_tcp_port_low (context) . 153

16 Transport TCP Operation Options 155

16.1 Reference . 155

16.1.1 transport_session_maximum_buffer (source) . 155

16.1.2 transport_tcp_activity_method (receiver) . 156

16.1.3 transport_tcp_activity_timeout (receiver) . 157

16.1.4 transport_tcp_activity_timeout (source) . 157

16.1.5 transport_tcp_coalesce_threshold (source) . 158

16.1.6 transport_tcp_datagram_max_size (context) . 158

CONTENTS 9

16.1.7 transport_tcp_dro_loss_recovery_timeout (receiver) . 159

16.1.8 transport_tcp_exclusiveaddr (source) . 160

16.1.9 transport_tcp_listen_backlog (source) . 160

16.1.10 transport_tcp_multiple_receiver_behavior (source) . 161

16.1.11 transport_tcp_multiple_receiver_send_order (source) . 162

16.1.12 transport_tcp_nodelay (source) . 162

16.1.13 transport_tcp_receiver_socket_buffer (context) . 163

16.1.14 transport_tcp_reuseaddr (source) . 163

16.1.15 transport_tcp_sender_socket_buffer (source) . 164

16.1.16 transport_tcp_use_session_id (source) . 164

17 Transport LBT-RM Network Options 167

17.1 LBT-RM Transport Session Management . 167

17.2 Reference . 168

17.2.1 transport_lbtrm_destination_port (source) . 168

17.2.2 transport_lbtrm_multicast_address (source) . 169

17.2.3 transport_lbtrm_multicast_address_high (context) . 169

17.2.4 transport_lbtrm_multicast_address_low (context) . 170

17.2.5 transport_lbtrm_source_port_high (context) . 170

17.2.6 transport_lbtrm_source_port_low (context) . 170

18 Transport LBT-RM Reliability Options 173

18.1 LBT-RM Datagram . 173

18.2 LBT-RM Source Ignoring NAKs for Efficiency . 174

18.3 LBT-RM Receiver Suppressing NAK Generation . 174

18.4 Reference . 175

18.4.1 transport_lbtrm_ignore_interval (source) . 175

18.4.2 transport_lbtrm_nak_backoff_interval (receiver) . 176

18.4.3 transport_lbtrm_nak_generation_interval (receiver) . 176

18.4.4 transport_lbtrm_nak_initial_backoff_interval (receiver) . 177

18.4.5 transport_lbtrm_nak_suppress_interval (receiver) . 178

18.4.6 transport_lbtrm_receiver_socket_buffer (context) . 178

18.4.7 transport_lbtrm_send_naks (receiver) . 179

18.4.8 transport_lbtrm_source_socket_buffer (context) . 179

18.4.9 transport_lbtrm_transmission_window_limit (source) . 180

18.4.10 transport_lbtrm_transmission_window_size (source) . 180

19 Transport LBT-RM Operation Options 183

19.1 Reference . 184

19.1.1 transport_lbtrm_activity_timeout (receiver) . 184

19.1.2 transport_lbtrm_coalesce_threshold (source) . 185

10 CONTENTS

19.1.3 transport_lbtrm_data_rate_limit (context) . 185

19.1.4 transport_lbtrm_datagram_max_size (context) . 186

19.1.5 transport_lbtrm_preactivity_timeout (receiver) . 186

19.1.6 transport_lbtrm_rate_interval (context) . 187

19.1.7 transport_lbtrm_receiver_timestamp (context) . 188

19.1.8 transport_lbtrm_recycle_receive_buffers (context) . 189

19.1.9 transport_lbtrm_retransmit_rate_limit (context) . 189

19.1.10 transport_lbtrm_sm_maximum_interval (source) . 190

19.1.11 transport_lbtrm_sm_minimum_interval (source) . 190

19.1.12 transport_lbtrm_source_timestamp (context) . 191

19.1.13 transport_lbtrm_tgsz (source) . 192

20 Transport LBT-RU Network Options 195

20.1 LBT-RU Transport Session Management . 195

20.2 Reference . 196

20.2.1 transport_lbtru_interface (receiver) . 196

20.2.2 transport_lbtru_interface (source) . 197

20.2.3 transport_lbtru_maximum_ports (context) . 197

20.2.4 transport_lbtru_port (source) . 198

20.2.5 transport_lbtru_port_high (context) . 198

20.2.6 transport_lbtru_port_high (receiver) . 199

20.2.7 transport_lbtru_port_low (context) . 200

20.2.8 transport_lbtru_port_low (receiver) . 200

21 Transport LBT-RU Reliability Options 203

21.1 Reference . 203

21.1.1 transport_lbtru_ignore_interval (source) . 203

21.1.2 transport_lbtru_nak_backoff_interval (receiver) . 204

21.1.3 transport_lbtru_nak_generation_interval (receiver) . 204

21.1.4 transport_lbtru_nak_initial_backoff_interval (receiver) . 205

21.1.5 transport_lbtru_nak_suppress_interval (receiver) . 205

21.1.6 transport_lbtru_receiver_socket_buffer (context) . 206

21.1.7 transport_lbtru_send_naks (receiver) . 207

21.1.8 transport_lbtru_source_socket_buffer (context) . 207

21.1.9 transport_lbtru_transmission_window_limit (source) . 208

21.1.10 transport_lbtru_transmission_window_size (source) . 208

22 Transport LBT-RU Operation Options 211

22.1 Reference . 211

22.1.1 transport_lbtru_acknowledgement_interval (receiver) . 212

22.1.2 transport_lbtru_activity_timeout (receiver) . 212

CONTENTS 11

22.1.3 transport_lbtru_client_activity_timeout (source) . 213

22.1.4 transport_lbtru_client_map_size (source) . 213

22.1.5 transport_lbtru_coalesce_threshold (source) . 214

22.1.6 transport_lbtru_connect_interval (receiver) . 214

22.1.7 transport_lbtru_data_rate_limit (context) . 215

22.1.8 transport_lbtru_datagram_max_size (context) . 215

22.1.9 transport_lbtru_maximum_connect_attempts (receiver) . 216

22.1.10 transport_lbtru_rate_interval (context) . 216

22.1.11 transport_lbtru_recycle_receive_buffers (context) . 217

22.1.12 transport_lbtru_retransmit_rate_limit (context) . 218

22.1.13 transport_lbtru_sm_maximum_interval (source) . 218

22.1.14 transport_lbtru_sm_minimum_interval (source) . 219

22.1.15 transport_lbtru_use_session_id (source) . 219

23 Transport LBT-IPC Operation Options 223

23.1 LBT-IPC Transport Session Management . 223

23.2 Reference . 224

23.2.1 transport_lbtipc_activity_timeout (receiver) . 224

23.2.2 transport_lbtipc_behavior (source) . 224

23.2.3 transport_lbtipc_datagram_max_size (context) . 225

23.2.4 transport_lbtipc_dro_loss_recovery_timeout (receiver) . 226

23.2.5 transport_lbtipc_id (source) . 226

23.2.6 transport_lbtipc_id_high (context) . 227

23.2.7 transport_lbtipc_id_low (context) . 227

23.2.8 transport_lbtipc_maximum_receivers_per_transport (source) 228

23.2.9 transport_lbtipc_pend_behavior_linger_loop_count (context) 228

23.2.10 transport_lbtipc_receiver_operational_mode (context) . 229

23.2.11 transport_lbtipc_receiver_thread_behavior (context) . 229

23.2.12 transport_lbtipc_recycle_receive_buffers (context) . 230

23.2.13 transport_lbtipc_sm_interval (source) . 231

23.2.14 transport_lbtipc_transmission_window_size (source) . 231

24 Transport LBT-SMX Operation Options 233

24.1 LBT-SMX Transport Session Management . 233

24.2 Reference . 234

24.2.1 transport_lbtsmx_activity_timeout (receiver) . 234

24.2.2 transport_lbtsmx_datagram_max_size (source) . 234

24.2.3 transport_lbtsmx_id (source) . 235

24.2.4 transport_lbtsmx_id_high (context) . 236

24.2.5 transport_lbtsmx_id_low (context) . 236

24.2.6 transport_lbtsmx_maximum_receivers_per_transport (source) 237

12 CONTENTS

24.2.7 transport_lbtsmx_message_statistics_enabled (context) . 237

24.2.8 transport_lbtsmx_sm_interval (source) . 238

24.2.9 transport_lbtsmx_transmission_window_size (source) . 238

25 Transport Acceleration Options 241

25.1 Myricom Datagram Bypass Layer (DBL) . 241

25.2 Reference . 242

25.2.1 dbl_lbtrm_acceleration (context) . 242

25.2.2 dbl_lbtru_acceleration (context) . 242

25.2.3 dbl_mim_acceleration (context) . 243

25.2.4 dbl_resolver_acceleration (context) . 243

25.3 Solarflare Onload . 244

25.3.1 Onload Stack Names . 244

25.3.2 Using Onload with UM . 245

25.3.3 Solarflare Tips . 246

25.4 Reference . 247

25.4.1 onload_acceleration_stack_name (context) . 247

25.4.2 onload_acceleration_stack_name (receiver) . 247

25.4.3 onload_acceleration_stack_name (source) . 248

25.5 UD Acceleration for Mellanox Hardware Interfaces . 248

25.6 Reference . 249

25.6.1 resolver_ud_acceleration (context) . 249

25.6.2 ud_acceleration (context) . 250

26 Smart Source Options 253

26.1 Reference . 253

26.1.1 mem_mgt_callbacks (source) . 253

26.1.2 smart_src_enable_spectrum_channel (source) . 254

26.1.3 smart_src_max_message_length (source) . 254

26.1.4 smart_src_message_property_int_count (source) . 255

26.1.5 smart_src_retention_buffer_count (source) . 256

26.1.6 smart_src_user_buffer_count (source) . 257

26.1.7 transport_lbtrm_smart_src_transmission_window_buffer_count (source) 257

26.1.8 transport_lbtru_smart_src_transmission_window_buffer_count (source) 259

27 Encrypted TCP Options 261

27.1 Reference . 261

27.1.1 tls_certificate (context) . 261

27.1.2 tls_certificate_key (context) . 261

27.1.3 tls_certificate_key_password (context) . 262

27.1.4 tls_cipher_suites (context) . 262

CONTENTS 13

27.1.5 tls_compression_negotiation_timeout (context) . 263

27.1.6 tls_trusted_certificates (context) . 264

27.1.7 use_tls (context) . 264

28 Compressed TCP Options 267

28.1 Reference . 267

28.1.1 compression (context) . 267

29 Multicast Immediate Messaging Network Options 269

29.1 Reference . 269

29.1.1 mim_address (context) . 270

29.1.2 mim_destination_port (context) . 270

29.1.3 mim_incoming_address (context) . 270

29.1.4 mim_incoming_destination_port (context) . 271

29.1.5 mim_outgoing_address (context) . 271

29.1.6 mim_outgoing_destination_port (context) . 272

30 Multicast Immediate Messaging Reliability Options 275

30.1 Reference . 275

30.1.1 mim_ignore_interval (context) . 275

30.1.2 mim_nak_backoff_interval (context) . 276

30.1.3 mim_nak_generation_interval (context) . 276

30.1.4 mim_nak_initial_backoff_interval (context) . 277

30.1.5 mim_nak_suppress_interval (context) . 277

30.1.6 mim_send_naks (context) . 278

30.1.7 mim_transmission_window_limit (context) . 278

30.1.8 mim_transmission_window_size (context) . 279

31 Multicast Immediate Messaging Operation Options 281

31.1 Reference . 281

31.1.1 immediate_message_receiver_function (context) . 281

31.1.2 immediate_message_topic_receiver_function (context) . 282

31.1.3 mim_activity_timeout (context) . 282

31.1.4 mim_delivery_control_activity_check_interval (context) . 283

31.1.5 mim_delivery_control_activity_timeout (context) . 283

31.1.6 mim_delivery_control_order_tablesz (context) . 284

31.1.7 mim_implicit_batching_interval (context) . 284

31.1.8 mim_implicit_batching_minimum_length (context) . 285

31.1.9 mim_ordered_delivery (context) . 285

31.1.10 mim_sm_maximum_interval (context) . 286

31.1.11 mim_sm_minimum_interval (context) . 286

14 CONTENTS

31.1.12 mim_sqn_window_increment (context) . 287

31.1.13 mim_sqn_window_size (context) . 287

31.1.14 mim_src_deletion_timeout (context) . 288

31.1.15 mim_tgsz (context) . 288

31.1.16 mim_unrecoverable_loss_function (context) . 289

32 Late Join Options 291

32.1 Estimating Recovery Time . 291

32.2 Reference . 292

32.2.1 late_join (source) . 292

32.2.2 late_join_info_request_interval (receiver) . 292

32.2.3 late_join_info_request_maximum (receiver) . 293

32.2.4 retransmit_initial_sequence_number_request (receiver) . 293

32.2.5 retransmit_message_caching_proximity (receiver) . 294

32.2.6 retransmit_request_interval (receiver) . 295

32.2.7 retransmit_request_maximum (receiver) . 295

32.2.8 retransmit_request_message_timeout (receiver) . 296

32.2.9 retransmit_request_outstanding_maximum (receiver) . 296

32.2.10 retransmit_retention_age_threshold (source) . 297

32.2.11 retransmit_retention_size_limit (source) . 297

32.2.12 retransmit_retention_size_threshold (source) . 298

32.2.13 use_late_join (receiver) . 298

33 Off-Transport Recovery Options 301

33.1 Reference . 301

33.1.1 otr_message_caching_threshold (receiver) . 301

33.1.2 otr_request_initial_delay (receiver) . 302

33.1.3 otr_request_log_alert_cooldown (receiver) . 302

33.1.4 otr_request_maximum_interval (receiver) . 303

33.1.5 otr_request_message_timeout (receiver) . 304

33.1.6 otr_request_minimum_interval (receiver) . 304

33.1.7 otr_request_outstanding_maximum (receiver) . 305

33.1.8 use_otr (receiver) . 305

34 Unicast Immediate Messaging Network Options 307

34.1 Reference . 307

34.1.1 request_tcp_bind_request_port (context) . 307

34.1.2 request_tcp_interface (context) . 308

34.1.3 request_tcp_port (context) . 308

34.1.4 request_tcp_port_high (context) . 309

34.1.5 request_tcp_port_low (context) . 310

CONTENTS 15

35 Unicast Immediate Messaging Operation Options 313

35.1 Reference . 313

35.1.1 request_tcp_activity_timeout (context) . 313

35.1.2 request_tcp_exclusiveaddr (context) . 314

35.1.3 request_tcp_listen_backlog (context) . 315

35.1.4 request_tcp_reuseaddr (context) . 315

35.1.5 response_session_maximum_buffer (context) . 316

35.1.6 response_session_sender_socket_buffer (context) . 316

35.1.7 response_tcp_activity_timeout (context) . 317

35.1.8 response_tcp_deletion_timeout (context) . 317

35.1.9 response_tcp_interface (context) . 318

35.1.10 response_tcp_nodelay (context) . 319

36 Implicit Batching Options 321

36.1 Reference . 321

36.1.1 implicit_batching_interval (source) . 321

36.1.2 implicit_batching_minimum_length (source) . 321

37 Delivery Control Options 323

37.1 Burst Loss . 324

37.2 Reference . 324

37.2.1 channel_map_tablesz (receiver) . 324

37.2.2 delivery_control_loss_check_interval (receiver) . 324

37.2.3 delivery_control_maximum_burst_loss (receiver) . 325

37.2.4 delivery_control_maximum_total_map_entries (context) . 326

37.2.5 delivery_control_message_batching (context) . 326

37.2.6 mim_delivery_control_loss_check_interval (context) . 327

37.2.7 null_channel_behavior (receiver) . 328

37.2.8 source_notification_function (receiver) . 328

37.2.9 unrecognized_channel_behavior (receiver) . 329

38 Wildcard Receiver Options 331

38.1 Reference . 331

38.1.1 pattern_type (wildcard_receiver) . 331

38.1.2 receiver_create_callback (wildcard_receiver) . 332

38.1.3 receiver_delete_callback (wildcard_receiver) . 332

38.1.4 resolver_no_source_linger_timeout (wildcard_receiver) . 333

38.1.5 resolver_query_maximum_interval (wildcard_receiver) . 333

38.1.6 resolver_query_minimum_duration (wildcard_receiver) . 334

38.1.7 resolver_query_minimum_interval (wildcard_receiver) . 334

38.1.8 resolver_wildcard_queries_per_second (context) . 335

16 CONTENTS

38.1.9 resolver_wildcard_query_bps (context) . 335

38.1.10 resolver_wildcard_receiver_map_tablesz (context) . 336

39 Event Queue Options 339

39.1 Reference . 339

39.1.1 event_queue_name (event_queue) . 339

39.1.2 queue_age_enabled (event_queue) . 339

39.1.3 queue_cancellation_callbacks_enabled (event_queue) . 340

39.1.4 queue_count_enabled (event_queue) . 341

39.1.5 queue_delay_warning (event_queue) . 341

39.1.6 queue_enqueue_notification (event_queue) . 342

39.1.7 queue_objects_purged_on_close (event_queue) . 343

39.1.8 queue_service_time_enabled (event_queue) . 343

39.1.9 queue_size_warning (event_queue) . 344

40 Ultra Messaging Persistence Options 347

40.1 Reference . 347

40.1.1 ume_ack_batching_interval (context) . 347

40.1.2 ume_activity_timeout (receiver) . 348

40.1.3 ume_activity_timeout (source) . 348

40.1.4 ume_allow_confirmed_delivery (receiver) . 349

40.1.5 ume_application_outstanding_maximum (receiver) . 350

40.1.6 ume_confirmed_delivery_notification (source) . 350

40.1.7 ume_consensus_sequence_number_behavior (receiver) 351

40.1.8 ume_consensus_sequence_number_behavior (source) . 352

40.1.9 ume_explicit_ack_only (receiver) . 353

40.1.10 ume_flight_size (source) . 354

40.1.11 ume_flight_size_behavior (source) . 354

40.1.12 ume_flight_size_bytes (source) . 355

40.1.13 ume_force_reclaim_function (source) . 356

40.1.14 ume_late_join (source) . 356

40.1.15 ume_message_stability_lifetime (source) . 357

40.1.16 ume_message_stability_notification (source) . 357

40.1.17 ume_message_stability_timeout (source) . 358

40.1.18 ume_proactive_keepalive_interval (context) . 359

40.1.19 ume_proxy_source (source) . 359

40.1.20 ume_receiver_liveness_interval (context) . 360

40.1.21 ume_receiver_paced_persistence (receiver) . 360

40.1.22 ume_receiver_paced_persistence (source) . 361

40.1.23 ume_recovery_sequence_number_info_function (receiver) 362

40.1.24 ume_registration_extended_function (receiver) . 362

CONTENTS 17

40.1.25 ume_registration_function (receiver) . 363

40.1.26 ume_registration_interval (receiver) . 363

40.1.27 ume_registration_interval (source) . 364

40.1.28 ume_repository_ack_on_reception (source) . 364

40.1.29 ume_repository_disk_file_size_limit (source) . 365

40.1.30 ume_repository_size_limit (source) . 366

40.1.31 ume_repository_size_threshold (source) . 367

40.1.32 ume_retention_intergroup_stability_behavior (source) . 367

40.1.33 ume_retention_intragroup_stability_behavior (source) . 368

40.1.34 ume_retention_size_limit (source) . 369

40.1.35 ume_retention_size_threshold (source) . 370

40.1.36 ume_retention_unique_confirmations (source) . 370

40.1.37 ume_session_id (context) . 371

40.1.38 ume_session_id (receiver) . 371

40.1.39 ume_session_id (source) . 372

40.1.40 ume_source_liveness_timeout (context) . 372

40.1.41 ume_sri_flush_sri_request_response (source) . 373

40.1.42 ume_sri_immediate_sri_request_response (source) . 374

40.1.43 ume_sri_inter_sri_interval (source) . 374

40.1.44 ume_sri_max_number_of_sri_per_update (source) . 375

40.1.45 ume_sri_request_interval (receiver) . 376

40.1.46 ume_sri_request_maximum (receiver) . 376

40.1.47 ume_sri_request_response_latency (source) . 376

40.1.48 ume_state_lifetime (receiver) . 377

40.1.49 ume_state_lifetime (source) . 378

40.1.50 ume_store (source) . 378

40.1.51 ume_store_activity_timeout (source) . 379

40.1.52 ume_store_behavior (source) . 379

40.1.53 ume_store_check_interval (source) . 380

40.1.54 ume_store_group (source) . 380

40.1.55 ume_store_name (source) . 381

40.1.56 ume_use_ack_batching (receiver) . 382

40.1.57 ume_use_late_join (receiver) . 382

40.1.58 ume_use_store (receiver) . 383

40.1.59 ume_user_receiver_registration_id (context) . 384

40.1.60 ume_write_delay (source) . 384

41 Ultra Messaging Queuing Options 387

41.1 Reference . 387

41.1.1 umq_command_interval (context) . 387

18 CONTENTS

41.1.2 umq_command_outstanding_maximum (context) . 388

41.1.3 umq_delayed_consumption_report_interval (receiver) . 388

41.1.4 umq_hold_interval (receiver) . 389

41.1.5 umq_index_assignment_eligibility_default (receiver) . 389

41.1.6 umq_message_stability_notification (source) . 390

41.1.7 umq_msg_total_lifetime (source) . 390

41.1.8 umq_queue_activity_timeout (context) . 391

41.1.9 umq_queue_participation (receiver) . 391

41.1.10 umq_queue_registration_id (context) . 392

41.1.11 umq_receiver_type_id (receiver) . 392

41.1.12 umq_retransmit_request_interval (receiver) . 393

41.1.13 umq_retransmit_request_outstanding_maximum (receiver) 393

41.1.14 umq_session_id (context) . 394

41.1.15 umq_ulb_application_set (source) . 394

41.1.16 umq_ulb_application_set_assignment_function (source) . 395

41.1.17 umq_ulb_application_set_events (source) . 396

41.1.18 umq_ulb_application_set_load_factor_behavior (source) . 396

41.1.19 umq_ulb_application_set_message_lifetime (source) . 397

41.1.20 umq_ulb_application_set_message_max_reassignments (source) 398

41.1.21 umq_ulb_application_set_message_reassignment_timeout (source) 398

41.1.22 umq_ulb_application_set_receiver_activity_timeout (source) 399

41.1.23 umq_ulb_application_set_receiver_keepalive_interval (source) 400

41.1.24 umq_ulb_application_set_round_robin_bias (source) . 400

41.1.25 umq_ulb_check_interval (source) . 401

41.1.26 umq_ulb_events (source) . 401

41.1.27 umq_ulb_flight_size (source) . 402

41.1.28 umq_ulb_flight_size_behavior (source) . 403

41.1.29 umq_ulb_receiver_events (source) . 403

41.1.30 umq_ulb_receiver_portion (source) . 404

41.1.31 umq_ulb_receiver_priority (source) . 405

41.1.32 umq_ulb_source_activity_timeout (receiver) . 405

41.1.33 umq_ulb_source_check_interval (receiver) . 406

42 Hot Failover Operation Options 409

42.1 Reference . 409

42.1.1 delivery_control_loss_check_interval (hfx) . 409

42.1.2 delivery_control_max_delay (hfx) . 410

42.1.3 delivery_control_maximum_burst_loss (hfx) . 410

42.1.4 delivery_control_maximum_total_map_entries (hfx) . 411

42.1.5 duplicate_delivery (hfx) . 411

CONTENTS 19

42.1.6 hf_duplicate_delivery (receiver) . 412

42.1.7 hf_optional_messages (receiver) . 413

42.1.8 hf_receiver (wildcard_receiver) . 413

42.1.9 ordered_delivery (hfx) . 414

43 Automatic Monitoring Options 417

43.1 Reference . 417

43.1.1 monitor_appid (context) . 417

43.1.2 monitor_appid (event_queue) . 418

43.1.3 monitor_format (context) . 418

43.1.4 monitor_format (event_queue) . 419

43.1.5 monitor_format_opts (context) . 420

43.1.6 monitor_format_opts (event_queue) . 420

43.1.7 monitor_interval (context) . 421

43.1.8 monitor_interval (event_queue) . 421

43.1.9 monitor_interval (receiver) . 422

43.1.10 monitor_interval (wildcard_receiver) . 423

43.1.11 monitor_transport (context) . 423

43.1.12 monitor_transport (event_queue) . 424

43.1.13 monitor_transport_opts (context) . 425

43.1.14 monitor_transport_opts (event_queue) . 426

44 Deprecated Options 429

44.1 Reference . 429

44.1.1 datagram_acceleration_functions (context) . 429

44.1.2 delivery_control_loss_tablesz (receiver) . 429

44.1.3 delivery_control_order_tablesz (receiver) . 430

44.1.4 implicit_batching_type (source) . 430

44.1.5 network_compatibility_mode (context) . 431

44.1.6 otr_request_duration (receiver) . 432

44.1.7 pattern_callback (wildcard_receiver) . 432

44.1.8 rcv_sync_cache (receiver) . 433

44.1.9 rcv_sync_cache_timeout (receiver) . 433

44.1.10 receive_thread_pool_size (context) . 434

44.1.11 resolver_active_source_interval (context) . 434

44.1.12 resolver_active_threshold (context) . 435

44.1.13 resolver_context_advertisement_interval (context) . 435

44.1.14 resolver_maximum_advertisements (context) . 436

44.1.15 resolver_maximum_queries (context) . 436

44.1.16 resolver_query_interval (context) . 437

44.1.17 resolver_query_max_interval (wildcard_receiver) . 437

20 CONTENTS

44.1.18 resolver_unicast_address (context) . 438

44.1.19 resolver_unicast_destination_port (context) . 438

44.1.20 resolver_unicast_port (context) . 439

44.1.21 retransmit_message_map_tablesz (source) . 439

44.1.22 retransmit_request_generation_interval (receiver) . 440

44.1.23 source_cost_evaluation_function (context) . 440

44.1.24 transport_datagram_max_size (context) . 441

44.1.25 transport_lbtipc_acknowledgement_interval (receiver) . 441

44.1.26 transport_lbtipc_client_activity_timeout (source) . 442

44.1.27 transport_lbtrdma_datagram_max_size (context) . 442

44.1.28 transport_lbtrdma_interface (source) . 443

44.1.29 transport_lbtrdma_maximum_ports (context) . 444

44.1.30 transport_lbtrdma_port (source) . 444

44.1.31 transport_lbtrdma_port_high (context) . 445

44.1.32 transport_lbtrdma_port_low (context) . 445

44.1.33 transport_lbtrdma_receiver_thread_behavior (context) . 446

44.1.34 transport_lbtrdma_transmission_window_size (source) . 446

44.1.35 ume_message_map_tablesz (source) . 447

44.1.36 ume_primary_store_address (source) . 447

44.1.37 ume_primary_store_port (source) . 448

44.1.38 ume_registration_id (source) . 448

44.1.39 ume_retransmit_request_generation_interval (receiver) . 449

44.1.40 ume_retransmit_request_interval (receiver) . 449

44.1.41 ume_retransmit_request_maximum (receiver) . 450

44.1.42 ume_retransmit_request_outstanding_maximum (receiver) 450

44.1.43 ume_secondary_store_address (source) . 451

44.1.44 ume_secondary_store_port (source) . 451

44.1.45 ume_tertiary_store_address (source) . 452

44.1.46 ume_tertiary_store_port (source) . 452

44.1.47 umq_flight_size (context) . 453

44.1.48 umq_flight_size (source) . 453

44.1.49 umq_flight_size_behavior (context) . 454

44.1.50 umq_flight_size_behavior (source) . 454

44.1.51 umq_message_retransmission_interval (context) . 455

44.1.52 umq_message_stability_notification (context) . 456

44.1.53 umq_msg_total_lifetime (context) . 456

44.1.54 umq_queue_check_interval (context) . 457

44.1.55 umq_queue_name (source) . 457

44.1.56 umq_queue_participants_only (source) . 458

44.1.57 umq_queue_query_interval (context) . 458

CONTENTS 21

44.1.58 umq_require_queue_authentication (context) . 459

44.1.59 umq_retention_intergroup_stability_behavior (context) . 459

44.1.60 umq_retention_intergroup_stability_behavior (source) . 460

44.1.61 umq_retention_intragroup_stability_behavior (context) . 461

44.1.62 umq_retention_intragroup_stability_behavior (source) . 462

44.1.63 use_transport_thread (receiver) . 463

Chapter 1

Introduction

This document describes how Ultra Messaging-based user applications are configured.

For information on configuring other UM components, see:

• Lbmrd (Unicast Resolver Daemon) Configuration

• SRS (TCP-based Resolver Service) Configuration

• DRO Configuration

• Persistent Store Configuration

For policies and procedures related to Ultra Messaging Technical Support, see UM Support.

(C) Copyright 2004,2023 Informatica Inc. All Rights Reserved.

This software and documentation are provided only under a separate license agreement containing restrictions
on use and disclosure. No part of this document may be reproduced or transmitted in any form, by any means
(electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

A current list of Informatica trademarks is available on the web at https://www.informatica.←↩
com/trademarks.html.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party
notices are included with the product.

This software is protected by patents as detailed at https://www.informatica.com/legal/patents.←↩
html.

The information in this documentation is subject to change without notice. If you find any problems in this documen-
tation, please report them to us in writing at Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are
provided.
INFORMATICA LLC PROVIDES THE INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FIT←↩
NESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

This document assumes familiarity with the UM Concepts Guide.

See UM Glossary for Ultra Messaging terminology, abbreviations, and acronyms.

1.1 Configuration Overview

There are different kinds of configuration.

https://ultramessaging.github.io/UM_Support.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/legal/patents.html
https://www.informatica.com/legal/patents.html

24 Introduction

• Applications create UM objects (contexts, sources, receivers) using the UM library. Those objects must
be configured to control their operation and behavior using "LBM configuration options". An application
typically uses an "LBM configuration file" in either XML or flat format.

• Informatica daemons (e.g. SRS, Store, DRO) are configured using program-specific configuration files in
XML format.

• Informatica daemons (e.g. SRS, Store, DRO) also internally create UM objects (contexts, sources, receivers)
using the UM library. Those objects must also be configured using one or more LBM configuration files.

This document describes the options available for LBM configuration.

For Ultra Messaging applications, you can set a variety of operational options to customize the application's behavior
or performance. You assign values to these options in configuration files or by using API calls. You can assign option
values to objects upon or after object creation. Within an object, the implemented option values are referred to as
attributes.

Ultra Messaging uses reasonable default values for configuration options, enabling applications to run "out of the
box." However, expect to customize Ultra Messaging options to optimize your operating environment. You can use
different ways to configure option default and customized value assignments.

1.1.1 Assignment Methods

You can use the following ways to set attributes with configuration options:

plain text configuration file

The simplest way to configure an application, a plain text configuration file (sometimes called a "flat" file) allows
you to re-define UM's default berhaviors. These new defaults are read into a process-global configuration buffer,
and are used as UM objects are created. Note that after reading a plain text configuration file, an application
can still override the defaults on a per-object basis using UM's API. NOTE: Informatica recommends the use
of XML configuration files for their added flexibility.

XML configuration file

An XML configuration file provides a more sophisticated way to set UM's default behavior, allowing users to
customize UM's default behavior on a per-application and/or per-object basis. And while an application can still
override the defaults, restrictions can be imposed, constraining applications to only certain options and certain
values of those options. NOTE: Informatica recommends the use of XML configuration files.

attributes objects API

The application program can call API functions to create UM attributes objects and set configuration options in
those objects. The attributes objects are then used to create other UM messaging objects to set those options.

Alternatively, there are API functions which allow you to modify a subset of configurable options on already-
created UM messaging objects. NOTE: Informatica recommends the use of XML configuration files so
that configuration can be adjusted without changing source code.

The following image shows the different ways Ultra Messaging stores and assigns option values before, during, and
after primitive object creation. Primitive objects are sources, receivers, wildcard receivers, event queues, contexts,
or HFX objects. The ultimate result is a primitive object with the assigned values residing in current attributes.

1.1 Configuration Overview 25

The initial default attributes is the set of factory defaults in Ultra Messaging. At process initialization time, these
factory defaults are copied into a set of internal process-global attribute structures (current default attributes).

An application can modify desired options by reading a plaintext configuration file. UM will store these values in
current default attributes, overwriting the factory defaults.

An instantiated primitive object uses values from current default attributes, the XML config table, and the custom
attributes object, and then holds the results in current attributes.

An XML configuration file can pass its setting to an object being created either by directly populating the XML config
table, or by creating a custom attributes object.

1.1.2 Assignment Flow

The above diagram implies, but does not fully explain, the flow of attribute value assignment that UM performs when
an application creates a primitive object. This flow is described below, and is important in understanding how and
when default values are overridden:

1. If applicable, copy plain text configuration file values to current process-global default attributes.

2. Start creating object.

3. Custom attributes object(s) created/populated (if applicable).

4. If lbm_∗_create() has a NULL attr, copy current default attributes into current attributes. Otherwise, copy
custom attributes object values into current attributes.

5. Read applicable options from the XML config table into the current attributes. Do not overwrite options set
with lbm_config(), or lbm_∗_attr_setopt(), which were tagged when modified.

6. Finish object creation.

7. current attributes can be changed further (only certain options) via lbm_∗_setopt().

26 Introduction

1.1.3 Definitions

Before discussing how UM options can be set, some terminology is in order.

Option

A single configuration item that controls some aspect of UM operation. An option typically resides in a con-
figuration file, but can also be assigned a value via API call. We use options to assign values to an object's
attributes.

Attribute

An operational characteristic of an object. An attribute's value is set by an option, hence, there is a one-to-one
correspondence between options and attributes. (Note: This use of the term "attribute" is unrelated to, and not
to be confused with, "attribute" in XML syntax. In this document, we refer to the latter as "XML attribute".)

XML attribute

See above. In XML syntax, XML attributes are parameters for XML elements.

Custom attributes object

A UM object that contains custom attribute values (set by options) for a specific UM object. Separate (and
multiple) sets of attributes can exist for each application, though only one can be used when creating a primitive
object.

Initial default attributes

The default attributes values built into UM. UM and your applications use these if you have not set any options
for the attributes.

Primitive object

Specifically, an object that is a source, receiver, wildcard receiver, event queue, context, or HFX object.

Configuration file

This comes in two types: XML and plain text. Configuration files contain assigned values for options, but the
different types are read/copied at different times during the creation of an object.

XML config table

Contains option values that are read from the XML configuration file.

Current default attributes

The attributes values used to create an object in the absence of custom attributes values.

Current attributes

The attribute values for an instantiated UM object that control the current operation of that object.

Scope

The type of object to which an option can apply. Possible scopes are context, source, receiver, wildcard_←↩
receiver, event_queue, and hfx.

1.1 Configuration Overview 27

1.1.4 Which Method Should I Use?

Informatica generally recommends the use of XML configuration files. They provide a flexible method of controlling
configuration that doesn't require changing source code.

For example, a publisher can map sources to transport sessions by topic name using regular expression pattern
matching. Other configurations can be customized to specific applications.

1.1.5 Configuration Error Handling

Prior to UM version 6.13, an error in a configuration file typically resulted in the remainder of the configuration file
not being processed.

As of UM version 6.13, UM will attempt to process the entire configuration file, even if there are errors. Any lines
which cannot be properly parsed will generate an error to the logger, but subsequent lines will still be processed.

Note that the API function will return a bad status to indicate that one or more errors were encountered, and the
application can decide what to do. For example:

err = lbm_config("test.cfg");
if (err == LBM_FAILURE) {

fprintf(stderr, "Warning, ignoring lbm_config error: %s\n", lbm_errmsg());
}

The last error encountered will be returned by the lbm_errmsg() call. Note that all errors are also reported via the
UM logger callback; see lbm_log(). Thus, if the "test.cfg" file has two errors in it, both will be logged to the logger,
and the last one is returned by lbm_errmsg().

Why Ignore Errors?

Normally an application would want to exit if lbm_config() returned an error. However, here is an example use case
for considering it a warning and continuing with the application execution.

Let's imagine that future UM version 42.0 has a new configuration option, "receiver predict_next_message 1", which
allows receivers to receive messages before they are sent, achieving the elusive goal of negative latency. The user
could include this option in the master configuration file, and all applications at version 42.0 and beyond will benefit
from negative latencies. Applications at version 6.13 through 41 will log an error when they encounter that option,
but will continue to load the rest of the configuration file, and will run normally.

Thus, new configuration options can be included in a master configuration file, and older versions will log warnings
about but will still run.

Note however that any pre-6.13 applications will return an error and not process the rest of the configuration file.

Also note that the user must be very careful to examine the error messages logged to ensure that all errors are
expected (due to earlier versions not understanding options included for later versions). If lbm_config errors are
ignored, it would be easy to overlook a mistyped option and have it not take effect.

XML Errors

If an XML configuration file is being used, the basic XML structure must be valid for the parser to read the whole file.

For example:

<?xml version="1.0" ?>
<um-configuration version="1.0">

<mistake />
<applications>
<application>

<contexts>
<context>
<options type="context">

<option name="request_tcp_port_low" default-value="13000">
<option name="request_tcp_port_high" default-value="13010">
</option>

</options>

28 Introduction

</context>
</contexts>

</application>
</applications>

</um-configuration>

This XML file will be rejected without applying the two request port options because of the "<mistake />" element.

However, if the XML elements are properly coded, invalid option names or values will follow the same pattern as flat
configuration files: errors will be reported, and parsing will continue.

For example:

<?xml version="1.0" ?>
<um-configuration version="1.0">

<applications>
<application>

<contexts>
<context>
<options type="context">

<option name="mistake" default-value="1">
<option name="request_tcp_port_low" default-value="13000">
<option name="request_tcp_port_high" default-value="13010">
</option>

</options>
</context>

</contexts>
</application>

</applications>
</um-configuration>

This XML file will be accepted and the request TCP port range will be applied. The "mistake" option will log an error.
And the API will return LBM_FAILURE, which the application can decide to ignore.

Daemon Config Files

This behavior of continuing execution in the event of errors is extended to the UMP Store and the DRO for UM
configuration configuration files. That is, an error found in a UM configuration file will be logged, and the daemon
will continue to run. Users should again be very careful to examine log files to prevent mistyped options from leading
to undesired behavior.

However, for the Store and DRO configuration XML files, this "log and continue" error handling is not used. Errors
in the Store or DRO configuration files will prevent them from running.

1.1.6 Host Name Resolution

Many of UM's configuration options specify an IP address. Prior to UM version 6.10 these needed to be specified in
dotted numeric format. For example, 10.23.19.210. Starting in version 6.10, any configuration option that accepts
an IP address can also accept a DNS host name (the few exceptions are noted in the documentation). For example,
myhost.mydomain.com. Note that the DNS name system is not necessarily used when host names are specified;
for example, most Unix systems will first look up the name in /etc/hosts.

When host names are specified, the name is resolved to an IP address when the configuration option is parsed.
If you change the IP address associated with a name, that change will not take effect until the configuration file is
re-read, typically by restarting the application.

1.1.7 Configuration Files

There are two types of UM Configuration files:

• XML Configuration Files - recommended.

1.1 Configuration Overview 29

• Plain Text Configuration Files

You can read Configuration files either by API call, or automatically upon application launch by specifying a file
name in an environment variable. See Assignment Methods and Assignment Flow for details on how these options
replace or override default values.

There are some UM configuration options which cannot be set via configuration files. These are options whose
values are function pointers or data structures. These options can only be set via API functions ∗_setopt. For
example, context resolver_source_notification_function has a function pointer as its value.

30 Introduction

Chapter 2

XML Configuration Files

XML configuration files let you address many different applications and operating requirements, removing the need
to programmatically set and reset options for them. A single XML file can contain options for multiple applications.
Moreover, for a single application, you can configure multiple named contexts, event queues, etc., with different
values for the same options.

See Example Configuration Scenarios for example configuration files.

2.1 XML Configuration Concepts

The primary motivation for using XML-based configuration is to be able to configure different instances of the
same object in different ways. For example, with a single XML configuration file, you can specify different options for
different applications. Or, within a given application, you can specify different options for different context objects. Or
within a given context, you can specify different options for different topic-based objects (sources and/or receivers).
You can do this without the necessity of writing special application code to do it.

Users often have large sets of configuration options that apply to multiple applications or objects. Rather than having
to reproduce the entire set for each application or object, templates can be used to give common sets a name that
can be referenced in applications or objects in the XML file.

Applications may also override configuration options specified in an XML configuration file, either by using a plain
text configuration file, or by using UM's API.

However, it is also possible for the XML configuration file to impose restrictions on the application's ability to override
options. Using <allow> and <deny> elements, and the order attribute, XML files can constrain application to
using specific values for desired options.

2.2 XML Reference Names

Given that XML configuration files are intended to allow different objects to be configured differently, there needs to
be a way to identify which object should have which configuration. This is done with application and object names,
which the XML file references.

Context and Event Queue names are case-sensitive and can consist of only alpha-numeric ASCII characters, dash
(-), and underscore (_). They must be 127 characters or less.

Valid examples:

32 XML Configuration Files

• abc

• 123-abc

• XYZ_xyz

Invalid examples:

• abc xyz (no spaces allowed)

• 123.abc (no period allowed)

• XYZ,xyz (no comma allowed)

Template and application names are case-sensitive and can consist of any printable ASCII characters. They must
be 99 characters or less.

2.2.1 XML Object Names

The simplest apps create UM objects without using attribute objects. For example:

err = lbm_context_create(&ctx, NULL, NULL, NULL);

Passing NULL for the context attribute object causes UM to simply use the defaults (as possibly modified by a
configuration file).

However, if there is a chance that you will want to be able to configure the objects differently, you should create an
attribute object using the appropriate "∗_attr_create_from_xml()" API, giving it a descriptive name. For example:

lbm_context_attr_t *ctx_attr;
...
err = lbm_context_attr_create_from_xml(&ctx_attr, "main_ctx");
err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);

You can do this even if you do not yet make use of an XML file. If no XML file has been read, that lbm_context_←↩
attr_create_from_xml() does the same thing as lbm_context_attr_create().

However, if an XML file is supplied and it specifies a configuration for a context named "main_ctx", the "∗_attr_←↩
create_from_xml()" API will first load the attribute object with the default values and will then apply the proper XML
defaults to the attribute object. Desired options can then be overridden using the appropriate "∗_attr_setopt()" or
"∗_attr_str_setopt()" APIs.

The full set of XML-enabled attribute creation APIs are: lbm_context_attr_create_from_xml(), lbm_src_topic_←↩
attr_create_from_xml(), lbm_rcv_topic_attr_create_from_xml(), lbm_event_queue_attr_create_from_xml(),
lbm_wildcard_rcv_attr_create_from_xml(), lbm_hfx_attr_create_from_xml().

Note

It is also possible to call lbm_context_attr_create_from_xml() passing NULL as the context name. This
matches a XML <context> element that has no name attribute. An unnamed "<context>" element only
matches unnamed contexts.

2.3 xml:space Attribute 33

2.2.2 XML Application Names

An XML configuration file groups configurations into one or more <application> elements. Normally, each
<application> is given a unique name, using the "name" attribute. It is also permissible to include an
<application> element without a name attribute (the "unnamed" application element).

When an application starts and attempts to use an XML configuration file, the application normally gives UM its
name, which UM will match to one of the XML file's <application> elements. It is also permissible that the applica-
tion does not give itself a name, in which case UM will match the unnamed <application> element.

Unlike most XML elements, the <applications> element does not have a way to allow applications with names that
have no matching application element. For example, let's say the XML file contains:

<?xml version="1.0" ?>
<um-configuration version="1.0">

<applications>
<application name="app1">

...
</application>
<application name="app2">

...
</application>
<application>

...
</application>

</applications>
</um-configuration>

If an application starts up and is named "app3", it will fail to initialize. The above file only allows applications named
"app1", "app2", and applications that do not set a name. Note that if the unnamed application element is removed
from that XML file, then an unnamed application will fail to initialize.

There are several ways to give an application the name that can be referenced by an XML configuration file:

• RECOMMENDED: Read the XML configuration file using the lbm_config_xml_file() API.

• Set the environment variable LBM_XML_CONFIG_APPNAME. (But be aware that it is ignored if the lbm_←↩
config() API is used to read the XML configuration file.)

• Invoke the UMM feature using the lbm_set_umm_info() API or using the LBM_UMM_INFO environment
variable. See UM Manager Overview for more information on UMM.

Note that the application name is not related to the executable file name of the program, or the operating system
process name. The application name is assigned via one of the above methods only.

Unfortunately, the UM example applications were not written to any of the above three methods. They all use lbm←↩
_config(), which means they ignore the LBM_XML_CONFIG_APPNAME environment variable. The solution for
UM example applications is to not use the "-c" flag, but instead to supply both environment variables:

• LBM_XML_CONFIG_APPNAME

• LBM_XML_CONFIG_FILENAME

In this way, UM will correctly set the example application's name and will properly load the XML configuration file.

2.3 xml:space Attribute

Many XML elements throughout UM's configuration files include an attribute named "xml:space". This attribute
instructs the XML parser how to deal with whitespace (spaces, tabs, newlines) in the element's value. The attribute
defaults to the value "default", which tells the XML parser to trim leading and trailing whitespace, and to compress
multiple whitespace into a single space.

For example:

34 XML Configuration Files

<log>
my_logfile.log

</log>

Note that the value for the "<log>" element contains a leading newline, followed by two spaces, followed by the file
name, followed by another newline. Those whitespace characters should be trimmed, which is the default behavior.
It is equivalent to:

<log xml:space="default">
my_logfile.log

</log>

However, let's say you really want a space as the first character of the file name. While unusual, it can be done as
follows:

<log xml:space="preserve"> my_logfile.log</log>

Note that it had to be combined into a single line to get rid of the newlines.

2.4 Order and Rule Specifications

An XML configuration file can constrain how an application may override the values supplied in the XML configu-
ration file. It can also restrict which topics the application may publish and subscribe to. These two use cases are
handled slightly differently.

2.4.1 Constraining Configuration Values

The way to think of the order attribute in the <option> element is as follows:

• For order "allow,deny" the XML should contain zero or more values that are allowed. If a user-supplied
value doesn't match any of them, it is denied.

• For order "deny,allow" the XML should contain zero or more values that are denied. If a user-supplied
value doesn't match any of them, it is allowed.

Consider the following fragment of XML:

<receivers>
<topic>
<options type="receiver">

<option name="ordered_delivery" order="deny,allow">
<deny>0</deny>

</option>
</options>

</topic>
</receivers>

This prevents the user from setting ordered_delivery (receiver) to 0, but allows values 1 and -1. But the values 1 and
-1 are not explicitly allowed. The order attribute is set to "deny,allow", has "allow" as the default behavior if
the user-supplied value doesn't match one of "<allow>" or "<deny>" values.

Contrast with this fragment:

2.4 Order and Rule Specifications 35

<receivers>
<topic>
<options type="receiver">

<option name="ordered_delivery" order="allow,deny">
<allow>1</allow>

</option>
</options>

</topic>
</receivers>

This allows the value 1 but denies all others. The order attribute is set to "allow,deny", has "deny" as the
default behavior if the user-supplied value doesn't match one of "<allow>" or "<deny>" values.

2.4.2 Restricting Topics

Consider the following fragment of XML:

<receivers order="allow,deny">
<topic topicname="general_info" rule="allow"/>
<topic topicname="alerts" rule="allow"/>

</receivers>

This allows the application to create receivers for topics "general_info" and "alerts" and disallows all others. The
order attribute is set to "allow,deny", has "deny" as the default behavior if the user-supplied topic doesn't
match one of "<allow>" or "<deny>" values.

Contrast with this fragment:

<receivers order="deny,allow">
<topic topicname="authorize" rule="deny"/>

</receivers>

This allows the application to subscribe to any topic except "authorize". The order attribute is set to
"deny,allow", has "allow" as the default behavior if the user-supplied value doesn't match one of "<allow>" or
"<deny>" values.

Warning

With the above <topic> elements, an application can bypass the intended restrictions by using a wildcard
receiver, perhaps with the pattern ".∗". This allows the application to effectively subscribe to all topics. The
<topic> elements do not restrict wildcard receivers.

Since wildcard patterns can be complex, users who wish to restrict applications should either disallow wildcard
receivers, or carefully constrain them. For example:

<receivers order="deny,allow">
<topic topicname="authorize" rule="deny"/>

</receivers>
<wildcard-receivers order="allow,deny">

<wildcard-receiver pattern="^abc.*$" rule="allow"/>
<wildcard-receiver pattern="^xyz.*$" rule="allow"/>

</wildcard-receivers>

This allows the application to create any single-topic receiver except for the topic "authorize", and it allows two
patterns for wildcard receivers (neither of which will match the topic "authorize").

Another, more-restrictive example:

<receivers order="allow,deny">
<topic topicname="general_info" rule="allow"/>
<topic topicname="alerts" rule="allow"/>

</receivers>
<wildcard-receivers order="allow,deny"/>

36 XML Configuration Files

This only allows the application to subscribe to the two topics "general_info" and "alerts", and it completely disallows
any wildcard receivers.

2.4.3 Overlapping Topics

There are some use cases where a special property of the order attribute is useful: the order in which allow and
deny rules are applied. When multiple <topic> elements match a given topic name due to overlapping wildcard
patterns, the order of applying the rules can be important to obtain the desired behavior.

Consider this example:

<receivers order="deny,allow">
<topic pattern="^trade" rule="deny"/>
<topic pattern="^trade\.NASD" rule="allow"/>

</receivers>

Let's assume that the application subscribes to "trade.NASD.xyz". This matches both patterns. By ordering the
patterns as deny first, followed by allow, the last match is allow, which allows the topic to be created. The last rule
to match determines the permission.

Whereas subscribing to "trade.abc.xyz" will only match the deny, and will be prevented.

Also note that subscribing to "quote", which does not match either topic, follows the default rule, which is allow.

So the above XML allows all non-trade subscriptions, but only allows NASD trade subscriptions.

Contrast with this example:

<receivers order="allow,deny">
<topic pattern="^trade" rule="allow"/>
<topic pattern="^trade\.NASD" rule="deny"/>

</receivers>

Let's again assume that the application subscribes to "trade.NASD.xyz". This also matches both patterns, but in
this case the allows are first and the denies are last. Thus, "trade.NASD.xyz" is prevented.

So while the previous example only allowed NASD trades, this example allows any trades except NASD.

Also note that subscribing to "quote", which does not match either topic, follows the default rule, which is deny.

2.5 UM Default Values

The following examples will help to illustrate how UM defaults work. In the code fragments shown, the UM API calls
shown are assumed to be the first UM API calls made since the process started.

No Attribute Object, No Config File

test.c:

err = lbm_context_create(&ctx, NULL, NULL, NULL);
/* The context has request_tcp_port_low = 14393 (factory default) */

1. When UM initializes, the "factory defaults" are copied to the process-global internal attribute objects.

2. In the call to lbm_context_create(), setting the "attr" parameter to NULL causes UM to use the process-
global internal context attribute object to create the context.

2.5 UM Default Values 37

No Attribute Object, Plain Text Configuration File

test.cfg:

context request_tcp_port_low 12000

test.c:

err = lbm_config("test.cfg");
err = lbm_context_create(&ctx, NULL, NULL, NULL);
/* The context has request_tcp_port_low = 12000 */

1. When UM initializes, the "factory defaults" are copied to the process-global internal attribute objects.

2. The call to lbm_config() reads the options in the file "test.cfg" and applies them to the process-global internal
attribute objects. This overrides the factory default for request_tcp_port_low (context).

3. In the call to lbm_context_create(), setting the "attr" parameter to NULL causes UM to use the process-
global internal context attribute object to create the context.

Attribute Object, Plain Text Configuration File

test.cfg:

context request_tcp_port_low 12000

test.c:

err = lbm_config("test.cfg");
err = lbm_context_attr_create(&ctx_attr);
err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);
/* The context has request_tcp_port_low = 12000 */

1. When UM initializes, the "factory defaults" are copied to the process-global internal attribute objects.

2. The call to lbm_config() reads the options in the file "test.cfg" and applies them to the process-global internal
attribute objects. This overrides the factory default for request_tcp_port_low (context).

3. The lbm_context_attr_create() API copies the process-global internal context attribute object, with the over-
ridden request_tcp_port_low (context).

4. The call to lbm_context_create() passes the attribute object with the overridden request_tcp_port_low (con-
text).

Note

The use of lbm_context_attr_create() is not recommended. See next example.

Attribute Object, Plain Text and XML Configuration Files

In this example, the user intends the default for request_tcp_port_low (context) to be overridden to 13000, but there's
a problem.

test.xml:

<?xml version="1.0" ?>
<um-configuration version="1.0">

<applications>
<application>

<contexts>
<context>
<options type="context">

<option name="request_tcp_port_low" default-value="13000">
</option>

</options>
</context>

</contexts>
</application>

</applications>
</um-configuration>

38 XML Configuration Files

test.cfg:

context request_tcp_port_low 12000

test.c:

err = lbm_config_xml_file("test.xml", NULL);
err = lbm_config("test.cfg");
err = lbm_context_attr_create(&ctx_attr);
err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);
/* The context has request_tcp_port_low = 12000!! */

1. When UM initializes, the "factory defaults" are copied to the process-global internal attribute objects.

2. The call to lbm_config_xml_file() reads the elements in the file "test.xml" and stores them internally. Note
that lbm_config_xml_file() does not modify the process-global internal attribute objects.

3. The call to lbm_config() reads the options in the file "test.cfg" and applies them to the process-global internal
attribute objects. This overrides the factory default for request_tcp_port_low (context) with 12000.

4. The lbm_context_attr_create() API copies the process-global internal context attribute object, with the over-
ridden request_tcp_port_low (context). Note that the XML default is not applied when the attribute object is
created using lbm_context_attr_create().

5. The call to lbm_context_create() passes the attribute object with the overridden request_tcp_port_low (con-
text) of 12000.

In this example, the use of lbm_context_attr_create() resulted in the XML file's default being ignored. However,
see the next example.

Attribute Object, Plain Text and XML Configuration Files, Plus Restriction

In this example, the application is constrained to only allow 12000.

test.xml:

<?xml version="1.0" ?>
<um-configuration version="1.0">

<applications>
<application>

<contexts>
<context>
<options type="context">

<option name="request_tcp_port_low" default-value="13000"
order="allow,deny">

<allow>13000</allow>
</option>

</options>
</context>

</contexts>
</application>

</applications>
</um-configuration>

test.cfg:

context request_tcp_port_low 12000

test.c:

err = lbm_config_xml_file("test.xml", NULL);
err = lbm_config("test.cfg");
err = lbm_context_attr_create(&ctx_attr);
err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);
/* ERROR RETURNED! */

As with the previous example, the default value supplied in the XML configuration file is ignored due to the use
of lbm_context_attr_create(). However, the XML file's restrictions applied by order="allow,deny" and
<allow>13000</allow> are applied at object creation time. Since only 13000 is allowed, but 12000 was
attempted, the lbm_context_create() API fails.

2.5 UM Default Values 39

Attribute Object From XML, Plain Text and XML Configuration Files, Plus Restriction

test.xml:

<?xml version="1.0" ?>
<um-configuration version="1.0">

<applications>
<application>

<contexts>
<context>
<options type="context">

<option name="request_tcp_port_low" default-value="13000"
order="allow,deny">

<allow>13000</allow>
</option>

</options>
</context>

</contexts>
</application>

</applications>
</um-configuration>

test.cfg:

context request_tcp_port_low 12000

test.c:

err = lbm_config_xml_file("test.xml", NULL);
err = lbm_config("test.cfg");
err = lbm_context_attr_create_from_xml(&ctx_attr, NULL);
err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);
/* The context has request_tcp_port_low = 13000 */

In this example, the attribute object is created using the lbm_context_attr_create_from_xml() API. It is created
without a name, and therefore matches the "<context>" option that has no name attribute. This allows the
default-value attribute to override the default present in the internal process-global context attribute object.
So the call to lbm_context_create() succeeds.

Note that if the plain text configuration file "test.cfg" had other UM options set, those overridden defaults would have
appeared in the attribute object created by lbm_context_attr_create_from_xml().

Named Attribute Object, XML Configuration File

In this example, the context is named.

test.xml:

<?xml version="1.0" ?>
<um-configuration version="1.0">

<applications>
<application name="App1">

<contexts>
<context name="MainCtx">
<options type="context">

<option name="request_tcp_port_low" default-value="13000"
order="allow,deny">

<allow>13000</allow>
</option>

</options>
</context>

</contexts>
</application>

</applications>
</um-configuration>

test.c:

err = lbm_config_xml_file("test.xml", "App1");
err = lbm_context_attr_create_from_xml(&ctx_attr, "MainCtx");
err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);

In this example, the application and context names are specified and matched in the XML file. This is the recom-
mended way of using UM. In fact, even if no XML file is used at all, the ∗_attr_create_from_xml() APIs

40 XML Configuration Files

are recommended to be used, and descriptive names supplied. This "future-proofs" your code so that flexible XML
configurations can be added later on without needing to change your source code.

2.6 Reading XML Configuration Files

There are multiple ways to read an XML configuration file to assign values while creating a primitive object.

API function lbm_config_xml_file()

Reads an XML configuration file into XML config table. Call this before the primitive create API. This does not
change the current default attributes. Use a file path, or a URL beginning with http:// or ftp://.

API function lbm_config_xml_string()

Populates the XML config table directly from your application. Call this before the primitive create API. This
does not change the current default attributes.

API function lbm_∗_attr_create_from_XML()

Creates a custom attributes object containing the values from an XML configuration file. The values can then be
applied to a primitive object being created by calling API "lbm_∗_create()" and specifying this custom attributes
object in the second parameter.

Environment variable LBM_XML_CONFIG_FILENAME

Reads the file into the XML config table. These settings are then available to all applications when they start.
Use a file path, or a URL beginning with http:// or ftp://.

Environment variable LBM_XML_CONFIG_APPNAME

Reads options for a specific application from the LBM_XML_CONFIG_FILENAME variable's filename. This
initiates the specified application's configuration; set this environment variable for every application. Note that
this variable is ignored if the XML configuration file is read using the lbm_config() API.

API function lbm_set_umm_info()

Initiates the application to read options for an application and user from the UMM daemon. The Java API and
.NET API is com::latencybusters::lbm::LBM::setUmmInfo().

Environment variable LBM_UMM_INFO

Initiates the application to read options for an application and user from the UMM daemon. Set this variable for
every application/user combination, in the following format:

export LBM_UMM_INFO=application_name:user_name:password@ip:port

2.7 Using XML Configuration Files With a UM Application

The following procedure describes a general approach to implementing XML configuration files.

1. Create an XML configuration file using an XML editor or text editor. Just for this example, name the file,
UM_CONFIG.XML.

http://
ftp://
http://
ftp://

2.8 XML Configuration File Format 41

2. Insert desired templates in the <templates> element. Each template holds configuration options shared
by multiple applications or primitive UM objects. You can apply multiple templates to an application and its
primitive UM objects, however if the same option appears in multiple templates, the option value in the last
template overrides the option value in any previous templates. See <templates>.

3. Insert an <application> element for your UM application in the <applications> element and reference any
relevant templates created in the previous step. Just for this example, name the application, SENDAPP. See
<applications>.

4. Within the <contexts> element, configure the application's <context> element and context options. And
since our example application, SENDAPP is a sending application, also configure its Source options. (If
this was a receiving application, you would configure Receiver or Wildcard Receiver options. Note that most
real-world applications both send and receive messages, and would therefore have both.) If your application
creates multiple Contexts, enter multiple <context> elements within the <contexts> element, inserting the
appropriate source, receiver or wildcard receiver options. See <contexts>.

5. Configure the applications Event Queue options. See <event-queues>.

6. Save the XML configuration file, UM_CONFIG.XML, and load it onto the machine where the application (S←↩
ENDAPP) runs.

7. Have the application (SENDAPP) read the XML file. The preferred way to do this is the lbm_config_←↩
xml_file() API. However, if it is not possible to modify the application's code, set the following environment
variables:

• Set LBM_XML_CONFIG_FILENAME to UM_CONFIG.XML.

• Set LBM_XML_CONFIG_APPNAME to SENDAPP.

8. Start SENDAPP.

2.8 XML Configuration File Format

A UM XML Configuration File follows standard XML conventions. The first line should be:

<?xml version="1.0" encoding="UTF-8" ?>

followed by UM elements.

An XML configuration file generally comprises two primary elements: templates and applications. Organized and
contained within these are option value assignments. Applications containers let you set options for specific appli-
cations. To provide more global control over applications, or to simply reduce repetition, you can create templates
to hold option settings that are to be used in one or more different applications.

XML configuration files use the high-level structure shown in the following example. This example includes only
some container elements, and no options.

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="Sending">

<options type="source">
</options>
<options type="context">
</options>

</template>
</templates>
<applications>
<application name="Sending-Topic1">

<contexts>
<context name="Sending-LBTRM">
<sources>

42 XML Configuration Files

<topic topicname="Topic1">
<options type="source">
</options>

</topic>
</sources>

</context>
</contexts>
<event-queues>

<event-queue/>
<event-queue name="EQ-1"/>

</event-queues>
</application>

</applications>
</um-configuration>

2.9 Share/Merge XML Files with XInclude

The XInclude mechanism can be used to merge or share XML files for UM library configuration, Store configuration,
and DRO configuration. This is typically done to avoid duplicating groups of configuration options in multiple places.

To include an external file from a UM library configuration file, use the following syntax:

<xi:include xmlns:xi="http://www.w3.org/2003/XInclude" href="FILEPATH" />

Where FILEPATH can be a local file name, or a network path starting with "http:" or "ftp:". For example:

<xi:include xmlns:xi="http://www.w3.org/2003/XInclude" href="/um/conf/TRD1.xml" />
<xi:include xmlns:xi="http://www.w3.org/2003/XInclude" href="http://myweb.mydomain.com/umconf/TRD1.xml" />
<xi:include xmlns:xi="http://www.w3.org/2003/XInclude" href="ftp://myftp.mydomain.com/umconf/TRD1.xml" />

Note that secure forms of network paths ("https:" or "sftp:") are not supported.

Files to be included must be formatted such that all elements are enclosed in a single container element.

Example of an invalid file:

<option name="transport_lbtrm_multicast_address" default-value="239.101.3.101"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

Example of valid file:

<options type="source">
<option name="transport_lbtrm_multicast_address" default-value="239.101.3.101"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>

2.9.1 Common XInclude Use Case

UM library configuration files do not support the use of the UM Element "<topic>" inside of a template. Let's say
you want to define the source LBT-RM multicast address/port combinations on a per-topic basis. This must be done
in the UM Element "<application>", and must be repeated for each application.

For example consider the UM library configuration file "um_conf.xml":

...
<application name="fix01" template="common">
<contexts>

<context>
<sources>

2.9 Share/Merge XML Files with XInclude 43

<topic topicname="matching/A">
<options type="source">
<option name="transport_lbtrm_multicast_address" default-value="239.101.3.101"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>
</topic>
<topic topicname="matching/B">

<options type="source">
<option name="transport_lbtrm_multicast_address" default-value="239.101.3.102"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>
</topic>

... (same pattern for matching/C - matching/Y)
<topic topicname="matching/Z">

<options type="source">
<option name="transport_lbtrm_multicast_address" default-value="239.101.3.126"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>
</topic>

</sources>
</context>

</contexts>
</application>

<application name="fix02" template="common">
<contexts>

<context>
<sources>
<topic topicname="matching/A">

<options type="source">
<option name="transport_lbtrm_multicast_address" default-value="239.101.3.101"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>
</topic>
<topic topicname="matching/B">

<options type="source">
<option name="transport_lbtrm_multicast_address" default-value="239.101.3.102"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>
</topic>

... (same pattern for matching/C - matching/Y)
<topic topicname="matching/Z">

<options type="source">
<option name="transport_lbtrm_multicast_address" default-value="239.101.3.126"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>
</topic>

</sources>
</context>

</contexts>
</application>

...

This is a lot of repeated content for the 26 source options under each application.

The XInclude feature can be used to reduce duplicate content by creating a second file "um_sources.xml":

<sources>
<topic topicname="matching/A">
<options type="source">

<option name="transport_lbtrm_multicast_address" default-value="239.101.3.101"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>
</topic>
<topic topicname="matching/B">
<options type="source">

<option name="transport_lbtrm_multicast_address" default-value="239.101.3.102"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>
</topic>

... (same pattern for matching/C - matching/Y)
<topic topicname="matching/Z">
<options type="source">

<option name="transport_lbtrm_multicast_address" default-value="239.101.3.126"/>
<option name="transport_lbtrm_destination_port" default-value="14488"/>

</options>
</topic>

</sources>

Now "um_conf.xml" can be coded as:

...
<application name="fix01" template="common">

44 XML Configuration Files

<contexts>
<context>

<xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="./um_sources.xml" />
</context>

</contexts>
</application>

<application name="fix02" template="common">
<contexts>

<context>
<xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="./um_sources.xml" />

</context>
</contexts>

</application>
<application name="fix03" template="common">

...

2.10 XML Configuration File Elements

Here's a "cheat sheet" showing all of the XML elements.

<um-configuration>
<license format="...">...</license>

<templates>
<template name="...">

<options type="...">
<option name="..." default-value="..." order="...">
<allow>...</allow>
<deny>...</deny>

</option>
</options>

</template>
</templates>

<applications>
<application name="..." template="...">

<contexts order="..." template="...">
<context name="..." template="..." rule="...">
<options ...>...</options> (see templates for expansion)

<sources template="..." order="...">
<topic template="..." rule="..." topicname="..." pattern="...">
<options ...>...</options> (see templates for expansion)

</topic>
</sources>

<receivers order="..." template="...">
<topic template="..." rule="..." topicname="..." pattern="...">
<options ...>...</options> (see templates for expansion)

</topic>
</receivers>

<wildcard-receivers template="..." order="...">
<wildcard-receiver template="..." rule="..." pattern="..." pattern-type="...">
<options ...>...</options> (see templates for expansion)

</wildcard-receiver>
</wildcard-receivers>

</context> </contexts>

<hfxs template="..." order="...">
<topic template="..." rule="..." topicname="..." pattern="...">
<options ...>...</options> (see templates for expansion)

</topic>
</hfxs>

<event-queues template="..." order="...">
<event-queue name="..." template="..." rule="...">
<options ...>...</options> (see templates for expansion)

</event-queue>
</event-queues>

</application>
</applications>

</um-configuration>

2.10 XML Configuration File Elements 45

2.10.1 UM Element "<um-configuration>"

Container element that holds the UM configuration. Also defines the version of the configuration format used by the
file.

• Children: <license>, <templates>, <applications>

XML Attributes:

Attribute Description Valid Values Default Value

version Version number of user's configuration file. string 1.0

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

...
</um-configuration>

2.10.2 UM Element "<applications>"

Container element that holds the configurations for different applications.

• Parent: <um-configuration>

• Children: <application>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<applications>
...

</applications>
...

</um-configuration>

2.10.3 UM Element "<application>"

Container element that holds the configuration for a specific application.

Note

Applications that set a name which is not included by any <application> element will fail. There is no
"default" <application> element that allows and configures applications with non-matching names.

• Cardinality (number of times element can be supplied): 0 .. unbounded

46 XML Configuration Files

• Parent: <applications>

• Children: <contexts>, <event-queues>, <hfxs>, <application-data>

XML Attributes:

Attribute Description Valid Values Default Value

name A case-sensitive label which UM
matches to an application's assigned
name. An application is typically
assigned a name via API, e.g. lbm←↩
_config_xml_file(), or by environment
variable, LBM_XML_CONFIG_APP←↩
NAME. See XML Reference Names
for more information. Names are
case-sensitive and can consist of any
printable ASCII characters. They must
be 99 characters or less.

string (If omitted, matches applications that
don't set a name.)

template A case-sensitive label which UM
matches to a template's assigned
name. Can be a comma-separated list
of template names, which are applied in
order.

string (If omitted, no template is applied.)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01" template="FIX_Config.Prod">

...
</application>
...

</applications>
...

</um-configuration>

2.10.4 UM Element "<application-data>"

Free-form text comment field. Deprecated; do not use.

• Parent: <options>, <application>

• Default Value: Deprecated; do not use.

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Specifies how whitespace (tabs,
spaces, linefeeds) are handled in
the element content. See xml:space
Attribute.

"default" - Trim whitespace.
"preserve" - Retain whitespace
exactly as entered.

default

2.10 XML Configuration File Elements 47

Deprecated; do not use.

2.10.5 UM Element "<hfxs>"

Container element that holds the configuration for HFX objects. The contained <topic> elements are matched
by topic to the HFX objects created by the application. The order="..." attribute is used to constrain the
application's access to topics. See Order and Rule Specifications for details.

See UM Hot Failover Across Contexts Objects for more information on HFX.

• Parent: <application>

• Children: <topic>

XML Attributes:

Attribute Description Valid Values Default Value

template A case-sensitive label which UM matches
to a template's assigned name. Can be
a comma-separated list of template names,
which are applied in order.

string (If omitted, no template is applied.)

order Valid values are "deny,allow" and "al-
low,deny". Used to control how HFX usage
is restricted. See Order and Rule Specifica-
tions and Overlapping Topics.

string "deny,allow"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01" template="FIX_Config.Prod">

<hfxs template="FIX_Config.Prod" order="deny,allow">
...

</hfxs>
...

</application>
...

</applications>
...

</um-configuration>

2.10.6 UM Element "<topic>"

Used to match UM objects (sources, receivers, HFX receivers) by their topic names, and control their use and
configuration. The attributes topicname and pattern are mutually exclusive; you may not supply both.

48 XML Configuration Files

Warning

If the rule attribute is being used to restrict the application's receivers, remember that wildcard receivers
must also be restricted. For example, if the application must be prevented from subscribing to the "authorize"
topic, it is not enough to use:

<topic topicname="authorize" rule="deny"/>

Wildcards must also be limited or forbidden. For example, to forbid all wildcard receivers:

<wildcard-receivers order="allow,deny"/>

• Cardinality (number of times element can be supplied): 0 .. unbounded

• Parent: <hfxs>, <sources>, <receivers>

• Children: <options>

XML Attributes:

Attribute Description Valid Values Default Value

template A case-sensitive label which
UM matches to a template's
assigned name. Can be a
comma-separated list of tem-
plate names, which are ap-
plied in order.

string (If omitted, no template is ap-
plied.)

rule Used to restrict the usage of
topics. See Order and Rule
Specifications. Note that a
particular object might match
more than one <topic> el-
ement due to overlapping pat-
tern matching. See Overlap-
ping Topics.

"allow" - Permit the match-
ing topic.
"deny" - Prevent the match-
ing topic.

allow

pattern Regular expression to match
against the topic name of the
application object being cre-
ated.

string (no default; either
topicname or pattern
must be specified)

topicname Name of topic to match
against the application object
being created. Requires exact
match.

string (no default; either
topicname or pattern
must be specified)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01" template="FIX_Config.Prod">

<hfxs order="deny,allow">
<topic template="FIX_Config.Prod" topicname="Orders" rule="deny"\>
...

</hfxs>
...

</application>
...

</applications>
...

</hfxs>

2.10 XML Configuration File Elements 49

...
</um-configuration>

2.10.7 UM Element "<options>"

Container element that holds a set of UM options of a specific scope (context, source, etc.).

• Cardinality (number of times element can be supplied): 0 .. unbounded

• Parent: <template>, <event-queue>, <context>, <topic>, <wildcard-receiver>

• Children: <option>, <application-data>

XML Attributes:

Attribute Description Valid Values Default Value

type UM configuration scope
of the <option> ele-
ments contained within this
<options> element.

"event-queue" - Event
queue scope options.
"context" - Context scope
options.
"source" - Source scope
options.
"receiver" - Receiver
scope options.
"wildcard-receiver"
- Wildcard receiver scope
options.
"hfx" - HFX scope options.

(no default; must be specified)

Example:

The <options> element can be contained within many other elements. This example only shows it used within
the <template> element, but its syntax and usage is the same when used elsewhere.

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="FIX_Config.Prod">

<options type="context">
...

</options>
...

</template>
...

</templates>
...

</um-configuration>

2.10.8 UM Element "<option>"

Configure a specific configuration option. The contained <allow> and <deny> elements are used to allow the
XML file to constrain how the application may override the option's value. See Order and Rule Specifications for
details.

• Parent: <options>

50 XML Configuration Files

• Children: <allow>, <deny>

XML Attributes:

Attribute Description Valid Values Default Value

name Option name. string (no default; must be specified)

default-value Value to set the option. string (if omitted, the option's default value
is not changed.)

order Valid values are "deny,allow" and "al-
low,deny". Used to control how option
values are restricted. See Order and
Rule Specifications.

string "deny,allow"

Example:

The <options> element can be contained within many other elements. This example only shows it used within
the <template> element, but its syntax and usage is the same when used elsewhere.

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="FIX_Config.Prod">

<options type="context">
<option name="default_interface" default-value="10.1.2.3" order="deny,allow">
...

</option>
...

</options>
...

</template>
...

</templates>
...

</um-configuration>

2.10.9 UM Element "<deny>"

Contains an option value that the application is explicitly prevented from using. See Order and Rule Specifications.

• Parent: <option>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Specifies how whitespace (tabs,
spaces, linefeeds) are handled in
the element content. See xml:space
Attribute.

"default" - Trim whitespace.
"preserve" - Retain whitespace
exactly as entered.

default

Example:

The <options> element can be contained within many other elements. This example only shows it used within
the <template> element, but its syntax and usage is the same when used elsewhere.

In this example, the application may configure any interface except loopback (127.0.0.1).

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>

2.10 XML Configuration File Elements 51

<template name="FIX_Config.Prod">
<options type="context">

<option name="default_interface">
<deny>127.0.0.1</deny>
...

</option>
...

</options>
...

</template>
...

</templates>
...

</um-configuration>

2.10.10 UM Element "<allow>"

Contains an option value that the application is explicitly allowed to use. See Order and Rule Specifications.

• Parent: <option>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Specifies how whitespace (tabs,
spaces, linefeeds) are handled in
the element content. See xml:space
Attribute.

"default" - Trim whitespace.
"preserve" - Retain whitespace
exactly as entered.

default

Example:

The <options> element can be contained within many other elements. This example only shows it used within
the <template> element, but its syntax and usage is the same when used elsewhere.

This example also demonstrates a specific case where the <option> element has order="allow,deny"
which sets the default behavior for overriding the option to deny. This effectively constrains the application's
ability to override the default value to only those values explicitly allowed. Importantly, the value specified in
default-value="..." must be explicitly allowed, as shown in this example.

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="FIX_Config.Prod">

<options type="context">
<option name="default_interface" default-value="10.1.2.3" order="allow,deny">
<allow>10.1.2.3</allow>
...

</option>
...

</options>
...

</template>
...

</templates>
...

</um-configuration>

52 XML Configuration Files

2.10.11 UM Element "<event-queues>"

Container element that holds the configuration for event queues. The <event-queue> elements contained within
<event-queues> are matched to the event queue objects created by the application. The order="..."
attribute is used to constrain the application's use of event queues. See Order and Rule Specifications for details.

• Parent: <application>

• Children: <event-queue>

XML Attributes:

Attribute Description Valid Values Default Value

template A case-sensitive label which UM matches to
a template's assigned name.

string (If omitted, no template is applied.)

order Valid values are "deny,allow" and "al-
low,deny". Used to control how event queue
usage is restricted. See Order and Rule
Specifications.

string "deny,allow"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="EVQ_FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01">

<event-queues template="EVQ_FIX_Config.Prod" order="deny,allow">
...

</event-queues>
...

</application>
...

</applications>
...

</um-configuration>

2.10.12 UM Element "<event-queue>"

Container of configuration for a single event queue.

• Cardinality (number of times element can be supplied): 0 .. unbounded

• Parent: <event-queues>

• Children: <options>

XML Attributes:

2.10 XML Configuration File Elements 53

Attribute Description Valid Values Default Value

name Name of the event queue.
Supplied as a parameter to
lbm_event_queue_attr←↩
_create_from_xml() and
lbm_event_queue_attr_←↩
set_from_xml(). Names are
case-sensitive and can consist
of only alpha-numeric ASCII
characters, dash (-), and un-
derscore (_). They must be
127 characters or less.

string (If omitted, matches applica-
tions that don't set an event
queue name.)

template A case-sensitive label which
UM matches to a template's
assigned name.

string (If omitted, matches applica-
tions that don't set a name.)

rule Used to restrict the usage of
event queues. See Order and
Rule Specifications.

"allow" - Permit the match-
ing object.
"deny" - Prevent the match-
ing object.

allow

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="EVQ_FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01">

<event-queues template="EVQ_FIX_Config.Prod" order="deny,allow">
<event-queue name="EVQ_FIX" rule="allow">
...

</event-queue>
...

</event-queues>
...

</application>
...

</applications>
...

</um-configuration>

2.10.13 UM Element "<contexts>"

Container element that holds the configurations for context objects. The <context> elements contained within
<contexts> are matched to the context objects created by the application. For contexts that do not match any
of the contained <context> elements, the default permission is determined by the order="..." attribute.

• Parent: <application>

• Children: <context>

XML Attributes:

54 XML Configuration Files

Attribute Description Valid Values Default Value

template A case-sensitive label which UM matches
to a template's assigned name. Can be
a comma-separated list of template names,
which are applied in order.

string (If omitted, no template is applied.)

order Valid values are "deny,allow" and "al-
low,deny". Used to control how context us-
age is restricted. See Order and Rule Speci-
fications.

string "deny,allow"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="CTX_FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01">

<contexts template="CTX_FIX_Config.Prod" order="deny,allow">
...

</contexts>
...

</application>
...

</applications>
...

</um-configuration>

2.10.14 UM Element "<context>"

Container of configuration for a single context.

• Cardinality (number of times element can be supplied): 0 .. unbounded

• Parent: <contexts>

• Children: <sources>, <receivers>, <wildcard-receivers>, <options>

XML Attributes:

Attribute Description Valid Values Default Value

name Name of the context. Supplied
as a parameter to lbm_←↩
context_attr_create_from←↩
_xml() and lbm_context_←↩
attr_set_from_xml(). Names
are case-sensitive and can
consist of only alpha-numeric
ASCII characters, dash (-),
and underscore (_). They must
be 127 characters or less.

string (If omitted, matches applica-
tions that don't set a context
name.)

template A case-sensitive label which
UM matches to a template's
assigned name. Can be a
comma-separated list of tem-
plate names, which are applied
in order.

string (If omitted, no template is ap-
plied.)

2.10 XML Configuration File Elements 55

Attribute Description Valid Values Default Value

rule Used to restrict the usage of
contexts. See Order and Rule
Specifications.

"allow" - Permit the match-
ing object.
"deny" - Prevent the match-
ing object.

allow

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="CTX_FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01">

<contexts template="CTX_FIX_Config.Prod" order="deny,allow">
<context name="CTX_FIX" rule="allow">
...

</context>
...

</contexts>
...

</application>
...

</applications>
...

</um-configuration>

2.10.15 UM Element "<wildcard-receivers>"

Container element that holds the configurations for wildcard receiver objects. The <wildcard-receiver> elements
contained within <wildcard-receivers> are matched to the wildcard receiver objects created by the appli-
cation.

Note

If the user desires to constrain the use of wildcard receivers, it should be done with order="allow,deny"
and rule="allow" attributes (which denies all wildcards except those specifically allowed). The use of
order="deny,allow" and rule="deny" to allow any wildcard except those specifically denied will
not work as desired. For example, denying the pattern ".∗" will still permit the use of "∧.∗", which will match
the same topics (i.e. all of them).

• Parent: <context>

• Children: <wildcard-receiver>

XML Attributes:

Attribute Description Valid Values Default Value

template A case-sensitive label which UM
matches to a template's assigned
name.

string (If omitted, no template is applied.)

order Valid values are "deny,allow" and "al-
low,deny". Used to control how wildcard
receiver usage is restricted. See Order
and Rule Specifications.

string "deny,allow" (But note that this
value is not useful for restrictingwildcard
receivers. "allow,deny" should al-
ways be used.)

56 XML Configuration Files

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="CTX_FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01">

<contexts template="CTX_FIX_Config.Prod" order="deny,allow">
<context name="CTX_FIX" rule="allow">
<wildcard-receivers template="WC_FIX_Config.Prod" order="deny,allow">

...
</wildcard-receivers>
...

</context>
...

</contexts>
...

</application>
...

</applications>
...

</um-configuration>

2.10.16 UM Element "<wildcard-receiver>"

Container of configuration for a single wildcard receiver.

• Cardinality (number of times element can be supplied): 0 .. unbounded

• Parent: <wildcard-receivers>

• Children: <options>

XML Attributes:

Attribute Description Valid Values Default Value

template A case-sensitive label which
UM matches to a template's
assigned name.

string (If omitted, no template is ap-
plied.)

rule Used to restrict the usage of
wildcard receivers. See Order
and Rule Specifications.

"allow" - Permit the
matching object.
"deny" - Prevent the match-
ing object. (Note that this
is not a useful setting for
restricting wildcard receivers
since the application can
choose a different pattern
that matches the forbidden
topic.)

allow

pattern Match wildcard receivers with
this pattern. Note that this
string is matched exactly to
the pattern supplied to the
wildcard receiver. This pat-
tern is not intended to match
more than one wildcard re-
ceiver.

string (no default; must be speci-
fied)

2.10 XML Configuration File Elements 57

Attribute Description Valid Values Default Value
pattern-type Type of wildcard receiver pat-

tern matching engine the
wildcard receiver is using.
Only "pcre" is supported.

"pcre" - Perl regular ex-
pression. This is the only
supported selection.
"regex" - Posix regular
expression. Deprecated; do
not use.
"application-callback"
- Application-supplied pattern
matcher. Deprecated; do
not use.

"pcre"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="CTX_FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01">

<contexts template="CTX_FIX_Config.Prod" order="deny,allow">
<context name="CTX_FIX" rule="allow">
<wildcard-receivers template="WC_FIX_Config.Prod" order="deny,allow">

<wildcard-receiver pattern="WC_FIX" rule="allow">
...

</wildcard-receiver>
...

</wildcard-receivers>
...

</context>
...

</contexts>
...

</application>
...

</applications>
...

</um-configuration>

2.10.17 UM Element "<receivers>"

Container element that holds the configurations for receiver objects. The <topic> elements contained within
<receivers> are matched to the receiver objects created by the application. For receivers that do not match
any of the contained <topic> elements, the default permission is determined by the order="..." attribute.

• Parent: <context>

• Children: <topic>

XML Attributes:

Attribute Description Valid Values Default Value

template A case-sensitive label which UM matches
to a template's assigned name. Can be
a comma-separated list of template names,
which are applied in order.

string (If omitted, no template is applied.)

order Valid values are "deny,allow" and "al-
low,deny". Used to control how receiver us-
age is restricted. See Order and Rule Speci-
fications.

string "deny,allow"

58 XML Configuration Files

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="CTX_FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01">

<contexts template="CTX_FIX_Config.Prod" order="deny,allow">
<context name="CTX_FIX" rule="allow">
<receivers template="RCV_FIX_Config.Prod" order="deny,allow">

...
</receivers>
...

</context>
...

</contexts>
...

</application>
...

</applications>
...

</um-configuration>

2.10.18 UM Element "<sources>"

Container element that holds the configurations for source objects. The <topic> elements contained within
<sources> are matched to the source objects created by the application. For sources that do not match any of
the contained <topic> elements, the default permission is determined by the order="..." attribute.

• Parent: <context>

• Children: <topic>

XML Attributes:

Attribute Description Valid Values Default Value

template A case-sensitive label which UM matches
to a template's assigned name. Can be
a comma-separated list of template names,
which are applied in order.

string (If omitted, no template is applied.)

order Valid values are "deny,allow" and "al-
low,deny". Used to control how source usage
is restricted. See Order and Rule Specifica-
tions.

string "deny,allow"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
<template name="CTX_FIX_Config.Prod">

...
</template>
...

</templates>
<applications>
<application name="FIX.01">

<contexts template="CTX_FIX_Config.Prod" order="deny,allow">
<context name="CTX_FIX" rule="allow">
<sources template="SRC_FIX_Config.Prod" order="deny,allow">

2.10 XML Configuration File Elements 59

...
</sources>
...

</context>
...

</contexts>
...

</application>
...

</applications>
...

</um-configuration>

2.10.19 UM Element "<templates>"

Container element that holds one or more configuration template definitions. A configuration template holds a set
of UM configuration options. See XML Configuration File Format for information on templates.

• Parent: <um-configuration>

• Children: <template>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<templates>
...

</templates>
...

</um-configuration>

2.10.20 UM Element "<template>"

Container element that holds a collection of UM configuration options which can be referenced by other elements.
See XML Configuration File Format for information on templates.

• Cardinality (number of times element can be supplied): 0 .. unbounded

• Parent: <templates>

• Children: <options>

XML Attributes:

Attribute Description Valid Values Default Value

name A case-sensitive label assigned to the template,
which can be referenced by most other elements
via their "template" attribute. Names are case-
sensitive and can consist of any printable ASCII
characters. They must be 99 characters or less.

string (no default; must be specified)

Example:

<?xml version="1.0" encoding="UTF-8" ?>

60 XML Configuration Files

<um-configuration version="1.0">
<templates>
<template name="FIX_Config.Prod">

...
</template>
...

</templates>
...

</um-configuration>

2.10.21 UM Element "<license>"

Identifies the UM product license, either as the license key or as a pointer to a license file, as an alternative to
setting it in an environment variable. The content within the <license>...</license> is either a file name
or a license string, depending on the value supplied for the format attribute.

• Parent: <um-configuration>

XML Attributes:

Attribute Description Valid Values Default Value

format Specifies how the content within the
<license>...</license> is
interpreted.

"filename" - The license element
contains the name of a file that con-
tains the license key.
"string" - The license element
contains the actual license key.

string

xml:space Specifies how whitespace (tabs,
spaces, linefeeds) are handled in
the element content. See xml:space
Attribute.

"default" - Trim whitespace.
"preserve" - Retain whitespace
exactly as entered.

default

Example 1:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<license format="filename">um_license.txt</license>
...

</um-configuration>

Example 2:

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">

<license format="string">
Product=LBM,UME,UMQ,UMDRO:Organization=User or Org:Expiration-Date=never:License-Key=1234 5678 9ABC DEF0

</license>
...

</um-configuration>

2.11 XML Configuration File DTD

The XML configuration file DTD is integrated into UM and appears below.

2.12 Sample XML Configuration File 61

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT um-configuration (license | templates | applications)*>
<!ATTLIST um-configuration version CDATA #REQUIRED>
<!ELEMENT license (#PCDATA)>
<!ATTLIST license format (filename | string) "string">
<!ATTLIST license xml:space (default | preserve) "default">
<!ELEMENT templates (template*)>
<!ELEMENT template (options+)>
<!ATTLIST template name CDATA #REQUIRED>
<!ELEMENT options (option | application-data)*>
<!ATTLIST options type (event-queue | context | source | receiver | wildcard-receiver | hfx) #IMPLIED>
<!ELEMENT option (allow | deny)*>
<!ATTLIST option name CDATA #REQUIRED>
<!ATTLIST option default-value CDATA #IMPLIED>
<!ATTLIST option order CDATA #IMPLIED>
<!ELEMENT application-data (#PCDATA)>
<!ATTLIST application-data xml:space (default | preserve) "default">
<!ELEMENT allow (#PCDATA)>
<!ATTLIST allow xml:space (default | preserve) "default">
<!ELEMENT deny (#PCDATA)>
<!ATTLIST deny xml:space (default | preserve) "default">
<!ELEMENT applications (application*)>
<!ELEMENT application (contexts | event-queues | hfxs | application-data)+>
<!ATTLIST application name CDATA #IMPLIED>
<!ATTLIST application template CDATA #IMPLIED>
<!ELEMENT contexts (context*)>
<!ATTLIST contexts template CDATA #IMPLIED>
<!ATTLIST contexts order CDATA #IMPLIED>
<!ELEMENT event-queues (event-queue*)>
<!ATTLIST event-queues template CDATA #IMPLIED>
<!ATTLIST event-queues order CDATA #IMPLIED>
<!ELEMENT hfxs (topic*)>
<!ATTLIST hfxs template CDATA #IMPLIED>
<!ATTLIST hfxs order CDATA #IMPLIED>
<!ELEMENT event-queue (options*)>
<!ATTLIST event-queue name CDATA #IMPLIED>
<!ATTLIST event-queue template CDATA #IMPLIED>
<!ATTLIST event-queue rule (allow | deny) "allow">
<!ELEMENT context (sources | receivers | wildcard-receivers | options)+>
<!ATTLIST context name CDATA #IMPLIED>
<!ATTLIST context template CDATA #IMPLIED>
<!ATTLIST context rule (allow | deny) "allow">
<!ELEMENT sources (topic*)>
<!ATTLIST sources template CDATA #IMPLIED>
<!ATTLIST sources order CDATA #IMPLIED>
<!ELEMENT receivers (topic*)>
<!ATTLIST receivers template CDATA #IMPLIED>
<!ATTLIST receivers order CDATA #IMPLIED>
<!ELEMENT wildcard-receivers (wildcard-receiver*)>
<!ATTLIST wildcard-receivers template CDATA #IMPLIED>
<!ATTLIST wildcard-receivers order CDATA #IMPLIED>
<!ELEMENT topic (options*)>
<!ATTLIST topic template CDATA #IMPLIED>
<!ATTLIST topic rule (allow | deny) "allow">
<!ATTLIST topic pattern CDATA #IMPLIED>
<!ATTLIST topic topicname CDATA #IMPLIED>
<!ELEMENT wildcard-receiver (options*)>
<!ATTLIST wildcard-receiver template CDATA #IMPLIED>
<!ATTLIST wildcard-receiver rule (allow | deny) "allow">
<!ATTLIST wildcard-receiver pattern CDATA #IMPLIED>
<!ATTLIST wildcard-receiver pattern-type (pcre | regex | application-callback) #IMPLIED>

2.12 Sample XML Configuration File

A sample XML configuration file appears below and has the following notable aspects.

• Contains object attributes for a UM context and source.

• Application name is Sending.

• Uses a template of attributes also called Sending-LBTRM.

• The template, Sending-LBTRM, uses the order attribute for the fd_management_type to allow all file de-
scriptor types except DEVPOLL. However the Sending-LBTRM application further restricts the file descriptor
types to exclude EPOLL in addition to DEVPOLL.

62 XML Configuration Files

<?xml version="1.0" encoding="UTF-8" ?>
<um-configuration version="1.0">
<templates>
<template name="Sending-LBTRM">
<options type="source">
<option default-value="0" name="late_join"/>
<option default-value="500" name="resolver_advertisement_maximum_initial_interval"/>
<option default-value="5000" name="resolver_advertisement_minimum_initial_duration"/>
<option default-value="10" name="resolver_advertisement_minimum_initial_interval"/>
<option default-value="60" name="resolver_advertisement_minimum_sustain_duration"/>
<option default-value="1000" name="resolver_advertisement_sustain_interval"/>
<option default-value="lbtrm" name="transport"/>
<option default-value="14400" name="transport_lbtrm_destination_port"/>
<option default-value="0.0.0.0" name="transport_lbtrm_multicast_address"/>
</options>
<options type="context">
<option default-value="wsaeventselect" name="fd_management_type" order="deny,allow">
<deny>wincompport</deny>

</option>
<option default-value="5000" name="mim_delivery_control_activity_check_interval"/>
<option default-value="60000" name="mim_delivery_control_activity_timeout"/>
<option default-value="2000000" name="resolver_initial_advertisement_bps"/>
<option default-value="2000" name="resolver_initial_advertisements_per_second"/>
<option default-value="2000" name="resolver_initial_queries_per_second"/>
<option default-value="2000000" name="resolver_initial_query_bps"/>
</options>
</template>

</templates>
<applications>
<application name="Sending">
<contexts order="deny,allow">
<context rule="allow" template="Sending-LBTRM">
<sources order="deny,allow">
<topic rule="allow" topicname="IXCM">
<options type="source">
<option default-value="1" name="late_join"/>
<option default-value="lbtrm" name="transport"/>
<option default-value="14488" name="transport_lbtrm_destination_port"/>
<option default-value="239.101.3.101" name="transport_lbtrm_multicast_address"/>

</options>
</topic>
</sources>
<receivers order="deny,allow"/>
<wildcard-receivers order="deny,allow"/>
<options type="context">
<option default-value="239.101.4.11" name="resolver_multicast_address"/>
<option default-value="239.101.4.11" name="resolver_multicast_incoming_address"/>
<option default-value="12965" name="resolver_multicast_incoming_port"/>
<option default-value="239.101.4.11" name="resolver_multicast_outgoing_address"/>
<option default-value="12965" name="resolver_multicast_outgoing_port"/>
<option default-value="12965" name="resolver_multicast_port"/>
<option default-value="239.101.4.12" name="resolver_multicast_interface"/>
<option default-value="0" name="resolver_multicast_receiver_socket_buffer"/>
<option default-value="wsaeventselect" name="fd_management_type" order="deny,allow">
<deny>wincompport</deny>
</option>
</options>

</context>
</contexts>
<event-queues order="deny,allow">
<event-queue rule="allow">
<options type="event-queue">
<option default-value="lbm" name="monitor_transport"/>
<option default-value="" name="monitor_appid"/>

</options>
</event-queue>
</event-queues>
</application>

</applications>
</um-configuration>

2.12 Sample XML Configuration File 63

64 XML Configuration Files

Chapter 3

Plain Text Configuration Files

Informatica generally recommends the use of XML Configuration Files due to its greater flexibility. It covers a
superset of use cases as compared to plain text configuration files.

The plain text configuration file (sometimes called a "flat" file), when invoked, writes option values into UM's current
default attributes. These are then read and used in the creation of all objects.

See Example Configuration Scenarios for example configuration files.

3.1 Reading Plain Text Configuration Files

There are two ways to read a plain text configuration file to set values in current default attributes.

API function lbm_config()

You can call the API multiple times with different file names to set configuration options in phases.

When you create UM objects (such as a context or receiver), UM sets attributes for that object using the current
default attributes. Hence, you must call lbm_config() before creating objects (lbm_∗_create()).

Environment variable LBM_DEFAULT_CONFIG_FILE

Reads configuration file when your application is started. You can set this variable to a full pathname or a URL;
for example:

export LBM_DEFAULT_CONFIG_FILE=/home/lbm/lbtrm.cfg

(You can still use the lbm_config() API on a different file to make additional changes.)

3.2 Plain Text Configuration File Format

A plain text configuration file contains lines that each take the form:

scope_keyword option_name option_value

where:

scope_keyword - the scope to which the option applies,

66 Plain Text Configuration Files

option_name - the predefined name for the option, and

option_value - the new value to be assigned to that option.

Allowable values for these parameters are given throughout the rest of this document. Any text following a hash
character # (also known as a pound sign, number sign, or octothorp) is interpreted as comment text and is ignored.

For example:

Set transport_tcp_port_low to 4901
context transport_tcp_port_low 4901
And set transport_tcp_port_high to 4920
context transport_tcp_port_high 4920

Note

For plain text configuration files, do not enclose any fields in double quotation marks (").

Chapter 4

Attributes Objects

Many UM primitive objects have a corresponding attributes object, which contains the configuration information
specific to that UM object type. You can set configuration options in an attributes object, and supply the attributes
when creating the UM object. This allows assignment of different options for different instances of UM objects. The
following table lists the UM primitive objects and corresponding attributes objects.

UM object Corresponding Attributes Object(s)
lbm_context_t lbm_context_attr_t
lbm_topic_t lbm_src_topic_attr_t, lbm_rcv_topic_attr←↩

_t
lbm_wildcard_rcv←↩
_t

lbm_wildcard_rcv_attr_t

lbm_event_queue←↩
_t

lbm_event_queue_attr_t

lbm_hfx_t lbm_hfx_attr_t

You call API functions to create attributes objects and set, retrieve, or delete their values. These API names are
based on the attributes object name and are shown in the following table, using the context object as an example.
See the C API for all attributes APIs.

Action UM API function
Create Attributes Object lbm_context_attr_create_from_xml()

Set Option from Binary Value lbm_context_attr_setopt()

Set Option from String Value lbm_context_attr_str_setopt()

Get Option as Binary Value lbm_context_attr_getopt()

Get Option as String Value lbm_context_attr_str_getopt()

Delete Attributes Object lbm_context_attr_delete()

For other object types, replace context with src_topic, rcv_topic, wildcard_rcv, event_queue, or hfx.

The following sections describe in detail the use of these UM API functions. The APIs related to lbm_context_attr←↩
_t objects are used for the purpose of illustration, but the instructions (if not the specifics) apply to all UM attributes
objects.

68 Attributes Objects

4.1 Creating An Attributes Object

In the following example, the call to lbm_context_attr_create_from_xml() creates the custom attributes object,
and initializes each option from the current default values. Subsequent calls to lbm_context_attr_setopt() or
lbm_context_attr_str_setopt() modify only the option values in the attributes object.

lbm_context_attr_t * attrib;
int rc;

rc = lbm_context_attr_create_from_xml(&attrib, "MyCtx");
if (rc != 0)
{

/* Immediately after UM returns error, capture error details. */
int errnum = lbm_errnum();
const char * errmsg = lbm_errmsg();
fprintf(stderr, "Error %d returned from lbm_context_attr_create_from_xml(), %s\n",

errnum, errmsg);
}

This example also illustrates the proper way to determine the success or failure of an UM API call. Most UM API
calls return 0 to indicate success, and -1 to indicate failure. To retrieve the specific UM error code for the failure, call
lbm_errnum(). To retrieve a text string describing the error code, call lbm_errmsg().

4.2 Setting an Option from a Binary Value

For an option of type other than "string", call lbm_context_attr_setopt() to set its value. (See the C API reference
for details on this API.) The final two parameters in the API are a pointer to a variable containing the option value,
and a variable of type size_t that contains the correct length of the option value variable.

The example code below sets three options. First, we set operational_mode (context) to sequential. Then we set
the transport_tcp_port_low (context) and transport_tcp_port_high (context) values to 4901 and 4920, respectively.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;
unsigned short int optval;
size_t optlen;

/* Set the operational_mode */
optlen = sizeof(optval);
optval = LBM_CTX_ATTR_OP_SEQUENTIAL;
rc = lbm_context_attr_setopt(attrib, "operational_mode", &optval, optlen);
if (rc != 0) {

/* Handle error */
}

/* Set transport_tcp_port_low */
optlen = sizeof(optval);
optval = 4901;
rc = lbm_context_attr_setopt(attrib, "transport_tcp_port_low", &optval, optlen);
if (rc != 0) {

/* Handle error */
}

/* Set transport_tcp_port_high */
optlen = sizeof(optval);
optval = 4920;
rc = lbm_context_attr_setopt(attrib, "transport_tcp_port_high", &optval, optlen);
if (rc != 0) {

/* Handle error */
}

4.3 Setting an Option from a String Value 69

4.2.1 Setting an Option from Arrays of Binary Values

There are some configuration options which expect an array of a particular type. The ∗_setopt() API uses its "optlen"
parameter to determine the number of valid elements in the array.

For example, when using umq_ulb_application_set (source) to configure a ULB source's application sets, the lbm←↩
_umq_ulb_receiver_type_entry_t structure is used to define one mapping between receiver type ID and appli-
cation set index. It is common to have more than one receiver type and/or more than one application set, so the
application code must pass an array of lbm_umq_ulb_receiver_type_entry_t structures. Note how lbm_src_topic←↩
_attr_setopt()'s "optlen" is calculated in the following code:

lbm_umq_ulb_receiver_type_entry_t appsets[32]; /* This application’s worst case need. */
int optlen, num_valid_elements;
...
/* We need three entries, the equiv of "source umq_ulb_application_set 0:10,20;1:100". */
appsets[0].application_set_index = 0;
appsets[0].id = 10; /* Receiver type ID. */
appsets[1].application_set_index = 0;
appsets[1].id = 20; /* Receiver type ID. */
appsets[2].application_set_index = 1;
appsets[2].id = 100; /* Receiver type ID. */
num_valid_elements = 3;

optlen = num_valid_elements * sizeof(lbm_umq_ulb_receiver_type_entry_t);
rc = lbm_src_topic_attr_setopt(tattr, "umq_ulb_application_set", appsets, optlen);
if (rc != 0) {

/* Handle error */
}

4.3 Setting an Option from a String Value

Setting an option from a string value effectively does the same thing that setting an option from a binary value does.
However, the option value is passed as a null-terminated string, rather than as value and length pointers. UM uses
this mechanism to process options in a configuration file. Thus, the format used for option values must match the
format you would use in a configuration file.

In the following example, as before, we set the operational mode to sequential. Then we set the transport TCP port
low and high values to 4901 and 4920, respectively.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;

/* Set the operational_mode */
rc = lbm_context_attr_str_setopt(attrib, "operational_mode", "sequential");
if (rc != 0) {

/* Handle error */
}

/* Set transport_tcp_port_low */
rc = lbm_context_attr_str_setopt(attrib, "transport_tcp_port_low", "4901");
if (rc != 0) {

/* Handle error */
}

/* Set transport_tcp_port_high */
rc = lbm_context_attr_str_setopt(attrib, "transport_tcp_port_high", "4920");
if (rc != 0) {

/* Handle error */
}

70 Attributes Objects

4.4 Getting an Option as a Binary Value

Getting an option as a binary value is very similar to setting an option from a binary value: it requires knowledge of
not only the option name, but its type as well. The final two parameters in the call to lbm_context_attr_getopt() are
a pointer to a variable to receive the current option value, and a pointer to a variable of type size_t which contains
the length of the option value variable. This length must be correct for the specified option.

In the example code below, we get the option values for operational mode and the transport TCP port low and high
values.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;
unsigned short int optval;
size_t optlen;

/* Get the operational_mode */
optlen = sizeof(optval);
rc = lbm_context_attr_getopt(attrib, "operational_mode", &optval, &optlen);
if (rc != 0) {

/* Handle error */
}
/* optval now contains LBM_CTX_ATTR_OP_EMBEDDED or LBM_CTX_ATTR_OP_SEQUENTIAL */

/* Get transport_tcp_port_low */ optlen = sizeof(optval);
rc = lbm_context_attr_getopt(attrib, "transport_tcp_port_low", &optval, &optlen);
if (rc != 0) {

/* Handle error */
}
/* optval now contains the value of transport_tcp_port_low, which should be 4901 */

/* Get transport_tcp_port_high */ optlen = sizeof(optval);
rc = lbm_context_attr_getopt(attrib, "transport_tcp_port_high", &optval, &optlen);
if (rc != 0) {

/* Handle error */
}
/* optval now contains the value of transport_tcp_port_high, which should be 4920 */

4.5 Getting an Option as a String Value

Getting an option as a string value effectively does the same thing that getting an option as a binary value does.
However, the option value is returned as a null-terminated string, just as you would specify the option value in a
configuration file. The final two parameters in the call to lbm_context_attr_str_getopt() are a pointer to a string
variable to receive the current option value, and a pointer to a variable of type size_t which contains the maximum
size of the option value string variable.

In the example code below, we get the option values for operational mode and the transport TCP port low and high
values.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;
char optval_string[256];

/* Get the operational_mode */
optlen = sizeof(optval_string);
rc = lbm_context_attr_str_getopt(attrib, "operational_mode", optval_string, &optlen);
if (rc != 0) {

/* Handle error */
}
/* optval_string now contains either "embedded" or "sequential" */

/* Get transport_tcp_port_low */
optlen = sizeof(optval_string);
rc = lbm_context_attr_str_getopt(attrib, "transport_tcp_port_low",

optval_string, &optlen);
if (rc != 0) {

/* Handle error */
}
/* optval_string now contains the string value of transport_tcp_port_low,

which should be "4901" */

4.6 Deleting an Attributes Object 71

/* Get transport_tcp_port_high */ optlen = sizeof(optval_string);
rc = lbm_context_attr_str_getopt(attrib, "transport_tcp_port_high",

optval_string, &optlen);
if (rc != 0) {

/* Handle error */
}
/* optval_string now contains the string value of transport_tcp_port_high,

which should be "4920" */

4.6 Deleting an Attributes Object

Once the attributes object is no longer needed, it should be deleted.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;

rc = lbm_context_attr_delete(attrib);
if (rc != 0) {

/* Handle error */
}

72 Attributes Objects

Chapter 5

Access to Current Operating Options

After a UM object is created, the current operating option values can be retrieved, and a small subset of its current
operating options can be modified. UM API functions supporting such actions operate on the object itself, rather
than on an attributes object.

5.1 Retrieving Current Option Values

Almost all UM objects allow their current attributes' option values to be retrieved during operation. UM API functions
supporting such actions operate on the object itself.

The UM objects which support these actions are lbm_src_t, lbm_rcv_t, lbm_context_t, and lbm_event_queue_t.
For each such object, there are corresponding API functions to get an option as a binary value, and get an option
as a string value. These API names are based on the object name, suffixed with _getopt(), and _str_getopt(). As
an illustration of this convention, the API functions for working with lbm_event_queue_t objects are shown in the
following table.

Action UM API function
Get Option from Binary Value lbm_event_queue_getopt()

Get Option from String Value lbm_event_queue_str_getopt()

For other object types, replace event_queue with context, src_topic, rcv_topic, wildcard_rcv, or hfx.

5.1.1 Getting Current Option as a Binary Value

Getting an option as a binary value is very similar to setting an option from a binary value: it requires knowledge of
not only the option name, but its type as well. The final two parameters in the call to lbm_event_queue_getopt()
are a pointer to a variable to receive the current option value, and a pointer to a variable of type size_t which
contains the length of the option value variable. This length must be correct for the specified option.

In the example code below, the option value for the queue size warning is retrieved.

unsigned long int optval;
size_t optlen;

74 Access to Current Operating Options

lbm_event_queue_t evq; /* must be previously created */
int rc;

/* Get the queue size warning value */
optlen = sizeof(optval);
rc = lbm_event_queue_getopt(&evq, "queue_size_warning", &optval, &optlen);
if (rc != 0) {

/* Handle error */
}
/* optval now contains the value of queue_size_warning, which should be 5000 */

5.1.2 Getting Current Option as a String Value

Getting an option as a string value effectively does the same thing that getting an option as a binary value does.
However, the option value is returned as a null-terminated string, just as you would specify the option value in a
configuration file. The final two parameters in the call to lbm_event_queue_str_getopt() are a pointer to a string
variable to receive the current option value, and a pointer to a variable of type size_t which contains the maximum
size of the option value string variable.

In the example code below, the option value for the queue size warning is retrieved.

char optval_string[256];
size_t optlen;
lbm_event_queue_t evq; /* must be previously created */
int rc;

/* Get the queue size warning value */
optlen = sizeof(optval_string);
rc = lbm_event_queue_str_getopt(&evq, "queue_size_warning", optval_string, &optlen);
if (rc != 0) {

/* Handle error */
}
/* optval now contains the value of queue_size_warning, which should be "5000" */

5.2 Modifying Current Option Values

A small subset of UM object options may be modified after the object is created. See the individual option descrip-
tions to determine if an options value may be changed after the UM object is created.

The UM objects which support these actions are lbm_src_t, lbm_rcv_t, lbm_context_t, and lbm_event_queue_t.
For each such object, there are corresponding API functions to set an option from a binary value and set an option
from a string value. These API names are based on the object name, suffixed with _setopt() and _str_setopt().

As an illustration of this convention, the API functions for working with lbm_event_queue_t objects are shown in
the following table.

Action UM API function
Set Option from Binary Value lbm_event_queue_setopt()

Set Option from String Value lbm_event_queue_str_setopt()

For other object types, replace event_queue with context, src_topic, rcv_topic, wildcard_rcv, or hfx.

The following sections describe in detail the use of these UM API functions. The APIs related to lbm_event_←↩
queue_t objects are used for the purpose of illustration, but the instructions (if not the specifics) apply to all such

5.2 Modifying Current Option Values 75

UM objects.

5.2.1 Setting Current Option from a Binary Value

Setting an option from a binary value requires knowledge of not only the option name, but its type and allowable
values as well. The final two parameters in the call to lbm_event_queue_setopt() are a pointer to a variable which
contains the option value to be set, and a pointer to a variable of type size_t which contains the length of the option
value variable. This length must be correct for the specified option.

In the example code below, we set the queue size warning to 5000 events.

unsigned long int optval;
size_t optlen;
lbm_event_queue_t evq; /* must be previously created */
int rc;

/* Set the queue size warning */
optlen = sizeof(optval);
optval = 5000;
rc = lbm_event_queue_setopt(&evq, "queue_size_warning", &optval, &optlen);
if (rc != 0) {

/* Handle error */
}

5.2.2 Setting Current Option from a String Value

Setting an option from a string value effectively does the same thing that setting an option from a binary value does.
However, the option value is passed as a null-terminated string, rather than as value and length pointers. This is
similar to the mechanism used by UM to process options in a configuration file. Thus, the format used for option
values must match the format you would use in a configuration file.

As before, we set the queue size warning to 5000 events.

lbm_event_queue_t evq; /* must be previously created */
int rc;

/* Set the queue size warning */
rc = lbm_event_queue_setopt(&evq, "queue_size_warning", "5000");
if (rc != 0) {

/* Handle error */
}

76 Access to Current Operating Options

Chapter 6

Example Configuration Scenarios

6.1 Highest Throughput

The following configuration option tunes UM for the highest possible throughput.

#
LBM can be configured to make efficient use of CPU time, leading
to the highest-possible throughput (bytes per second or messages
per second). This may come at the expense of latency at low
message rates. The following line configures LBM to accumulate
8KB of messages (or for wait implicit_batching_interval) before sending.
#
source implicit_batching_minimum_length 8192

6.2 Lowest Latency

This is an example configuration that favors low latency at the expense of higher CPU utilization and potentially
lower throughput.

#
Latency can be reduced at the expense of network efficiency and
system CPU time by adjusting implicit batching parameters. The
default parameters hold messages for up to 200 milliseconds or until
2048 bytes are waiting to go. The lowest possible latency is
obtained by setting the minimum batching length to 1 byte, which
effectively disables the implicit batching feature. For example:
#
context mim_implicit_batching_minimum_length 1
source implicit_batching_minimum_length 1
#
Latency can be kept to a minimum with UM by writing receiving
applications that can accept messages in the order they arrive.
See https://communities.informatica.com/infakb/faq/5/Pages/80043.aspx
for more information. Here’s how to use arrival-order delivery:
#
receiver ordered_delivery 0
#

78 Example Configuration Scenarios

Disable Nagel’s algorithm (batching) for TCP responses to eliminate
queuing latency when sending only single responses.
#
context response_tcp_nodelay 1
#
If you are running a LAN environment with under 100 machines, you can
drastically improve your recovery related latencies without significant
additional network overhead by using the following UM loss recovery parameter.
See https://communities.informatica.com/infakb/faq/5/Pages/80070.aspx
for additional information about this and other recovery parameters.
#
receiver transport_lbtrm_nak_backoff_interval 10

6.3 Creating Multicast Sources

This is an example configuration file that changes the default transport to reliable multicast so all sources created
send messages over LBT-RM.

#
UM can be configured to create sources using the LBT-RM reliable
multicast protocol instead of the default TCP.
#
source transport LBT-RM
#
Stable and reliable operation with multicast requires careful
setting of rate control limits.
#
It’s generally best to start with small limits and gradually
increase them after testing indicates that they can be safely
sustained on your network.
#
The following example limits (new) data to 10 Mbps and retransmissions
to 1 Mbps (10%).
#
context transport_lbtrm_data_rate_limit 10000000
context transport_lbtrm_retransmit_rate_limit 1000000

6.4 Disabling Aspects of Topic Resolution

If you need to reduce the amount of UDP-based Topic Resolution traffic on your network, the best way to do it is
to switch to TCP-based Topic Resolution and turn off UDP-based TR.

However, many users cannot switch fully to TCP TR (at least not quickly). Especially for users running multiple
versions of UM in their network, they may need to run UDP TR for a significant period while components are
upgraded.

This section discusses methods for disabling various aspects of UDP-based TR, but this should be done only as
part of a larger TR strategy; see UDP-Based Topic Resolution Strategies.

Note

This section applies to UDP-based topic resolution. TCP-based Topic Resolution is not affected by the
configuration options described here.

6.4 Disabling Aspects of Topic Resolution 79

Attention

Ultra Messaging does not recommend disabling both advertisements and queries because topics may not
resolve at all. Additionally, queries should not be fully disabled in a DRO environment (see Interest and Topic
Resolution) or if the resolution_no_source_notification_threshold (receiver) feature is used.

6.4.1 Disabling Topic Advertisements

You can disable topic advertisements in the Initial Phase, Sustaining Phase or both phases of topic resolution.

Disabling Initial Phase Advertisements

Use the following options to disable topic advertisements in only the Initial Phase.

source resolver_advertisement_minimum_initial_interval 0
source resolver_advertisement_maximum_initial_interval 0

Disabling Sustaining Phase Advertisements

Use the following option to disable topic advertisements in only the Sustaining Phase.

source resolver_advertisement_sustain_interval 0

6.4.2 Disabling Receiver Topic Queries

You can disable the querying of topics by receivers in the Initial Phase, Sustaining Phase or both phases of topic
resolution.

Disabling Initial Phase Queries

Use the following options to disable topic queries in only the Initial Phase.

receiver resolver_query_minimum_initial_interval 0
receiver resolver_query_maximum_initial_interval 0

Disabling Sustaining Phase Queries

Use the following options to disable topic queries in only the Sustaining Phase.

receiver resolver_query_sustain_interval 0

6.4.3 Disabling Wildcard Topic Queries

Use the following options to disable topic queries by wildcard receivers. This can reduce CPU load and latency
outliers under some circumstances, but can also slow down the process of a wildcard receiver discovering all
matching sources. Be aware that wildcard receivers will only discover sources when those sources advertise.

Additionally, queries should not be disabled in a DRO environment (see Interest and Topic Resolution).

wildcard_receiver resolver_query_minimum_interval 0
wildcard_receiver resolver_query_maximum_interval 0

80 Example Configuration Scenarios

6.4.4 Disabling Store (Context) Name Queries

When using Persistence, use the following options to disable context name queries by sources. This should only be
done if numeric IP addresses are used to identify Stores.

resolver_context_name_query_maximum_interval 0
resolver_context_name_query_minimum_interval 0

6.4.5 All But the Minimum Topic Resolution Traffic

TCP-based Topic Resolution minimizes topic resolution traffic.

6.5 Unicast Resolver

To use the unicast resolver, use a configuration file like the following example:

#
Topic resolution can be configured to use unicast traffic with an
LBM resolver daemon (lbmrd) instead of the default which uses multicast.
Be sure to insert the IP address of your lbmrd below.
#
context resolver_unicast_daemon 127.0.0.1:15380

6.6 Re-establish Pre-4.0 Topic Resolution

Ultra Messaging topic resolution prior to LBM Version 4.0 did not have resolution phases. To implement pre-4.0
topic resolution, include the following configuration option changes in your Ultra Messaging configuration file. This
is not recommended unless you have a mix of pre-4.0 and post-4.0 versions of UM that need to interoperate.

----- Disable Advertisements in 4.0 Initial Phase
source resolver_advertisement_minimum_initial_interval 0

----- Re-establish pre-4.0 Advertisement Behavior
source resolver_advertisement_minimum_sustain_duration 0
context resolver_sustain_advertisement_bps 0

----- Disable Queries in 4.0 Initial Phase
receiver resolver_query_minimum_initial_interval 0

----- Re-establish pre-4.0 Query Behavior
receiver resolver_query_sustain_interval 100
receiver resolver_query_minimum_sustain_duration 0
context resolver_sustain_query_bps 0
receiver resolution_number_of_sources_query_threshold 1

----- Re-establish pre-4.0 Wildcard Query Behavior
wildcard_receiver resolver_query_minimum_interval 0

6.7 Re-establish Pre-LBM 3.3 (Pre-UME 2.0) Port Defaults 81

6.7 Re-establish Pre-LBM 3.3 (Pre-UME 2.0) Port Defaults

To use the early default ports (prior to LBM 3.3 and UME 2.0), the following configuration file may be used.

context mim_destination_port 4401
context mim_incoming_destination_port 4401
context mim_outgoing_destination_port 4401
context resolver_multicast_port 2965
context resolver_multicast_incoming_port 2965
context resolver_multicast_outgoing_port 2965
context resolver_unicast_destination_port 5380
context resolver_unicast_port_high 4406
context resolver_unicast_port_low 4402
source transport_lbtrm_destination_port 4400
context transport_lbtrm_source_port_high 4399
context transport_lbtrm_source_port_low 4390
context transport_lbtru_port_high 4389
context transport_lbtru_port_high 4380
receiver transport_lbtru_port_high 4379
receiver transport_lbtru_port_low 4360
context request_tcp_port_high 4395
context request_tcp_port_low 4391
context transport_tcp_port_high 4390
context transport_tcp_port_low 4371

Note

Alternatively, UM will use the early port settings when the environment variable LBM_USE_ORIG_DEFAU←↩
LT_PORTS is set to 1.

6.8 Configure New Port Defaults

In the unusual case that you must run older versions of Ultra Messaging (less than LBM 3.3 / UME 2.0) on certain
machine(s) and need these older version to work with the machines running the current versions of UMS and UMP,
you can use the following configuration file for the older versions to synchronize port usage between old and current
versions.

context mim_destination_port 14401
context mim_incoming_destination_port 14401
context mim_outgoing_destination_port 14401
context resolver_multicast_port 12965
context resolver_multicast_incoming_port 12965
context resolver_multicast_outgoing_port 12965
context resolver_unicast_destination_port 15380
context resolver_unicast_port_high 14406
context resolver_unicast_port_low 14402
source transport_lbtrm_destination_port 14400
context transport_lbtrm_source_port_high 14399
context transport_lbtrm_source_port_low 14390
context transport_lbtru_port_high 14389
context transport_lbtru_port_low 14380
receiver transport_lbtru_port_high 14379
receiver transport_lbtru_port_low 14360
context request_tcp_port_high 14395
context request_tcp_port_low 14391
context transport_tcp_port_high 14390
context transport_tcp_port_low 14371

82 Example Configuration Scenarios

Chapter 7

Interrelated Configuration Options

Some Ultra Messaging configuration options are related in ways that might not be immediately apparent. Changing
the value for one option without adjusting its related option can cause problems such as NAK storms, tail loss, etc.
This section identifies these relationships and recommends a best practice for setting the interrelated options.

The following sections discuss configuration option relationships.

7.1 Preventing NAK Storms with NAK Intervals

The NAK generation interval should be sufficiently longer than the NAK backoff interval so that the source, after
receiving the first NAK from a receiver, has time to retransmit the missing datagram and prevent a NAK storm from
all receivers. LBTRM, LBTRU, and MIM all use NAK generation and backoff intervals. The NAK behavior for all
transports is the same.

Interrelated Options:

• transport_lbtrm_nak_backoff_interval (receiver)

• transport_lbtrm_nak_generation_interval (receiver)

• transport_lbtru_nak_backoff_interval (receiver)

• transport_lbtru_nak_generation_interval (receiver)

• mim_nak_backoff_interval (context)

• mim_nak_generation_interval (context)

Recommendation:

Set the NAK generation interval to at least 2x the NAK backoff interval.

Example:

#
To avoid NAK storms, set NAK generation interval to at least 2x the
NAK backoff interval.
#
receiver transport_lbtrm_nak_backoff_interval 200 # .2 seconds
receiver transport_lbtrm_nak_generation_interval 10000 # 10 seconds

See also:

Transport LBT-RM Reliability Options
Transport LBT-RU Reliability Options
Multicast Immediate Messaging Reliability Options

84 Interrelated Configuration Options

7.2 Preventing Tail Loss With TSNI and NAK Interval Options

Tail Loss refers to the situation where a receiver (subscriber) does not receive the last few (tail) messages sent
by a source (publisher). When unrecoverable loss occurs on a transport, due to the possibility of multiple topic-
level messages being contained in a single transport-level sequence number (due to implicit batching), a receiver
does not know which particular messages were unrecoverable until the arrival of later messages (revealing earlier
gaps in topic-level sequence number) or until the arrival of Topic Sequence Number Information (TSNI) records
sent periodically by a publisher. Specific topic-level knowledge of sequence gaps is a prerequisite for the receiver
to deliver event callbacks to the application indicating that unrecoverable loss has occurred, because those event
callbacks are per-receiver (topic-level). A TSNI active threshold that is too small relative to the TSNI and/or NAK
generation interval may prevent the reporting of tail loss to the application, especially with ordered delivery.

Interrelated Options:

• transport_topic_sequence_number_info_active_threshold (source)

• transport_topic_sequence_number_info_interval (source)

• transport_lbtrm_nak_generation_interval (receiver)

• transport_lbtru_nak_generation_interval (receiver)

Recommendation:

Set the source's transport_topic_sequence_number_info_active_threshold (source) to at least 4x the
transport_topic_sequence_number_info_interval (source) plus the receiver's transport_lbtru_nak_generation←↩
_interval (receiver), all divided by 1000 to get seconds..

Example:

#
NOTE: transport_topic_sequence_number_info_active_threshold is in seconds.
#
source transport_topic_sequence_number_info_interval 5000
receiver transport_lbtrm_nak_generation_interval 10000
(5000*4 + 10000)/1000 = 30
source transport_topic_sequence_number_info_active_threshold 30

See also:

Preventing Undetected Unrecoverable Loss
Transport LBT-RM Reliability Options
Transport LBT-RU Reliability Options

7.3 Preventing Undetected Unrecoverable Loss

The UM UDP-based protocols are generally able to successfully recover packet loss. However, there can be cases
where UM is not able to recover the lost packets, leading to Unrecoverable Loss.

With the default settings, there is a type of unrecoverable loss which can remain unreported to the application for
an unbounded period of time.

For example:

7.3 Preventing Undetected Unrecoverable Loss 85

1. A sudden burst of data from a source overloads a receiver, resulting in the last few packets being lost.

2. The source sends one more data message and then exits.

3. The receiver's Delivery Controller gets the last message and sees the sequence number gap. So it buffers
the last message and waits for the transport layer to recover the missing messages. But since the source no
longer exists, there is no recovery.

4. The NAK generation interval lapses. Thus, the gapped messages are considered unrecoverable. However,
due to UM's design, a receive event is needed to deliver the unrecoverable loss event and the buffered
message. But since the source is deleted, no more receive events will happen. The delivery controller is an
a "stale loss" state.

5. Finally, the transport session times out and the delivery controller is deleted, delivering EOS to the application,
but not the unrecoverable loss event or the buffered message.

In this scenario, not only is the unrecoverable loss not delivered, but the buffered message which was successfully
received is also never delivered. Note that this kind of Tail Loss is rare, but can happen.

This result can be avoided by enabling the "loss check interval" feature on the delivery controller. For example:

receiver delivery_control_loss_check_interval 2500

This starts a timer that wakes up every 2.5 seconds and scans UM's internal list of all topic receivers, looking for
delivery controllers in the "stale loss" state. For each one it finds, it generates the unrecoverable loss event to the
application's receiver callback, and also delivers the subsequently buffered message.

However, for applications that have large numbers of receivers, the cost of scanning every receiver can become
significant, introducing regular latency outliers. For latency-sensitive applications, an alternate method to avoid the
unreported loss is to make sure transport_topic_sequence_number_info_interval (source) is non-zero, and have
the publisher delays two of those intervals plus the NAK generation interval (default: 2∗5+60=70 seconds) before
deleting a source that isn't needed any more. The TSNI messages will serve as receiver events to force delivery.
See Preventing Tail Loss With TSNI and NAK Interval Options.

Be aware that the delivery_control_loss_check_interval (receiver) can interact with other interval configurations.

Interrelated Options:

• delivery_control_loss_check_interval (receiver)

• transport_lbtrm_activity_timeout (receiver)

• transport_lbtrm_nak_generation_interval (receiver)

• transport_lbtru_activity_timeout (receiver)

Recommendation, if using loss check interval:

For LBT-RM, set the transport activity timeout to value greater than the sum of the delivery control loss check
interval and the NAK generation interval. Also, set the NAK generation interval to at least 4x the delivery control
loss check interval.
For LBT-RU, set the transport activity timeout to value greater than the delivery control loss check interval
For UMP, always enable and set accordingly the delivery control loss check interval when configuring a store

Example:

#
To avoid undetected or unreported loss, set NAK generation to 4x the delivery
control check interval, and ensure that these two combined are less than the
transport activity timeout
#
receiver delivery_control_loss_check_interval 2500
receiver transport_lbtrm_activity_timeout 60000
receiver transport_lbtrm_nak_generation_interval 10000

86 Interrelated Configuration Options

See also:

Delivery Control Options

7.4 Preventing Undetected Late Join Loss

If during a Late Join operation, a transport times out while a receiver is requesting retransmission of missing mes-
sages, this can cause lost messages to go undetected and likely become unrecoverable.

Interrelated Options:

• retransmit_request_generation_interval (receiver)

• transport_tcp_activity_timeout (receiver)

• transport_lbtrm_activity_timeout (receiver)

• transport_lbtru_activity_timeout (receiver)

• transport_lbtipc_activity_timeout (receiver)

Recommendations:

Set the Late Join retransmit request interval to a value less than its transport's activity timeout value

Example:

#
To avoid a transport inactivity timeout while requesting Late Join
retransmissions, set the Late Join retransmit request interval to a value
less than its transport’s activity timeout.
#
receiver retransmit_request_generation_interval 10000
receiver transport_lbtrm_activity_timeout 60000

See also:

Late Join Options

7.5 Preventing IPC Receiver Deafness With Keepalive Options

With an LBT-IPC transport, an activity timeout that is too small relative to the session message interval may cause
receiver deafness. If a timeout is too short, the keepalive messages might not be received in time to prevent the
receiver from being deleted or disconnecting because the source appears to be gone.

Interrelated Options:

• transport_lbtipc_activity_timeout (receiver)

• transport_lbtipc_sm_interval (source)

Recommendations:

Set the activity timeout to at least 2x the session message interval

7.6 Preventing Erroneous LBT-RM/LBT-RU Session Timeouts 87

Example:

#
To avoid receiver deafness:
- set client activity timeout to at least 2x the acknowledgement interval.
- set activity timeout to at least 2x the session message interval.
#
receiver transport_lbtipc_activity_timeout 60000
source transport_lbtipc_sm_interval 10000

See also:

Transport LBT-IPC Operation Options

7.6 Preventing Erroneous LBT-RM/LBT-RU Session Timeouts

An LBT-RM or LBT-RU receiver-side quiescent timeout may delete a transport session that a source is still active
on. This can happen if the timeout is too short relative to the source's interval between session messages (which
serve as a session keepalive).

Interrelated Options:

• transport_lbtrm_activity_timeout (receiver)

• transport_lbtrm_sm_maximum_interval (source)

• transport_lbtru_activity_timeout (receiver)

• transport_lbtru_sm_maximum_interval (source)

Recommendations:

Set the receiver LBT-RM or LBT-RU activity timeout to at least 3x the source session message maximum
interval.

Example:

#
To avoid erroneous session timeouts, set receiver transport activity
timeout to at least 3x the source session message maximum interval.
#
receiver transport_lbtrm_activity_timeout 60000
source transport_lbtrm_sm_maximum_interval 10000
receiver transport_lbtru_activity_timeout 60000
source transport_lbtru_sm_maximum_interval 10000

See also:

Transport LBT-RM Operation Options
Transport LBT-RU Operation Options

88 Interrelated Configuration Options

7.7 Preventing Errors Due to Bad Multicast Address Ranges

Sometimes it is easy to accidentally reverse the low and high values for LBT-RM multicast addresses, which actually
creates a very large range. Aside from excluding intended addresses, this can cause error conditions.

Interrelated Options:

• transport_lbtrm_multicast_address_low (context)

• transport_lbtrm_multicast_address_high (context)

Recommendations:

Ensure that the intended low and high values for LBT-RM multicast addresses are not reversed

Example:

#
To avoid incorrect LBT-RM multicast address ranges, ensure that you have not
reversed the low and high values.
#
context transport_lbtrm_multicast_address_low 239.101.4.10.10
context transport_lbtrm_multicast_address_high 239.101.4.10.14

See also:

Transport LBT-RM Network Options

7.8 Preventing Store Timeouts

When using Persistence, a store may be erroneously declared unresponsive if its activity timeout expires before it
has had adequate opportunity to verify it is still active via activity check intervals.

Interrelated Options:

• ume_store_activity_timeout (source)

• ume_store_check_interval (source)

Recommendations:

Set the store activity timeout to at least 5x the activity check interval

Example:

#
To avoid erroneous store activity timeouts, set the activity
timeout to at least 5x the activity check interval.
#
source ume_store_activity_timeout 3000
source ume_store_check_interval 500

7.9 Preventing ULB Timeouts 89

7.9 Preventing ULB Timeouts

When using ULB queuing, ULB source or receiver may be erroneously declared unresponsive if its activity timeout
expires before it has had adequate opportunities to attempt to re-register via activity check intervals if the source
appears to be inactive. It is also possible for sources to attempt to reassign messages that have already been
processed.

Interrelated Options:

• umq_ulb_source_activity_timeout (receiver)

• umq_ulb_source_check_interval (receiver)

• umq_ulb_application_set_message_reassignment_timeout (source)

• umq_ulb_application_set_receiver_activity_timeout (source)

• umq_ulb_check_interval (source)

Recommendations:

Set the ULB source activity timeout to at least 5x the ULB source activity check interval.
Set the ULB application set message reassignment timeout to at least 5x the ULB check interval.
Set the ULB receiver activity timeout to at least 5x the ULB check interval.

Example:

#
To avoid erroneous ULB source, receiver or application set message activity
timeouts, set the activity timeout to at least 5x the activity check interval.
#
receiver umq_ulb_source_activity_timeout 10000
receiver umq_ulb_source_check_interval 1000
source umq_ulb_application_set_message_reassignment_timeout 50000
source umq_ulb_application_set_receiver_activity_timeout 10000
source umq_ulb_check_interval 1000

See also:

Ultra Messaging Queuing Options]]])

7.10 Preventing Unicast Resolver Daemon Timeouts

A unicast resolver daemon may be erroneously declared inactive if its activity timeout expires before it has had
adequate opportunity to verify that it is still alive.

Interrelated Options:

• resolver_unicast_activity_timeout (context)

• resolver_unicast_check_interval (context)

Recommendations:

Set the unicast resolver daemon activity timeout to at least 5x the activity check interval. Or, if activity notification
is not desired, set both options to 0.

90 Interrelated Configuration Options

Example:

#
To avoid erroneous unicast resolver daemon timeouts, set the activity
timeout to at least 5x the activity check interval.
#
context resolver_unicast_activity_timeout 1000
context resolver_unicast_check_interval 200

See also:

UDP-Based Resolver Operation Options

7.11 Preventing Store Registration Hangs

The following configuration options come into play when sources register with stores in a lossy environment:

Interrelated Options:

• ume_sri_request_interval (receiver)

• ume_sri_request_maximum (receiver)

• transport_topic_sequence_number_info_request_interval (receiver)

• transport_topic_sequence_number_info_request_maximum (receiver)

• transport_tcp_activity_timeout (receiver)

• transport_lbtrm_activity_timeout (receiver)

• transport_lbtru_activity_timeout (receiver)

• transport_lbtipc_activity_timeout (receiver)

The sri_request "interval" and "maximum" options multiply to define a duration over which the receiver requests
Store Information Records (SRI) messages from the source. Similarly, the transport_topic_sequence_number_←↩
info_request "interval" and "maximum" options multiply to define a duration over which the receiver requests Trans-
port Topic Sequence Number Info (TSNI) messages from the source.

Recommendations:

The two request durations should be twice the value of the appropriate transport activity timer.

Example:

#
To avoid hung store registration, set the durations of the SRI and TSNI
requests to 2x the transport activity timeout.
#
receiver transport_lbtrm_activity_timeout 60000
receiver ume_sri_request_maximum 120
receiver ume_sri_request_interval 1000
receiver transport_topic_sequence_number_info_request_maximum 120
receiver transport_topic_sequence_number_info_request_interval 1000

7.11 Preventing Store Registration Hangs 91

Warning

As of this version of UM, the default values for these options do not satisfy this recommendation. Users
are advised to double the values for ume_sri_request_maximum (receiver) and transport_topic_sequence_←↩
number_info_request_maximum (receiver).

92 Interrelated Configuration Options

Chapter 8

General Configuration Guidelines

8.1 Case Sensitivity

All Ultra Messaging scope, option, and value strings are case-insensitive. Thus, the following are identical:

context fd_management_type wincompport
Context Fd_Management_Type WinCompPort
CONTEXT FD_MANAGEMENT_TYPE WINCOMPPORT

8.2 Specifying Interfaces

The ∗_interface options require a network interface, usually supplied as a string (from a configuration file or in
source code via ∗_attr_str_setopt()), the syntax used for network interface specifications is CIDR notation:

a.b.c.d/num

where '/num' is the optional "prefix length", the number of leading 1 bits in the netmask. If the prefix length is
omitted, it defaults to 32 (netmask 255.255.255.255), which means that it must be an exact match for the interface's
IP address. However, if the prefix length '/num' is supplied, it tells Ultra Messaging to select the first interface
that starts with that network number. This makes it easier to share a configuration file between many (possibly
multi-homed) machines on the same network.

For example:

context resolver_unicast_interface 192.168.0.0/24

specifies a netmask of 255.255.255.0 and would match the interface 192.168.0.3 on one host, and 192.168.0.251
on another host. But would not match 192.168.1.3.

The prefix length ("/num") does not need to match the actual network mask used by the host. For example, you
have many hosts on different internal IP networks, but if they all start with "10", you can specify the interface as
"10.0.0.0/8". UM will scan the list of interfaces and select the first one it finds that starts with 10. This is useful for
selecting any network-connected interface, omitting the loopback 127.0.0.1.

You can also set network interfaces by device name. When setting a configuration option's interface by device name,
you must use double quotes, as illustrated below.

context resolver_unicast_interface "en0"

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation

94 General Configuration Guidelines

Finally, you can also set network interfaces by DNS host name. When setting a configuration option's interface by
DNS name, simply replace the dotted IP address with the host name, as illustrated below.

context resolver_unicast_interface myhost.mydomain.com/24

Notice the use of the optional netmask even though the host name will typically resolve to a specific host IP address.
In this case, UM will zero out the host bits of myhost's address and find any interface within that network. If the
netmask is omitted, an exact match to myhost's address is needed.

8.2.1 Interface Device Names and XML

As mentioned above, when a device name is supplied as an interface specification, the device name must be
enclosed in double quotes. This presents a problem when the configuration option is specified within an XML file.
In XML files, the values for all options must be enclosed in double quotes, but those quotes are only used by the
XML parser to delimit the value. The quote characters themselves are not passed to the UM configuration parser.
But the UM configuration parser needs the double quotes to indicate that the device name is being used.

The solution is to use the """ escape when specifying device names for interfaces within an XML file. The XML
parser will convert those to actual double quote characters as part of the value passed to UM.

For example:

<options type="context">
<option name="resolver_multicast_interface" default-value=""en0"">
</option>

</options>

Another example:

<options type="context">
<option name="monitor_transport_opts"
default-value="context|resolver_multicast_interface="en0";source|transport=lbt-rm">

</option>
</options>

(The repeated semicolon looks strange; the first one closes the """, and the second one separates the resolver_←↩
multicast_interface option from the transport option.)

8.3 Socket Buffer Sizes

When specifying send or receive socket buffer sizes, keep the following platform-specific information in mind.

Linux

The kernel value net.core.rmem_max dictates the highest value allowed for a receive socket. The kernel value
net.core.wmem_max dictates the highest value allowed for a sending socket. Increase these values to increase
the amount of buffering allowed.

Windows

Windows should allow socket buffer sizes to be set very high if needed without requiring registry changes.

See our whitepaper Topics in High Performance Messaging for background and guidelines on UDP
buffer sizing.

https://www.informatica.com/downloads/1568_high_perf_messaging_wp/Topics-in-High-Performance-Messaging.htm

8.5 Reference Entry Format 95

8.4 Port Assignments

There are a large number of configuration options which are network port numbers. In many cases, ranges of
ports are specified so that multiple instances of UM-based programs can be run on the same machine without
interference. Each instance will find a free port in the configured range. However, if the range is not large enough,
an instance of UM can fail to initialize due to ports not being available.

Port range exhaustion can also happen if other software packages assign to ports in the range configured for UM.
Users should be careful to configure all their networking packages to use non-overlapping port numbers.

8.4.1 Ephemeral Ports

The operating system allocates a range of ports for ephemeral ports. These ports are allocated dynamically as-
needed by networking packages, including UM, for sockets that don't need a well-known, predictable port number.
See Wikipedia's article Ephemeral port for ephemeral port ranges used by popular operating systems.

UM port configurations should avoid the host's ephemeral port range. Since these ports are allocated dynamically
by the operating system, these allocations can interfere with UM by exhausting UM port ranges.

8.4.2 Network VS Host Order

When the UM C API is used to set configuration options programmatically, port numbers can be specified as a string
or as a binary value. For example, here is an option being set by binary value:

unsigned short int optval = 4901; /* host byte order required */
size_t optlen = sizeof(optval);
rc = lbm_context_attr_setopt(attrib, "transport_tcp_port_low", &optval, optlen);

See Setting an Option from a Binary Value.

There are some port options whose binary values must be supplied in network order. For example:

unsigned short int optval = htons(4901); /* network byte order required */
size_t optlen = sizeof(optval);
rc = lbm_source_attr_setopt(attrib, "transport_tcp_port", &optval, optlen);

It is generally the case where setting a port to a specific value (i.e. not setting up a range) requires network order.
Whereas setting the high and low port values of a range are done in host order.

The reference documentation for each port option specifies the byte order required when binary values are being
specified. For example, transport_tcp_port (source) has a table row that says:

Byte
order:

Network

8.5 Reference Entry Format

This section describes the format of each option reference entry.

https://en.wikipedia.org/wiki/Ephemeral_port#Range

96 General Configuration Guidelines

Each entry begins with a brief description of the option. Following the description is a series of items that defines
permissible usage and describes the values for the option.

Scope

Defines the scope to which the option applies.

Type

Defines the data type of the option. The type is required for calls to the ∗_setopt() and ∗_getopt() API functions.

Units

Defines the units in which the option value is expressed. This item is optional.

Default value

For range-valued options, indicates the base default value for the option.

Byte order

For options whose value is an IP address or port, defines the byte ordering (Host or Network) expected by the
API for ∗_setopt() calls, and returned by the API for ∗_getopt() calls.

May be set during operation

If an option may be set after the UM object is created, it is so indicated here.

Next, for enumerated-valued options with limited specific choices, a table details the permissible String Value (con-
figuration file), Integer Value (programmatic attribute setting), and a Description of each choice that includes default
value designations.

Alternately, for switch-valued options (0 or 1), a table describes the meaning of each of the two possible values. The
default value is noted within the description.

8.5 Reference Entry Format 97

98 General Configuration Guidelines

Chapter 9

Special Notes

9.1 Configuring Multi-Homed Hosts

By default, UM will select the first multicast-capable, non-loopback interface for multicast topic resolution. If you are
fortunate, on a multi-homed host, the correct interface will be selected. However, this fortuitous selection should not
be relied upon. Moving the interface card to a different slot, a change in the operating system kernel, and numerous
other factors can lead to a different ordering of interfaces as reported by the operating system. This in turn can lead
UM to a select a different interface after the change.

It is strongly recommended that the actual interface be specified. The resolver_multicast_interface (context) option
allows you to explicitly specify the multicast interface. Note that this also changes the interface for LBT-RM and
multicast immediate messaging.

Other interface options:

resolver_unicast_interface (context) when using the unicast resolver
request_tcp_interface (context) when using the request/response messaging
transport_lbtru_interface (receiver)
transport_lbtru_interface (source)
transport_tcp_interface (receiver)
transport_tcp_interface (source)

TCP transport:

transport_tcp_port_low (context)
transport_tcp_port_high (context)
transport_tcp_port (source)

LBT-RM transport:

transport_lbtrm_source_port_low (context)
transport_lbtrm_source_port_high (context)
transport_lbtrm_destination_port (source)

LBT-RU transport:

transport_lbtru_port_low (context)
transport_lbtru_port_high (context)
transport_lbtru_port (source)
transport_lbtru_port_low (receiver)
transport_lbtru_port_high (receiver)

100 Special Notes

Multicast immediate messaging:

mim_destination_port (context)
mim_incoming_destination_port (context)
mim_outgoing_destination_port (context)

Requests:

request_tcp_port (context)
request_tcp_port_low (context)
request_tcp_port_high (context)

In addition, since machines acting as a firewall are often multi-homed as well, see Configuring Multi-Homed Hosts
for additional considerations.

9.2 Traversing a Firewall

To use UM across a firewall, several port options may need to be changed. The options of interest include:

Multicast resolver:

resolver_multicast_port (context)

Unicast resolver:

resolver_unicast_port (context)
resolver_unicast_port_low (context)
resolver_unicast_port_high (context)
resolver_unicast_destination_port (context)

9.2 Traversing a Firewall 101

102 Special Notes

Chapter 10

Major Options

Options in this group have a major impact on the operation of Ultra Messaging. Most UM application developers will
need to be aware of the default values of these options or perhaps override them.

10.1 Reference

10.1.1 broker (context)

Add a broker specification to the list of brokers. Unlike most other UM options, every time this option is supplied,
it adds one or more service specifications to the list, and does NOT overwrite previous specifications.

For the configuration file as well as string API method of setting this option, you can specify multiple brokers with
a comma or semicolon-separated list on a single line. Each entry contains the broker IP address (or domain
name of the IP address) and destination port in the format IP:Dest_Port[,IP:Dest_Port].

An entry or string with the IP address of 0.0.0.0 and port 0 removes all previous broker specifications.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
broker specification can be supplied for each call to lbm_context_attr_setopt(). However, when the binary
form of option retrieval lbm_context_attr_getopt() is used, the list of brokers is returned as an array, and the
optlen parameter should be set as:

optlen = (max_num_brokers * sizeof(lbm_transport_broker_entry_t));

Scope: context

Type: lbm_transport_broker_entry_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMQ 6.8

104 Major Options

10.1.2 compatibility_include_pre_um_6_0_behavior (context)

Enable Ultra Messaging 6.x applications to inter-operate with pre-6.0 applications.

Enabling this option increases overhead data on the wire and slightly changes some operational behaviors of
persistent sources.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.7

String value Integer value Description
"1" 1 Inter-operate with pre-6.0 applications.

"0" 0 Disable Inter-operation with pre-6.0 applications. Default for all.

10.1.3 context_event_function (context)

Callback function (and associated client data pointer) that is called when a context event occurs. This callback
may be called inline or from an event queue, if one is given.

If called inline, the callback function used should not block or it will block the context thread processing. See
lbm_context_event_cb_proc.

Scope: context

Type: lbm_context_event_func_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMQ 1.0.

10.1 Reference 105

10.1.4 context_name (context)

The name of the context, limited to 128 alphanumeric characters, hyphens or underscores.

This is only used for XML Configuration Files.

Scope: context

Type: string

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.3/UME 3.3/UMQ 2.3.

10.1.5 default_interface (context)

Specifies the network interface to be used as the default setting for all other interface configuration options.

You can specify the full IP address of an interface, or just the network part (see Specifying Interfaces for details).

Default is set to INADDR_ANY, meaning that it will not bind to a specific interface.

Note: if specifying an interface name in an XML-format file, see Interface Device Names and XML.

Scope: context

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 6.10

106 Major Options

10.1.6 dynamic_fragmentation_reduction (context)

Reduce UM and/or IP fragmentation by dynamically calculating the header size per message datagram.

Enabling this option makes UM's transport protocols more-fully utilize the configured datagram max size. This
option is typically only of interest to users of LBT-RM and/or LBT-RU who need to avoid IP fragmentation, such
as users of a kernel-bypass driver.

See Dynamic Fragmentation Reduction for details.

Enabling this option should be done in conjunction with setting the datagram max size options to 1472.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.14

Value Description

1 Uses optimal fragmentation lengths.

0 Uses conservative fragmentation lengths. Default for all.

10.1.7 fd_management_type (context)

Define the mechanism UM uses for socket file descriptor (FD) management.

For more information, search on "file descriptors" in the Informatica Knowledge Base.

Warning

If using Sequential Mode and fd_management_type "wincompport", the thread that creates the context must
not exit while the context is active. Furthermore, you gain a small performance improvement if the thread that
creates the context is the same thread that calls lbm_context_process_events().

10.1 Reference 107

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"poll" LBM_CTX_ATTR_FDTYPE_POLL FD management uses poll(). Unix only.

"select" LBM_CTX_ATTR_FDTYPE_SELECT FD management uses select(). Unix only.
Default for Unix.

"epoll" LBM_CTX_ATTR_FDTYPE_EPOLL FD management uses epoll(). Linux ker-
nel 2.6 or later only.

"devpoll" LBM_CTX_ATTR_FDTYPE_DEVPOLL FD management uses the /dev/poll driver.
Solaris 8 or later only.

"wsaeventselect" LBM_CTX_ATTR_FDTYPE_WSAEV FD management uses WSAEventSelect()
and WaitForMultipleObjects(), which im-
poses a limit of 64 file descriptors. Win-
dows only.

"wincompport" LBM_CTX_ATTR_FDTYPE_WINCPORT FD management uses Windows comple-
tion ports and completion routines. Avoids
the 64 file descriptor limit set by WSA←↩
EventSelect(). Windows XP or later only.
Default for Windows.

10.1.8 file_descriptor_management_behavior (context)

Set how the context monitors file descriptors (sockets) for events.

The "busy_wait" selection can reduce latency and especially latency outliers (jitter), at the expense of the thread
consuming 100% CPU.

Only use "busy_wait" if there are enough cores to allocate a core exclusively to each receive thread. If there are
too few cores, enabling "busy_wait" can actually increase latencies due to threads time-sharing CPU resources.
Also, pinning threads to cores is highly recommended to prevent thread migration across cores.

See Receive Thread Busy Waiting for more information.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.12.1

108 Major Options

String value Integer value Description

"pend" LBM_CTX_ATTR_FD_MANAGEMENT_←↩
BEHAVIOR_PEND

Causes the context or XSP thread to go to
sleep waiting for socket events to happen.
Default for all.

"busy_wait" LBM_CTX_ATTR_FD_MANAGEMENT_←↩
BEHAVIOR_BUSY_WAIT

The context or XSP thread will check repeat-
edly in a tight loop (busy waiting) for socket
events to happen.

10.1.9 message_selector (receiver)

Enables UM to pass a message selector string to any receiver.

The value must be an expression that conforms to JMS message selector syntax as defined in the Oracle JMS
specification.

Scope: receiver

Type: string

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMQ 5.3.

10.1.10 multiple_receive_maximum_datagrams (context)

The number of datagrams requested to be read at a time from a UDP-based transport socket.

Normally, UM reads one datagram at a time from each socket that has data. This option allows the reading
of multiple datagrams in a single read (using recvmmsg()), and processing them in a tight loop. This improves
efficiency and can reduce average latency.

Value of 0 means do NOT use recvmmsg().

10.1 Reference 109

Only supported for LBT-RM and LBT-RU transport types. The multiple_receive_maximum_datagrams option
does not apply to MIM or Topic Resolution.

Requires glibc 2.12 or later. This option is ignored for non-Linux platforms.

See Receive Multiple Datagrams for more information.

Scope: context

Type: lbm_uint32_t
Units: datagrams

Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.8. However, it did not work correctly until UM 6.9.

10.1.11 operational_mode (context)

The mode in which UM's context thread operates to process events.

See Embedded Mode and Sequential Mode for more information.

Warning

If using sequential mode and fd_management_type "wincompport", the thread that creates the context must
not exit while the context is active. Furthermore, you gain a small performance improvement if the thread that
creates the context is the same thread that calls lbm_context_process_events().

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

110 Major Options

String value Integer value Description

"embedded" LBM_CTX_ATTR_OP_EMBEDDED A thread is spawned within UM to handle process-
ing of events (timers and socket events). Default
for all.

"sequential" LBM_CTX_ATTR_OP_SEQUENTIAL The application is responsible for calling lbm←↩
_context_process_events() to process events.
Sequential mode does not support Multi-Transport
Threads.

10.1.12 operational_mode (xsp)

The mode in which UM operates to process events.

See Embedded Mode and Sequential Mode for more information.

Warning

If using sequential mode and fd_management_type "wincompport", the thread that creates the context must
not exit while the context is active. Furthermore, you gain a small performance improvement if the thread that
creates the context is the same thread that calls lbm_xsp_process_events().

Scope: xsp

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.11

String value Integer value Description

"embedded" LBM_CTX_ATTR_OP_EMBEDDED A thread is spawned within UM to handle process-
ing of events (timers and socket events). Default
for all.

"sequential" LBM_CTX_ATTR_OP_SEQUENTIAL The application is responsible for calling lbm_←↩
xsp_process_events() to process events.

10.1 Reference 111

10.1.13 ordered_delivery (receiver)

Indicates whether or not the topic should have its data delivered in order and reassembled.

For LBT-RM, LBT-RU, TCP-LB or LBT-IPC transport sessions only. (This option also applies to TCP when using
Late Join because the Late Join messages are not part of the TCP message stream.)

Changing this option from the default value to a value of 0 (zero) results in message fragments being delivered
as soon as they fully arrive. Value -1 allows arrival order delivery after the reassembly of large messages.

Note that ordering only applies to a specific topic from a single publisher. UM does not ensure ordering across
topics, or on a single topic across different publishers.

See Message Ordering and Message Fragmentation and Reassembly for more information.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description
"1" 1 UM delivers topic messages to a receiver in-order and reassembles large

messages. Default for all.
"-1" -1 UM delivers topic messages to a receiver as they arrive and may be out

of order. Duplicate delivery is possible. However, UM reassembles large
messages. Your application can use the sequence_number field of
lbm_msg_t objects to order or discard messages.

"0" 0 UM delivers topic messages to a receiver as they arrive and may be out of
order.
WARNING: This mode of operation is deprecated and may be removed in
a future UM version. The user is advised to use mode -1.
UM delivers large messages as individual fragments of less than the maxi-
mum datagram size for the transport in use. Duplicate delivery is possible.
This mode is incompatible with Message Properties.

112 Major Options

10.1.14 receiver_callback_service_time_enabled (context)

Indicates if UM collects receiver callback statistics, which provide the maximum, mean and minimum time in
microseconds required to complete wildcard, hot-failover, and regular receiver callbacks.

Enabling this function slightly decreases the efficiency of the receive code path, but provides operators with
greater visibility of application behavior.

Scope: context

Type: int

Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.5

Value Description
1 UM collects receiver callback statistics.

0 UM does NOT collects receiver callback statistics. Default for all.

10.1.15 resolver_source_notification_function (context)

Application callback function (and associated client data pointer) that is called when a new source is discovered
for any topic, even if the application does not have a matching receiver.

Contrast this with source_notification_function (receiver).

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

If this feature is used with a context that is connected to an SRS for Topic Resolution, resolver_service_←↩
interest_mode (context) may need to be set to "flood". See TCP-Based TR Interest.

Scope: context

Type: lbm_src_notify_func_t

Default
value:

NULL

10.1 Reference 113

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

10.1.16 source_event_function (context)

Callback function (and associated client data pointer) that is called when a context source event (such as a
multicast immediate mode source wakeup event) occurs.

This callback may be called inline or from an event queue, if one is given. If called inline, the callback function
used should not block or it will block the context thread processing.

Scope: context

Type: lbm_context_src_event_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in LBM 3.4/UME 2.1.

10.1.17 source_includes_topic_index (context)

Determines whether the topic index is included in the source string generated for messages and new source
notifications.

Users should not disable this.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0.

114 Major Options

Value Description
1 Indicates the topic index should be included in the source string. Default for all.
0 Indicates the topic index should not be included.

10.1.18 transport (source)

The transport type to be used for created sources.

Note

With Smart Sources, only LBT-RM and LBT-RU are supported.

Note

With Transport Services Provider (XSP), only LBT-RM, LBT-RU, and TCP are supported.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"tcp" LBM_SRC_TOPIC_ATTR_TRANSP←↩
ORT_TCP

TCP over IPv4. Default for all.

"lbtrm", "lbt-rm" LBM_SRC_TOPIC_ATTR_TRANSP←↩
ORT_LBTRM

UDP-based reliable multicast with uni-
cast NAKs.

"lbtru", "lbt-ru" LBM_SRC_TOPIC_ATTR_TRANSP←↩
ORT_LBTRU

UDP-based reliable unicast with unicast
NAKs.

"lbtipc", "lbt-ipc" LBM_SRC_TOPIC_ATTR_TRANSP←↩
ORT_LBTIPC

Inter-Process Communication between
processes on the same host using a
shared memory area.

"lbtsmx", "lbt-smx" LBM_SRC_TOPIC_ATTR_TRANSP←↩
ORT_LBTSMX

Shared Memory Acceleration. Ultra-
low-latency Inter-Process Communica-
tion transport between processes on the
same host using a shared memory area.
Restrictions apply.

10.1 Reference 115

String value Integer value Description

"broker" LBM_SRC_TOPIC_ATTR_TRANSP←↩
ORT_BROKER

Sources send messages to a broker,
which manages the messages for con-
sumption.

"lbtrdma", "lbt-rdma" LBM_SRC_TOPIC_ATTR_TRANSP←↩
ORT_LBTRDMA

InfiniBand Remote Direct Memory Ac-
cess transport. Deprecated in UM 6.9.

10.1.19 transport_demux_tablesz (receiver)

Specifies the size of the table used for storing receiver delivery controllers used by UM for message delivery.

Must be a power of two (1, 2, 4, 8, 16, etc.). If not a power of two, UM generates a log warning and uses the
next highest power of two. For most use cases with low to moderate numbers of topics per transport session,
the default suffices. For large numbers of topics and in cases where the lowest latency is desired, set the option
to the next higher power of two than the number of topics expected on the transport session.

See Transport Demultiplexer Table Size for more information.

Scope: receiver

Type: size_t

Default
value:

1

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2.

10.1.20 transport_mapping_function (context)

Application callback function (and associated client data pointer) that is called when a context is about to join a
new transport session.

This callback provides an opportunity for the user to map the transport session in question to an XSP.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

116 Major Options

Scope: context

Type: lbm_transport_mapping_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in UM 6.11

10.1.21 transport_session_multiple_sending_threads (context)

Flag that indicates the application intends to use multiple sending threads per transport session.

Setting this flag to 0 provides a very small efficiency improvement to the process of waking up a sleeping
sending thread which is blocked on a send call, but renders the send functions thread-unsafe.

Do not use this option unless directed by UM Support.

For the most-efficient sending method, see Smart Sources.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Value Description
1 Indicates the application does intend to use multiple sending threads per transport session and

that UM should make that assumption. Default for all.
0 Indicates the application does not intend to use multiple sending threads per transport session and

that UM should make that assumption.

10.1 Reference 117

10.1.22 transport_session_single_receiving_thread (context)

Flag that indicates the application intends to use only a single thread for receiving.

This improves message reception latency and outliers by converting certain thread-safe operations to more-
efficient thread-unsafe operations. For example, certain bus-locked operations (e.g. atomic increment) are
replaced by non-bus-locked equivalents (e.g. non-atomic increment).

See Single Receiving Thread for more information and restrictions.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.12

Value Description
1 The user intends to ensure that only one thread is used to process LBM transport messages.

0 No assumptions will be made by LBM regarding threading. Default for all.

10.1.23 transport_source_side_filtering_behavior (source)

Enable and set the behavior for UM sources to filter out topics prior to sending to clients.

This option is not applicable for multicast-based sources (LBT-RM). These control messages are sent to the
TCP UIM port (also known as the "request port") of the senders context and processed internally.

This option affects the transport session underlying the source rather than the source itself. See Source Object
for additional information.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

118 Major Options

String value Integer value Description

"none" LBM_SRC_TOPIC_ATTR_SSF_NONE The source sends all data to all clients re-
gardless of the topics they are listening to.
Default for all.

"inclusion" LBM_SRC_TOPIC_ATTR_SSF_INCLUSI←↩
ON

The source sends only that data to a client
that the client specifically requests.

"ulb" LBM_SRC_TOPIC_ATTR_SSF_ULB The ULB source sends control and data only
to the ULB client that the source has specifi-
cally assigned for a given message. See U←↩
LB Performance for more information. This
selection was added in UM version 6.12.

10.1.24 transport_topic_sequence_number_info_active_threshold (source)

Duration in seconds that an inactive source sends contiguous Topic Sequence Number Info (TSNI) messages.

A value of 0 indicates that sources continue sending TSNIs until data messages resume, with no timeout.

TSNIs are sent at an interval defined by transport_topic_sequence_number_info_interval (source).

See also Interrelated Configuration Options.

Scope: source

Type: lbm_ulong_t
Units: seconds
Default
value:

60

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

10.1 Reference 119

10.1.25 transport_topic_sequence_number_info_interval (source)

The interval between Topic Sequence Number Info (TSNI) messages that a source sends.

TSNI messages are enabled on all transports except LBT-SMX, and they carry the topic sequence number of
the latest message sent by the source. The interval is also a source inactivity threshold. In other words, a
source does not send TSNIs during normal data transmission, but once the source is inactive for as long as
this interval, it starts sending TSNI messages. A value of 0 turns off TSNI messages for the source.

See also Interrelated Configuration Options.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

5000 (5 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.3

10.1.26 transport_topic_sequence_number_info_request_interval (receiver)

The interval at which the receiver requests a Topic Sequence Number Information Record (TSNI) from the
source.

Controlling these requests helps reduce receiver start-up traffic on your network.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

120 Major Options

10.1.27 transport_topic_sequence_number_info_request_maximum (receiver)

The maximum number of requests the receiver issues for a Topic Sequence Number Information Record (TSNI)
from the source.

If the receiver has not received an TSNI after this number of requests, it stops requesting.

Scope: receiver

Type: lbm_ulong_t

Default
value:

60

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

10.1.28 use_extended_reclaim_notifications (source)

Specifies which reclaim notification your application receives.

The older LBM_SRC_EVENT_UME_MESSAGE_RECLAIMED source event delivered the structure lbm_src←↩
_event_ume_ack_info_t. The newer LBM_SRC_EVENT_UME_MESSAGE_RECLAIMED_EX source event
delivers the structure lbm_src_event_ume_ack_ex_info_t, which contains additional information.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.

Value Description

1 Indicates your application receives the expanded reclaim notification. Default for all.

0 Indicates your application receives the older reclaim notification.

10.1 Reference 121

10.1.29 zero_transports_function (xsp)

Application callback function (and associated client data pointer) that is called when the number of transports
associated with a given XSP falls to zero.

This callback provides an opportunity to delete the given XSP.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

Scope: xsp

Type: lbm_xsp_zero_transports_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in UM 6.11

122 Major Options

Chapter 11

UDP-Based Resolver Operation Options

This section describes configuration options for UDP-based TR. The options generally apply equally to both Multi-
cast UDP and Unicast UDP Topic Resolution. See Topic Resolution Overview for more information.

The following topic resolution options have been deprecated in LBM Version 4.0.

• resolver_active_source_interval (context)

• resolver_active_threshold (context)

• resolver_maximum_advertisements (context)

• resolver_maximum_queries (context)

• resolver_query_interval (context)

See Re-establish Pre-4.0 Topic Resolution for option values that configure the topic resolution used in LBM Version
3.6 and prior versions. You should also comment out or remove from your Ultra Messaging Configuration file the
deprecated configuration options shown above.

11.1 Minimum Values for Advertisement and Query Intervals

These intervals have the following effective minimal values.

• 10 ms for Initial Phase Advertisements

• 20 ms for Initial Phase Queries

• 30 ms Wildcard Queries

• 100 ms for Sustaining Phase Advertisements and Queries

• 100 ms for Context Name Queries (mostly for persistence)

These effective minimums exist because the internal timer that schedules advertisements and queries fires at the
stated interval, i.e., every 10 ms for Initial Phase Advertisements, every 20 ms for Initial Phase Queries, etc. If you
set the option's value below the minimum, after the initial advertisement or query at 0 ms, the resolver schedules
the second advertisement or query at the first timer "tick", which is the minimum.

Subsequent advertisements or queries can only be issued at the next timer "tick". If you increase this option from
the default to a value that is not a multiple of the minimum, the resolver maintains the rate you establish as an
average over subsequent "ticks".

124 UDP-Based Resolver Operation Options

As an example, if you set resolver_advertisement_sustain_interval (source) or resolver_query_sustain_interval (re-
ceiver) to 10 ms, the resolver schedules the second advertisement or query after the initial (0 ms) at the first timer
"tick", which is 100 ms. Subsequent advertisements or queries can only be issued at the next timer "tick" (every 100
ms). If you increase either option from the default to 1.25 seconds, for example and not a multiple of 100 ms, the
resolver maintains the rate you establish as an average over subsequent "ticks". That is, the second advertisement
or query goes out at the 1300 ms "tick". The resolver tracks the tardiness of this advertisement (50 ms) and adjusts
the next advertisement or query, which goes out at 2500 ms, giving an average of 1250 ms or 1.25 seconds.

11.2 Reference

11.2.1 disable_extended_topic_resolution_message_options (context)

This is a topic resolution compatibility option that, when set to 1, lets LBM 4.0 (or later) installations work with
LBM 3.5.3 / UME 2.2.4 (or earlier) installations.

If you do not have early-version installations in the network, leave this option at 0.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Value Description

1 Enable compatibility with earlier-version installations (and disable some message structure features).

0 Normal current-version compatibility. Strongly recommended. Default for all.

11.2.2 resolution_no_source_notification_threshold (receiver)

The threshold for the number of unanswered topic resolution queries before UM delivers a LBM_MSG_NO_←↩
SOURCE_NOTIFICATION receiver event.

11.2 Reference 125

The receiver does not necessarily stop querying after the delivery of this notification. A value of 0 indicates no
notifications will be sent.

Attention

This feature leverages UDP-based Topic Resolution queries. It won't work properly if UDP TR queries are
disabled (for example, if resolution_number_of_sources_query_threshold (receiver) is set to 0), or if resolver←↩
_disable_udp_topic_resolution (context) is set to 1 (enables TCP-only Topic Resolution). If the "no source
notification" feature is enabled and UDP queries are disabled, the notification might be delivered prematurely,
or not at all.

Scope: receiver

Type: lbm_ulong_t

Units: Number of queries

Default
value:

0 (do not notify)

When to
Set:

May be set during operation.

11.2.3 resolution_number_of_sources_query_threshold (receiver)

The threshold for the number of sources a topic must have before topic resolution queries are not sent.

Attention

Do not set this option to 0. It results in no topic resolution queries being generated, which interferes with
the operation of resolution_no_source_notification_threshold (receiver), and potentially interferes with DRO
operation (see Interest and Topic Resolution).

Scope: receiver

Type: lbm_ulong_t

Units: Number of sources
Default
value:

10000000 (10 million)

When to
Set:

May be set during operation.

126 UDP-Based Resolver Operation Options

11.2.4 resolver_advertisement_maximum_initial_interval (source)

The longest - and last - interval in the initial phase of topic advertisement.

A value of 0 disables the initial phase of advertisement. See also Disabling Aspects of Topic Resolution.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.5 resolver_advertisement_minimum_initial_duration (source)

The duration of the initial phase of topic advertisement.

A value of 0 guarantees that the initial phase of advertisement never completes.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

5000 (5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2 Reference 127

11.2.6 resolver_advertisement_minimum_initial_interval (source)

Interval between the first topic advertisement sent upon creation of the source and the second advertisement
sent by the source.

A value of 0 disables the initial phase of advertisement. This option has an effective minimum of 10 ms. See
UDP-Based Resolver Operation Options.

See also Disabling Aspects of Topic Resolution.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10 (0.01 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.7 resolver_advertisement_minimum_sustain_duration (source)

The duration of the sustaining phase of topic advertisement.

A value of 0 guarantees that the sustaining phase of advertising never completes.

Scope: source

Type: lbm_ulong_t
Units: seconds
Default
value:

60 (1 minute)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

128 UDP-Based Resolver Operation Options

11.2.8 resolver_advertisement_send_immediate_response (source)

Allows you to disable the normal immediate response to queries and wildcard queries.

Sources normally send topic advertisements (TIR) immediately in response to topic queries (TQR) for a local
topic or wildcard queries (WC-TQR) with a pattern that matches a local topic. This helps to resolve topics
quickly. However, these immediate TIRs are also inefficient; each TIR is sent in a UDP datagram of its own.

In contrast, TIRs sent using the normal, rate-limited phases of advertisement are batched, with multiple TI←↩
Rs collected into a single UDP datagram. For systems with large numbers of sources and receivers, allowing
immediate response to queries can lead to high short-term network loading and packet loss. In these cases,
it can be beneficial to disable immediate responses, at the expense of longer times required to resolve new
receivers.

Scope: source

Type: lbm_uint_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2/UMQ 2.1

Value Description

1 Sources immediately send advertisements (TIR) in response to topic queries (TQR) or wildcard
queries (WC-TQR). Default for all.

0 Sources delay sending advertisements (TIR) in response to topic queries (TQR) or wildcard queries
(WC-TQR).

11.2.9 resolver_advertisement_sustain_interval (source)

Interval between sending topic advertisements in the sustaining phase of topic advertisement.

A value of 0 disables the sustaining phase of advertisement. This option has an effective minimum of 100 ms.
See UDP-Based Resolver Operation Options.

See also Disabling Aspects of Topic Resolution.

11.2 Reference 129

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.10 resolver_cache (context)

Whether or not to enable the resolver cache to hold topic resolution information.

Disabling the resolver cache uses less memory and can avoid receivers attempting to join "stale" sources, but
can also increase network load.

Informatica recommends against disabling the resolver cache. The same advantages can be obtained by using
TCP-based Topic Resolution, or by enabling resolver_send_final_advertisements (source) with UDP-based
Topic Resolution.

Warning

The resolver cache must be enabled if wildcard receivers and/or if resolver_service (context) is used.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 Topic resolution information will be cached. Default for all.

0 Do not cache topic resolution information.

130 UDP-Based Resolver Operation Options

11.2.11 resolver_context_name_activity_timeout (context)

Period of inactivity before a context name is declared unresolved.

The minimum amount of time without any context name resolution traffic that must pass before UM declares a
resolved context name unresolved. Context name resolution traffic is defined as the reception of context name
advertisements and/or unicast control traffic from the resolved context.

Scope: context

Type: lbm_uint64_t
Units: milliseconds
Default
value:

60000 (60 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.0

11.2.12 resolver_context_name_query_duration (context)

Maximum period of time UM sends context name queries.

The maximum duration for which UM sends context name queries for a given context name. UM sends queries
until the context name resolves. A value of 0 means queries have no time limit and UM continues to query until
the context name resolves.

Scope: context

Type: lbm_uint64_t
Units: milliseconds
Default
value:

0 (query for as long as unresolved)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.0

11.2 Reference 131

11.2.13 resolver_context_name_query_maximum_interval (context)

The longest interval between sending context name queries.

This option has an effective minimum of 100 ms. See UDP-Based Resolver Operation Options.

A value of 0 disables context name queries.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.0

11.2.14 resolver_context_name_query_minimum_interval (context)

Interval between the first context name query sent upon creation of the persistent source using named Stores
and the second query sent.

This option has an effective minimum of 100 ms. See UDP-Based Resolver Operation Options.

A value of 0 disables context name queries.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

100 (0.1 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.0

132 UDP-Based Resolver Operation Options

11.2.15 resolver_datagram_max_size (context)

The maximum UDP datagram payload size that can be generated for topic resolution advertisements and
queries.

Note that this does not include UDP, IP, or packet overhead added by the network stack. The default value is
8192, the minimum is 500 bytes, and the maximum is 65535. See Message Fragmentation and Reassembly
for more information.

All components in the UM network, both applications and UM daemons, should have the same setting for this
option.

Scope: context

Type: lbm_uint_t
Units: bytes

Default
value:

8192

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0.

11.2.16 resolver_disable_udp_topic_resolution (context)

Used to disabled UDP-based Topic Resolution.

This is typically only used when TCP-based Topic Resolution is enabled.

When enabled, no UPD based Topic Resolution traffic will be generated nor will any UDP based Topic Resolu-
tion traffic be processed.

Note that since UDP Topic Resolution queries are not generated, the resolution_no_source_notification_←↩
threshold (receiver) feature is incompatible with this setting.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.14

11.2 Reference 133

Value Description
1 Disables UDP based Topic Resolution.

0 Normal UDP based Topic Resolution is used. Default for all.

11.2.17 resolver_domain_id_active_propagation_timeout (context)

Indicates how a context learns the ID of its own Topic Resolution Domain (TRD).

See Topic Resolution Domain.

Scope: context

Type: int

Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.7.1

String value Integer value Description

"-1" -1 Learn TRD ID from other contexts in the same TRD, without
restriction. This is the method Ultra Messaging has tradition-
ally used.
This method assigns TRD IDs quickly to avoid partial connec-
tivity. However, note that to change a TRD ID, you must recon-
figure and restart all DROs, if present. Then you must delete
all application contexts, and then re-create all application con-
texts.
Note: With this option value, newly-created contexts can learn
from earlier versions of Ultra Messaging software.

"0" 0 Learn TRD ID only from a DRO directly. Do not learn the TRD
ID from other contexts in the same TRD. Consider using this
option with a TRD that has many contexts and a possible need
to change a TRD ID. Default for all.

134 UDP-Based Resolver Operation Options

String value Integer value Description
"1" to "2147483647" 1 to 2,147,483,647 Learn TRD ID from other contexts in the same TRD that have

heard the domain ID advertised by a DRO within this timeout
value in seconds. Use the following formula:

3 * {propagation-interval}/1000 + {maximum expected
duration of DRO outage}

where "propagation-interval" is an attribute value of the DRO
configuration element <route-info>, which defaults to 1000.
With a timeout value set, a restarted context does not learn ob-
solete TRD IDs from un-restarted contexts, but instead, learns
from DROs or restarted contexts. You do not need to bring
all contexts to a deleted state simultaneously before you re-
create the first context.
Note: During this timeout period, there is a risk for temporary
incomplete connectivity in networks with no DROs.

11.2.18 resolver_initial_advertisement_bps (context)

Maximum advertisement rate during the initial phase of topic advertisement.

A value of 0 means that initial phase advertisements for the topic are not limited to a maximum number of bits
per second. Note that the topic's advertisements are still subject to being rate limited by resolver_initial_←↩
advertisements_per_second (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: lbm_uint64_t
Units: bits per second

Default
value:

1000000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.19 resolver_initial_advertisements_per_second (context)

Maximum number of advertisements sent within a one second period during the initial phase of topic advertise-
ment.

11.2 Reference 135

A value of 0 means that initial phase advertisements for the topic are not limited to a maximum number of ad-
vertisements per second. Note that the topic's advertisements are still subject to being rate limited by resolver←↩
_initial_advertisement_bps (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: lbm_ulong_t
Units: advertisements
Default
value:

1000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.20 resolver_initial_queries_per_second (context)

Maximum number of queries sent within a one second period during the initial phase of topic querying.

A value of 0 means that initial phase queries for the topic are not limited to a maximum number of queries
per second. Note that the topic's queries are still subject to being rate limited by resolver_initial_query_bps
(context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: lbm_ulong_t
Units: advertisements
Default
value:

1000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

136 UDP-Based Resolver Operation Options

11.2.21 resolver_initial_query_bps (context)

Maximum query rate during the initial phase of topic querying.

A value of 0 means that initial phase queries for the topic are not limited to a maximum number of bits per
second. Note that the topic's queries are still subject to being rate limited by resolver_initial_queries_per_←↩
second (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: lbm_uint64_t
Units: bits per second

Default
value:

1000000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.22 resolver_query_maximum_initial_interval (receiver)

The longest - and last - interval in the initial phase of topic querying.

This option has an effective minimum of 20 ms. See UDP-Based Resolver Operation Options.

A value of 0 disables the initial phase of querying. Informatica recommends against disabling all queries; see
Disabling Aspects of Topic Resolution.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2 Reference 137

11.2.23 resolver_query_minimum_initial_duration (receiver)

The duration of the initial phase of topic querying.

A value of 0 guarantees that the initial phase of querying never completes.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

5000 (5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.24 resolver_query_minimum_initial_interval (receiver)

Interval between the first topic query sent upon creation of the receiver and the second query sent by the
receiver.

This option has an effective minimum of 20 ms. See UDP-Based Resolver Operation Options.

A value of 0 disables the initial phase of querying. Informatica recommends against disabling all queries; see
Disabling Aspects of Topic Resolution.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

20 (0.02 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

138 UDP-Based Resolver Operation Options

11.2.25 resolver_query_minimum_sustain_duration (receiver)

The duration of the sustaining phase of topic querying.

A value of 0 guarantees that the sustaining phase of querying never completes.

Scope: receiver

Type: lbm_ulong_t
Units: seconds
Default
value:

60 (1 minute)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.26 resolver_query_sustain_interval (receiver)

Interval between sending topic queries in the sustaining phase of topic querying.

This option has an effective minimum of 100 ms. See UDP-Based Resolver Operation Options.

A value of 0 disables the sustaining phase of querying. Informatica recommends against disabling all queries;
see Disabling Aspects of Topic Resolution.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2 Reference 139

11.2.27 resolver_receiver_map_tablesz (context)

The size of the hash table used for storing receiver topic information used for topic resolution. This value should
be a prime number.

For UM deployments with very large numbers of topics (more than 100,000), increasing this number can im-
prove efficiency.

Scope: context

Type: size_t
Units: map entries

Default
value:

131111

When to
Set:

Can only be set during object initialization.

11.2.28 resolver_send_final_advertisements (source)

Controls whether or not a source sends "final advertisements" when deleted.

This option applies to UDP-based Topic Resolution only. TCP-based Topic Resolution uses a different
mechanism for informing the SRS of source deletion.

A final advertisement is an topic resolution announcement that the source object is being deleted. Without final
advertisements, receivers are not informed that a source has been deleted until all sources on the Transport
Session are deleted and the transport session is disposed. At that point, each receiver to a source on that
transport session will be delivered an EOS event.

However, if the source has final advertisements enabled, the source will send the final advertisement and trigger
the delivery of the EOS event in a more-timely way. They also give other contexts an opportunity to purge the
source from their local topic resolution cache. (This is the default behavior for TCP-based Topic Resolution.)

Note: the final advertisements are not necessarily sent immediately upon deletion of the source. They are
scheduled with other topic resolution traffic and obey the rate limits. As a result, if an application is in the
process of cleaning up prior to exit and it deletes the context object too soon after the deletion of its sources,
the final advertisements may not be sent at all. Typically this will simply result in a less-timely notification of
EOS as transport sessions time out, but there are some circumstances where the time required to deliver EOS
is not technically bounded. If timely delivery of EOS is important, it is recommended to add a few seconds of
delay after the sources are deleted before deleting the context.

This option does not affect the UDP-based Topic Resolution phases you have configured.

140 UDP-Based Resolver Operation Options

Scope: source

Type: lbm_uint_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 6.10

Value Description

1 Source sends final advertisements before deletion.

0 Source does not send any final advertisements before deletion. Default for all.

11.2.29 resolver_send_initial_advertisement (source)

Controls whether or not a source sends an advertisement upon creation.

Turning off this advertisement speeds source creation and reduces the number of messages on your network
through application initialization.

See Disabling Aspects of Topic Resolution.

Scope: source

Type: lbm_uint_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

Value Description

1 Source sends a topic advertisement immediately upon creation. Default for all.

0 Source does not send an advertisement upon creation. This option does not affect the topic reso-
lution phases you have configured, which execute as expected.

11.2 Reference 141

11.2.30 resolver_source_map_tablesz (context)

The size of the hash table used for storing source topic information used by topic resolution. This value should
be a prime number.

For UM deployments with very large numbers of topics (more than 100,000), increasing this number can im-
prove efficiency.

Scope: context

Type: size_t
Units: map entries

Default
value:

131111

When to
Set:

Can only be set during object initialization.

11.2.31 resolver_string_hash_function (context)

The hash function to use for hashing topic name strings for source and receiver topics.

The application may choose from a list of defined hash functions or it may define its own hash function, as
identified by the string value of this option. When setting a hash function, note that:

• If set through a configuration file or a call to lbm_context_attr_str_setopt(), only the string values classic,
djb2, sdbm, or murmur2 are valid. (If retrieved by a call to lbm_context_attr_str_getopt(), one of these
string values is returned.)

• If set through a call to lbm_context_attr_setopt(), you must pass a pointer to a hash function. Use this
method for hash functions other than the four pre-defined functions.

Informatica's own testing has indicated that the default (murmur2) outperforms all the others. The other choices
are retained for backwards compatibility.

Scope: context

Type: lbm_str_hash_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

142 UDP-Based Resolver Operation Options

String value Integer value Description

"murmur2" n.a. The best hash function included with UM. Credit to Austin Appleby. We do
not know of any use cases where a different choice is better. Default for
all.

"classic" n.a. Retained for backwards compatibility.

"djb2" n.a. The Dan Bernstein algorithm from comp.lang.c. Retained for backwards
compatibility.

"sdbm" n.a. sdbm database library (used in Berkeley DB). Retained for backwards
compatibility.

11.2.32 resolver_string_hash_function_ex (context)

The hash function to use for hashing topic name strings for source and receiver topics.

This option is similar to the resolver_string_hash_function (context) except for the following differences: This
option can be set via only lbm_context_attr_setopt() (not from a configuration file or lbm_context_attr_str←↩
_setopt()). Hence, this also means you cannot use the string options (classic, etc.). You can pass a string
length to the hash function, allowing it to then possibly run faster by operating on multiple-character strings at
a time. Note that if -1 is passed in, you must use a strlen to calculate the length. The hash function accepts a
clientd pointer, which you can set as needed, and which is passed back in each time the function is called.

This option is the better choice when setting your own custom hash function. Note that both the resolver_←↩
string_hash_function and resolver_string_hash_function_ex options set the same attributes, hence, if you use
both (not recommended) one will override the other.

Scope: context

Type: lbm_str_hash_func_ex_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

11.2 Reference 143

11.2.33 resolver_sustain_advertisement_bps (context)

Maximum advertisement rate during the sustaining phase of topic advertisement.

A value of 0 means that sustaining phase advertisements for the topic are not limited to a maximum number of
bits per second. Note that the topic's advertisements are still subject to being rate limited by resolver_sustain←↩
_advertisements_per_second (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: lbm_uint64_t
Units: bits per second

Default
value:

1000000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.34 resolver_sustain_advertisements_per_second (context)

Maximum number of advertisements sent within a one second period during the sustaining phase of topic
advertisement.

A value of 0 means that sustaining phase advertisements for the topic are not limited to a maximum number
of advertisements per second. Note that the topic's advertisements are still subject to being rate limited by
resolver_sustain_advertisement_bps (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: lbm_ulong_t
Units: advertisements
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

144 UDP-Based Resolver Operation Options

11.2.35 resolver_sustain_queries_per_second (context)

Maximum number of queries sent within a one second period during the sustaining phase of topic querying.

A value of 0 means that sustaining phase queries for the topic are not limited to a maximum number of queries
per second. Note that the topic's queries are still subject to being rate limited by resolver_sustain_query_bps
(context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: lbm_ulong_t
Units: advertisements
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2.36 resolver_sustain_query_bps (context)

Maximum query rate during the sustaining phase of topic querying.

A value of 0 means that sustaining phase queries for the topic are not limited to a maximum number of bits per
second. Note that the topic's queries are still subject to being rate limited by resolver_sustain_queries_per_←↩
second (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: lbm_uint64_t
Units: bits per second

Default
value:

1000000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

11.2 Reference 145

11.2.37 resolver_unicast_activity_timeout (context)

Indicates the maximum time between messages from a unicast resolver daemon before UM declares it inactive
and stops sending normal topic resolution traffic via that daemon.

UM will still send keepalives to the daemon. A value of 0 will force all resolver daemons to be treated as
permanently active.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

11.2.38 resolver_unicast_change_interval (context)

Indicates how often UM will change to the next available unicast resolver daemon.

The actual value used is random, and is selected from the range (1/2∗change_interval, 3/2∗change_interval). If
all resolver daemons have been marked inactive, UM enters a quick-change mode where it uses a random value
from the range (1/4∗change_interval, 3/4∗change_interval) in order to more quickly locate an active daemon.

See resolver_unicast_daemon (context) option.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

146 UDP-Based Resolver Operation Options

11.2.39 resolver_unicast_check_interval (context)

Indicates how often a UM checks for resolver activity in order to determine liveness.

A value of 0 will disable activity checks. This option only applies to the unicast resolver.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

11.2.40 resolver_unicast_force_alive (context)

Controls whether a context with no sources or receivers should register with and send keepalive messages to
a configured Unicast Topic Resolver.

By default, at least one source or receiver must exist in a context before it registers with a configured Unicast
Topic Resolver.

However, some receiving application designs use resolver_source_notification_function (context) to notify them
of discovered sources, and do not create a receiver until sources are discovered. If these designs use unicast
topic resolution, they should set this option to "1".

Scope: context

Type: lbm_uint16_t

When to
Set:

Can only be set during object initialization.

11.2 Reference 147

Value Description

1 Contexts send keepalive messages to the Unicast Resolver at the resolver_unicast_keepalive_←↩
interval (context) regardless of whether the context has any sources or receivers that require topic
resolution.

0 Contexts do not send keepalive messages to the Unicast Resolver until sources or receivers have
been created. Then Contexts send keepalives at the resolver_unicast_keepalive_interval (context).
Default for all.

11.2.41 resolver_unicast_ignore_unknown_source (context)

Indicates whether contexts using unicast topic resolution accept topic resolution udp datagrams that originate
from any lbmrd or only the specific lbmrd configured for use.

Note: Do not modify this setting without guidance from Informatica.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.7.1

String value Integer value Description

"0" 0 A context using unicast topic resolution accepts traffic from lbmrd resolver
daemons not configured for use by the context.

"1" 1 Contexts using unicast topic resolution accept topic resolution udp data-
grams that originate from only the specific lbmrd configured for use. The
context discards topic resolution datagrams from unrecognized origins and
logs a message. This prevents applications at the same IP address, but
in different topic resolution domains that might share resolver unicast port
ranges, from processing unintended topic resolution traffic while lbmrd re-
solver daemons time out stale client entries. Default for all.

148 UDP-Based Resolver Operation Options

11.2.42 resolver_unicast_keepalive_interval (context)

Indicates how often keepalive messages should be sent to a resolver daemon.

Keepalives are only sent if no other traffic has been sent since the last keepalive interval expired.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

11.2 Reference 149

150 UDP-Based Resolver Operation Options

Chapter 12

Multicast Resolver Network Options

The image below shows a simplified relationship between the primary multicast resolver network options.

See Topic Resolution Overview for general information on Topic Resolution.

12.1 Reference

12.1.1 resolver_multicast_address (context)

Multicast address (or domain name of the multicast address) used for Topic Resolution.

This option automatically sets the values for resolver_multicast_incoming_address (context) and resolver_←↩
multicast_outgoing_address (context) as evidenced by the default values for all three options, which are the
same.

152 Multicast Resolver Network Options

See also UDP-Based Topic Resolution Details.

Scope: context

Type: struct in_addr

Default
value:

224.9.10.11

When to
Set:

Can only be set during object initialization.

12.1.2 resolver_multicast_incoming_address (context)

Incoming multicast address (or domain name of the multicast address) used for finer control of Topic Resolution.

This value may be set to 0.0.0.0 (INADDR_ANY), to switch off listening to topic resolution messages. This
means that queries from receivers or advertisements from sources will not be handled.

See also resolver_multicast_outgoing_address (context).

Scope: context

Type: struct in_addr

Default
value:

224.9.10.11

When to
Set:

Can only be set during object initialization.

12.1.3 resolver_multicast_incoming_port (context)

Incoming multicast port used for finer control of Topic Resolution.

See also resolver_multicast_outgoing_port (context).

See Port Assignments for more information about configuring ports.

12.1 Reference 153

Scope: context

Type: lbm_uint16_t

Default
value:

12965

Byte order: Network

When to
Set:

Can only be set during object initialization.

12.1.4 resolver_multicast_interface (context)

Specifies which network interface UM sends/receives all multicast traffic (Topic Resolution, LBT-RM, Multicast
Immediate Messaging).

You can specify full IP address of interface, or just network part (see Specifying Interfaces for details).

Default is set to default_interface (context), if specified. Otherwise, it is set to the default multicast interface as
determined by UM (the first multicast-capable, non-loopback interface).

Note: if specifying an interface name in an XML-format file, see Interface Device Names and XML.

Scope: context

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0

When to
Set:

Can only be set during object initialization.

12.1.5 resolver_multicast_outgoing_address (context)

Outgoing multicast address (or domain name of the multicast address) used for finer control of Topic Resolution.

See also resolver_multicast_incoming_address (context).

154 Multicast Resolver Network Options

Scope: context

Type: struct in_addr

Default
value:

224.9.10.11

When to
Set:

Can only be set during object initialization.

12.1.6 resolver_multicast_outgoing_port (context)

Outgoing multicast port used for finer control of Topic Resolution.

See also resolver_multicast_incoming_port (context).

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

12965

Byte order: Network

When to
Set:

Can only be set during object initialization.

12.1.7 resolver_multicast_port (context)

Multicast port used for Topic Resolution.

This option automatically sets the values for resolver_multicast_incoming_port (context) and resolver_←↩
multicast_outgoing_port (context) as evidenced by the default values for all three options, which are the same.

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

12.1 Reference 155

Default
value:

12965

Byte order: Network

When to
Set:

Can only be set during object initialization.

12.1.8 resolver_multicast_receiver_socket_buffer (context)

Value used to set the SO_RCVBUF socket option for the topic resolution receiving socket.

In some cases the OS will not allow all of this value to be used.

A value of 0 instructs UM to use the default OS values. See Socket Buffer Sizes for platform-dependent
information. See also our white paper Topics in High Performance Messaging for background and guidelines
on UDP buffer sizing.

Scope: context

Type: lbm_ulong_t
Units: bytes

Default
value:

8388608 (8MB)

When to
Set:

Can only be set during object initialization.

12.1.9 resolver_multicast_ttl (context)

The IP TTL (hop count) to use for a Topic Resolution packet.

A value of 1 confines the packet to the local network (but may also cause high CPU usage on some routers).
Also controls TTL on LBT-RM packets.

Scope: context

Type: lbm_uint8_t

Default
value:

16

When to
Set:

Can only be set during object initialization.

156 Multicast Resolver Network Options

Chapter 13

Unicast Resolver Network Options

The image below shows a simplified relationship between the primary unicast resolver network options.

If using multiple lbmrd instances with a single context, you can configure resolver_unicast_interface and
resolver_unicast_port_low/high and omit the Interface:LocalPort section of resolver_unicast_daemon.

See also Unicast UDP Topic Resolution for general information on Unicast Topic Resolution.

158 Unicast Resolver Network Options

13.1 Reference

13.1.1 resolver_unicast_daemon (context)

Enable Unicast UDP-based Topic Resolution and add one or more unicast resolver daemon (lbmrd) specifi-
cations to the current lbmrd list. Unlike most other UM options, every time this option is supplied, it adds one or
more daemon specifications to the list, and does NOT overwrite previous specifications.

Setting this option Disables Multicast UDP-based TR, but does not affect whether TCP-based TR is enabled or
disabled. See UDP-Based Topic Resolution Details.

For the configuration file as well as string API method of setting this option, the string value consists of one or
more lbmrd specifications separated by commas or semicolons, formatted as follows:

[Iface[:Src_Port]->]IP:Dest_Port[,...]

• Iface is the interface to use (previously set via resolver_unicast_interface (context)).

• Src_Port is the source port to use (previously resolver_unicast_port (context)). Normally only specified
if firewalls require specific source ports be used.

• IP is the resolver daemon's IP address (previously resolver_unicast_address (context)).

• Dest_Port is the resolver daemon's UDP port (previously resolver_unicast_destination_port (context)).

You can omit either the Src_Port or both the Iface and Src_Port, in which case the default settings
resolver_unicast_interface (context) and resolver_unicast_port (context) are used.

Because each entry adds a new daemon specification and does not overwrite previous values, a special con-
struct must be used to clear a previously-specified list. An entry with the IP address of 0.0.0.0 and port of 0
removes all previous daemon specifications. This can be useful if multiple configuration files are used, and a
later file should override the daemon list from an earlier file.

Possible formats of each entry are as follows:

Interface:LocalPort->DaemonIP:RemotePort
Interface->DaemonIP:RemotePort
DaemonIP:RemotePort

You can specify Interface in any of the ways described in Specifying Interfaces.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only
one lbmrd specification can be supplied for each call to lbm_context_attr_setopt(). However, when the binary
form of option retrieval lbm_context_attr_getopt() is used, the list of lbmrds is returned as an array, and the
optlen parameter should be set as:

optlen = (max_num_lbmrds * sizeof(lbm_ucast_resolver_entry_t));

13.1 Reference 159

Scope: context

Type: lbm_ucast_resolver_entry_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

13.1.2 resolver_unicast_interface (context)

Specifies the network interface over which UM receives unicast Topic Resolution messages.

You can specify full IP address of interface, or just network part (see Specifying Interfaces for details).

Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it
will accept unicast Topic Resolution messages on any interface.

Note: if specifying an interface name in an XML-format file, see Interface Device Names and XML.

Scope: context

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

13.1.3 resolver_unicast_port_high (context)

The highest local UDP port in a range of ports used for unicast topic resolution messages.

The UM resolution daemon (lbmrd) sends unicast topic resolution messages to the UDP port range defined by
this option and resolver_unicast_port_low (context).

See Port Assignments for more information about configuring ports.

160 Unicast Resolver Network Options

Scope: context

Type: lbm_uint16_t

Default
value:

14406

Byte order: Host

When to
Set:

Can only be set during object initialization.

13.1.4 resolver_unicast_port_low (context)

The lowest local UDP port in a range of ports used for unicast topic resolution messages.

The UM resolution daemon (lbmrd) sends unicast topic resolution messages to the UDP port range defined by
this option and resolver_unicast_port_high (context).

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

14402

Byte order: Host

When to
Set:

Can only be set during object initialization.

13.1.5 resolver_unicast_receiver_socket_buffer (context)

Value used to set the SO_RCVBUF socket option for the topic resolution receiving socket.

In some cases the OS will not allow all of this value to be used.

A value of 0 instructs UM to use the default OS values. See ref socketbuffersizes for platform-dependent
information.

13.1 Reference 161

Scope: context

Type: lbm_ulong_t
Units: bytes

Default
value:

8388608 (8MB)

When to
Set:

Can only be set during object initialization.

162 Unicast Resolver Network Options

Chapter 14

TCP-Based Resolver Operation Options

See TCP-Based Topic Resolution Details for general information on TCP-based Topic Resolution.

14.1 Reference

14.1.1 resolver_service (context)

Enable TCP-based Topic Resolution and add one or more (up to 5) Stateful Resolver Service (SRS) specifi-
cations to the current SRS list.

The SRS is used to provide TCP-based TR services. For general information on Topic Resolution, see Topic
Resolution Description.

Unlike most other UM options, every time this option is supplied, it adds one or more service specifications to
the list, and does NOT overwrite previous specifications. Multiple SRS instances are recommended for fault
tolerance. See TCP-Based TR and Fault Tolerance.

Setting this option does not affect whether UDP-based TR is enabled or disabled. It is appropriate in many use
cases to have both TCP and UDP TR enabled. For example, see TCP-Based TR Version Interoperability.

When all of your UM components are upgraded to UM 6.14 and beyond, you can use the resolver_disable_←↩
udp_topic_resolution (context) configuration option to turn off UDP-based TR.

164 TCP-Based Resolver Operation Options

Warning

When using TCP-based TR, do not configure applications without a resolver cache. I.e. leave resolver_cache
(context) set to 1. Also, configure applications with a valid interface. See default_interface (context).

For the configuration file as well as string API method of setting this option, the string value consists of one or
more (up to 5) SRS specifications separated by commas or semicolons, formatted as follows:

[Iface[:Src_Port]->]IP:Dest_Port[,...]

• Iface is the interface to use.

• Src_Port is the source port to use. Normally only specified if firewalls require specific source ports be
used.

• IP is the SRS's IP address.

• Dest_Port is the SRS's TCP listening port.

You can omit either the Src_Port or both the Iface and Src_Port, in which case the interface defaults
to default_interface (context), if specified, and the port defaults to 0, which allocates an ephemeral port.

Because each entry adds a new SRS specification and does not overwrite previous values, a special construct
must be used to clear a previously-specified list. An entry with the IP address of 0.0.0.0 and port of 0 removes
all previous SRS specifications. This can be useful if multiple configuration files are used, and a later file should
override the SRS list from an earlier file.

Possible formats of each entry are as follows:

Interface:LocalPort->SrsIP:RemotePort
Interface->SrsIP:RemotePort
SrsIP:RemotePort

You can specify Interface in any of the ways described in Specifying Interfaces.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only
one SRS specification can be supplied for each call to lbm_context_attr_setopt(). However, when the binary
form of option retrieval lbm_context_attr_getopt() is used, the list of SRSes is returned as an array, and the
optlen parameter should be set as:

optlen = (max_num_srs * sizeof(lbm_resolver_service_entry_t));

Scope: context

Type: lbm_resolver_service_entry_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMQ 6.12

14.1 Reference 165

14.1.2 resolver_service_interest_mode (context)

Allows an SRS to perform interest-based filtering of source advertisements (SIRs).

With filter mode enabled, the SRS will only send SIRs for sources that the context is interested in (has a receiver
for). This reduces the Topic Resolution traffic to the context.

With flood mode, the SRS will send SIRs for all topics to the context. This mode is normally not needed, except
when the resolver_source_notification_function (context) or resolver_event_function features are used.

See TCP-Based TR Interest for more information.

Scope: context

Type: lbm_uint8_t

Default
value:

1

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.13

String value Integer value Description

"filter" LBM_CTX_ATTR_INTEREST_MODE_FI←↩
LTER

Filter Mode. The SRS sends SIRs for
sources the context is interested in. Default
for all.

"flood" LBM_CTX_ATTR_INTEREST_MODE_F←↩
LOOD

Flood Mode. The SRS sends SIRs for all
topics.

166 TCP-Based Resolver Operation Options

Chapter 15

Transport TCP Network Options

15.1 TCP Transport Session Management

The image below shows a simplified relationship between the primary TCP transport network options.

When a source is created, the application can explicitly map it to a transport session by setting the transport_tcp←↩
_port (source) option. If a previous source was created on the same context with the same port number, this new
source will be mapped to the same transport session. However, two different contexts on the same host may not
share the same port number. If a source is created with a port number that is already in use, UM will return an error.

Alternatively, if the application does not explicitly specify a source port, UM will implicitly assign the new source to
the default pool of transport sessions defined when the context was created. The pool is defined as a range of
port numbers specified by the options transport_tcp_port_low (context) and transport_tcp_port_high (context). In
addition, the option transport_tcp_maximum_ports (context) defines the number of transport sessions in the pool.

When a new source is created and the source port is not explicitly defined, UM will check to see how many transport
sessions are currently active from the pool within the context. If it is less than transport_tcp_maximum_ports
(context) then UM will attempt to use the next port in the range transport_tcp_port_low (context) to transport_←↩
tcp_port_high (context). If that port is already in use, UM continues along the range until it finds an unused port,

168 Transport TCP Network Options

then it uses that port to create the transport session. However, if the context already has activated all transport
sessions in the pool, then the new topic is mapped to one of the existing transport sessions, in round-robin fashion.

Note that if you intend to do both explicit mapping and implicit mapping to the default pool of transport sessions, the
TCP transport behaves differently than some of the other transport types (e.g. LBT-RM). Any explicitly given port
will be added to the default pool. This means that subsequent implicit mappings to the default pool can include this
newly added port.

Notice that the default range of ports, 14371 to 14390, is 30 ports. But the default number of transport sessions
in the pool is 10. This allows three contexts to be created on the same host and use the same configuration. If
more than 3 contexts are intended to co-exist on the same host, the port range and number of transport session per
context must be managed to give a unique port number to every transport session.

The option transport_tcp_interface (source) may be used on TCP sources to choose particular interface, overriding
the default INADDR_ANY which accepts connections on all interfaces. Similarly, transport_tcp_interface (receiver)
may be used on receivers to choose a particular interface.

15.2 Reference

15.2.1 transport_tcp_interface (receiver)

Specifies the network interface to which UM receivers bind before connecting to sources.

You can specify the full IP address of interface, or just the network part (see Specifying Interfaces for details).

Default is set to default_interface (context), if specified.

Note: if specifying an interface name in an XML-format file, see Interface Device Names and XML.

Scope: receiver

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

15.2.2 transport_tcp_interface (source)

Specifies the network interface over which UM accepts connection requests (from topic receivers).

15.2 Reference 169

You can specify the full IP address of interface, or just the network part (see Specifying Interfaces for details).

Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it
will not bind to a specific interface. You can also set this option to 0.0.0.0/0 which produces the same result.

Be aware that this option is applied to the transport session when the first topic is created on that session.
Thus, setting a different interface for a subsequent topic that maps onto the same transport session will have
no effect.

Note: if specifying an interface name in an XML-format file, see Interface Device Names and XML.

Scope: source

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

15.2.3 transport_tcp_maximum_ports (context)

Maximum size of TCP source transport session default pool.

See TCP Transport Session Management for how TCP source transport sessions are managed.

Scope: context

Type: lbm_uint16_t

Units: number of ports

Default
value:

10

When to
Set:

Can only be set during object initialization.

15.2.4 transport_tcp_port (source)

The TCP port to be used for the source transport session.

170 Transport TCP Network Options

Setting this option to non-zero overrides the use of the default pool of TCP source transport sessions.

The UM source listens on this port. Receivers that join the source's transport session connect to this port, and
the source sends message data across that connection.

See TCP Transport Session Management for how TCP source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Note that this port is only used by TCP sources. Receiver port numbers are taken from the host's Ephemeral
Ports and are not configurable.

Attention

If a source is configured for a port that is not currently part of the transport session default pool, UM will create
a new transport session for this port and add it to the default pool. See Transport Session Differences.

Scope: source

Type: lbm_uint16_t

Default
value:

0 (pick open port)

Byte order: Network

When to
Set:

Can only be set during object initialization.

15.2.5 transport_tcp_port_high (context)

High TCP port number of range for the default pool of TCP source transport sessions.

When transport_tcp_port (source) is not specified, a newly-created transport session will use an unused port
from this range. The UM source listens on this port. Receivers that join the source's transport session connect
to this port, and the source sends message data across that connection.

See also transport_tcp_port_high (context).

See TCP Transport Session Management for how TCP source transport sessions are managed.

See Port Assignments for more information about configuring ports.

15.2 Reference 171

Note that this range of ports is only used by TCP sources. Receiver port numbers are taken from the host's
Ephemeral Ports and are not configurable.

Scope: context

Type: lbm_uint16_t

Default
value:

14390

Byte order: Host

When to
Set:

Can only be set during object initialization.

15.2.6 transport_tcp_port_low (context)

Low TCP port number of range for the default pool of TCP source transport sessions.

When transport_tcp_port (source) is not specified, a newly-created transport session will use an unused port
from this range. The UM source listens on this port. Receivers that join the source's transport session connect
to this port, and the source sends message data across that connection.

See also transport_tcp_port_high (context).

See TCP Transport Session Management for how TCP source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Note that this range of ports is only used by TCP sources. Receiver port numbers are taken from the host's
Ephemeral Ports and are not configurable.

Scope: context

Type: lbm_uint16_t

Default
value:

14371

Byte order: Host

When to
Set:

Can only be set during object initialization.

172 Transport TCP Network Options

Chapter 16

Transport TCP Operation Options

16.1 Reference

16.1.1 transport_session_maximum_buffer (source)

Value used to control the maximum amount of data buffered in UM for the transport session used for the topic.

For the normal multiple receiver behavior, this value represents the total buffered by all TCP receivers. For the
bounded_latency and source_paced multiple receiver behavior, this value represents the individual receiver
buffered amount. This option affects the transport session underlying the source rather than the source itself.
The transport session uses the value from the first source created on the session and ignores subsequent
sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t
Units: bytes

Default
value:

65536

When to
Set:

Can only be set during object initialization.

174 Transport TCP Operation Options

16.1.2 transport_tcp_activity_method (receiver)

The type of timeout method to use for TCP receivers to detect half-open TCP connections.

For TCP sessions only.

This defines how transport_tcp_activity_timeout (receiver) is interpreted. (Note that transport_tcp_activity_←↩
timeout (receiver) defaults to 0 (disabled), meaning that half-open TCP connections may not be detected in a
timely way.)

See TCP Disconnections for more information.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.3.8/UME 2.0.6.

String value Integer value Description

"timer" LBM_RCV_TOPIC_ATTR_TCP_ACTI←↩
VITY_TIMEOUT_TIMER

Timer method that requires new TCP
session data to be sent to determine if
the connection is alive. This TCP ses-
sion data might be in the form of appli-
cation messages, in which case it is the
application's responsibility to ensure that
messages are sent frequently enough to
prevent timeouts, or could be TSNIs. De-
fault for all.

"SO_KEEPALIVE" LBM_RCV_TOPIC_ATTR_TCP_ACTI←↩
VITY_TIMEOUT_SO_KEEPALIVE

Set SO_KEEPALIVE on the TCP con-
nection which uses the TCP keepalive
support in the operating system to deter-
mine if the connection is alive. For Linux
and Windows only.
Note that although the "timer" method is
the default, Informatica recommends the
use of "SO_KEEPALIVE" for operating
systems that support it.

16.1 Reference 175

16.1.3 transport_tcp_activity_timeout (receiver)

A timeout used by a receiver to close a TCP transport session that has no activity.

For TCP sessions only.

If transport_tcp_activity_method (receiver) is set to "SO_KEEPALIVE" (recommended), this timeout value must
be either 0 (to disable the feature) or greater than or equal to 20,000 (20 seconds). Note that the time spec-
ified is only approximate; the operating system has wide discretion for deciding exactly when to disconnect a
connection, and the actual time can be more than a factor of 2 different from this configured value.

If transport_tcp_activity_method (receiver) is set to "timer", this timeout value must be either 0 (to disable the
feature) or greater than or equal to 3 (milliseconds).

Normally, when a source transport session is deleted by the publishing application, the TCP connection is
closed, which the receiver detects within a few milliseconds. However, there can be situations where a tem-
porary network outage or a stateful firewall prevents the receiver from detecting the closing of the connection,
resulting in a half-open connection. This situation can prevent the receiver from detecting a broken connection
for an unbounded time.

This configuration option can be used to detect and close half-open connections.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

16.1.4 transport_tcp_activity_timeout (source)

This timeout option enables a source to use SO_KEEPALIVE to detect when a receiver does not cleanly
disconnect or is no longer reachable from the source.

For TCP sessions only.

This timeout value must be either 0 (to disable the feature) or greater than or equal to 20,000 (20 seconds). Note
that the time specified is only approximate; the operating system has wide discretion for deciding exactly when
to disconnect a connection, and the actual time can be more than a factor of 2 different from this configured
value.

176 Transport TCP Operation Options

See TCP Disconnections for more information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

16.1.5 transport_tcp_coalesce_threshold (source)

UM passes implicitly batched messages to the Operating System sendmsg() as a set unless the size of the set
exceeds the coalescing threshold at which point the messages are coalesced and passed to the O/S as one
copy.

This option accommodates the different number of iovecs supported by different O/Ss. Tuning this option
balances the efficiency of less iovecs handled by the OS vs. the expense of an additional copy operation of the
messages before sending. The default values are also the maximum allowable values.

Scope: source

Type: int

Units: number of individual messages

Default
value:

1024 for Linux, Microsoft Windows, Darwin; 16 for Solaris, AIX, HPUX

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 2.3.

16.1.6 transport_tcp_datagram_max_size (context)

The maximum datagram size that can be generated for a TCP transport session. While TCP does not use
UDP datagrams, this option limits the size of the UM message which is given to the underlying transport type,
including all UM headers and overhead. It does not include TCP, IP, or packet overhead added by the network
stack. The default value is 65535, the minimum is 500 bytes, and the maximum is 65535.

See Message Fragmentation and Reassembly for more information.

16.1 Reference 177

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max
Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Users of kernel-bypass drivers should also see Dynamic Fragmentation Reduction.

Scope: context

Type: lbm_uint_t
Units: bytes

Default
value:

65535

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

16.1.7 transport_tcp_dro_loss_recovery_timeout (receiver)

For TCP transport sessions originating from a DRO endpoint portal, delay declaring as unrecoverable a lost
message.

Message streams traversing a DRO can have the message order changed. If the DRO's outgoing transport
session uses the TCP protocol, these out-of-order messages will normally trigger immediate unrecoverable
loss. This timeout allows an opportunity for the messages to be re-ordered properly.

The value 0 disables this delay (i.e. receivers immediately declare unrecoverable loss).

See DRO Reliable Loss for more information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 6.12

178 Transport TCP Operation Options

16.1.8 transport_tcp_exclusiveaddr (source)

Indicate whether the TCP session should set SO_EXCLUSIVEADDRUSE or not before it binds.

Applicable only to Windows. The default setting in Windows allows multiple binds to the same port. By de-
fault, UM will set SO_EXCLUSIVEADDRUSE to minimize port sharing. Refer to Microsoft's web site for more
information on SO_EXCLUSIVEADDRUSE.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 Set SO_EXCLUSIVEADDRUSE. Default for Windows.
0 Do not set SO_EXCLUSIVEADDRUSE.

16.1.9 transport_tcp_listen_backlog (source)

The backlog used in the TCP listen() call to set the queue length for incoming connections.

If 20 or more receivers will be joining this source, it may be beneficial to increase this number.

Scope: source

Type: int

Units: number of queued connections

Default
value:

5

When to
Set:

Can only be set during object initialization.

16.1 Reference 179

16.1.10 transport_tcp_multiple_receiver_behavior (source)

This option determines the flow control behavior of a TCP source.

In particular, it addresses the scenario where some receivers are consuming messages more slowly than the
source is sending. With normal receiver-pacing, the slowest receiver connected to the source will limit the
maximum send rate for the source. I.e. if the source is sending faster than the receiver can process and the
socket buffers fill up, the next call to "send" will either block or will return -1 with the error code LBM_EWOU←↩
LDBLOCK. (But see TCP Flow Control Restrictions.)

With source-paced behavior, a source send will drop messages for receivers whose socket buffers are full. I.e.
fast receivers might get all messages, but slow receivers can see unrecoverable loss.

See Source Object for additional information.

FYI - the purpose of this option has evolved over time, and its name is no longer very descriptive of its function.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"normal" LBM_SRC_TOPIC_ATTR_TCP_MUL←↩
TI_RECV_NORMAL

Source will block for full socket buffers.
Default for all.

"source_paced" LBM_SRC_TOPIC_ATTR_TCP_MUL←↩
TI_RECV_SOURCE_PACED

Source will drop messages for full socket
buffers, resulting in unrecoverable loss
for the slow receiver.

"bounded_latency" LBM_SRC_TOPIC_ATTR_TCP_MUL←↩
TI_RECV_BOUNDED_LATENCY

The application sends as fast as the
fastest receiver can consume data even
if recent data headed for slower receivers
must be discarded. DEPRECATED since
UM 6.9.

180 Transport TCP Operation Options

16.1.11 transport_tcp_multiple_receiver_send_order (source)

In the case of multiple receivers, this option determines whether datagrams are sent to each receiver in the
established order of receivers, or if receivers are selected in random order for each datagram transmission.

Using random ordering can avoid giving one receiver a consistent latency advantage, at the expense of slightly
higher per-message processing (calculating the random number).

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"serial" LBM_SRC_TOPIC_ATTR_TCP_MULTI_←↩
RECV_SEND_ORDER_SERIAL

Select receivers to receive a datagram
based on current established order. Default
for all.

"random" LBM_SRC_TOPIC_ATTR_TCP_MULTI_←↩
RECV_SEND_ORDER_RANDOM

For each datagram sent, select receivers
in random order, for the sake of "fairness".
Note that this option adds a small amount of
CPU overhead.

16.1.12 transport_tcp_nodelay (source)

Controls whether the context sets TCP_NODELAY before it binds to the source port.

Setting TCP_NODELAY disables Nagle's algorithm, which somewhat decreases the efficiency and throughput
of TCP, but decreases the latency of individual messages.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

16.1 Reference 181

Value Description

1 TCP transport sockets should set TCP_NODELAY (disable Nagle). Default for all.

0 TCP transport sockets should not set TCP_NODELAY (leave Nagle enabled).

16.1.13 transport_tcp_receiver_socket_buffer (context)

Value used to set the SO_RCVBUF socket option for the TCP receiving socket.

In some cases the OS will not allow all of this value to be used.

A value of 0 instructs UM to use the default OS values. See Socket Buffer Sizes for platform-dependent
information.

Scope: context

Type: lbm_ulong_t
Units: bytes

Default
value:

0 (use TCP autotuning)

When to
Set:

Can only be set during object initialization.

16.1.14 transport_tcp_reuseaddr (source)

Whether the TCP session should set SO_REUSEADDR or not before it binds.

Warning

This option is not recommended for Microsoft Windows users because the SO_REUSEADDR socket option in
Windows allows a socket to forcibly bind to a port in use by another socket. Multiple sockets using the same
port results in indeterminate behavior.

182 Transport TCP Operation Options

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 Set SO_REUSEADDR.

0 Do not set SO_REUSEADDR. Default for all.

16.1.15 transport_tcp_sender_socket_buffer (source)

Value used to set the SO_SNDBUF socket option for the TCP sending socket.

In some cases the OS will not allow all of this value to be used.

A value of 0 instructs UM to use the OS defaults. See Socket Buffer Sizes for platform-dependent information.

Scope: source

Type: lbm_ulong_t
Units: bytes

Default
value:

0 (use TCP autotuning)

When to
Set:

Can only be set during object initialization.

16.1.16 transport_tcp_use_session_id (source)

Control whether a session ID is used for TCP Transport sessions.

This option should be set to 0 if a version 6.0 (and beyond) TCP source must interoperate with a version pre-6.0
receiver.

16.1 Reference 183

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.0

Value Description

1 Indicates the application desires TCP to use a session ID. Default for all.

0 Indicates the application does not desire TCP to use a session ID. For use when version pre-6.0
receivers must be used with TCP sources that are version 6.0 and beyond.

184 Transport TCP Operation Options

Chapter 17

Transport LBT-RM Network Options

17.1 LBT-RM Transport Session Management

The image below shows a simplified relationship between the primary LBT-RM transport network options.

Note

for a multi-homed LBT-RM source, the interface LBT-RM multicast resolver interface specified with resolver←↩
_multicast_interface (context) will be used as the source for LBT-RM.

186 Transport LBT-RM Network Options

When a source is created, the application can explicitly map it to a transport session by setting the transport_←↩
lbtrm_multicast_address (source) and transport_lbtrm_destination_port (source) options. If a previous source was
created on the same context with the same group/port pair, this new source will be mapped to the same transport
session. Note that two different contexts on the same host may share the same group/port pair, and the resulting
transport sessions will be separate and independent.

Alternatively, if the application does not explicitly specify a multicast group and destination port, UM will implicitly
assign the new source to a pool of transport sessions defined when the context was created. The pool is defined as a
range of multicast groups specified by the options transport_lbtrm_multicast_address_low (context) and transport←↩
_lbtrm_multicast_address_high (context). The number of transport sessions in the pool is the range of the two
multicast group IP addresses, as represented by a 32-bit number. For example, the default settings 224.10.10.←↩
10 and 224.10.10.14 are represented by the numbers 0xE00A0A0A and 0xE00A0A0E. This represents 5 different
groups, so the pool contains 5 transport sessions (all with the same destination port).

When a new source is created and the multicast group is not explicitly defined, UM will check to see how many
transport sessions are currently active from the pool within the context. If it is less than the number in the pool, then
UM will activate the next transport session in the range. However, if the context already has activated all transport
sessions in the pool, then the new topic is mapped to one of the existing transport sessions, in round-robin fashion.

17.2 Reference

17.2.1 transport_lbtrm_destination_port (source)

The UDP destination port used for this Topic when the transport is LBT-RM.

See LBT-RM Transport Session Management for how LBT-RM source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Scope: source

Type: lbm_uint16_t

Default
value:

14400

Byte order: Network

When to
Set:

Can only be set during object initialization.

17.2 Reference 187

17.2.2 transport_lbtrm_multicast_address (source)

The preferred multicast address (or domain name of the multicast address) for this Topic when the transport is
LBT-RM.

If 0.0.0.0 (INADDR_ANY), the default, the context will use a round-robin method to select an address in the
configured multicast multicast address range: transport_lbtrm_multicast_address_high (context) - transport_←↩
lbtrm_multicast_address_low (context).

See LBT-RM Transport Session Management for how LBT-RM source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Scope: source

Type: struct in_addr

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

17.2.3 transport_lbtrm_multicast_address_high (context)

Multicast address (or domain name of the multicast address) used as the highest value to assign to LBT-RM
sessions.

See LBT-RM Transport Session Management for how LBT-RM source transport sessions are managed.

Scope: context

Type: struct in_addr

Default
value:

224.10.10.14

When to
Set:

Can only be set during object initialization.

188 Transport LBT-RM Network Options

17.2.4 transport_lbtrm_multicast_address_low (context)

Multicast address (or domain name of the multicast address) used as the lowest value to assign to LBT-RM
sessions.

See LBT-RM Transport Session Management for how LBT-RM source transport sessions are managed.

Scope: context

Type: struct in_addr

Default
value:

224.10.10.10

When to
Set:

Can only be set during object initialization.

17.2.5 transport_lbtrm_source_port_high (context)

Highest port number value used for LBT-RM source session's unicast NAK processing. Receivers send NAKs
to this port for to request retransmission. Each LBT-RM session must use a unique port value. Note that this
does not control the UDP source port on the outbound LBT-RM stream.

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

14399

Byte order: Host

When to
Set:

Can only be set during object initialization.

17.2.6 transport_lbtrm_source_port_low (context)

Lowest port number value used for LBT-RM source session's unicast NAK processing. Receivers send NAKs
to this port for to request retransmission. Each LBT-RM session must use a unique port value. Note that this
does not control the UDP source port on the outbound LBT-RM stream.

17.2 Reference 189

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

14390

Byte order: Host

When to
Set:

Can only be set during object initialization.

190 Transport LBT-RM Network Options

Chapter 18

Transport LBT-RM Reliability Options

18.1 LBT-RM Datagram

Loss Resulting in Unrecovered Message Loss

An LBT-RM receiver will attempt to recover lost datagrams. The options transport_lbtrm_nak_backoff_interval (re-
ceiver) and transport_lbtrm_nak_generation_interval (receiver) control the timing of the recovery effort. Timers for
both start when loss is detected. The following timeline illustrates a case where a receiver is notified of unrecover-
able message loss following repeated datagram loss.

192 Transport LBT-RM Reliability Options

Note

the actual length of the interval randomization periods are between 1/2 and 3/2 of the configured interval value.
In the diagram above, time periods are not drawn to scale to simplify the diagram.

Set transport_lbtrm_nak_backoff_interval (receiver) to the NAK service time that could be reasonably expected
from the receiver's location in the network plus some cushion for network congestion. Set transport_lbtrm_nak_←↩
generation_interval (receiver) to the latency budget established for the transport layer. See our whitepaper Topics
in High Performance Messaging for background on latency budgets. See also the KB article Reducing
Loss Recovery Latencies for more advice on tuning.

Note

these parameters relate to loss at the transport session (datagram) level, not the topic level. See Delivery
Control Options for information on how applications are informed of topic-level unrecoverable loss.

18.2 LBT-RM Source Ignoring NAKs for Efficiency

Bandwidth efficiency of an LBT-RM source may be improved by avoiding useless retransmissions. Consider the
case of an LBT-RM source that has received a NAK for a datagram that it has just retransmitted. If the NAK
and the retransmission crossed on the network, it is likely that the receiver generating the NAK will receive the
retransmission just sent. If so, there's no need for the source to send another retransmission, so the NAK can be
safely ignored.

NAKs for a given datagram are ignored for transport_lbtrm_ignore_interval (source) following the retransmission of
that datagram. A NAK will be serviced as normal following the passage of the interval.

When ignoring a NAK, the source can send an NCF (NAK ConFirmation) instead of a retransmission. See NAK
Suppression for more information.

18.3 LBT-RM Receiver Suppressing NAK Generation

LBT-RM sources want receivers to be notified that their NAKs have been heard. Prompt notification via a retrans-
mission or NCF can suppress useless NAK generation. There are a variety of circumstances where the source
does not send a retransmission in response to a receiver's NAK. For example, NAKs received during the ignore
interval do not generate retransmissions. Another example would be if previous retransmissions have used up all
the retransmission bandwidth for the current rate limiter interval.

The image below illustrates a receiver's reaction to an NCF.

https://www.informatica.com/downloads/1568_high_perf_messaging_wp/Topics-in-High-Performance-Messaging.htm
https://www.informatica.com/downloads/1568_high_perf_messaging_wp/Topics-in-High-Performance-Messaging.htm
https://kb.informatica.com/faq/5/Pages/80070.aspx
https://kb.informatica.com/faq/5/Pages/80070.aspx

18.4 Reference 193

Following the receipt of an NCF, a receiver suppresses all NAK generation for that sequence number until transport←↩
_lbtrm_nak_suppress_interval (receiver) passes. NAK generation resumes with the usual transport_lbtrm_nak_←↩
backoff_interval (receiver) if repair was not received during the suppression interval.

Note

the actual length of the interval randomization period is between 1/2 and 3/2 of the configured interval value.
In the diagram above, time periods are not drawn to scale to simplify the diagram.

18.4 Reference

18.4.1 transport_lbtrm_ignore_interval (source)

The interval to ignore NAKs after a retransmission is sent.

This should less than or equal to half the transport_lbtrm_nak_backoff_interval (receiver). If it is larger than
that, you risk increasing your "ignore" NCFs and wasting NAKs. Note that the default values for these options
do not conform to this rule.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

194 Transport LBT-RM Reliability Options

18.4.2 transport_lbtrm_nak_backoff_interval (receiver)

The maximum interval between transmissions of LBT-RM NAKs for a given sequence number, after the first
NAK.

When an LBT-RM receiver detects a sequence number gap, it delays an initial amount before sending its first
NAK (controlled by transport_lbtrm_nak_initial_backoff_interval (receiver)), and then delays an a separately
configurable time between sending subsequent NAKs for the same sequence number. This configuration option
controls those subsequent delays.

The actual time the receiver will wait to NAK again is random. The algorithm used to determine the time range
is (1/2 ∗ backoff_interval - 3/2 ∗ backoff_interval). This will result in a delay longer or shorter than the specified
value.

This should be greater than or equal to twice the transport_lbtrm_ignore_interval (source). If it is less than that,
you risk increasing your "ignore" NCFs and wasting NAKs. Note that the default values for these options do not
conform to this rule.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

See also transport_lbtrm_nak_initial_backoff_interval (receiver).

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

Can only be set during object initialization.

18.4.3 transport_lbtrm_nak_generation_interval (receiver)

The maximum time that a piece of data may be outstanding before the data is unrecoverably lost.

18.4 Reference 195

For LBT-RM transport sessions only. Although the minimum valid value is 5 milliseconds, larger values are
advisable. This option affects the transport session underlying the receiver rather than the receiver itself.
The transport session uses the value from the first receiver created on the session and ignores subsequent
receivers' configuration.

Refer to Receiver Object and Interrelated Configuration Options for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

18.4.4 transport_lbtrm_nak_initial_backoff_interval (receiver)

The interval between loss detection and transmission of the first LBT-RM NAK.

When an LBT-RM receiver detects a sequence number gap, it delays an initial amount before sending its first
NAK controlled by this option, and then delays an a separately configurable time between sending subsequent
NAKs for the same sequence number, controlled by transport_lbtrm_nak_backoff_interval (receiver).

The actual time the receiver will wait to NAK is random. The algorithm used to determine the time range is (1/2
∗ initial_backoff_interval - 3/2 ∗ initial_backoff_interval). This will result in a delay longer or shorter than the
specified value. A value of 0 indicates that the receiver should immediately send a NAK. Note that this is rarely
a good idea; see UM Recovery of Lost Packets.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

See also transport_lbtrm_nak_backoff_interval (receiver).

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

50 (0.05 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

196 Transport LBT-RM Reliability Options

18.4.5 transport_lbtrm_nak_suppress_interval (receiver)

The time that an LBT-RM receiver will suppress sending a NAK for a missing datagram after an NCF is received
from the source.

The source sends an NCF in response to a NAK which the source temporarily cannot retransmit. For example,
if the source gets a NAK for a sequence number for which it has recently sent a retransmission, it will send an
NCF with reason code "ignored".

The receiver responds by adding this option's time value to the NAK re-try timeout currently set for this sequence
number. See NAK Suppression for more information about NCFs.

For LBT-RM transport sessions only. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

18.4.6 transport_lbtrm_receiver_socket_buffer (context)

Value used to set the SO_RCVBUF socket option for the LBT-RM multicast receiving socket.

In some cases the OS will not allow all of this value to be used.

See Socket Buffer Sizes for platform-dependent information. See also our white paper Topics in High Perfor-
mance Messaging for background and guidelines on UDP buffer sizing.

18.4 Reference 197

Scope: context

Type: lbm_ulong_t
Units: bytes

Default
value:

8388608 (8MB)

When to
Set:

Can only be set during object initialization.

18.4.7 transport_lbtrm_send_naks (receiver)

This flag indicates whether LBT-RM should send negative acknowledgements (NAKs) for missing packets or
not.

For LBT-RM transport sessions only. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 NAKs are sent for missing packets to request retransmission. Default for all.

0 Do not send NAKs for missing packets.

18.4.8 transport_lbtrm_source_socket_buffer (context)

Value used to set the SO_SNDBUF socket option for the LBT-RM multicast sending socket. multicast socket.

198 Transport LBT-RM Reliability Options

In some cases the OS will not allow all of this value to be used.

See Socket Buffer Sizes for platform-dependent information. A value of 0 instructs UM to use the OS default.

Scope: context

Type: lbm_ulong_t
Units: bytes

Default
value:

1048576 (1MB)

When to
Set:

Can only be set during object initialization.

18.4.9 transport_lbtrm_transmission_window_limit (source)

Caps the total amount of memory that a transmission window uses, which includes data and overhead.

For example, if the transport_lbtrm_transmission_window_size (source) is 24 MB (default) and the source
sends (with flush flag set) 1.2 million messages with a 20-byte payload and 230-byte header, the actual amount
of memory used can approximate 300 MB. The default value of 0 (zero) disables the transmission window size
limit.

Scope: source

Type: size_t
Units: bytes

Default
value:

0 (disables limit)

When to
Set:

Can only be set during object initialization.

18.4.10 transport_lbtrm_transmission_window_size (source)

The maximum amount of buffered payload data, excluding UM headers, that the LBT-RM source is allowed to
retain for retransmissions.

The minimum valid value is 65,536 bytes. This option affects the transport session underlying the source rather
than the source itself. The transport session uses the value from the first source created on the session and
ignores subsequent sources' configuration.

18.4 Reference 199

Scope: source

Type: size_t
Units: bytes

Default
value:

25165824 (24 MB)

When to
Set:

Can only be set during object initialization.

200 Transport LBT-RM Reliability Options

Chapter 19

Transport LBT-RM Operation Options

Reliable multicast protocols like LBT-RM rely on sequence numbers and the arrival of data after a loss as evidence
that the loss happened. What would happen if the last packet sent by a source was lost? How would receivers learn
of the loss if no further messages were sent?

LBT-RM generates session messages when the sources on a transport session stop sending. These messages
contain the expected last sequence number for the session so that receivers can detect loss even when sources
aren't sending. Session messages also help to maintain state in multicast routers and switches that require regular
traffic to prevent the reclamation of unused forwarding entries.

The image below illustrates the sending of session messages.

No session messages are generated as long as the interval between lbm_src_send() calls that generate writes
to LBT-RM is less than transport_lbtrm_sm_minimum_interval (source) option. The interval between session mes-
sages starts at transport_lbtrm_sm_minimum_interval (source) and doubles till it reaches transport_lbtrm_sm_←↩
maximum_interval (source) at which point the interval continues at that level.

The absence of activity on a transport session is the only indication receivers get that a source is gone or no longer
available through any network path. LBT-RM receivers reset a session activity timer for each data message or
session message that arrives. If the activity timer ever expires, all receivers on the transport session receive an
LBM_MSG_EOS event. This is illustrated in the following timeline:

202 Transport LBT-RM Operation Options

The activity timer is controlled with the transport_lbtrm_activity_timeout (receiver) option.

19.1 Reference

19.1.1 transport_lbtrm_activity_timeout (receiver)

The maximum time that an LBT-RM session may be quiescent before it is deleted and an EOS event is delivered
for all topics using this transport session.

For LBT-RM transport sessions only. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

60000 (60 seconds)

When to
Set:

Can only be set during object initialization.

19.1 Reference 203

19.1.2 transport_lbtrm_coalesce_threshold (source)

UM passes implicitly batched messages to the Operating System sendmsg() as a set unless the size of the set
exceeds the coalescing threshold at which point the messages are coalesced and passed to the O/S as one
copy.

This option accommodates the different number of iovecs supported by different O/Ss. Tuning this option
balances the efficiency of less iovecs handled by the OS vs. the expense of an additional copy operation of
the messages before sending. The default value is also the maximum allowable value for Solaris, AIX and
HPUX. For Linux and Microsoft Windows and Darwin, the maximum allowable value is 1023. These maximum
allowable values are one less than what the O/S provides. This option affects the transport session underlying
the source rather than the source itself. The transport session uses the value from the first source created on
the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: int

Units: number of individual messages

Default
value:

15

When to
Set:

Can only be set during object initialization.

19.1.3 transport_lbtrm_data_rate_limit (context)

Maximum aggregate transmission rate of all LBT-RM sessions' original data plus retransmissions for this par-
ticular context.

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Note: For backwards compatibility with earlier versions, the lbm_context_attr_setopt() function will accept
both 32 and 64 bit values for this option. Note however that a 32-bit value can only specify a rate limit a little
larger than 4 Gbps.

Scope: context

Type: lbm_uint64_t
Units: bits per second

Default
value:

10000000 (10 Mbps)

When to
Set:

Can only be set during object initialization.

204 Transport LBT-RM Operation Options

19.1.4 transport_lbtrm_datagram_max_size (context)

The maximum UDP datagram payload size that can be generated for a LBT-RM transport session. Note that
this does not include UDP, IP, or packet overhead added by the network stack. The default value is 8192, the
minimum is 500 bytes, and the maximum is 65535.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max
Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Users of kernel-bypass drivers should also see Dynamic Fragmentation Reduction.

Scope: context

Type: lbm_uint_t
Units: bytes

Default
value:

8192

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

19.1.5 transport_lbtrm_preactivity_timeout (receiver)

The time that a newly-joined LBT-RM transport session can have no activity before the receiver decides the
transport session is dead.

This option typically does not need to be set for deployments using UM version 3.3 and beyond. If this option is

19.1 Reference 205

set to 0 (the default), then the activity timeout for a newly-joined transport session is the same as transport_←↩
lbtrm_activity_timeout (receiver).

The purpose of this option is for a receiver to allow an extended timeout for a newly-created source transport
session to have no activity prior to the first application message (or TSNI) being sent.

This option is most useful when sending applications use UM versions prior to 3.3, which did not use Topic Se-
quence Number Information messages (TSNIs; see transport_topic_sequence_number_info_interval (source)).
In these cases, the source does not start the transport session until the first application message is sent. If the
sending application might delay sending its first message for more than transport_lbtrm_activity_timeout (re-
ceiver) (60 seconds by default), the receiver will decide that the transport session is dead and will disconnect.
Assuming that the source is still actually alive, the receiver will subsequently re-join the session, which can lead
to "flapping".

This flapping can be prevented by setting transport_lbtrm_preactivity_timeout to a value greater than the worst-
case delay before the sending application sends its first message.

In UM version 3.3 and beyond, LBT-RM sources enable TSNIs by default, which ensures that some transport
session activity will happen within 5 seconds, by default. Thus, there is no longer any need to set a different
timeout for a newly-joined transport session. But note that it also extends the time required for a receiver to
detect that a newly-joined source transport session is actually dead.

This option may still have some utility in UM version 3.3 and beyond if TSNIs need to be disabled.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0 (zero)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4.1/UME 2.1.1.

19.1.6 transport_lbtrm_rate_interval (context)

Period that LBT-RM rate limiter runs.

When a source is constrained by the rate limiter, the traffic can become very "bursty", with periods of intense
traffic alternating with idle periods of no traffic. These periods average to the setting of the rate limiter.

Reducing the rate interval increases the frequency of the bursts while reducing the intensity of those bursts,
resulting in the same average. The reduction in burst intensity can reduce the risk of loss, but can also increase

206 Transport LBT-RM Operation Options

average latency and CPU load. Refer to Rate Controls for additional information about the UM rate limiting
algorithm.

Note: technically, any value which divides evenly into 1000 is accepted by UM for a rate interval. However,
values other than those listed below should not be used except as directed by Informatica Support.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10

When to
Set:

Can only be set during object initialization.

String value Integer value Description
"5" 5 LBT-RM rate limiter runs every 5 milliseconds.

"10" 10 LBT-RM rate limiter runs every 10 milliseconds. Default for all.
"20" 20 LBT-RM rate limiter runs every 20 milliseconds.

"50" 50 LBT-RM rate limiter runs every 50 milliseconds.

"100" 100 LBT-RM rate limiter runs every 100 milliseconds.

19.1.7 transport_lbtrm_receiver_timestamp (context)

Controls whether high-resolution timestamps for received packets are delivered to the receiver callback.

For LBT-RM transport sessions only.

Refer to High-resolution Timestamps for additional information.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9

19.1 Reference 207

Value Description

1 Receive timestamps delivered to receive callback (in C: lbm_rcv_cb_proc) via lbm_msg_t_stct←↩
::hr_timestamp.

0 Receive timestamps not delivered. Default for all.

19.1.8 transport_lbtrm_recycle_receive_buffers (context)

Enables the use of buffer recycling for socket operations.

See Receive Buffer Recycling for more information, including restrictions on the use of this feature.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.12

Value Description

1 Use buffer recycling.

0 Buffer recycling is not used. Default for all.

19.1.9 transport_lbtrm_retransmit_rate_limit (context)

Maximum aggregate transmission rate of all LBT-RM sessions' retransmissions for this particular context.

This should always be less than the value used for original data. Refer to Rate Controls for additional informa-
tion about the UM rate limiting algorithm.

208 Transport LBT-RM Operation Options

Note: For backwards compatibility with earlier versions, the lbm_context_attr_setopt() function will accept
both 32 and 64 bit values for this option. Note however that a 32-bit value can only specify a rate limit a little
larger than 4 Gbps.

Scope: context

Type: lbm_uint64_t
Units: bits per second

Default
value:

5000000 (5 Mbps)

When to
Set:

Can only be set during object initialization.

19.1.10 transport_lbtrm_sm_maximum_interval (source)

The maximum interval between LBT-RM session messages.

In lieu of data being sent, LBT-RM sends session messages to inform receivers of sequence numbers and to
let receivers know that the sender is still transmitting. This option affects the transport session underlying the
source rather than the source itself. The transport session uses the value from the first source created on the
session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

19.1.11 transport_lbtrm_sm_minimum_interval (source)

The minimum interval between LBT-RM session messages.

In lieu of data being sent, LBT-RM sends session messages to inform receivers of sequence numbers and to

19.1 Reference 209

let receivers know that the sender is still transmitting. This option affects the transport session underlying the
source rather than the source itself. The transport session uses the value from the first source created on the
session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

Can only be set during object initialization.

19.1.12 transport_lbtrm_source_timestamp (context)

Controls whether high-resolution timestamps for transmitted packets are delivered to the source event callback.

For LBT-RM transport sessions only. Refer to High-resolution Timestamps for additional information.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9

Value Description

1 Transmit timestamps delivered to the source event callback (in C: lbm_src_cb_proc) via event
LBM_SRC_EVENT_TIMESTAMP.

0 Transmit timestamps not delivered. Default for all.

210 Transport LBT-RM Operation Options

19.1.13 transport_lbtrm_tgsz (source)

The transmission group size used for this Topic when LBT-RM is used.

This value must be greater than 0 and must be a power of 2 no greater than 32K. This option affects the
transport session underlying the source rather than the source itself. The transport session uses the value from
the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_uint16_t
Units: packets

Default
value:

8

When to
Set:

Can only be set during object initialization.

19.1 Reference 211

212 Transport LBT-RM Operation Options

Chapter 20

Transport LBT-RU Network Options

20.1 LBT-RU Transport Session Management

The image below illustrates the relationship between the primary LBT-RU network options.

When a source is created, the application can explicitly map it to a transport session by setting the transport_lbtru←↩
_port (source) option. If a previous source was created on the same context with the same port, this new source
will be mapped to the same transport session. However, two different contexts on the same host may not share the
same port number. If a source is created with a port number that is already in use, UM will return an error.

Alternatively, if the application does not explicitly specify a source port, UM will implicitly assign the new source to
a pool of transport sessions defined when the context was created. The pool is defined as a range of port numbers
specified by the options transport_lbtru_port_low (context) and transport_lbtru_port_high (context). In addition, the
option transport_lbtru_maximum_ports (context) defines the number of transport sessions in the pool.

When a new source is created and the source port is not explicitly defined, UM will check to see how many transport

214 Transport LBT-RU Network Options

sessions are currently active from the pool within the context. If it is less than the number in the pool, then UM will
activate the next transport session in the range. However, if the context already has activated all transport sessions
in the pool, then the new topic is mapped to one of the existing transport sessions, in round-robin fashion.

Note that if you intend to do both explicit mapping and implicit mapping to the default pool of transport sessions, the
LBT-RU transport behaves differently than some of the other transport types (e.g. LBT-RM). Any explicitly given port
will be added to the default pool. This means that subsequent implicit mappings to the default pool can include this
newly added port.

Notice that the default range of ports, 14380 to 14389, is 10 ports. But the default number of transport sessions in
the pool is 5. This allows two contexts to be created on the same host and use the same configuration. If more than
2 contexts are intended to co-exist on the same host, the port range and number of transport session per context
must be managed to give a unique port number to every transport session.

The option transport_lbtru_interface (source) may be used on LBT-RU sources to choose particular interface, over-
riding the default INADDR_ANY which accepts connections on all interfaces. Similarly, transport_lbtru_interface
(receiver) may be used on receivers to choose a particular interface for outgoing connections.

20.2 Reference

20.2.1 transport_lbtru_interface (receiver)

Specifies the network interface over which UM LBT-RU receivers read application data messages.

Can specify full IP address of interface, or just network part (see Specifying Interfaces for details).

Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it
will accept incoming connection requests from any interface.

Note: if specifying an interface name in an XML-format file, see Interface Device Names and XML.

Scope: receiver

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

20.2 Reference 215

20.2.2 transport_lbtru_interface (source)

Specifies the network interface over which UM LBT-RU sources receive connection requests from topic re-
ceivers.

Can specify full IP address of interface, or just network part (see Specifying Interfaces for details).

Be aware that this option is applied to the transport session when the first topic is created on that session.
Thus, setting a different interface for a subsequent topic that maps onto the same transport session will have
no effect.

Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it
will accept incoming connection requests from any interface.

Note: if specifying an interface name in an XML-format file, see Interface Device Names and XML.

Scope: source

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

20.2.3 transport_lbtru_maximum_ports (context)

Maximum size of LBT-RU source transport session default pool.

See LBT-RU Transport Session Management for how LBT-RU source transport sessions are managed.

Scope: context

Type: lbm_uint16_t

Units: number of ports

Default
value:

5

When to
Set:

Can only be set during object initialization.

216 Transport LBT-RU Network Options

20.2.4 transport_lbtru_port (source)

The UDP port to be used for the source transport session.

This is the source-side option. For receive-side ports, see transport_lbtru_port_low (receiver).

Setting this option to non-zero overrides the use of the default pool of LBT-RU source transport sessions.

See LBT-RU Transport Session Management for how LBT-RU source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Note that this port is only used by LBT-RU sources, not receivers.

Attention

If a source is configured for a port that is not currently part of the transport session default pool, UM will create
a new transport session for this port and add it to the default pool. See Transport Session Differences.

Scope: source

Type: lbm_uint16_t

Default
value:

0 (use open port)

Byte order: Network

When to
Set:

Can only be set during object initialization.

20.2.5 transport_lbtru_port_high (context)

High UDP port number of range for default pool of LBT-RU source transport sessions.

When transport_lbtru_port (source) is not specified, a newly-created transport session will use an unused port
from this range. Receivers that join the source's transport session send connection requests, acknowledge-
ments, and NAKs to the source port.

See also transport_lbtru_port_high (context).

This is the source-side option. For the corresponding receiver option, see transport_lbtru_port_high (receiver).

20.2 Reference 217

See LBT-RU Transport Session Management for how LBT-RU source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

14389

Byte order: Host

When to
Set:

Can only be set during object initialization.

20.2.6 transport_lbtru_port_high (receiver)

High port number to use for receiving LBT-RU data.

This is the receive-side option. For the corresponding source option, see transport_lbtru_port_high (context).

When a newly-created receiver joins a source's transport session, it finds a free port from this range, binds to
it, and informs the source of the receiver's IP and port. The UM source will send message data to that IP and
port.

Unlike most UM port ranges, if the library is not able to find an unused port in this range, it will log a warning
(Core-5688-3300), but instead of failing the receiver creation, it will allocate a port from the host's ephemeral
pool and operate normally. Thus, it is possible for a receiver to get messages on a port outside of the configured
range.

See Port Assignments for more information about configuring ports.

Scope: receiver

Type: lbm_uint16_t

Default
value:

14379

Byte order: Host

When to
Set:

Can only be set during object initialization.

218 Transport LBT-RU Network Options

20.2.7 transport_lbtru_port_low (context)

Low UDP port number of range for default pool of LBT-RU source transport sessions.

When transport_lbtru_port (source) is not specified, a newly-created transport session will use an unused port
from this range. Receivers that join the source's transport session send connection requests, acknowledge-
ments, and NAKs to the source port.

See also transport_lbtru_port_high (context).

This is the source-side option. For the corresponding receiver option, see transport_lbtru_port_low (receiver).

See LBT-RU Transport Session Management for how LBT-RU source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

14380

Byte order: Host

When to
Set:

Can only be set during object initialization.

20.2.8 transport_lbtru_port_low (receiver)

Low port number to use for receiving LBT-RU data.

This is the receive-side option. For the corresponding source option, see transport_lbtru_port_low (context).

When a newly-created receiver joins a source's transport session, it finds a free port from this range, binds to
it, and informs the source of the receiver's IP and port. The UM source will send message data to that IP and
port.

Unlike most UM port ranges, if the library is not able to find an unused port in this range, it will log a warning
(Core-5688-3300), but instead of failing the receiver creation, it will allocate a port from the host's ephemeral
pool and operate normally. Thus, it is possible for a receiver to get messages on a port outside of the configured
range.

20.2 Reference 219

See Port Assignments for more information about configuring ports.

Scope: receiver

Type: lbm_uint16_t

Default
value:

14360

Byte order: Host

When to
Set:

Can only be set during object initialization.

220 Transport LBT-RU Network Options

Chapter 21

Transport LBT-RU Reliability Options

LBT-RU's reliability options closely model LBT-RM's. The descriptions and illustrations in Transport LBT-RM Relia-
bility Options generally apply to LBT-RU, with appropriate option name changes.

21.1 Reference

21.1.1 transport_lbtru_ignore_interval (source)

The interval to ignore NAKs after a retransmission is sent.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

222 Transport LBT-RU Reliability Options

21.1.2 transport_lbtru_nak_backoff_interval (receiver)

The maximum interval between transmissions of LBT-RU NAKs for a given sequence number, after the first
NAK.

When an LBT-RU receiver detects a sequence number gap, it delays an initial amount before sending its first
NAK (controlled by transport_lbtru_nak_initial_backoff_interval (receiver)), and then delays an a separately
configurable time between sending subsequent NAKs for the same sequence number. This configuration option
controls those subsequent delays.

The actual time the receiver will wait to NAK again is random. The algorithm used to determine the time range
is (1/2 ∗ backoff_interval - 3/2 ∗ backoff_interval). This will result in a delay longer or shorter than the specified
value.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

Refer to Receiver Object and Interrelated Configuration Options for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

Can only be set during object initialization.

21.1.3 transport_lbtru_nak_generation_interval (receiver)

The maximum time that a piece of data may be outstanding before the data is unrecoverably lost.

For LBT-RU transport sessions only. Although the minimum valid value is 5 milliseconds, larger values are
advisable. This option affects the transport session underlying the receiver rather than the receiver itself.
The transport session uses the value from the first receiver created on the session and ignores subsequent
receivers' configuration.

Refer to Receiver Object and Interrelated Configuration Options for additional information.

Scope: receiver

Type: lbm_ulong_t

21.1 Reference 223

Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

21.1.4 transport_lbtru_nak_initial_backoff_interval (receiver)

The interval between loss detection and transmission of the first LBT-RU NAK.

When an LBT-RU receiver detects a sequence number gap, it delays an initial amount before sending its first
NAK controlled by this option, and then delays an a separately configurable time between sending subsequent
NAKs for the same sequence number, controlled by transport_lbtru_nak_backoff_interval (receiver).

The actual time the receiver will wait to NAK is random. The algorithm used to determine the time range is
(1/2 ∗ initial_backoff_interval - 3/2 ∗ initial_backoff_interval). This can result in a wait interval longer than the
specified value. A value of 0 indicates that the receiver should immediately send a NAK.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0 (disabled)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.10

21.1.5 transport_lbtru_nak_suppress_interval (receiver)

The time that an LBT-RU receiver will suppress sending a NAK for a missing datagram after an NCF is received
from the source.

The source sends an NCF in response to a NAK which the source temporarily cannot retransmit. For example,

224 Transport LBT-RU Reliability Options

if the source gets a NAK for a sequence number for which it has recently sent a retransmission, it will send an
NCF with reason code "ignored". The receiver responds by suppressing NAKs for that sequence number for
the interval configured by this option. See NAK Suppression for more information about NCFs. For LBT-RU
transport sessions only.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

21.1.6 transport_lbtru_receiver_socket_buffer (context)

Value used to set the SO_RCVBUF socket option for the LBT-RU receiving socket.

Note that both the source and receiver side uses a socket for receiving data. This option is used by both.

In some cases the OS will not allow all of this value to be used.

See Socket Buffer Sizes for platform-dependent information.

See also our white paper Topics in High Performance Messaging for background and guidelines on UDP buffer
sizing.

Scope: context

Type: lbm_ulong_t
Units: bytes

Default
value:

8388608 (8MB)

When to
Set:

Can only be set during object initialization.

21.1 Reference 225

21.1.7 transport_lbtru_send_naks (receiver)

This flag indicates whether LBT-RU should send negative acknowledgements (NAKs) for missing packets or
not.

For LBT-RU transport sessions only. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.16

Value Description

1 NAKs are sent for missing packets to request retransmission. Default for all.

0 Do not send NAKs for missing packets.

21.1.8 transport_lbtru_source_socket_buffer (context)

Value used to set the SO_SNDBUF socket option for the LBT-RU sending socket.

In some cases the OS will not allow all of this value to be used.

See Socket Buffer Sizes for platform-dependent information. A value of 0 instructs UM to use the OS default.

226 Transport LBT-RU Reliability Options

Scope: context

Type: lbm_ulong_t
Units: bytes

Default
value:

1048576 (1MB)

When to
Set:

Can only be set during object initialization.

21.1.9 transport_lbtru_transmission_window_limit (source)

Caps the total amount of memory that a transmission window uses, which includes data and overhead.

For example, if the transport_lbtru_transmission_window_size (source) is 24 MB (default) and the source sends
20 byte messages with the "flush" flag, the actual amount of memory used can approximate 300 MB. The default
value of this option does not limit the transmission window.

Scope: source

Type: size_t
Units: bytes

Default
value:

0 (no limit)

When to
Set:

Can only be set during object initialization.

21.1.10 transport_lbtru_transmission_window_size (source)

The maximum amount of buffered data that the LBT-RU source is allowed to retain for retransmissions.

The minimum valid value is 65536 bytes. This option affects the transport session underlying the source rather
than the source itself. The transport session uses the value from the first source created on the session and
ignores subsequent sources' configuration.

Refer to Source Object for additional information.

21.1 Reference 227

Scope: source

Type: size_t
Units: bytes

Default
value:

25165824 (24 MB)

When to
Set:

Can only be set during object initialization.

228 Transport LBT-RU Reliability Options

Chapter 22

Transport LBT-RU Operation Options

LBT-RU's operational options closely model LBT-RM's. The descriptions and illustrations in Transport LBT-RM
Operation Options generally apply to LBT-RU, with appropriate option name changes.

The following options are present for LBT-RU but not LBT-RM:

• transport_lbtru_client_map_size (source)

• transport_lbtru_connect_interval (receiver)

• transport_lbtru_acknowledgement_interval (receiver)

• transport_lbtru_client_activity_timeout (source)

The image below illustrates the timing of the latter two LBT-RU unique options:

22.1 Reference

230 Transport LBT-RU Operation Options

22.1.1 transport_lbtru_acknowledgement_interval (receiver)

The interval between sending acknowledgements.

For LBT-RU transport session only. Each client continually sends acknowledgements to let the source know
that the client is still alive. This option affects the transport session underlying the receiver rather than the
receiver itself. The transport session uses the value from the first receiver created on the session and ignores
subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

22.1.2 transport_lbtru_activity_timeout (receiver)

The maximum time that an LBT-RU session may be quiescent before it is deleted and an EOS event is delivered
for all topics using this transport session.

For LBT-RU transport sessions only. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

60000 (60 seconds)

When to
Set:

Can only be set during object initialization.

22.1 Reference 231

22.1.3 transport_lbtru_client_activity_timeout (source)

The maximum time that an LBT-RU client may be quiescent, i.e. not sending ACKs, before the sender assumes
that it is dead and stops sending to it.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

22.1.4 transport_lbtru_client_map_size (source)

The size of the hash table used to store client information and state.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: size_t
Units: table entries
Default
value:

7

When to
Set:

Can only be set during object initialization.

232 Transport LBT-RU Operation Options

22.1.5 transport_lbtru_coalesce_threshold (source)

UM passes implicitly batched messages to the Operating System sendmsg() as a set unless the size of the set
exceeds the coalescing threshold at which point the messages are coalesced and passed to the O/S as one
copy.

This option accommodates the different number of iovecs supported by different O/Ss. Tuning this option
balances the efficiency of less iovecs handled by the OS vs. the expense of an additional copy operation of
the messages before sending. The default value is also the maximum allowable value for Solaris, AIX and
HPUX. For Linux and Microsoft Windows and Darwin, the maximum allowable value is 1023. These maximum
allowable values are one less than what the O/S provides. This option affects the transport session underlying
the source rather than the source itself. The transport session uses the value from the first source created on
the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: int

Units: number of messages

Default
value:

15

When to
Set:

Can only be set during object initialization.

22.1.6 transport_lbtru_connect_interval (receiver)

The interval between sending connection requests.

For LBT-RU transport session only. This option affects the transport session underlying the receiver rather than
the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

100 (0.1 seconds)

When to
Set:

Can only be set during object initialization.

22.1 Reference 233

22.1.7 transport_lbtru_data_rate_limit (context)

Maximum aggregate transmission rate of all LBT-RU sessions original data for this particular context.

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Note: For backwards compatibility with earlier versions, the lbm_context_attr_setopt() function will accept
both 32 and 64 bit values for this option. Note however that a 32-bit value can only specify a rate limit a little
larger than 4 Gbps.

Scope: context

Type: lbm_uint64_t
Units: bits per second

Default
value:

10000000 (10 Mbps)

When to
Set:

Can only be set during object initialization.

22.1.8 transport_lbtru_datagram_max_size (context)

The maximum UDP datagram payload size that can be generated for a LBT-RU transport session. Note that
this does not include UDP, IP, or packet overhead added by the network stack. The default value is 8192, the
minimum is 500 bytes, and the maximum is 65535.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max
Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

234 Transport LBT-RU Operation Options

Users of kernel-bypass drivers should also see Dynamic Fragmentation Reduction.

Scope: context

Type: lbm_uint_t
Units: bytes

Default
value:

8192

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

22.1.9 transport_lbtru_maximum_connect_attempts (receiver)

The maximum number of connect attempts to make before this transport session is deleted and an EOS event
is delivered for all topics using this transport session.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: lbm_ulong_t

Default
value:

600

When to
Set:

Can only be set during object initialization.

22.1.10 transport_lbtru_rate_interval (context)

Period that LBT-RU rate limiter runs.

When a source is constrained by the rate limiter, the traffic can become very "bursty", with periods of intense
traffic alternating with idle periods of no traffic. These periods average to the setting of the rate limiter.

22.1 Reference 235

Reducing the rate interval increases the frequency of the bursts while reducing the intensity of those bursts,
resulting in the same average. The reduction in burst intensity can reduce the risk of loss, but can also increase
average latency and CPU load. Refer to Rate Controls for additional information about the UM rate limiting
algorithm.

Note: technically, any value which divides evenly into 1000 is accepted by UM for a rate interval. However,
values other than those listed below should not be used except as directed by Informatica Support.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

100

When to
Set:

Can only be set during object initialization.

String value Integer value Description
"5" 5 LBT-RM rate limiter runs every 5 milliseconds.

"10" 10 LBT-RU rate limiter runs every 10 milliseconds.

"20" 20 LBT-RU rate limiter runs every 20 milliseconds.

"50" 50 LBT-RU rate limiter runs every 50 milliseconds.

"100" 100 LBT-RU rate limiter runs every 100 milliseconds. Default for all.

22.1.11 transport_lbtru_recycle_receive_buffers (context)

Enables the use of buffer recycling for socket operations.

See Receive Buffer Recycling for more information, including restrictions on the use of this feature.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.12

236 Transport LBT-RU Operation Options

Value Description

1 Use buffer recycling.

0 Buffer recycling is not used. Default for all.

22.1.12 transport_lbtru_retransmit_rate_limit (context)

Maximum aggregate transmission rate of all LBT-RU sessions retransmissions for this particular context.

This should always be less than the value used for original data. Refer to Rate Controls for additional informa-
tion about the UM rate limiting algorithm.

Note: For backwards compatibility with earlier versions, the lbm_context_attr_setopt() function will accept
both 32 and 64 bit values for this option. Note however that a 32-bit value can only specify a rate limit a little
larger than 4 Gbps.

Scope: context

Type: lbm_uint64_t
Units: bits per second

Default
value:

5000000 (5 Mbps)

When to
Set:

Can only be set during object initialization.

22.1.13 transport_lbtru_sm_maximum_interval (source)

The maximum interval between LBT-RU session messages.

In lieu of data being sent, LBT-RU sends session messages to each client to inform them of sequence numbers
and to let receivers know that the sender is still transmitting. This option affects the transport session underlying
the source rather than the source itself. The transport session uses the value from the first source created on
the session and ignores subsequent sources' configuration.

22.1 Reference 237

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

22.1.14 transport_lbtru_sm_minimum_interval (source)

The minimum interval between LBT-RU session messages.

In lieu of data being sent, LBT-RU sends session messages to each client to inform them of sequence numbers
and to let receivers know that the sender is still transmitting. This option affects the transport session underlying
the source rather than the source itself. The transport session uses the value from the first source created on
the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

Can only be set during object initialization.

22.1.15 transport_lbtru_use_session_id (source)

Control whether a session ID is used for LBT-RU Transport sessions.

This option should be set to 0 if a version 3.3 (and beyond) LBT-RU source must interoperate with a version
pre-3.3 receiver.

238 Transport LBT-RU Operation Options

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 3.3

Value Description
1 Indicates the application desires LBT-RU to use a session ID. Default for all.
0 Indicates the application does not desire LBT-RU to use a session ID. For use when version pre-3.3

receivers must be used with TCP sources that are version 3.3 and beyond.

22.1 Reference 239

240 Transport LBT-RU Operation Options

Chapter 23

Transport LBT-IPC Operation Options

The image below illustrates the timing of an LBT-IPC transport session.

The Source Session Message mechanism enables the receiver to detect when a source goes away and works
similarly to LBT-RU. It operates independently of message writes/reads in the Shared Memory Area.

23.1 LBT-IPC Transport Session Management

When a source is created, the application can explicitly map it to a transport session by setting the transport_←↩
lbtipc_id (source) option. If a previous source was created on the same context with the same ID number, this new
source will be mapped to the same transport session. Note that ID numbers can be re-used by different contexts on
the same host. The resulting transport sessions will be separate, independent, and non-interfering.

Alternatively, if the application does not explicitly specify a source ID, UM will implicitly assign the new source to a
pool of transport sessions defined when the context was created. The pool is defined as a range of ID numbers
specified by the options transport_lbtipc_id_low (context) and transport_lbtipc_id_high (context). The numeric range
defines the number of transport sessions in the pool.

When a new source is created and the source port is not explicitly defined, UM will check to see how many transport
sessions are currently active from the pool within the context. If it is less than the configured range of IDs then UM

242 Transport LBT-IPC Operation Options

will use the next ID in the range transport_lbtipc_id_low (context) to transport_lbtipc_id_high (context). However,
if the context already has activated all transport sessions in the pool, then the new topic is mapped to one of the
existing transport sessions, in round-robin fashion.

23.2 Reference

23.2.1 transport_lbtipc_activity_timeout (receiver)

The maximum period of inactivity (lack of session messages) from an IPC source before the UM delivers an
EOS event for all topics using the transport session.

Refer to Receiver Object and Interrelated Configuration Options for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

60,000 (60 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

23.2.2 transport_lbtipc_behavior (source)

Desired flow control behavior when multiple receivers have joined the same LBT-IPC transport session.

See also Transport LBT-IPC. This option affects the transport session underlying the source rather than the
source itself. The transport session uses the value from the first source created on the session and ignores
subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ushort_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

23.2 Reference 243

String value Integer value Description

"source_paced" LBM_SRC_TOPIC_ATTR_LBTIPC_BE←↩
HAVIOR_SOURCE_PACED

Your application writes as fast as it can to
the LBT-IPC shared memory area. Slower
receivers can experience loss. A source
does not consider if any receivers have
successfully read a message before it re-
claims it. Default for all.

"receiver_paced" LBM_SRC_TOPIC_ATTR_LBTIPC_BE←↩
HAVIOR_RECEIVER_PACED

Your application writes to the LBT-IPC
shared memory area only as fast as the
slowest receiver consumes data. A source
will not reclaim a message until all re-
ceivers have successfully read the mes-
sage. This slows down all receiver on the
LBT-IPC transport session.

23.2.3 transport_lbtipc_datagram_max_size (context)

The maximum datagram size that can be generated for a LBT-IPC transport session. While IPC does not
use UDP datagrams, this option limits the size of the UM message which is given to the underlying transport
type, including all UM headers and overhead. The default value is 65535, the minimum is 500 bytes, and the
maximum is 65535.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max
Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Users of kernel-bypass drivers should also see Dynamic Fragmentation Reduction.

Scope: context

Type: lbm_uint_t
Units: bytes

244 Transport LBT-IPC Operation Options

Default
value:

65535

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

23.2.4 transport_lbtipc_dro_loss_recovery_timeout (receiver)

For IPC transport sessions originating from a DRO endpoint portal, delay declaring as unrecoverable a lost
message.

Message streams traversing a DRO can have the message order changed. If the DRO's outgoing transport
session uses the IPC protocol, these out-of-order messages will normally trigger immediate unrecoverable loss.
This timeout allows an opportunity for the messages to be re-ordered properly.

The value 0 disables this delay (i.e. receivers immediately declare unrecoverable loss).

See DRO Reliable Loss for more information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 6.12

23.2.5 transport_lbtipc_id (source)

The preferred Transport ID for a specific source's LBT-IPC session.

If 0, the UM context attempts to find one in the given Transport ID range of transport_lbtipc_id_low (context)
and transport_lbtipc_id_high (context).

See LBT-IPC Transport Session Management and Sources and LBT-IPC for more information.

23.2 Reference 245

Scope: source

Type: lbm_uint16_t

Default
value:

0 (use open ID)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

23.2.6 transport_lbtipc_id_high (context)

Highest transport ID of the range of available LBT-IPC Transport IDs.

See LBT-IPC Transport Session Management and Sources and LBT-IPC for more information.

Scope: context

Type: lbm_uint16_t

Default
value:

20,005

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

23.2.7 transport_lbtipc_id_low (context)

Lowest transport ID of the range of available LBT-IPC Transport IDs.

See LBT-IPC Transport Session Management and Sources and LBT-IPC for more information.

Scope: context

Type: lbm_uint16_t

Default
value:

20,001

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

246 Transport LBT-IPC Operation Options

23.2.8 transport_lbtipc_maximum_receivers_per_transport (source)

The maximum number of receiving contexts that can join an IPC transport session.

Once a receiving context joins an IPC transport session, it can receive messages on multiple topics. Increasing
this value increases the amount of shared memory allocated per transport session by a negligible amount.

Scope: source

Type: lbm_ushort_t

Default
value:

20

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

23.2.9 transport_lbtipc_pend_behavior_linger_loop_count (context)

When using pend as the LBTIPC receiver thread behavior, the receiver loop can linger in a temporary busy wait
behavior before pending again.

At high sustained rates or during short bursts of data, this can result in a significant reduction in the number
of kernel calls if more data arrives relatively quickly. Once the burst subsides, the CPU utilization drops again
since the receiver would be pending. The default value of 1 results in legacy pend behavior. If the value is set
large, significant CPU will be consumed.

Scope: context

Type: lbm_ulong_t

Default
value:

1

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.10

23.2 Reference 247

23.2.10 transport_lbtipc_receiver_operational_mode (context)

The mode in which UM operates to process LBT-IPC messages.

See Embedded Mode for additional information.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"embedded" LBM_CTX_ATTR_OP_EMBEDDED UM spawns a thread to process received LBT-IPC
messages. Default for all.

"sequential" LBM_CTX_ATTR_OP_SEQUENTIAL Your application must call lbm_context_←↩
process_lbtipc_messages() to process received
LBT-IPC messages. If you also set the context's
operational_mode option to sequential, your
application must donate an additional thread
to service the lbm_context_process_events()
calls. Note: You can use sequential mode with the
C API, but not with the Java API or .NET API. The
Java and .NET APIs do not provide an equivalent
lbm_context_process_lbtipc_messages() API
for LBT- IPC.

23.2.11 transport_lbtipc_receiver_thread_behavior (context)

Receiver behavior for monitoring the signaling semaphore set by the IPC source when it writes new data to the
shared memory area.

Note that the IPC thread is not the same as the Context thread.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

248 Transport LBT-IPC Operation Options

String value Integer value Description

"pend" LBM_CTX_ATTR_IPC_RCV_THREAD_←↩
PEND

Receiver waits (sleep) for notification from
OS that IPC source has updated the signal-
ing semaphore. This option is best when the
IPC source frequently writes new data to the
shared area. Default for all.

"busy_wait" LBM_CTX_ATTR_IPC_RCV_THREAD_←↩
BUSY_WAIT

Provides the lowest latency as the receiver
monopolizes the CPU core looking for an in-
cremented semaphore. This option works
best for infrequent or sporadic message de-
livery from the IPC source, but involves a
CPU cost.

23.2.12 transport_lbtipc_recycle_receive_buffers (context)

Enables the use of buffer recycling for IPC operations.

See Receive Buffer Recycling for more information, including restrictions on the use of this feature.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.12

Value Description

1 Use buffer recycling.

0 Buffer recycling is not used. Default for all.

23.2 Reference 249

23.2.13 transport_lbtipc_sm_interval (source)

Time period between sessions message sent from source to receivers.

Refer to Source Object and Interrelated Configuration Options for additional information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10,000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

23.2.14 transport_lbtipc_transmission_window_size (source)

Size of an LBT-IPC transport's shared memory area.

This value may vary across platforms. The actual size of the shared memory area equals the value you specify
for this option plus about 64 KB for header information. The minimum value for this option is 65,536. Refer to
Source Object for additional information.

Scope: source

Type: size_t
Units: bytes

Default
value:

25165824 (24 MB)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

250 Transport LBT-IPC Operation Options

Chapter 24

Transport LBT-SMX Operation Options

The image below illustrates the timing of an LBT-SMX transport session.

The Source Session Message mechanism enables the receiver to detect when a source goes away and works
similarly to LBT-RU. It operates independently of message writes/reads in the Shared Memory Area.

24.1 LBT-SMX Transport Session Management

When a source is created, the application can explicitly map it to a transport session by setting the transport_←↩
lbtsmx_id (source) option. If a previous source was created on the same context with the same ID number, this new
source will be mapped to the same transport session. Note that ID numbers can be re-used by different contexts on
the same host. The resulting transport sessions will be separate, independent, and non-interfering.

Alternatively, if the application does not explicitly specify a source ID, UM will implicitly assign the new source to a
pool of transport sessions defined when the context was created. The pool is defined as a range of ID numbers
specified by the options transport_lbtsmx_id_low (context) and transport_lbtsmx_id_high (context). The numeric
range defines the number of transport sessions in the pool.

When a new source is created and the source port is not explicitly defined, UM will check to see how many transport
sessions are currently active from the pool within the context. If it is less than the configured range of IDs then UM
will use the next ID in the range transport_lbtsmx_id_low (context) to transport_lbtsmx_id_high (context). However,

252 Transport LBT-SMX Operation Options

if the context already has activated all transport sessions in the pool, then the new topic is mapped to one of the
existing transport sessions, in round-robin fashion.

24.2 Reference

24.2.1 transport_lbtsmx_activity_timeout (receiver)

The maximum period of inactivity (lack of updates to the source's shared activity counter) from an SMX source
before UM delivers an EOS event for all topics using the transport session.

You should configure this option to a value greater than the source's transport_lbtsmx_sm_interval so receivers
do not erroneously report a source as inactive.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

60,000 (60 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.1

24.2.2 transport_lbtsmx_datagram_max_size (source)

The maximum datagram size that can be sent for an LBT-SMX transport session.

While SMX does not use UDP datagrams, this option limits the size of the UM message which is given to the
underlying transport type, including all UM headers and overhead. This value includes 16 bytes of header
information per message, plus an additional 24 bytes of reserved space for compatibility with other egress
transports when re-sending SMX messages through a UM Dynamic Router. Therefore, the largest usable
message size for the default setting of 8192 bytes would be 8176 bytes (8192 - 16 - 24). The minimum is 32
bytes. The maximum size is limited by available memory.

This option imposes a hard limit on message size because the LBT-SMX transport does not support datagram
fragmentation or reassembly. Unlike other transports that do support fragmentation, attempts to send messages
larger than the datagram size configured by this option fail.

24.2 Reference 253

The minimum value for this option is 32 bytes. Unlike other transports, there is no hard-coded maximum value;
the maximum is limited only by the amount of memory available.

Note: The source's configured transport_lbtsmx_transmission_window_size (source) must be at least twice as
large as the source's configured transport_lbtsmx_datagram_max_size. If the transmission window has not
been configured to be large enough to hold at least two maximum-sized SMX datagrams, then a warning will
be issued and the source's transport_lbtsmx_transmission_window_size option will be automatically adjusted
upwards to the nearest power-of-2 size in bytes that can fit at least two maximum-sized datagrams.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max
Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Users of kernel-bypass drivers should see Dynamic Fragmentation Reduction.

Scope: source

Type: lbm_uint_t
Units: bytes

Default
value:

8192

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.1

24.2.3 transport_lbtsmx_id (source)

The preferred Transport ID for a specific source's LBT-SMX session.

To use this option, configure a non-zero value. For the default value of 0 (zero), the UM context selects the next
available Transport ID in the Transport ID range of transport_lbtsmx_id_low (context) and transport_lbtsmx_←↩
id_high (context).

See LBT-SMX Transport Session Management and Sources and LBT-SMX for more information.

254 Transport LBT-SMX Operation Options

Scope: source

Type: lbm_uint16_t

Default
value:

0 (select next ID in range)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.1

24.2.4 transport_lbtsmx_id_high (context)

Highest transport ID in the range of available LBT-SMX Transport IDs.

See LBT-SMX Transport Session Management and Sources and LBT-SMX for more information.

Scope: context

Type: lbm_uint16_t

Default
value:

30,005

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.1

24.2.5 transport_lbtsmx_id_low (context)

Lowest transport ID in the range of available LBT-SMX Transport IDs.

See LBT-SMX Transport Session Management and Sources and LBT-SMX for more information.

Scope: context

Type: lbm_uint16_t

Default
value:

30,001

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.1

24.2 Reference 255

24.2.6 transport_lbtsmx_maximum_receivers_per_transport (source)

The maximum number of receiving contexts that can join an SMX transport session.

Once a receiving context joins an SMX transport session, it can receive messages on multiple topics. Increasing
this value increases the amount of shared memory allocated per transport session by a negligible amount.

Scope: source

Type: lbm_ushort_t

Default
value:

64

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.1

24.2.7 transport_lbtsmx_message_statistics_enabled (context)

Controls whether or not UM records LBT-SMX transport statistics

Enabling statistics gives better visibility of application behavior, at the expense of a small but measurable
amount of latency.

Scope: context

Type: int

Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.1

Value Description

1 UM records source and receiver LBT-SMX transport statistics.

256 Transport LBT-SMX Operation Options

Value Description

0 UM does not record source and receiver LBT-SMX transport statistics. Default for all.

24.2.8 transport_lbtsmx_sm_interval (source)

Time period between updates to an LBT-SMX source's shared activity counter, which enables connected re-
ceivers to determine the source's liveness.

You should configure this option to a value less than the receivers' corresponding transport_lbtsmx_activity_←↩
timeout (receiver) setting so receivers do not time out sources too early.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10,000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.1

24.2.9 transport_lbtsmx_transmission_window_size (source)

Size of an LBT-SMX transport's shared memory area.

Must be a power of two and be at least twice a large as the source's transport_lbtsmx_datagram_max_size
(source). If you configure a value that is not a power of 2 or is less than twice the size of the maximum
datagram size, UM issues a warning log message and automatically rounds up the value of this option to the
next power of 2 window size that can fit at least two maximum-sized datagrams. The minimum value for this
option is 64 bytes.

Refer to Source Object for additional information.

24.2 Reference 257

Scope: source

Type: size_t
Units: bytes

Default
value:

131072 (128 KB)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.1

258 Transport LBT-SMX Operation Options

Chapter 25

Transport Acceleration Options

Transport acceleration options enable kernel-bypass acceleration in conjunction with the following vendor
solutions:

• Myricom Datagram Bypass Layer (DBL)

• Solarflare Onload

• UD Acceleration for Mellanox Hardware Interfaces

25.1 Myricom Datagram Bypass Layer (DBL)

DBL is a kernel-bypass technology that accelerates sending and receiving UDP traffic and operates with DBL-
enabled Myricom 10-Gigabit Ethernet adapter cards for Linux and Microsoft Windows.

DBL does not support fragmentation and reassembly, so do not send messages larger than the MTU size configured
on the DBL interface.

DBL acceleration is compatible with the following Ultra Messaging transport types:

• LBT-RM (UDP-based reliable multicast)

• LBT-RU (UDP-based reliable unicast)

• Multicast Immediate Messaging

• Multicast Topic Resolution

To use DBL Transport Acceleration, perform the following steps:

1. Install the Myricom 10-Gigabit Ethernet NIC.

2. Install the DBL shared library.

3. Update your search path to include the location of the DBL shared library.

4. Set option transport_∗_datagram_max_size and option resolver_datagram_max_size (context) to a value of
no more than 28 bytes smaller than the Myricom interface's configured MTU size.

Users of DBL are advised to make use of Dynamic Fragmentation Reduction.

260 Transport Acceleration Options

25.2 Reference

25.2.1 dbl_lbtrm_acceleration (context)

Flag indicating if DBL acceleration is enabled for LBT-RM transports.

See Myricom Datagram Bypass Layer (DBL).

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Value Description

1 DBL acceleration is enabled for LBT-RM.

0 DBL acceleration is not enabled for LBT-RM. Default for all.

25.2.2 dbl_lbtru_acceleration (context)

Flag indicating if DBL acceleration is enabled for LBT-RU transports.

See Myricom Datagram Bypass Layer (DBL).

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

25.2 Reference 261

Value Description

1 DBL acceleration is enabled for LBT-RU.

0 DBL acceleration is not enabled for LBT-RU. Default for all.

25.2.3 dbl_mim_acceleration (context)

Flag indicating if DBL acceleration is enabled for MIM.

See Myricom Datagram Bypass Layer (DBL).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Value Description

1 DBL acceleration is enabled for MIM.

0 DBL acceleration is not enabled for MIM. Default for all.

25.2.4 dbl_resolver_acceleration (context)

Flag indicating if DBL acceleration is enabled for topic resolution.

See Myricom Datagram Bypass Layer (DBL).

262 Transport Acceleration Options

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Value Description

1 DBL acceleration is enabled for topic resolution.

0 DBL acceleration is not enabled for topic resolution. Default for all.

25.3 Solarflare Onload

In UM documentation, we use the term "Solarflare" for NIC technology that was originally developed by Solarflare
Communications Inc. As of this writing, that technology is currently owned by Advanced Micro Devices,
Inc (AMD) and sold under their Xilinx brand.

Onload is a kernel-bypass technology available for Linux that accelerates message traffic and operates with So-
larflare Ethernet NICs. There is an open-source version of Onload called OpenOnload. Ultra Messaging does not
differentiate between the two versions.

Ultra Messaging loads the Onload library dynamically if Onload functionality is specified in the UM configuration.
Specifically, the use of any of the following configuration options will lead to UM loading the Onload library:

• onload_acceleration_stack_name (context),

• onload_acceleration_stack_name (source),

• onload_acceleration_stack_name (receiver),

• transport_lbtrm_source_timestamp (context), or

• transport_lbtrm_receiver_timestamp (context).

25.3.1 Onload Stack Names

Onload and Solarflare NICs can support multiple "stacks" which can be used by software to send and receive
packets. Different stacks can be used concurrently without interference, which is valuable to latency-sensitive multi-
threaded applications. By ensuring that the sockets of a stack are only accessed by a single thread, you can keep
latency outliers to a minimum.

Onload defaults to accelerating all sockets within a process on a single stack. But this is not always desired;
users often want to accelerate only certain sockets and not others, or assign different sockets to different stacks,

https://www.amd.com/en.html
https://www.amd.com/en.html
https://www.amd.com/en/products/xilinx
https://github.com/Xilinx-CNS/onload

25.3 Solarflare Onload 263

depending on their threading needs. The UM configuration options onload_acceleration_stack_name (context),
onload_acceleration_stack_name (source), and onload_acceleration_stack_name (receiver), control the stack used
by various sockets. These options apply to transport types TCP, LBT-RU, and LBT-RM.

The onload_acceleration_stack_name (source) option controls the Onload stack for the sockets associated with the
underlying transport session of a UM source object. Note that the option only applies when the first source object
on a given transport session is created. Subsequent sources created on the same transport session do not affect
the Onload stack.

Similarly, the onload_acceleration_stack_name (receiver) option controls the Onload stack for the sockets associ-
ated with the underlying Transport Sessions of a UM receiver object. Note that unlike a source, a receiver object
can be associated with more than one transport session if the topic is published by more than one application in-
stance. If sources come and go, the receiver may join and exit from transport sessions. Note that the stack name
option only applies when a receiver object discovers and causes UM to join a transport session. Subsequent re-
ceiver objects mapped to the same transport session do not affect the Onload stack. However, when using multiple
XSPs, care should be taken to ensure that all transport sessions associate with a given receiver object are handled
by the same XSP. Otherwise you can have multiple XSPs handling the same Onload stack, which can introduce
latency outliers.

Finally, the onload_acceleration_stack_name (context) option controls the Onload stack for the sockets associated
with the entire context. This includes all sockets associated with source and receiver objects, as well as sockets
associated with topic resolution, Unicast Immediate Messaging, and a Unix pipe used by UM for internal thread
synchronization. Note that if the context stack name option is supplied, any source or receiver scoped stack name
options are ignored.

Note

You can set the LBM_SUPPRESS_ONLOAD environment variable to any value to prevent UM from loading
Onload. In this case, you cannot use the onload_acceleration_stack_name options.

If your application uses the onload_set_stackname API directly for any non-UM sockets, note that after UM accel-
erates a transport socket, Ultra Messaging resets the stackname to the default for all threads by calling:

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_NOCHANGE, "");

Ultra Messaging resets the stackname during source creation and when a receiver matched topic opens a transport
session.

25.3.2 Using Onload with UM

To enable Onload socket acceleration for only selected transports, perform the following steps:

1. Install Onload.

2. Set the Onload environment variable EF_DONT_ACCELERATE = 1 to disable Onload default behavior of
accelerating all sockets.

3. Start the application as in the following example:

onload <app_name> [app_options]

4. Set UM stack name configuration options for the application's sources and receivers.

5. Disable batching to ensure that it is the application thread that sends the data out.

6. If using multiple XSPs, ensure that all transport sessions associated with each receiver object are handled by
the same XSP. Otherwise you can have multiple XSPs handling the same Onload stack, which can introduce
latency outliers.

264 Transport Acceleration Options

7. Prevent IP fragmentation by setting the options transport_∗_datagram_max_size and option resolver_←↩
datagram_max_size (context) to a value 28 bytes smaller than the Solarflare interface's configured MTU
size usually 1472). See Message Fragmentation and Reassembly.

Users of Onload are advised to set Dynamic Fragmentation Reduction.

For detailed information about onload, see the Onload User Guide.

25.3.3 Solarflare Tips

Onload does not support IP fragmentation and reassembly, so do not configure UM send datagrams that would
require IP fragmentation. See Datagram Max Size and Network MTU.

Warning

Onload does not support both accelerated and non-accelerated processes subscribing to the same multicast
group on the same host. An attempt to do so will result in the non-accelerated process becoming "deaf" to the
shared multicast group. See the Onload User Guide section Multicast Receive to Onload
or Kernel Stack.

For many of our customers, having bursts of many tens or even hundreds of thousands of messages per second
is not unusual during a trading day. Message rates this high can stress the networking stack, from switch to NIC
and driver to UM. Packet loss can happen, leading to high latency if those packets are successfully recovered, or
potentially to Unrecoverable Loss.

Informatica is not an expert in tuning Solarflare NICs and Onload. We recommend using the Onload
documentation and discussing your use case with Onload support engineers.

However, we can give a few tips based on our own experience and that of our customers.

1. The number of receive descriptors (size of rx ring buffer) should always be set to the maximum value (probably
4096, but check to be sure).

• For kernel driver, check the current and maximum settings with:
ethtool -g sfdevicename

You can change it using ethtool:
ethtool -G rx 4096 sfdevicename

but this will only stay in effect until the next reboot. Different versions of Linux have different methods
for making the changes permanent.

• For Onload, set the environment variable:
export EF_RXQ_SIZE=4096

2. Set the maximum size of datagram that UM will generate.

• If kernel drivers are used everywhere, set the Datagram Max Sizes to 8192. This allows ip fragmenta-
tion, which improves efficiency.

• If Onload is being used anywhere, prevent IP fragmentation by enabling Dynamic Fragmentation Re-
duction and setting the Datagram Max Sizes to 1472. But see Datagram Max Size and Network
MTU for a discussion of efficiency issues, especially for UM versions prior to 6.14.

3. If using Onload, you can get better performance if you configure sources on one stack using onload_←↩
acceleration_stack_name (source) and receivers on a different stack using onload_acceleration_stack_name
(receiver).

4. For a wealth of additional information, see Onload documentation, especially Tuning Onload and
Eliminating Drops.

https://docs.xilinx.com/r/en-US/ug1586-onload-user
https://docs.xilinx.com/r/en-US/ug1586-onload-user
https://docs.xilinx.com/r/en-US/ug1586-onload-user/Multicast-Receive-to-Onload-or-Kernel-Stack
https://docs.xilinx.com/r/en-US/ug1586-onload-user/Multicast-Receive-to-Onload-or-Kernel-Stack
https://docs.xilinx.com/r/en-US/ug1586-onload-user
https://docs.xilinx.com/r/en-US/ug1586-onload-user
https://docs.xilinx.com/r/en-US/ug1586-onload-user
https://docs.xilinx.com/r/en-US/ug1586-onload-user/Tuning-Onload
https://docs.xilinx.com/r/en-US/ug1586-onload-user/Eliminating-Drops

25.4 Reference 265

25.4 Reference

25.4.1 onload_acceleration_stack_name (context)

The stackname to use when creating an Onload socket.

Sets the stackname when creating Onload sockets on the context. The stackname must be eight characters or
less. To disable the stackname, set this option to NULL, which must be all uppercase.

Note: Use of this option requires Onload.

See Onload Stack Names for more information.

Scope: context

Type: string

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.16.

25.4.2 onload_acceleration_stack_name (receiver)

The stackname to use when creating an Onload transport data socket.

The stackname must be eight characters or less. Because this is a transport setting, the first receiver applies
its configuration option setting, and other receivers that join the transport inherit the setting of the first source.
To disable the stackname, set this option to NULL, which must be all uppercase.

Note: Use of this option requires Onload and applies to LBT-RM, LBT-RU, and TCP transports.

See Onload Stack Names for more information.

Scope: receiver

Type: string

Default
value:

NULL

266 Transport Acceleration Options

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.5.

25.4.3 onload_acceleration_stack_name (source)

The stackname to use when creating an Onload transport data socket.

The stackname must be eight characters or less. Because this is a transport setting, the first source applies its
configuration option setting, and other sources that join the transport inherit the setting of the first source. To
disable the stackname, set this option to NULL, which must be all uppercase.

Note: Use of this option requires Onload and applies to LBT-RM, LBT-RU, and TCP transports.

See Onload Stack Names for more information.

Scope: source

Type: string

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.5.

25.5 UD Acceleration for Mellanox Hardware Interfaces

UD (Unreliable Datagram) acceleration is a kernel-bypass technology that accelerates sending and receiving UDP
traffic and operates with Mellanox 10-Gigabit Ethernet or InfiniBand adapter cards for 64-bit Linux on X86 platforms.

UD acceleration does not support fragmentation and reassembly, so do not send messages larger than the MTU
size configured on the Mellanox interface.

UD acceleration is available for the following Ultra Messaging transport types:

• LBT-RM (UDP-based reliable multicast)

• LBT-RU (UDP-based reliable unicast)

• Multicast Immediate Messaging

25.6 Reference 267

• Multicast Topic Resolution

To use UD acceleration, perform the following steps:

1. Install the Mellanox NIC.

2. Install the VMA package, which is part of the UD acceleration option .

3. Include the appropriate transport acceleration options in your Ultra Messaging Configuration File.

4. Set option transport_∗_datagram_max_size and option resolver_datagram_max_size (context) to a value of
no more than 28 bytes smaller than the Mellanox interface's configured MTU size.

Users of UD acceleration are advised to make use of Dynamic Fragmentation Reduction.

25.6 Reference

25.6.1 resolver_ud_acceleration (context)

Flag indicating if Accelerated Multicast is enabled for Topic Resolution. Accelerated Multicast requires Mellanox
InfiniBand or 10 Gigabit Ethernet hardware.

UD Acceleration of topic resolution relies on hardware-supported loopback, which InfiniBand provides, but
which the 10 Gigabit Ethernet ConnectX hardware does not.

Note: If 10 Gigabit Ethernet ConnectX hardware is used and multiple UM contexts are desired on the host, this
option must be disabled.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 5.2.

Value Description
1 Accelerated Topic Resolution is enabled.

0 Accelerated Topic Resolution is not enabled. Default for all.

268 Transport Acceleration Options

25.6.2 ud_acceleration (context)

Flag indicating if Accelerated Multicast is enabled for LBT-RM.

Accelerated Multicast requires InfiniBand or 10 Gigabit Ethernet hardware and the purchase and installation
of the Ultra Messaging Accelerated Multicast Module. See your Ultra Messaging representative for licensing
specifics.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.

Value Description
1 Accelerated Multicast is enabled.

0 Accelerated Multicast is not enabled. Default for all.

25.6 Reference 269

270 Transport Acceleration Options

Chapter 26

Smart Source Options

See Smart Sources for introductory information on Smart Sources.

26.1 Reference

26.1.1 mem_mgt_callbacks (source)

Callback functions (and optional associated client data pointer) that are called when a Smart Source allocates,
reallocates, and deallocates memory.

The callbacks are called by the user thread that invokes lbm_ssrc_create() for create, and by lbm_ssrc_←↩
delete() for delete. See lbm_mem_mgt_malloc_cb_func, lbm_mem_mgt_realloc_cb_func, lbm_mem_←↩
mgt_free_cb_func.

See Smart Sources and Memory Management for restrictions.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: lbm_mem_mgt_callbacks_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in UM 6.11

272 Smart Source Options

26.1.2 smart_src_enable_spectrum_channel (source)

This option enables spectrum channel use with Smart Sources.

See Smart Sources and Spectrum for restrictions.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.11

Value Description
1 The source will allocate spectrum channel resources.

0 The source will not allocate spectrum channel resources. Default for all.

26.1.3 smart_src_max_message_length (source)

The number of bytes allocated for application messages to each Smart Source buffer.

Smart Source buffers are pre-allocated when the source is created. The final allocation size is the value
specified for this option, plus the sizes required for internal headers, plus a possible padding value intended to
ensure that the final internal buffer allocation is a power of 2. Because of these additions, the actual amount of
memory allocated can be over twice as much as requested.

There are three types of buffers sized by smart_src_max_message_length: user buffers, retention buffers (for
late join), and transmission window buffers (for transport retransmissions). User buffers and retention buffers
are created by lbm_ssrc_create(), and are deleted by lbm_ssrc_delete(). Transmission window buffers are
created only when the first Smart Source on a transport session is created, and are deleted when the last
Smart Source on a transport session is deleted.

26.1 Reference 273

Different numbers of buffers can be allocated for each buffer type. See smart_src_user_buffer_count (source)
for user buffers, transport_lbtrm_smart_src_transmission_window_buffer_count (source) and transport_lbtru←↩
_smart_src_transmission_window_buffer_count (source) for transmission window buffers, and smart_src_←↩
retention_buffer_count (source) for retention buffers.

The smart_src_max_message_length option affects both the transport session underlying the source and also
the source itself. The transport session uses the value from the first source created on the session when it
allocates the transmission window; subsequent sources created on the same session do not affect the trans-
mission window. However, the sizes of the user buffers and retention buffers are specific to each Smart Source
on a session.

The default value was specifically chosen so that for a Smart Source with no optional headers (no message
properties, no spectrum channel, etc.), the total memory consumed per buffer, including internal headers, is
512 bytes.

Note that unlike most UM configuration options, the default value for smart_src_max_message_length is likely
to change with new versions of UM. This is because the addition of new capabilities to the Smart Sources
feature often requires the addition of internal headers to the message buffer, thus reducing the available user
space while staying within the 512-byte total buffer size default target. To assist application designers who want
to use the default, the constant SSRC_DEFAULT_MAX_MSG_LEN is defined in lbm.h.

Also note that the application designer can avoid that uncertainty by simply defining smart_src_max_message←↩
_length to be the maximum size of his messages, and allowing the final allocation size of the message buffer
to vary by UM version. This is the recommended approach.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int
Units: bytes

Default
value:

SSRC_DEFAULT_MAX_MSG_LEN (368)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.10

26.1.4 smart_src_message_property_int_count (source)

The maximum number of 32-bit integer message properties that can be set on messages for a particular Smart
Source.

See Smart Sources and Message Properties for restrictions.

274 Smart Source Options

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int
Units: 32-bit integer properties

Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.11

26.1.5 smart_src_retention_buffer_count (source)

The number of Smart Source buffers that are allocated for Late Join and other topic level retransmission features
such as Off Transport Recovery.

Once created, the application cannot change the number of buffers. Also, the number of buffers should be a
power of 2. If a value is supplied that is not a power of 2, the value is increased to the next larger power of two
and a warning message is logged.

The buffer size is determined by smart_src_max_message_length (source), see that option description for more
details.

The normal Late Join options "retransmit_retention_∗" do not apply to Smart Sources.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int

Units: buffers
Default
value:

1024

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.10

26.1 Reference 275

26.1.6 smart_src_user_buffer_count (source)

The number of Smart Source buffers that are allocated when the source is created.

Once created, the application cannot change the number of buffers. Also, the number of buffers should be a
power of 2. If a value is supplied that is not a power of 2, the value is increased to the next larger power of two
and a warning message is logged.

The buffer is sized by the smart_src_max_message_length (source) option.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int

Units: buffers
Default
value:

32

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.10

26.1.7 transport_lbtrm_smart_src_transmission_window_buffer_count (source)

The number of Smart Source buffers allocated for transport-level retransmissions.

Once created, the application cannot change the number of buffers. Also, the number of buffers should be a
power of 2. If a value is supplied that is not a power of 2, the value is increased to the next larger power of two
and a warning message is logged.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

The option smart_src_max_message_length (source) is used to size the buffers (see that option description for
more details). This means that the first Smart Source created on the session defines the maximum possible
size of user messages for all Smart Sources on the transport session. It is not legal to create a subsequent
Smart Source on the same transport session with a larger max message size, although smaller values are
permissible.

The normal LBT-RM transmission window options "transport_lbtrm_transmission_window_∗" do not apply to
Smart Sources.

276 Smart Source Options

See Smart Sources for more information about Smart Sources.

26.1 Reference 277

Scope: source

Type: int

Units: buffers
Default
value:

16384 (16K)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.10

26.1.8 transport_lbtru_smart_src_transmission_window_buffer_count (source)

The number of Smart Source buffers allocated for transport-level retransmissions.

Once created, the application cannot change the number of buffers. Also, the number of buffers should be a
power of 2. If a value is supplied that is not a power of 2, the value is increased to the next larger power of two
and a warning message is logged.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

The option smart_src_max_message_length (source) is used to size the buffers (see that option description for
more details). This means that the first Smart Source created on the session defines the maximum possible
size of user messages for all Smart Sources on the transport session. It is not legal to create a subsequent
Smart Source on the same transport session with a larger max message size, although smaller values are
permissible.

The normal LBT-RU transmission window options "transport_lbtru_transmission_window_∗" do not apply to
Smart Sources.

Note

If transport_source_side_filtering_behavior (source) is enabled, each connecting receiver will be assigned
its own transmission window buffer. As the number of connecting receivers increases, the total memory
consumption of the source can become very large.

See Smart Sources for more information about Smart Sources.

278 Smart Source Options

Scope: source

Type: int

Units: buffers
Default
value:

16384 (16K)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.11

Chapter 27

Encrypted TCP Options

27.1 Reference

27.1.1 tls_certificate (context)

When TLS is enabled, this option specifies the path to a file containing an OpenSSL-compatible PEM-formatted
certificate that will be presented as the TLS server certificate when a TLS connection is established by a client.

For more information, see Encrypted TCP.

Scope: context

Type: string

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9

27.1.2 tls_certificate_key (context)

When TLS is enabled, this option specifies the path to a file containing the private key associated with the
"server" certificate.

280 Encrypted TCP Options

The server certificate is specified by the tls_certificate (context) option. Note that this private key must be
protected from intruders. For that reason, when the certificate and private key files are generated, the private
key file is typically encrypted with a passphrase. The passphrase is supplied using the tls_certificate_key_←↩
password (context) option.

For more information, see Encrypted TCP.

Scope: context

Type: string

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9

27.1.3 tls_certificate_key_password (context)

When TLS is enabled, this option specifies the passphrase needed to decrypt the server private key file.

The private key file is specified by the tls_certificate_key (context) option.

For more information, see Encrypted TCP.

Scope: context

Type: string

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9

27.1.4 tls_cipher_suites (context)

When TLS is enabled, this option defines the list of one or more (comma separated) names of cipher suites
that will be accepted by this context.

27.1 Reference 281

See OpenSSL's Cipher Suite Names for the full list of suite names. When configuring UM, use the OpenSSL
names (with dashes), not∗ the IANA names (with underscores).

If more than one name is supplied, they should be in descending order of preference. When a remote context
negotiates encrypted TCP, the two sides must find a cipher suite in common, otherwise the connection will be
canceled.

The default cipher suite is highly secure and is recommended.

For more information, see Encrypted TCP.

Scope: context

Type: string

Default
value:

DHE-RSA-AES256-GCM-SHA384

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9

27.1.5 tls_compression_negotiation_timeout (context)

The number of milliseconds allowed for TLS and/or compression handshake and negotiation.

This negotiation happens when the TCP connection is initiated. If the negotiation does not complete within this
amount of time, the connection is canceled. Note that in many cases, this will result in a retry a short time later.
If the timeout is caused by mismatched endpoints, it can result in unbounded flapping of the connection.

For more information, see Encrypted TCP and/or Compressed TCP.

Scope: context

Type: int
Units: milliseconds
Default
value:

5000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9

282 Encrypted TCP Options

27.1.6 tls_trusted_certificates (context)

When TLS is enabled, this option specifies the path to a file containing one or more OpenSSL-compatible
PEM-formatted TLS client certificates and certificate authorities.

If this option is not supplied, the default behavior is to use the system-level trusted certificates and certificate
authorities (operating-system dependent). The TLS server uses these trusted certificates to verify the identity of
connecting clients. If a client connects and presents a certificate which is not in the server's trusted certificates
file, the connection will be canceled. Note that in many cases, this will result in a retry a short time later, which
can lead to unbounded flapping of the connection.

For more information, see Encrypted TCP.

Scope: context

Type: string

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9

27.1.7 use_tls (context)

This option enables data encryption on all TCP links established within the context.

This includes but may not be limited to TCP transports, Late Join, and Request/Response.

For more information, see Encrypted TCP.

Scope: context

Type: int

Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9

27.1 Reference 283

String value Integer value Description

"1" 1 All TCP data will be encrypted.

"0" 0 No encryption will be implemented. Default for all.

284 Encrypted TCP Options

Chapter 28

Compressed TCP Options

28.1 Reference

28.1.1 compression (context)

This option enables compression and sets the desired data compression algorithm on all TCP links established
within the context.

This includes but may not be limited to TCP transports, Late Join, and Request/Response. Currently, only LZ4
lossless data compression is supported.

For more information, see Compressed TCP.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.9.

String value Integer value Description

"none" LBM_CTX_ATTR_COMPRESSION_NONE No compression will be implemented. De-
fault for all.

"lz4" LBM_CTX_ATTR_COMPRESSION_LZ4 All TCP data will be compressed using LZ4.

286 Compressed TCP Options

Chapter 29

Multicast Immediate Messaging Network
Options

The multicast address and port used for incoming and outgoing multicast immediate messages can be set with
mim_address (context) and mim_destination_port (context) options.

Attention

MIM reception is disabled by default. If you want an application to be able to receive MIM messages, you must
set the configuration option mim_address (context) to the desired multicast group address.

A context may use different multicast addresses and/or ports for incoming and outgoing messages by setting one
or more of:

• mim_incoming_address (context)

• mim_outgoing_address (context)

• mim_incoming_destination_port (context)

• mim_outgoing_destination_port (context)

In case of conflict, the most recently set option wins.

As with LBT-RM on multi-homed hosts, the interface UM uses for MIM follows the interface used with multicast topic
resolution. See resolver_multicast_interface (context).

Warning

The addresses and ports you configure for MIM traffic should not overlap with any addresses or ports - or
address and port ranges - configured for LBT-RM transports or Topic Resolution traffic. For example, do not
use the same multicast address for both Topic Resolution (resolver_multicast_address (context)) and MIM
(mim_address (context)). Use different addresses and ports for all multicast address options and port options.

See also Multicast Immediate Messaging for general information on MIM.

29.1 Reference

288 Multicast Immediate Messaging Network Options

29.1.1 mim_address (context)

Convenience option to set both the incoming and outgoing multicast addresses for multicast immediate mes-
sages.

See mim_outgoing_address (context) and mim_incoming_address (context) for their respective default values.
See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: struct in_addr

Default
value:

n.a.

When to
Set:

Can only be set during object initialization.

29.1.2 mim_destination_port (context)

The UDP destination port that multicast immediate messages are sent to and received from.

See Port Assignments for more information about configuring ports. See Multicast Immediate Messaging for
general information about MIM.

Scope: context

Type: lbm_uint16_t

Default
value:

14401

Byte order: Network

When to
Set:

Can only be set during object initialization.

29.1.3 mim_incoming_address (context)

The IP multicast address (or domain name of the multicast address) that multicast immediate messages are
received from.

IMPORTANT: The default value 0.0.0.0 disables reception of multicast immediate messages. See Multicast

29.1 Reference 289

Immediate Messaging for general information about MIM.

Scope: context

Type: struct in_addr

Default
value:

0.0.0.0

When to
Set:

Can only be set during object initialization.

29.1.4 mim_incoming_destination_port (context)

The UDP destination port that multicast immediate messages are received from.

See Port Assignments for more information about configuring ports. See Multicast Immediate Messaging for
general information about MIM.

Scope: context

Type: lbm_uint16_t

Default
value:

14401

Byte order: Network

When to
Set:

Can only be set during object initialization.

29.1.5 mim_outgoing_address (context)

The IP multicast address (or domain name of the multicast address) that multicast immediate messages are
sent to.

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: struct in_addr

Default
value:

224.10.10.21

When to
Set:

Can only be set during object initialization.

290 Multicast Immediate Messaging Network Options

29.1.6 mim_outgoing_destination_port (context)

The UDP destination port that multicast immediate messages are sent to.

See Port Assignments for more information about configuring ports. See Multicast Immediate Messaging for
general information about MIM.

Scope: context

Type: lbm_uint16_t

Default
value:

14401

Byte order: Network

When to
Set:

Can only be set during object initialization.

29.1 Reference 291

292 Multicast Immediate Messaging Network Options

Chapter 30

Multicast Immediate Messaging Reliability
Options

For every MIM reliability option, there is a corresponding LBT-RM reliability option. For more information on how
MIM reliability options interact and for illustrations, see Transport LBT-RM Reliability Options.

Attention

MIM reception is disabled by default. If you want an application to be able to receive MIM messages, you must
set the configuration option mim_address (context) to the desired multicast group address.

See also Multicast Immediate Messaging for general information on MIM.

30.1 Reference

30.1.1 mim_ignore_interval (context)

The interval to ignore NAKs after a retransmission is sent.

For multicast immediate message senders only. Similar to transport_lbtrm_ignore_interval (source).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

294 Multicast Immediate Messaging Reliability Options

30.1.2 mim_nak_backoff_interval (context)

The maximum interval between transmissions of MIM NAKs for a given sequence number, after the first NAK.

Similar to transport_lbtrm_nak_backoff_interval (receiver).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

Can only be set during object initialization.

30.1.3 mim_nak_generation_interval (context)

The maximum time that a piece of data may be outstanding before the data is unrecoverably lost.

For multicast immediate message receivers only. Similar to transport_lbtrm_nak_generation_interval (receiver).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

30.1 Reference 295

30.1.4 mim_nak_initial_backoff_interval (context)

The interval between loss detection and transmission of the first MIM NAK.

For multicast immediate message receivers only. Similar to transport_lbtrm_nak_initial_backoff_interval (re-
ceiver).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

50 (0.05 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

30.1.5 mim_nak_suppress_interval (context)

The time that an LBT-RM receiver will suppress sending a NAK for a missing datagram after an NCF is received
from the source.

The source sends an NCF in response to a NAK which the source temporarily cannot retransmit. For example,
if the source gets a NAK for a sequence number for which it has recently sent a retransmission, it will send an
NCF with reason code "ignored". The receiver responds by suppressing NAKs for that sequence number for
the interval configured by this option. See NAK Suppression for more information about NCFs.

For multicast immediate message receivers only.

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

296 Multicast Immediate Messaging Reliability Options

30.1.6 mim_send_naks (context)

This flag indicates whether LBT-RM should send negative acknowledgements (NAKs) for missing packets or
not.

For multicast immediate message receivers only. Similar to transport_lbtrm_send_naks (receiver).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 NAKs are sent for missing packets to request retransmission. Default for all.

0 Do not send NAKs for missing packets.

30.1.7 mim_transmission_window_limit (context)

Caps the total amount of memory that a transmission window uses, which includes data and overhead.

For multicast immediate message senders only. Similar to transport_lbtrm_transmission_window_limit
(source).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: size_t

30.1 Reference 297

Units: bytes

Default
value:

0 (zero)

When to
Set:

Can only be set during object initialization.

30.1.8 mim_transmission_window_size (context)

The maximum amount of buffered payload data, excluding UM headers, that the LBT-RM source is allowed to
retain for retransmissions.

For multicast immediate message senders only. Similar to transport_lbtrm_transmission_window_size (source).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: size_t
Units: bytes

Default
value:

25165824 (24 MB)

When to
Set:

Can only be set during object initialization.

298 Multicast Immediate Messaging Reliability Options

Chapter 31

Multicast Immediate Messaging Operation
Options

For many MIM operation options, there is a corresponding LBT-RM operation option. For more information on how
MIM operation options interact and for illustrations, see Transport LBT-RM Operation Options.

Attention

MIM reception is disabled by default. If you want an application to be able to receive MIM messages, you must
set the configuration option mim_address (context) to the desired multicast group address.

Note that the LBT-RM rate controller also governs MIM transmission rates. Hence there is no separate option for
setting MIM transmission rate.

See also Multicast Immediate Messaging for general information on MIM.

31.1 Reference

31.1.1 immediate_message_receiver_function (context)

Callback function (and associated event queue and client data pointer) called when a topicless immediate
message is received.

A value of NULL (the default) disables this feature.

Alternatively, the API lbm_context_rcv_immediate_msgs() can be used.

See Immediate Messaging for general information on immediate messages.

300 Multicast Immediate Messaging Operation Options

Scope: context

Type: lbm_context_rcv_immediate_msgs_func←↩
_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

31.1.2 immediate_message_topic_receiver_function (context)

Callback function (and associated event queue and client data pointer) that is called when an immediate mes-
sage is received for a topic for which there is no receiver.

A value of NULL (the default) disables this feature.

Alternatively, the API lbm_context_rcv_immediate_topic_msgs() can be used.

See Immediate Messaging for general information on immediate messages.

Scope: context

Type: lbm_context_rcv_immediate_msgs_func←↩
_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

31.1.3 mim_activity_timeout (context)

The maximum time that an LBT-RM session may be quiescent before it is deleted and an EOS event is delivered
for all topics using this transport session.

For multicast immediate message receivers only. Similar to transport_lbtrm_activity_timeout (receiver). How-
ever, multicast immediate message channels do not deliver an EOS indication.

31.1 Reference 301

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

60000 (60 seconds)

When to
Set:

Can only be set during object initialization.

31.1.4 mim_delivery_control_activity_check_interval (context)

The interval between activity checks of a Multicast Immediate Messaging delivery controller.

Multiple MIM delivery controllers may exist to accommodate multiple messages from a single MIM sender
received across more than one DRO. These multiple delivery controllers allow for duplicate message detection.

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

5000 (5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

31.1.5 mim_delivery_control_activity_timeout (context)

The maximum time that a Multicast Immediate Messaging delivery controller may be quiescent before it is
deleted.

MIM delivery controllers may be created to accommodate multiple messages from a single MIM sender received
across more than one DRO. These multiple delivery controllers allow for duplicate message detection.

302 Multicast Immediate Messaging Operation Options

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

60000 (60 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

31.1.6 mim_delivery_control_order_tablesz (context)

For multicast immediate messages with ordered delivery, this controls the size of the hash table used to hold
data.

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: size_t
Units: table entries
Default
value:

1031

When to
Set:

Can only be set during object initialization.

31.1.7 mim_implicit_batching_interval (context)

The maximum timeout between when the first message of an implicitly batched immediate message is queued
until the batch is sent. A message will not stay in the queue longer than this value before being sent in the worst
case.

See Implicit Batching for details. See Multicast Immediate Messaging for general information about MIM.

31.1 Reference 303

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

Can only be set during object initialization.

31.1.8 mim_implicit_batching_minimum_length (context)

The minimum length of an implicitly batched multicast immediate message. When the total length of the implic-
itly batched messages reaches or exceeds this value, the batch is sent.

See Implicit Batching for details. See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: size_t
Units: bytes

Default
value:

2048 (8192 for Microsoft Windows)

When to
Set:

Can only be set during object initialization.

31.1.9 mim_ordered_delivery (context)

For multicast immediate messages only. Indicates whether or not the MIM source should have its data delivered
in order.

The default value also guarantees fragmentation and reassembly of large messages. Changing this option
from the default value results in large messages being delivered as individual fragments of less than 8K each,
requiring the application to reassemble them. See also Ordered Delivery for more information about large
message fragmentation and reassembly.

See Multicast Immediate Messaging for general information about MIM.

304 Multicast Immediate Messaging Operation Options

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Value Description
1 Indicates the source should have its data delivered in order. Default for all.
0 The source should have its data delivered as soon as possible and may come in out of order.

31.1.10 mim_sm_maximum_interval (context)

The maximum interval between LBT-RM session messages.

For multicast immediate message senders only. Similar to transport_lbtrm_sm_maximum_interval (source).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

31.1.11 mim_sm_minimum_interval (context)

The minimum interval between LBT-RM session messages.

For multicast immediate message senders only. Similar to transport_lbtrm_sm_minimum_interval (source).

31.1 Reference 305

See Unicast Immediate Messaging for more information.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

Can only be set during object initialization.

31.1.12 mim_sqn_window_increment (context)

Determines the increment by which the sequence number window is moved when detecting the receipt of
duplicate multicast immediate messages.

For multicast immediate message receivers only.

Must be a multiple of 8 and an even divisor of mim_sqn_window_size (context).

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: messages

Default
value:

8192

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.8/UME 3.2.8/UMQ 2.1.8

31.1.13 mim_sqn_window_size (context)

For multicast immediate message receivers only. Determines the window size used to detect the receipt of
duplicate multicast immediate messages. Must be a multiple of 8.

306 Multicast Immediate Messaging Operation Options

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: messages

Default
value:

16384

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.8/UME 3.2.8/UMQ 2.1.8

31.1.14 mim_src_deletion_timeout (context)

The timeout after a multicast immediate message is sent before the internal source is deleted and cleaned up.

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

30000 (30 seconds)

When to
Set:

Can only be set during object initialization.

31.1.15 mim_tgsz (context)

The transmission group size used for this Topic when LBT-RM is used.

For multicast immediate message senders only. Similar to transport_lbtrm_tgsz (source).

See Unicast Immediate Messaging for more information.

31.1 Reference 307

Scope: context

Type: lbm_uint16_t
Units: packets

Default
value:

8

When to
Set:

Can only be set during object initialization.

31.1.16 mim_unrecoverable_loss_function (context)

Callback function (and associated client data pointer) that is called when a MIM receiver has unrecoverable
loss.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_mim_unrecloss_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

308 Multicast Immediate Messaging Operation Options

Chapter 32

Late Join Options

Late Join allows sources to save a predefined amount of their messaging traffic for late-joining receivers. Sources
set the configuration options that determine whether they use Late Join or not, and receivers set options that
determine whether they will participate in Late Join recovery if sources use Late Join.

UMP's persistent store is built on Late Join technology. In the Estimating Recovery Time discussion below, the
terms Late Join buffers and UMP store are roughly equivalent.

For more, review Late Join in the Ultra Messaging Concepts Guide, especially Configuring Late Join for Large
Numbers of Messages.

32.1 Estimating Recovery Time

Late Join message recovery time is a function of how much data must be recovered and how fast messages are
retransmitted. To estimate Late Join recovery time R in minutes, use the formula:

R = D / (1 - (txrate / rxrate))

where:

D is the downtime (in minutes) across all receivers
txrate is the average source transmission rate of normal (live stream) messages during recovery (in kms-
gs/sec).
rxrate is the average source retransmission rate from source-side Late Join buffers during recovery (in kms-
gs/sec). This rate needs to be greater than txrate.

For example, consider the following scenario:

D = 10 minutes
txrate = 10k messages / second
rxrate = 25k messages / second

Plugging these values into the formula gives an estimated recovery time in minutes:

R = 10 / (1 - (10 / 25))

or 16.67 minutes. Note that this formula assumes the following:

• Retransmit rate(rxrate) is as linear as possible with use of option response_tcp_nodelay (context) to 1.

• Transmit rate (txrate) from all relevant sources is fairly constant and equal

310 Late Join Options

• Retransmit rate (rxrate) from Late Join buffers is fairly constant and equal, and should be measured in a
live test, if possible. You can adjust the recovery rate with two Late Join configuration options: retransmit_←↩
request_outstanding_maximum (receiver) and retransmit_request_interval (receiver).

32.2 Reference

32.2.1 late_join (source)

Configure the source to enable both Late Join and Off-Transport Recovery operation for receivers.

See Using Late Join and Off-Transport Recovery (OTR).

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 Enable source for Late Join and OTR. (Forced on for Persistence.)

0 Disable source for Late Join and OTR. Default for all.

32.2.2 late_join_info_request_interval (receiver)

The interval at which the receiver requests a Late Join Information Record (LJI) from the source.

Controlling these requests helps reduce receiver start-up traffic on your network.

See Late Join.

32.2 Reference 311

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

32.2.3 late_join_info_request_maximum (receiver)

The maximum number of requests the receiver issues for a Late Join Information Record (LJI) from the source.

If the receiver has not received an LJI after this number of requests, it stops requesting.

Scope: receiver

Type: lbm_ulong_t

Default
value:

60

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

32.2.4 retransmit_initial_sequence_number_request (receiver)

When a late-joining receiver detects (from the topic advertisement) that a source is enabled for Late Join but
has sent no messages, this flag option lets the receiver request an initial sequence number from a source.

Sources respond with a TSNI.

Scope: receiver

Type: int

Default
value:

1

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.

312 Late Join Options

Value Description

1 The receiver requests an initial sequence number from Late Join enabled sources that have not
sent any messages. Default for all.

0 The receiver does not request an initial sequence number.

32.2.5 retransmit_message_caching_proximity (receiver)

This option determines how a receiver handles new messages that are being published while the receiver is in
the process of recovering older messages through the retransmit request mechanism.

A receiver has the ability to cache new messages during the recovery process in order to facilitate a smooth
transition from recovery to live stream. This option value determines how close (proximate) a newly received
message sequence number must be to the latest retransmitted sequence number for the receiver to cache
it. New messages that arrive while the receiver is not within proximity will be discarded, and the receiver will
attempt to recover those messages later via OTR.

An option value between 0 and 0x7FFFFFFE (2,147,483,646) enables proximity caching, with larger values
allowing caching to begin earlier during recovery. Values 0x7FFFFFFF and above disable proximity caching.
This value has meaning for only receivers using ordered delivery of data.

See Configuring Late Join for Large Numbers of Messages for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: messages

Default
value:

5000 (was 0xFFFFFFFF = 4,294,967,295 in versions prior to 6.8)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.3.2/UME 2.0.

32.2 Reference 313

32.2.6 retransmit_request_interval (receiver)

The interval between retransmission request messages to the source.

See Configuring Late Join for Large Numbers of Messages for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

32.2.7 retransmit_request_maximum (receiver)

The maximum number of messages to request, counting backward from the current latest message, when
late-joining a topic.

Due to network timing factors, UM may transmit an additional message. For example, a value of 5 sends 5 or
possibly 6 retransmit messages to the new receiver. (Hence, you cannot request and be guaranteed to receive
only 1 last message–you may get 2.)

A value of 0 indicates no maximum (receiver requests all available messages).

Scope: receiver

Type: lbm_ulong_t
Units: messages

Default
value:

0

When to
Set:

Can only be set during object initialization.

314 Late Join Options

32.2.8 retransmit_request_message_timeout (receiver)

The maximum time from when a receiver first sends a retransmission request to when the receiver gives up on
receiving the retransmitted message and reports loss.

See Configuring Late Join for Large Numbers of Messages for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.0

32.2.9 retransmit_request_outstanding_maximum (receiver)

The maximum number of messages to request and to remain active (pending) at a single time.

Value must be greater than zero.

If this option is increased significantly, retransmit_request_interval (receiver) should also be increased.

See Configuring Late Join for Large Numbers of Messages for additional information.

Scope: receiver

Type: lbm_ulong_t
Units: messages

Default
value:

10

When to
Set:

Can only be set during object initialization.

32.2 Reference 315

32.2.10 retransmit_retention_age_threshold (source)

Specifies the minimum age of messages in the retained message buffer before UM can delete them. UM cannot
delete any messages younger than this value.

For UMS Late Joins, this and retransmit_retention_size_threshold (source) are the only options that affect
the retention buffer size. For UME, these two options combined with retransmit_retention_size_limit (source)
affect the retention buffer size. UM deletes a message when it meets all configured threshold criteria, i.e., the
message is older than this option (if set), and the size of the retention buffer exceeds the retransmit_←↩
retention_size_threshold (if set). A value of 0 sets the age threshold to be always triggered, in which
case deletion is determined by other threshold criteria.

With Smart Sources, this option is ignored. Retention buffers are preallocated and are never deleted.

Scope: source

Type: lbm_ulong_t
Units: seconds
Default
value:

0 (threshold always triggered)

When to
Set:

Can only be set during object initialization.

32.2.11 retransmit_retention_size_limit (source)

Sets a maximum limit on the size of the source's retransmit retention buffer when using a persistent Store.

With UME, stability and delivery confirmation events can delay the deletion of retained messages, which can
increase the size of the buffer above the retransmit_retention_size_threshold (source). Hence, this option
provides a hard size limit. UM sets a minimum value for this option of 8K for UDP and 64K for TCP, and issues
a log warning if you set a value less than the minimum.

With Smart Sources, this option is ignored. Retention buffers are preallocated.

Scope: source

Type: size_t
Units: bytes

Default
value:

25165824 (24 MB)

When to
Set:

Can only be set during object initialization.

316 Late Join Options

32.2.12 retransmit_retention_size_threshold (source)

Specifies the minimum size of the retained message buffer before UM can delete messages.

The buffer must reach this size before UM can delete any messages older than retransmit_retention_age_←↩
threshold (source).

For persistence, these options combined with retransmit_retention_size_limit (source) affect the retention buffer
size. A value of 0 sets the size threshold to be always triggered, in which case deletion is determined by other
threshold criteria.

With Smart Sources, this option is ignored. Retention buffers are preallocated and are never deleted.

Scope: source

Type: size_t
Units: bytes

Default
value:

0 (threshold always triggered)

When to
Set:

Can only be set during object initialization.

32.2.13 use_late_join (receiver)

Flag indicating if the receiver should participate in a late join operation or not.

See Late Join for more information.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

32.2 Reference 317

Value Description

1 The receiver will participate in using late join if offered by the source. Default for all.

0 The receiver will not participate in using late join if offered by the source.

318 Late Join Options

Chapter 33

Off-Transport Recovery Options

See also Off-Transport Recovery (OTR) for general information on OTR.

33.1 Reference

33.1.1 otr_message_caching_threshold (receiver)

Number of messages in the Delivery Controller's Order Map above which UM will trigger OTR to try to recover
the messages.

This option only applies for receivers that are enabled for Off-Transport Recovery (OTR). See Delivery Con-
troller for a description of the Order Map.

The purpose for this option is to speed up recovery in the presence of loss. The delivery controller normally
delays for otr_request_initial_delay (receiver) before initiating OTR. This is to give the transport layer time to
recover the lost datagram through its more efficient protocol. However, if the number of datagrams waiting for
recovery grows too large, it might indicate that the transport layer is unable to recover the datagrams. In this
case, it can be helpful to bypass the normal OTR initial delay and immediately initiate OTR.

For environments that are subject to severe loss events, and has expanded the source's transport transmission
windows to accommodate, this option should typically be increased above its default to prevent premature OTR.

Scope: receiver

Type: lbm_ulong_t
Units: messages

Default
value:

10000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.0

320 Off-Transport Recovery Options

33.1.2 otr_request_initial_delay (receiver)

The length of time a receiver waits before initiating OTR to recover lost datagrams.

Note that unlike transport-level NAKing, this option is not specific to each lost datagram. Rather the Delivery
Controller is either "in" OTR mode or it is not. This delay time controls the entry into OTR mode. Once that
happens, the OTR feature will request individual datagrams according to its internal algorithms.

See Off-Transport Recovery (OTR).

Some conditions can initiate OTR without delay, like the Delivery Controller's Order Map growing too large
(see otr_message_caching_threshold (receiver)). Another case is when the ume_application_outstanding_←↩
maximum (receiver) option is set to a non-zero value, then a burst of live messages arriving faster than the
application can consume them will put the Delivery Controller into OTR mode. In these cases, OTR can begin
prior to the configured initial delay time.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

2000 (2 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 5.3

33.1.3 otr_request_log_alert_cooldown (receiver)

Each OTR request generates a log message, subject to log message throttling. The first request's log mes-
sage is a WARNING-level log message, and subsequent requests that quickly follow generate INFO-level log
messages. After a time interval defined by this option, the next request leading a new burst of requests again
generates a WARNING-level log message.

See Off-Transport Recovery (OTR).

33.1 Reference 321

Scope: receiver

Type: lbm_ulong_t
Units: seconds
Default
value:

300 (5 minutes)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 5.3

33.1.4 otr_request_maximum_interval (receiver)

The maximum time interval between a receiver's OTR lost-message requests.

After the receiver initiates OTR and is waiting to receive the retransmission, the initial interval (set by otr←↩
_request_minimum_interval (receiver)) doubles in length for each request until it reaches this option's value,
then continues at this interval (until timeout or UM recovers messages).

Note

When using TCP Request/Response, this value must be shorter than response_tcp_deletion_timeout (con-
text).

See Off-Transport Recovery (OTR).

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 5.3

322 Off-Transport Recovery Options

33.1.5 otr_request_message_timeout (receiver)

The maximum time from when a receiver first sends an OTR lost-message request to when the receiver gives
up on receiving the retransmitted message and reports loss.

See Off-Transport Recovery (OTR).

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

60000 (60 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.0

33.1.6 otr_request_minimum_interval (receiver)

The initial time interval between a receiver's OTR lost-message requests.

While the receiver is waiting to receive the retransmission, the interval doubles in length for each request until
it reaches the maximum interval set by otr_request_maximum_interval (receiver).

See Off-Transport Recovery (OTR).

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 5.2

33.1 Reference 323

33.1.7 otr_request_outstanding_maximum (receiver)

The maximum number of OTR lost-message requests outstanding at any given time. Each message specifies
an individual lost message.

A value of 0 indicates no maximum (not recommended).

See Off-Transport Recovery (OTR).

Scope: receiver

Type: lbm_ulong_t
Units: messages

Default
value:

200

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 5.2

33.1.8 use_otr (receiver)

Flag indicating if the receiver can use OTR or not.

See Off-Transport Recovery (OTR).

Warning

The persistent Store uses a UM receiver to receive messages from a persistent source. However, the Store's
receiver is NOT considered a "persistent" receiver, and therefore will not use OTR by the default setting. To
achieve a high level of guarantee, Informatica recommends persistence users to set "use_otr" to 1 in the
Store's LBM configuration.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 5.2

324 Off-Transport Recovery Options

String value Integer value Description

"0" 0 The receiver is not enabled to use OTR to recover lost messages.

"1" 1 The receiver is enabled to use OTR to recover lost messages.

"2" 2 If the receiver is a persistent receiver, the receiver is enabled to use OTR
to recover lost messages. Default for all.

Chapter 34

Unicast Immediate Messaging Network
Options

In early versions of UM, the Unicast Immediate Messaging (UIM) feature was primarily used to support the
Request/Response feature. Therefore, the configuration options related to UIMs have names that start with "re-
quest" and "response". However, as UM has evolved, the UIM feature has come to be used by a great many UM
features, such as Late Join, Persistence, and Queuing.

To maintain backwards compatibility, the old names of the configuration options have been retained. The reader
must simply be aware that the "request_..." and "response_..." options affect more than just the request/response
feature.

See Unicast Immediate Messaging for general information on UIM. See also Unicast Immediate Messaging Op-
eration Options for operationally-oriented options.

34.1 Reference

34.1.1 request_tcp_bind_request_port (context)

Allows you to turn off UIM port binding (also known as "request port binding").

Setting this option to 0 prevents sockets from being bound to the UIM port. Turning off UIM port binding also
turns off several UM features such as: Request/Response Model, Using Late Join, Off-Transport Recovery
(OTR), the reception of Unicast Immediate Messages, persistence, brokered queuing, and ULB.

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: int

Default
value:

1

326 Unicast Immediate Messaging Network Options

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.3.7/UME 2.0.5.

Value Description

1 Set UIM port binding. Default for all.

0 Turn off UIM port binding.

34.1.2 request_tcp_interface (context)

Specifies the network interface over which UM accepts TCP connections for reception of UIM messages.

You can specify a full IP address of interface, or just the network part (see Specifying Interfaces for details).

Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it
will not bind to a specific interface. You can also set this option to 0.0.0.0/0 which produces the same result.

See Unicast Immediate Messaging for general information on UIM.

Note: if specifying an interface name in an XML-format file, see Interface Device Names and XML.

Scope: context

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

34.1.3 request_tcp_port (context)

Port number used for UIM port (also known as "request port").

34.1 Reference 327

A context binds to and listens on the UIM port to be able to accept TCP connections for reception of Unicast
Immediate Messages (UIMs). The port is either explicitly specified by request_tcp_port (context), or is selected
from the range: [request_tcp_port_low (context), request_tcp_port_high (context)].

If request_tcp_port (context) is 0, the context binds to the first open port within the range of [request_tcp_port←↩
_low (context), request_tcp_port_high (context)]. If nonzero, the specific port number is used instead.

See Unicast Immediate Messaging for general information on UIM. See Port Assignments for more informa-
tion about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

0 (use open port)

Byte order: Network

When to
Set:

Can only be set during object initialization.

34.1.4 request_tcp_port_high (context)

High port number to use for UIM port (also known as "request port").

A context binds to and listens on the UIM port to be able to accept TCP connections for reception of Unicast
Immediate Messages (UIMs). The port is either explicitly specified by request_tcp_port (context), or is selected
from the range: [request_tcp_port_low (context), request_tcp_port_high (context)].

See Unicast Immediate Messaging for more information about UIM. See Port Assignments for more informa-
tion about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

14395

Byte order: Host

When to
Set:

Can only be set during object initialization.

328 Unicast Immediate Messaging Network Options

34.1.5 request_tcp_port_low (context)

Low port number to use for UIM port (also known as "request port").

A context binds to and listens on the UIM port to be able to accept TCP connections for reception of Unicast
Immediate Messages (UIMs). The port is either explicitly specified by request_tcp_port (context), or is selected
from the range: [request_tcp_port_low (context), request_tcp_port_high (context)].

See Unicast Immediate Messaging for general information on UIM. See Port Assignments for more informa-
tion about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

14391

Byte order: Host

When to
Set:

Can only be set during object initialization.

34.1 Reference 329

330 Unicast Immediate Messaging Network Options

Chapter 35

Unicast Immediate Messaging Operation
Options

In early versions of UM, the Unicast Immediate Messaging (UIM) feature was primarily used to support the
Request/Response feature. Therefore, the configuration options related to UIMs have names that start with "re-
quest" and "response". However, as UM has evolved, the UIM feature has come to be used by a great many UM
features, such as Late Join, Persistence, and Queuing.

To maintain backwards compatibility, the old names of the configuration options have been retained. The reader
must simply be aware that the "request_..." and "response_..." options affect more than just the request/response
feature.

See Unicast Immediate Messaging for general information on UIM. See also Unicast Immediate Messaging Net-
work Options for network-oriented options.

35.1 Reference

35.1.1 request_tcp_activity_timeout (context)

This timeout option enables the Request TCP socket to use SO_KEEPALIVE to detect when the TCP connec-
tion does not cleanly disconnect or is no longer reachable.

This timeout value must be either 0 (to disable the feature) or greater than or equal to 20,000 (20 seconds). Note
that the time specified is only approximate; the operating system has wide discretion for deciding exactly when
to disconnect a connection, and the actual time can be more than a factor of 2 different from this configured
value.

This option is only available on Linux or Windows platforms.

See TCP Disconnections for more information.

332 Unicast Immediate Messaging Operation Options

Scope: context

Type: int
Units: milliseconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: UM 6.16

35.1.2 request_tcp_exclusiveaddr (context)

Controls whether the context sets SO_EXCLUSIVEADDRUSE before it binds to the UIM port (also known as
the "Request Port").

Applicable only to Windows.

The default setting in Windows allows multiple binds to the same port. By default, UM will set SO_EXCLUSI←↩
VEADDRUSE to minimize port sharing. Refer to Microsoft's web site for more information on SO_EXCLUSI←↩
VEADDRUSE.

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 Set SO_EXCLUSIVEADDRUSE. Default for Windows.
0 Do not set SO_EXCLUSIVEADDRUSE.

35.1 Reference 333

35.1.3 request_tcp_listen_backlog (context)

The backlog used in the TCP listen() call to set the queue length for incoming UIM connections (also known as
"request connections" or "response connections").

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: int

Default
value:

5

When to
Set:

Can only be set during object initialization.

35.1.4 request_tcp_reuseaddr (context)

Controls whether the context sets SO_REUSEADDR before it binds to the UIM port (also known as the "←↩
Request Port").

See Unicast Immediate Messaging for general information on UIM.

Warning

This option is not recommended for Microsoft Windows users because the SO_REUSEADDR socket option in
Windows allows a socket to forcibly bind to a port in use by another socket. Multiple sockets using the same
port results in indeterminate behavior.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 Set SO_REUSEADDR.

0 Do not set SO_REUSEADDR. Default for all.

334 Unicast Immediate Messaging Operation Options

35.1.5 response_session_maximum_buffer (context)

Maximum number of bytes of application data which can be queued for a UIM connection.

When the application sends a UIM message via a UIM API function, UM may not be able to immediately send
the message. For example, if many messages are bring sent but the receiver is slow, TCP flow control may
prevent messages from being sent. UM will queue outgoing UIM messages that cannot be sent immediately. If
that queue fills, then the UIM send API will either block, or will return -1 with the error code LBM_EWOULD←↩
BLOCK.

This queue is shared across all API methods of sending UIMs, including lbm_unicast_immediate_message(),
lbm_send_response(), etc.

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: lbm_ulong_t
Units: bytes

Default
value:

65536

When to
Set:

Can only be set during object initialization.

35.1.6 response_session_sender_socket_buffer (context)

Value used to set the SO_SNDBUF socket option for the UIM sending socket.

In some cases the OS will not allow all of this value to be used.

A value of 0 instructs UM to use the OS defaults. See Socket Buffer Sizes for platform-dependent information.

See Unicast Immediate Messaging for general information on UIM.

35.1 Reference 335

Scope: context

Type: lbm_ulong_t
Units: bytes

Default
value:

0 (use TCP autotuning)

When to
Set:

Can only be set during object initialization.

35.1.7 response_tcp_activity_timeout (context)

This timeout option enables the Response TCP socket to use SO_KEEPALIVE to detect when the TCP con-
nection does not cleanly disconnect or is no longer reachable.

This timeout value must be either 0 (to disable the feature) or greater than or equal to 20,000 (20 seconds). Note
that the time specified is only approximate; the operating system has wide discretion for deciding exactly when
to disconnect a connection, and the actual time can be more than a factor of 2 different from this configured
value.

The special value -1 can be specified to copy the value supplied for request_tcp_activity_timeout (context).

This option is only available on Linux or Windows platforms.

See TCP Disconnections for more information.

Scope: context

Type: int
Units: milliseconds
Default
value:

-1

When to
Set:

Can only be set during object initialization.

Version: UM 6.16

35.1.8 response_tcp_deletion_timeout (context)

Time period that the context waits before deleting a UIM connection.

336 Unicast Immediate Messaging Operation Options

UIM connections are dynamic, being created when needed and deleted when no longer needed. The purpose
of this timer is to keep the TCP connection up for a time after it is no longer needed, just in case it becomes
needed again. The exact semantics of this timer are described in Unicast Immediate Messaging.

NOTE: When using Off-Transport Recovery (OTR), this value must be longer than otr_request_maximum_←↩
interval (receiver).

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

20,000 (20 seconds)

When to
Set:

Can only be set during object initialization.

35.1.9 response_tcp_interface (context)

Specifies the network interface over which UM initiates outgoing TCP connections for UIMs.

You can specify the full IP address of interface, or just the network part (see Specifying Interfaces for details).

Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it
will not bind to a specific interface. You can also set this option to 0.0.0.0/0 which produces the same result.

See Unicast Immediate Messaging for general information on UIM.

Note: if specifying an interface name in an XML-format file, see Interface Device Names and XML.

Scope: context

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

35.1 Reference 337

35.1.10 response_tcp_nodelay (context)

Controls whether the context sets TCP_NODELAY before it binds to the UIM port (also known as the "Request
Port").

Setting TCP_NODELAY disables Nagle's algorithm, which somewhat decreases the efficiency and throughput
of TCP, but decreases the latency of individual messages.

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 TCP response sockets should set TCP_NODELAY (disable Nagle).

0 TCP response sockets should not set TCP_NODELAY (leave Nagle enabled). Default for all.

338 Unicast Immediate Messaging Operation Options

Chapter 36

Implicit Batching Options

36.1 Reference

36.1.1 implicit_batching_interval (source)

The maximum timeout between when the first message of an implicit batch is queued until the batch is sent. A
message will not stay in the queue longer than this value before being sent in the worst case.

See Implicit Batching for details.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

May be set during operation.

36.1.2 implicit_batching_minimum_length (source)

The minimum length of an implicitly batched message. When the total length of the implicitly batched messages
reaches or exceeds this value, the batch is sent.

340 Implicit Batching Options

See Implicit Batching for details.

Scope: source

Type: size_t
Units: bytes

Default
value:

2048 (8192 for Microsoft Windows)

When to
Set:

May be set during operation.

Chapter 37

Delivery Control Options

A Delivery Controller is a receiver-side object created for each source identified by the receiver through topic reso-
lution. A delivery controller performs the following.

• Delivers messages to multiple receivers subscribed to the same topic.

• Orders received topic messages if ordered_delivery (receiver) is set to 1 (default). This option applies to
LBT-RU and LBT-RM transports.

• Determines unrecoverable loss and burst loss events for the receiver's topic over LBT-RU and LBT-RM trans-
ports.

Unlike the loss depicted in LBT-RM, the image below illustrates how a receiver's Delivery Controller detects unre-
coverable tail loss on a topic.

In a non-tail-loss case, the TSNI messages shown above can also be application messages. The point being that the
delivery controller does not send NAKs, and instead waits for a transport_lbtrm_nak_generation_interval (receiver)
period after the point where the gap is detected (either by an application message or by a TSNI). During that wait
interval, the transport may deliver retransmitted message. If not, it is the reception of another message or TSNI
after the NAK generation interval expires which triggers delivery of the unrecoverable loss event.

342 Delivery Control Options

Note

if the source disables TSNIs, tail loss can go undetected unless and until another application is sent on that
topic.

37.1 Burst Loss

This section is moved to the Concepts Guide. See Burst Loss.

37.2 Reference

37.2.1 channel_map_tablesz (receiver)

The size of the hash table that the receiver uses to store channel subscriptions.

A larger table means more channels can be stored more efficiently, but takes up more memory. A smaller table
uses less memory, but costs more CPU time for large numbers of channel subscriptions.

See Spectrum for more information.

Scope: receiver

Type: size_t

Default
value:

10273

When to
Set:

Can only be set during object initialization.

37.2.2 delivery_control_loss_check_interval (receiver)

This controls the interval between mandatory topic loss checks for a receiver. See Preventing Undetected
Unrecoverable Loss.

A value of 0 turns this loss check off.

37.2 Reference 343

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0 (disabled)

When to
Set:

Can only be set during object initialization.

37.2.3 delivery_control_maximum_burst_loss (receiver)

This controls the size of a topic sequence number gap past which the gap is declared a "burst loss". The
minimum usable value is 2.

See Burst Loss for a detailed explanation of burst loss and its semantics.

Attention

Informatica recommends disabling "burst loss" by setting this option to a very large number, perhaps
1,000,000,000.

Note

the burst loss control takes priority over all recovery methods. For example, if the receiver is reading a per-
sistent stream and OTR is enabled, a gap longer than delivery_control_maximum_burst_loss will immediately
declare the gap as unrecoverable without even trying to use OTR to recover. If message integrity is a high
priority, delivery_control_maximum_burst_loss should be set to a very large value.

Scope: receiver

Type: lbm_uint_t

Units: number of messages (fragments)

Default
value:

1024

When to
Set:

Can only be set during object initialization.

344 Delivery Control Options

37.2.4 delivery_control_maximum_total_map_entries (context)

The maximum number of messages that can be buffered in the Delivery Controller's Order Map.

When the number of messages stored in a Delivery Controller's Order Map is exceeded, unrecoverable loss is
signaled for the oldest gaps and older data is delivered until the Order Map size is below delivery_control_←↩
maximum_total_map_entries.

A value of 0 implies no maximum and allows unbounded growth of the Delivery Controller's Order Map.

See Delivery Controller for a description of the Order Map. Also see otr_message_caching_threshold (re-
ceiver).

For a persistent receiver that has OTR enabled, this option is typically set to 0 (no limit). This is because the
option retransmit_message_caching_proximity (receiver) prevents unbounded growth of the Order Map.

Note

Although this option is context scoped, understand that there is a separate Order Map for each Delivery
Controller. Those Order Maps are sized independently.

Scope: context

Type: size_t
Units: map entries

Default
value:

200000

When to
Set:

Can only be set during object initialization.

37.2.5 delivery_control_message_batching (context)

Controls whether or not to use receive-side batching, which can improve receiver throughput when using event
queues and/or Java, but might add latency in some cases.

See Receive-Side Batching.

37.2 Reference 345

Warning

This feature is incompatible with XSP.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Value Description
1 Receive-side batching is enabled.

0 Receive-side batching is disabled. Default for all.

37.2.6 mim_delivery_control_loss_check_interval (context)

This controls the interval between mandatory loss checks for MIM.

A value of 0 turns this loss check off.

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0 (disabled)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

346 Delivery Control Options

37.2.7 null_channel_behavior (receiver)

Behavior desired when a message without channel information (i.e. a standard UM message) is received by
UM.

See Spectrum for more information.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"deliver" LBM_RCV_TOPIC_ATTR_CHANNEL_B←↩
EHAVIOR_DELIVER_MSGS

Messages sent without channel information
will be delivered to the callback specified
upon receiver creation. Default for all.

"discard" LBM_RCV_TOPIC_ATTR_CHANNEL_B←↩
EHAVIOR_DISCARD_MSGS

Messages sent without channel information
will be discarded.

37.2.8 source_notification_function (receiver)

Callback functions (and associated client data pointer) that are called when a UM receiver creates or deletes a
delivery controller associated with a source.

A receiver can have zero or more Delivery Controllers. Each Delivery Controller maintains internal state for a
specific source that the receiver has joined. The application callbacks associated with this configuration option
allow the application to track the receiver joining and exiting of the individual source.

For the creation function, the application has the ability to set the source client data pointer to be used in each
message received from the source.

Contrast this with resolver_source_notification_function (context).

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

37.2 Reference 347

Scope: receiver

Type: lbm_rcv_src_notification_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

37.2.9 unrecognized_channel_behavior (receiver)

Behavior desired when a message with channel information for a channel not in the receiver's set of subscribed
channels is received by UM.

See Spectrum for more information.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"deliver" LBM_RCV_TOPIC_ATTR_CHANNEL_B←↩
EHAVIOR_DELIVER_MSGS

Messages sent with channel information for
a channel not in the receiver's set of sub-
scribed channels will be delivered to the call-
back specified upon receiver creation. De-
fault for all.

"discard" LBM_RCV_TOPIC_ATTR_CHANNEL_B←↩
EHAVIOR_DISCARD_MSGS

Messages sent with channel information for
a channel not in the receiver's set of sub-
scribed channels will be discarded.

348 Delivery Control Options

Chapter 38

Wildcard Receiver Options

38.1 Reference

38.1.1 pattern_type (wildcard_receiver)

The type of expression UM uses to compare wildcard receiver patterns to new topics seen in topic advertise-
ments or responses to wildcard receiver queries.

Attention

As of UM Version 6.1, wildcard receivers must use PCRE expressions.

Scope: wildcard_receiver

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"pcre" LBM_WILDCARD_RCV_PATT←↩
ERN_TYPE_PCRE

The pattern is a regular expres-
sion usable by PCRE (Perl Com-
patible Regular Expressions) li-
brary. Default for all.

350 Wildcard Receiver Options

String value Integer value Description
"regex"
DEPRECATED in UM Version
6.1.

LBM_WILDCARD_RCV_PATT←↩
ERN_TYPE_REGEX

The pattern is a regular expres-
sion usable by POSIX Extended
Regular Expressions.

"appcb"
DEPRECATED in UM Version
6.1.

LBM_WILDCARD_RCV_PATT←↩
ERN_TYPE_APP_CB

The wildcard receiver ignores the
pattern and calls an application
callback set by the pattern_←↩
callback (wildcard_receiver) op-
tion.

38.1.2 receiver_create_callback (wildcard_receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to be created for a
topic which matched a wildcard receiver pattern.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

The callback function should always return 0.

Scope: wildcard_receiver

Type: lbm_wildcard_rcv_create_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in LBM 3.4/UME 2.1.

38.1.3 receiver_delete_callback (wildcard_receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to be deleted.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

The callback function should always return 0.

38.1 Reference 351

Scope: wildcard_receiver

Type: lbm_wildcard_rcv_delete_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in LBM 3.4/UME 2.1.

38.1.4 resolver_no_source_linger_timeout (wildcard_receiver)

This sets the linger timeout value before a topic with no sources is removed and cleaned up.

Since wildcard receivers set the resolution_no_source_notification_threshold (receiver) to 10, the linger timer
starts after the wildcard receiver sends 10 queries and subsequently receives a no-source notification.

Scope: wildcard_receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

38.1.5 resolver_query_maximum_interval (wildcard_receiver)

The longest - and last - interval in wildcard receiver topic querying.

This option has an effective minimum of 30 ms. See UDP-Based Resolver Operation Options.

A value of 0 disables wildcard receiver topic querying. Informatica recommends against disabling all queries;
see Disabling Aspects of Topic Resolution.

Scope: wildcard_receiver

Type: lbm_ulong_t

352 Wildcard Receiver Options

Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

38.1.6 resolver_query_minimum_duration (wildcard_receiver)

The duration of wildcard queries in wildcard receiver topic querying.

Only PCRE and regex pattern types can use wildcard queries. A value of 0 guarantees that wildcard receiver
topic querying never completes.

Scope: wildcard_receiver

Type: lbm_ulong_t
Units: seconds
Default
value:

60 (1 minute)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

38.1.7 resolver_query_minimum_interval (wildcard_receiver)

Interval between the first topic query sent upon creation of the wildcard receiver and the second query sent by
the receiver.

This option has an effective minimum of 30 ms. See UDP-Based Resolver Operation Options.

A value of 0 disables wildcard receiver topic querying. Informatica recommends against disabling all queries;
see Disabling Aspects of Topic Resolution.

Scope: wildcard_receiver

Type: lbm_ulong_t

38.1 Reference 353

Units: milliseconds
Default
value:

50 (0.05 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

38.1.8 resolver_wildcard_queries_per_second (context)

Maximum number of queries sent within a one second period during wildcard receiver topic querying.

A value of 0 means that queries for the wildcard topic are not limited to a maximum number of queries per
second.

Note that the topic's queries are still subject to being rate limited by resolver_wildcard_query_bps (context).

Refer to Rate Controls for additional information.

Scope: context

Type: lbm_ulong_t
Units: advertisements
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

38.1.9 resolver_wildcard_query_bps (context)

Maximum query rate during wildcard receiver topic querying.

A value of 0 means that queries for the wildcard topic are not limited to a maximum number of bits per second.
Note that the topic's queries are still subject to being rate limited by resolver_wildcard_queries_per_second
(context).

Refer to Rate Controls for additional information.

354 Wildcard Receiver Options

Scope: context

Type: lbm_uint64_t
Units: bits per second

Default
value:

1000000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

38.1.10 resolver_wildcard_receiver_map_tablesz (context)

The size of the hash table used for storing wildcard receiver patterns.

A value of 0 disables caching wildcard receiver patterns. This value should be a prime number.

Scope: context

Type: size_t
Units: map entries

Default
value:

10273

When to
Set:

Can only be set during object initialization.

38.1 Reference 355

356 Wildcard Receiver Options

Chapter 39

Event Queue Options

39.1 Reference

39.1.1 event_queue_name (event_queue)

The name of an event queue, limited to 128 alphanumeric characters, hyphens or underscores.

This is only used for XML Configuration Files.

See Event Queue Object for a full description of Event Queues.

Scope: event_queue

Type: string

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.3/UME 3.3/UMQ 2.3.

39.1.2 queue_age_enabled (event_queue)

Controls whether the length of time each event spends on the event queue is measured.

Useful only if you are monitoring event queue statistics.

358 Event Queue Options

See Event Queue Object for a full description of Event Queues.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: event_queue

Type: int

Default
value:

0

When to
Set:

May be set during operation.

Value Description

1 Enables measuring of event queue entry ages.

0 Disables measuring of event queue entry ages. Default for all.

39.1.3 queue_cancellation_callbacks_enabled (event_queue)

Flag indicating whether the event queue is to do appropriate locking to provide cancellation callback support for
cancel/delete functions.

This must be enabled if you want to use the extended form of object deletion with a callback that indicates
completion of the deletion.

For example, see lbm_src_delete_ex().

See Event Queue Object for a full description of Event Queues.

Scope: event_queue

Type: int

When to
Set:

Can only be set during object initialization.

39.1 Reference 359

Value Description

1 Provide support for cancellation callbacks.

0 Do not provide cancellation callback support. Default for all.

39.1.4 queue_count_enabled (event_queue)

Controls whether the numbers of each type of queue entry are counted.

Useful only if you are monitoring event queue statistics.

See Event Queue Object for a full description of Event Queues.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: event_queue

Type: int

Default
value:

0

When to
Set:

May be set during operation.

Value Description
1 Enables counting event queue entries.

0 Disables counting of event queue entries. Default for all.

39.1.5 queue_delay_warning (event_queue)

The event queue delay threshold (in microseconds) at which the monitor function for the event queue is called.

This delay is the time that an event has been queued before being dispatched. A value of 0 indicates the event

360 Event Queue Options

queue delay is not to be monitored and checked.

See Event Queue Object for a full description of Event Queues.

Scope: event_queue

Type: lbm_ulong_t
Units: microseconds
Default
value:

0 (not monitored)

When to
Set:

May be set during operation.

39.1.6 queue_enqueue_notification (event_queue)

Flag indicating whether to call the monitor function when an event is enqueued into the given event queue.

The thread enqueuing the event is the one that calls this function. So, when this is called, the monitoring
function in use should only assume this is only notification of enqueuing. The monitor function should not
dispatch events directly.

See Event Queue Object for a full description of Event Queues.

Scope: event_queue

Type: int
When to
Set:

May be set during operation.

Value Description

1 Enable notification.

0 Disable notification. Default for all.

39.1 Reference 361

39.1.7 queue_objects_purged_on_close (event_queue)

Flag indicating whether the event queue should be immediately purged of any pending events associated with a
recently closed object (e.g. source, receiver) during the close operation, or be left on the queue to be discarded
as the event queue drains normally.

In either case, UM does not deliver the defunct events to the application. The Immediate purge set-
ting reclaims memory immediately, while the Delay purge setting spreads the reclamation work over time,
reducing the CPU impact of closing objects associated with the queue.

See Event Queue Object for a full description of Event Queues.

Scope: event_queue

Type: int

When to
Set:

Can only be set during object initialization.

Value Description
1 Immediate purge. Default for all.
0 Delay purge.

39.1.8 queue_service_time_enabled (event_queue)

Controls whether the amount of time required to service each event on the event queue is measured.

Useful only if you are monitoring event queue statistics.

See Event Queue Object for a full description of Event Queues.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: event_queue

Type: int

Default
value:

0

When to
Set:

May be set during operation.

362 Event Queue Options

Value Description

1 Enables measuring of event queue service times.

0 Disables measuring of event queue service times. Default for all.

39.1.9 queue_size_warning (event_queue)

The event queue size threshold (in number of events) at which the monitor function for the event queue is called.

A value of 0 indicates the event queue size is not to be monitored and checked.

See Event Queue Object for a full description of Event Queues.

Scope: event_queue

Type: lbm_ulong_t

Units: number of events
Default
value:

0 (not monitored)

When to
Set:

May be set during operation.

39.1 Reference 363

364 Event Queue Options

Chapter 40

Ultra Messaging Persistence Options

The options described in this section are for persistence, and are invalid for users of the UMS (streaming-only)
product.

See the Guide for Persistence for more information.

40.1 Reference

40.1.1 ume_ack_batching_interval (context)

The interval between checks by a persistent receiver of consumed, unacknowledged messages.

This option is used in conjunction with ume_use_ack_batching (receiver).

See Persistence Message Consumption for a full explanation of consumption acknowledgements.

For RPP, see RPP Configuration Specifics for interactions between this and other configuration options. See
RPP: Receiver-Paced Persistence for general information on RPP.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

100 (0.1 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.0, UME 5.0, UMQ 5.0.

366 Ultra Messaging Persistence Options

40.1.2 ume_activity_timeout (receiver)

Establishes the period of time from a receiver's last activity to the release of the receiver's Reg ID. Stores return
an error to any new request for the receiver's Reg ID during this period.

Overrides the receiver-activity-timeout setting configured for the receiver's topic on the Store. The default
value of 0 (zero) disables this option.

See also Persistence Proxy Sources.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0 (disables timeout)

When to
Set:

Can only be set during object initialization.

40.1.3 ume_activity_timeout (source)

Establishes the period of time from a source's last activity to the release of the source's Reg ID. Stores return
an error to any new source requesting the source's Reg ID during this period.

If proxy sources are enabled (ume_proxy_source (source)), the Store does not release the source's Reg ID and
UM elects a proxy source. Overrides the source-activity-timeout setting configured for the source's topic on
the Store. The default value of 0 (zero) disables this option.

If neither proxy sources nor ume_state_lifetime (source) are configured, the Store also deletes the source's
state and cache.

Warning

When a source registers with the Store, the value provided for ume_activity_timeout is saved in the state file for
that source. However, if that source is deleted and re-created, the newly-configured value does not overwrite
the value saved in the state file. I.e. if a new value is desired and the source's configuration updated, it is not
sufficient to simply "bounce" the source. The Store's state and cache files for that source must also be deleted,
meaning that a receiver will not be able to recover those deleted messages. Updating this configuration option
should be done only during a maintenance window where the state and cache files can be deleted.

40.1 Reference 367

See also Persistence Proxy Sources.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0 (disables timeout)

When to
Set:

Can only be set during object initialization.

40.1.4 ume_allow_confirmed_delivery (receiver)

Specifies whether a persistent receiver sends confirmed delivery notifications back to the source.

See also ume_confirmed_delivery_notification (source).

For more information, see Delivery Confirmation Concept.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 5.0.

Value Description

1 Indicates that receivers can send confirmed delivery notifications. Default for all.

0 Indicates that receivers can not send confirmed delivery notifications.

368 Ultra Messaging Persistence Options

40.1.5 ume_application_outstanding_maximum (receiver)

This persistent receiver option enables the persistence Throttled Delivery feature and sets an upper threshold
on the number of message fragments from a single source that are delivered or in an event queue, but not yet
consumed.

When the number of message fragments exceeds this threshold, the receiver stops buffering all incoming
message fragments. Thus, messages from the source transport stream might be dropped and recovered via
OTR or persistence late-join mechanisms.

This feature effectively limits the recovery rate and live stream rate to the receiver message consumption rate. If
OTR is disabled for the receiver, this threshold applies only during initial Late Join recovery. Setting this option
to 0 (zero) disables the persistence Throttled Delivery feature.

Scope: receiver

Type: lbm_ulong_t

Units: message fragments

Default
value:

0 (disabled)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.7

40.1.6 ume_confirmed_delivery_notification (source)

Flag indicating the application is interested in receiving notifications of consumption of messages by receivers
(confirmed delivery) via the source event mechanism.

Generates the source events LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION and/or LBM_SRC_E←↩
VENT_UME_DELIVERY_CONFIRMATION_EX. When turned off, receivers do not send delivery confirmation
notifications to the source unless the release policy dictates the need for them. For more information, see
Delivery Confirmation Concept.

Note

Smart Sources do not support delivery confirmation.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

40.1 Reference 369

String value Integer value Description

"0" LBM_SRC_TOPIC_ATTR_UME_CDELV←↩
_EVENT_NONE

The source does not wish to receive delivery
confirmation notifications. Default for all.

"1" LBM_SRC_TOPIC_ATTR_UME_CDELV←↩
_EVENT_PER_FRAGMENT

The source wishes to receive delivery con-
firmation notifications for all messages and
message fragments.

"2" LBM_SRC_TOPIC_ATTR_UME_CDELV←↩
_EVENT_PER_MESSAGE

The source wishes to receive only one de-
livery confirmation for a message regardless
of how many fragments it comprised.

"3" LBM_SRC_TOPIC_ATTR_UME_CDELV←↩
_EVENT_FRAG_AND_MSG

The source wishes to receive delivery con-
firmation notifications for all messages and
message fragments. In addition, the notifi-
cation contains a WHOLE_MESSAGE_C←↩
ONFIRMED flag when the last fragment of a
message has been delivered.

40.1.7 ume_consensus_sequence_number_behavior (receiver)

The behavior that the receiver will follow when determining the consensus sequence number used as the
sequence number to begin reception at upon re-registration after a failure or suspension.

This option is only used when quorum-consensus is also used on the source.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"lowest" LBM_RCV_TOPIC_ATTR_UME_QC_SQ←↩
N_BEHAVIOR_LOWEST

Consensus is determined as the lowest of
the latest sequence numbers seen from any
Store.

370 Ultra Messaging Persistence Options

String value Integer value Description
"majority" LBM_RCV_TOPIC_ATTR_UME_QC_SQ←↩

N_BEHAVIOR_MAJORITY
Consensus is determined as the latest se-
quence number agreed upon by the majority
of Stores within a group. Between groups,
the latest of all majority decisions is used.
Default for all.

"highest" LBM_RCV_TOPIC_ATTR_UME_QC_SQ←↩
N_BEHAVIOR_HIGHEST

Consensus is determined as the highest of
the latest sequence numbers seen from any
Store.

40.1.8 ume_consensus_sequence_number_behavior (source)

The behavior that the source follows when determining the consensus sequence number used as the first
message of a source upon re-registration after a failure or suspension.

This option is only used when quorum-consensus is also used.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"lowest" LBM_SRC_TOPIC_ATTR_UME_QC_SQ←↩
N_BEHAVIOR_LOWEST

Consensus is determined as the lowest of
the latest sequence numbers seen from any
Store.

"majority" LBM_SRC_TOPIC_ATTR_UME_QC_SQ←↩
N_BEHAVIOR_MAJORITY

Consensus is determined as the latest se-
quence number agreed upon by the majority
of Stores within a group. Between groups,
the latest of all majority decisions is used.

"highest" LBM_SRC_TOPIC_ATTR_UME_QC_SQ←↩
N_BEHAVIOR_HIGHEST

Consensus is determined as the highest of
the latest sequence numbers seen from any
Store. Default for all.

40.1 Reference 371

40.1.9 ume_explicit_ack_only (receiver)

Transfers responsibility for sending consumption ACKs to the application.

Normally, the client UM library performs implicit batching of consumption acknowledgements to the Store. This
option tells UM that the application will call lbm_msg_ume_send_explicit_ack() to explicitly trigger consump-
tion acknowledgements to the Store. This has historically been done by the application to implement ACK
batching.

However, as of UM 5.0 with the introduction of ume_use_ack_batching (receiver), UM will now perform ACK
batching by default.

Warning

If explicit ACKs are used, the application must ensure that messages are ACKed in the order received. See
ACK Ordering.

See Persistence Message Consumption for a full explanation of consumption acknowledgements.

Note

This option is incompatible with ume_use_ack_batching (receiver). If ACK batching is turned on, this option is
silently turned off. If both are turned on, the last one configured turns off the other.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Value Description
1 The receiving application will generate acknowledgements explicitly and the persistent receiver

should not automatically generate them.

0 The persistent receiver will automatically generate and send acknowledgements based on mes-
sage consumption. Default for all.

372 Ultra Messaging Persistence Options

40.1.10 ume_flight_size (source)

Specifies the number of persisted message fragments allowed to be in flight (not stabilized at a Store and
without delivery confirmation).

If an application attempts to exceed flight size, the message send function will either block or trigger a notifica-
tion source event, depending on ume_flight_size_behavior (source).

Note that the flight size can also be limited by ume_flight_size_bytes (source), if supplied. Flight size would be
exceeded if either one is exceeded.

For RPP, see RPP Configuration Specifics for interactions between this and other configuration options. See
RPP: Receiver-Paced Persistence for general information on RPP.

Note: for very small flight sizes, it is recommended to configure the Store's UM config option response_tcp_←↩
nodelay (context) to 1.

Scope: source

Type: unsigned int
Units: messages

Default
value:

1000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1

40.1.11 ume_flight_size_behavior (source)

The behavior that UM follows when a persistent message send exceeds the source's flight size.

See ume_flight_size (source).

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1

40.1 Reference 373

String value Integer value Description

"Block" LBM_FLIGHT_SIZE_BEHAVIOR_BLOCK The send call blocks when a source sends
a message that exceeds its flight size. If the
source uses a non-blocking send, the send
returns an LBM_EWOULDBLOCK. Default
for all.

"Notify" LBM_FLIGHT_SIZE_BEHAVIOR_NOTIFY A message send that exceeds the config-
ured flight size does not block but triggers a
flight size notification (source event), indicat-
ing that the flight size has been surpassed.
UM also sends a source event notification if
the number of in-flight messages falls below
the configured flight size.

40.1.12 ume_flight_size_bytes (source)

Specifies the number of bytes of persisted message payload allowed to be in flight (not stabilized at a Store
and without delivery confirmation).

If an application attempts to exceed flight size, the message send function will either block or trigger a notifica-
tion source event, depending on ume_flight_size_behavior (source).

If this option is not supplied (defaults to 0), a persisted source uses ume_flight_size (source) to determine if a
send would exceed flight size.

If this option is supplied, a persisted source uses both ume_flight_size_bytes and ume_flight_size (source).
Flight size would be exceeded if either one is exceeded.

If the source uses RPP, then this option must be supplied, and its value is sent to the Store during registration.
The Store compares it to the configured value of source-flight-size-bytes-maximum. The source's registration
will be rejected if ume_flight_size_bytes exceeds the Store's source-flight-size-bytes-maximum.

For RPP, see RPP Configuration Specifics for interactions between this and other configuration options. See
RPP: Receiver-Paced Persistence for general information on RPP.

Note: for very small flight sizes, it is recommended to configure the Store's UM config option response_tcp_←↩
nodelay (context) to 1.

Scope: source

Type: lbm_uint64_t
Units: bytes

374 Ultra Messaging Persistence Options

Default
value:

0 (disabled)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.3

40.1.13 ume_force_reclaim_function (source)

Callback function (and associated client data pointer) that is called when a source is forced to release a retained
message due to size limitations specified.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

Scope: source

Type: lbm_ume_src_force_reclaim_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

40.1.14 ume_late_join (source)

Flag indicating the source should allow late join operation for receivers and persistent Stores.

This option is retained for backwards compatibility. The late_join (source) option should be used instead.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

40.1 Reference 375

Value Description

1 The source allows late join receivers and persistent Stores.

0 The source does not allow late join receivers or persistent Stores. Default for all.

40.1.15 ume_message_stability_lifetime (source)

The total time in milliseconds from the initial send of a message before a persistent source gives up entirely on
receiving a stability acknowledgement for the message.

The source then delivers a forced reclaim notice to the application, indicating that UM could not verify stability
of the message (not guaranteed).

See Proactive Retransmissions.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1200000 (20 minutes)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 6.0

40.1.16 ume_message_stability_notification (source)

Flag indicating the source is interested in receiving notifications of message stability from persistent Stores via
the source event mechanism.

Even when turned off, Stores continue to send message stability notifications to the source for retention pur-
poses. However, no notification will be delivered to the application.

Note

Smart Sources only support "0" (none) or "2" (per-message).

376 Ultra Messaging Persistence Options

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

String value Integer value Description

"0" LBM_SRC_TOPIC_ATTR_UME_STABL←↩
E_EVENT_NONE

The source does not wish to receive mes-
sage stability notifications from the Store.

"1" LBM_SRC_TOPIC_ATTR_UME_STABL←↩
E_EVENT_PER_FRAGMENT

The source wishes to receive all message
and message fragment stability notifications
from the Store. Default for all.

"2" LBM_SRC_TOPIC_ATTR_UME_STABL←↩
E_EVENT_PER_MESSAGE

The source wishes to receive only a sin-
gle message stability notifications from the
Store when the entire message has been
stabilized. This notification contains the Se-
quence Number of the last fragment of the
whole message but does NOT contain Store
information.

"3" LBM_SRC_TOPIC_ATTR_UME_STABL←↩
E_EVENT_FRAG_AND_MSG

The source wishes to receive all message
and message fragment stability notifications
from the Store. In addition, the notifica-
tion contains a WHOLE_MESSAGE_STA←↩
BLE flag when the last fragment of a mes-
sage has been stabilized.

40.1.17 ume_message_stability_timeout (source)

The time in milliseconds from initial send of a message until it is resent by the source because the source has
not received a stability acknowledgement for the Store (or a quorum of Stores).

Setting this option to 0 (zero) disables the Proactive Retransmissions feature.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

5000 (5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 6.0

40.1 Reference 377

40.1.18 ume_proactive_keepalive_interval (context)

Maximum period of inactivity after which a persistent receiver proactively sends an acknowledgement to the
Store.

A persistent receiver sends consumption acknowledgements to the Store to update that receiver's state in
the Store. In the absence of new consumption acknowledgments, a receiver will re-send the most-recent
acknowledgement periodically to maintain that state. The ume_proactive_keepalive_interval option specifies
the maximum interval between successive acknowledgements. This value should be set less than the ume←↩
_activity_timeout (receiver) and the state lifetime, ideally no more than 1/3 of the lesser of those two. Valid
settings are greater than or equal to 1500 (1.5 seconds, the effective minimum), or zero to disable proactive
keepalives and revert to pre-UM 6.9 keepalive behavior.

Note that disabling proactive keepalives is generally not recommended, and cannot be done for a persistent
receiver which is assigned to a Transport Services Provider (XSP).

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

3000 (3 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 6.9.1

40.1.19 ume_proxy_source (source)

Controls whether any Stores with which the source registers should provide a proxy source in the event the
actual source terminates.

Proxy source support is only available for quorum/consensus Store configurations. In addition, proxy source
support requires that the source register with an actual registration ID, and not request that the Store assign it
a registration ID.

Scope: source

Type: int

378 Ultra Messaging Persistence Options

Default
value:

0

When to
Set:

Can only be set during object initialization.

Value Description
1 Enables proxy source support.

0 Disables proxy source support. Default for all.

40.1.20 ume_receiver_liveness_interval (context)

The maximum interval between delivery confirmations or keepalive messages send to the source.

Expiration of this interval triggers another keepalive and an interval reset.

Scope: context

Type: int
Units: milliseconds
Default
value:

0 (disable; do not send keepalives)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.2.

40.1.21 ume_receiver_paced_persistence (receiver)

Enables Receiver-paced Persistence (RPP) for the receiver, and specifies the blocking behavior.

The source controls whether the Store's repository behavior is SPP or RPP (see ume_receiver_paced_←↩
persistence (source)). The receiver's configuration must match how the source set the repository. If the reposi-
tory and receiver disagree, the receiver's registration is rejected.

See RPP: Receiver-Paced Persistence for general information on RPP.

40.1 Reference 379

Scope: receiver

Type: lbm_uint8_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.3. Value "2" was added in UME 6.9

String value Integer value Description

"0" 0 Indicates that the receiver is not a RPP receiver. Default for all.
"1" 1 Indicates that the receiver is a blocking RPP receiver.

"2" 2 Indicates that the receiver is a non-blocking RPP receiver.

40.1.22 ume_receiver_paced_persistence (source)

Requests that the Store operate its repository with Receiver-paced Persistence (RPP).

During registration with the Store, this option controls whether the source requests RPP behavior. If the source
requests RPP, and the Store's repository is configured with repository-allow-receiver-paced-persistence set
to 1 (enabled), the registration is accepted and the Store operates with receiver pacing. If repository-allow-
receiver-paced-persistence is 0 (disabled), the source's registration is rejected.

If this option is not set, the Store will default to Source-paced Persistence (SPP), independent of the setting of
repository-allow-receiver-paced-persistence. The Store cannot be directly configured to enable RPP; the
source must be configured to request it.

See RPP: Receiver-Paced Persistence for general information on RPP.

Scope: source

Type: lbm_uint8_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.3

380 Ultra Messaging Persistence Options

Value Description

1 Source requests RPP operation.

0 Source does not request RPP operation. Store will operate with Source-paced Persistence (SPP).
Default for all.

40.1.23 ume_recovery_sequence_number_info_function (receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to complete regis-
tration from the Stores in use by the source and the low sequence number is to be determined.

The application has the ability to modify the sequence number to use if it desires.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

Scope: receiver

Type: lbm_ume_rcv_recovery_info_ex_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

40.1.24 ume_registration_extended_function (receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to attempt to
register with a persistent Store.

The app must return the registration ID to request from the Store or 0 if it will allow the Store to allocate one.
This function passes additional extended information, such as the Store being used and a source client data
pointer, etc.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

40.1 Reference 381

Scope: receiver

Type: lbm_ume_rcv_regid_ex_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

40.1.25 ume_registration_function (receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to attempt to
register with a persistent Store.

The app must return the registration ID to request from the Store or 0 if it will allow the Store to allocate one.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

This option is retained for backwards compatibility. The ume_registration_extended_function (receiver) option
should be used instead.

Scope: receiver

Type: lbm_ume_rcv_regid_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

40.1.26 ume_registration_interval (receiver)

The interval between registration attempts by the receiver to a persistent Store in use by the source.

For networks with large numbers of receivers connecting to a Store, this value can be increased to reduce the
registration load on the Store.

382 Ultra Messaging Persistence Options

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

3000 (3 seconds)

When to
Set:

Can only be set during object initialization.

40.1.27 ume_registration_interval (source)

The interval between registration attempts by the source. Before declaring Registration Complete, sources wait
at least one full interval, unless all Stores have registered.

When using the round-robin Store behavior, this is the value between registration attempts with the various
Stores. In other words, attempt to register with primary, wait interval, attempt to register with secondary, wait
interval, etc.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

3000 (3 seconds)

When to
Set:

Can only be set during object initialization.

40.1.28 ume_repository_ack_on_reception (source)

For RPP, requests that the Store operate its repository with "ack on reception" behavior.

Normally, the Store sends stability ACKs to the source as messages are written to disk. With "ack on reception"
behavior, the Store sends stability ACKs to the source as the messages are received and stored in its memory
cache.

During registration with the Store, this option controls whether the source requests "ack on reception" behavior.
If the source requests "ack on reception", and the Store's repository is configured with repository-allow-ack-
on-reception set to 1 (enabled), the registration is accepted and the repository operates with "ack on reception"
behavior. If repository-allow-ack-on-reception is 0 (disabled), the source's registration is rejected.

40.1 Reference 383

The Store cannot be directly configured to enable "ack on reception"; the source must be configured to request
it.

This option is ignored for SPP repositories.

For RPP, see RPP Configuration Specifics for interactions between this and other configuration options. See
RPP: Receiver-Paced Persistence for general information on RPP.

Scope: source

Type: lbm_uint8_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.3

Value Description

1 Source requests "ack on reception".

0 Source does not request "ack on reception". Store defaults to sending stability ACKs when mes-
sages are written to disk. Default for all.

40.1.29 ume_repository_disk_file_size_limit (source)

For Receiver-paced Persistence (RPP) sources, overrides the Store's configured repository disk file size limit.

The Store's repository disk file size limit is configured by the repository-disk-file-size-limit option. For RPP,
this source option can be used to override the Store's setting.

See repository-disk-file-size-limit for more information on the option.

This option is ignored for SPP repositories.

When the source overrides the Store's configured value, it must not exceed that value. If the source's ume←↩
_repository_disk_file_size_limit exceeds the Store's repository-disk-file-size-limit, the source's registration is
rejected.

See Implementing RPP for more information on the coordination between RPP source and Store configuration
options.

384 Ultra Messaging Persistence Options

Scope: source

Type: lbm_uint64_t
Units: bytes

Default
value:

0 (disabled)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.3

40.1.30 ume_repository_size_limit (source)

For Receiver-paced Persistence (RPP) sources, overrides the Store's configured repository size limit.

The Store's repository size limit is configured by the repository-size-limit option. For RPP, this source option
can be used to override the Store's setting.

See repository-size-limit for more information on the option.

This option is ignored for SPP repositories.

For RPP, see RPP Configuration Specifics for interactions between this and other configuration options. See
RPP: Receiver-Paced Persistence for general information on RPP.

When the source overrides the Store's configured value, it must not exceed that value. If the source's ume_←↩
repository_size_limit exceeds the Store's repository-size-limit, the source's registration is rejected.

Scope: source

Type: size_t
Units: bytes

Default
value:

0 (disabled)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.3

40.1 Reference 385

40.1.31 ume_repository_size_threshold (source)

For Receiver-paced Persistence (RPP) sources, overrides the Store's configured repository size threshold.

The Store's repository size threshold is configured by the Store option repository-size-threshold option. For
RPP, this source option can be used to override the Store's setting.

See repository-size-threshold for more information on the option.

This option is ignored for SPP repositories.

For RPP, see RPP Configuration Specifics for interactions between this and other configuration options. See
RPP: Receiver-Paced Persistence for general information on RPP.

When the source overrides the Store's configured value, it must not exceed that value. If the source's ume_←↩
repository_size_threshold exceeds the Store's repository-size-threshold, the source's registration is rejected.

Scope: source

Type: size_t
Units: bytes

Default
value:

0 (disabled)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.3

40.1.32 ume_retention_intergroup_stability_behavior (source)

The behavior that the source will follow when determining, across multiple Store QC groups, both message
stability and registration completion.

A source cannot release a message until the message is stable. To be stable, a message must first be stable
within the group and then stable between

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

386 Ultra Messaging Persistence Options

String value Integer value Description

"any", "any-group" LBM_SRC_TOPIC_ATTR_UME_STA←↩
BLE_BEHAVIOR_ANY

Registration is complete when it is com-
plete in any group. Messages are stable
when they are stable in any group. De-
fault for all.

"all-active" LBM_SRC_TOPIC_ATTR_UME_STA←↩
BLE_BEHAVIOR_ALL_ACTIVE

A group is active if it has at least a quo-
rum of registered Stores. Registration is
complete when it is complete in all active
groups. At least one group must be ac-
tive. Messages are stable when they are
stable in all active groups.

"majority" LBM_SRC_TOPIC_ATTR_UME_STA←↩
BLE_BEHAVIOR_MAJORITY

Registration is complete when it is com-
plete in a majority of groups. Messages
are stable when they are stable in a ma-
jority of groups.

"all", "all-groups" LBM_SRC_TOPIC_ATTR_UME_STA←↩
BLE_BEHAVIOR_ALL

Registration is complete when it is com-
plete in all groups. Messages are stable
when they are stable in all groups.

40.1.33 ume_retention_intragroup_stability_behavior (source)

The behavior that the source will follow when determining, within a Store QC group, both message stability and
group registration completion.

A source cannot release a message until the message is stable. For a source to consider a message stable,
some number of Stores must acknowledge stability to the Source. By default, a quorum of Stores in the Store
QC group must acknowledge stability. But there are other choices, indicated below.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

40.1 Reference 387

String value Integer value Description

"quorum" LBM_SRC_TOPIC_ATTR_UME_STAB←↩
LE_BEHAVIOR_QUORUM

Registration is complete for the group
when a majority of the Stores in the group
are registered. A message is stable within
the group when a majority of the Stores
have acknowledged the message as sta-
ble. Default for all.

"all-active" LBM_SRC_TOPIC_ATTR_UME_STAB←↩
LE_BEHAVIOR_ALL_ACTIVE

Registration is complete for the group
when a majority of the Stores in the group
are registered. Stores registered with a
source are active Stores. A message is
stable within the group when each active
Store in that group has acknowledged the
message as stable.

"all", "all-stores" LBM_SRC_TOPIC_ATTR_UME_STAB←↩
LE_BEHAVIOR_ALL

Registration is complete for the group
when all Stores in the group are registered.
A message is stable within the group when
all Stores in the group are registered and
have acknowledged the message as sta-
ble.

40.1.34 ume_retention_size_limit (source)

The release policy regarding aggregate size limit before messages are forced to be released.

This option is retained for backwards compatibility. The retransmit_retention_size_limit (source) option should
be used instead.

With Smart Sources, this option is ignored. Retention buffers are preallocated.

Scope: source

Type: size_t
Units: bytes

Default
value:

25165824 (24 MB)

When to
Set:

Can only be set during object initialization.

388 Ultra Messaging Persistence Options

40.1.35 ume_retention_size_threshold (source)

The release policy regarding aggregate size threshold before messages are released.

With Smart Sources, this option is ignored. Retention buffers are preallocated.

This option is retained for backwards compatibility. The retransmit_retention_size_threshold (source) option
should be used instead.

Scope: source

Type: size_t
Units: bytes

Default
value:

0 (no threshold)

When to
Set:

Can only be set during object initialization.

40.1.36 ume_retention_unique_confirmations (source)

The release policy regarding the number of confirmations from different receivers required before the source
can release a message.

This option enhances, but does not supersede, message stability notification from the Store(s). If the number of
unique confirmations for a message is less than this amount, the message will not be released. If the number
of unique confirmations for a message exceeds or equals this amount, then the message may be released
if no other release policy setting overrides the decision. A value of 0 indicates there is no unique number of
confirmations required for reclamation. For more information, see Delivery Confirmation Concept.

Note

Smart Sources do not support delivery confirmation.

Scope: source

Type: size_t

Units: number of confirmations
Default
value:

0 (none required)

When to
Set:

Can only be set during object initialization.

40.1 Reference 389

40.1.37 ume_session_id (context)

Specifies the default Session ID to use for sources and receivers within a context. A value of 0 (zero) indicates
no Session ID is to be set.

See also Managing RegIDs with Session IDs. Valid formats for session IDs are as follows: A hexadec-
imal string with a maximum value of FFFFFFFFFFFFFFFE, prefixed with '0x'. An octal string with a max-
imum value of 1777777777777777777776 prefixed with '0'. A decimal string with a maximum value of
18446744073709551614. Prior to LBM 5.2.2, all persistence session IDs were interpreted as hexadecimal,
and did not accept the '0x' prefix. If upgrading from an earlier version to LBM 5.2.2 or later, prepend '0x' to the
original setting to use the originally assigned session ID.

Scope: context

Type: lbm_uint64_t

Default
value:

0 (no session ID)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2

40.1.38 ume_session_id (receiver)

Specifies the Session ID to use for a receiver. A value of 0 (zero) indicates the context ume_session_id will be
used.

See also Managing RegIDs with Session IDs.

Valid formats for session IDs are as follows: A hexadecimal string with a maximum value of FFFFFFFFFFFF←↩
FFFE, prefixed with '0x'. An octal string with a maximum value of 1777777777777777777776 prefixed with '0'.
A decimal string with a maximum value of 18446744073709551614. Prior to LBM 5.2.2, all persistence session
IDs were interpreted as hexadecimal, and did not accept the '0x' prefix. If upgrading from an earlier version to
LBM 5.2.2 or later, prepend '0x' to the original setting to use the originally assigned session ID.

Scope: receiver

Type: lbm_uint64_t

Default
value:

0 (uses context session ID)

390 Ultra Messaging Persistence Options

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2

40.1.39 ume_session_id (source)

Specifies the Session ID to use for a source. A value of 0 (zero) indicates the context ume_session_id will be
used.

See also Managing RegIDs with Session IDs.

Valid formats for session IDs are as follows: A hexadecimal string with a maximum value of FFFFFFFFFFFF←↩
FFFE, prefixed with '0x'. An octal string with a maximum value of 1777777777777777777776 prefixed with '0'.
A decimal string with a maximum value of 18446744073709551614. Prior to LBM 5.2.2, all persistence session
IDs were interpreted as hexadecimal, and did not accept the '0x' prefix. If upgrading from an earlier version to
LBM 5.2.2 or later, prepend '0x' to the original setting to use the originally assigned session ID.

Scope: source

Type: lbm_uint64_t

Default
value:

0 (uses context session ID)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2

40.1.40 ume_source_liveness_timeout (context)

The expected maximum interval between keepalive or delivery confirmation messages from a receiver.

If neither are received within the interval, the source declares the receiver "dead".

Scope: context

Type: int
Units: milliseconds
Default
value:

0 (disable; do not track receivers)

40.1 Reference 391

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.2.

40.1.41 ume_sri_flush_sri_request_response (source)

This option determines if a source flushes the Implicit Batching buffer after it sends a Source Registration
Information (SRI) record in response to a SRI request from a receiver.

Flushing this buffer places the SRI record immediately on the transport, which speeds up the process of re-
ceivers registering, but also can impose a greater load on the overall network since it can reduce the amount of
transport batching.

See ume_sri_immediate_sri_request_response (source) for more information on SRI messages.

Note

Smart Sources do not support batching, so this option is ignored by a Smart Source.

Scope: source

Type: lbm_ulong_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

Value Description

1 The source places a SRI record in the Implicit Batching buffer and then flushes the buffer.

0 The source places a SRI record in the Implicit Batching buffer and lets normal batch scheduling
determine when to place the SRI on the transport. Default for all.

392 Ultra Messaging Persistence Options

40.1.42 ume_sri_immediate_sri_request_response (source)

This option controls how quickly a source responds to a receiver's request for an SRI record.

A persistent source need to send information about its Stores so that the receivers can properly register with
those Stores. The information messages sent by the sources, contained in a Source Registration Information
(SRI) record, is sent on the source's data transport session, and therefore have an effect on the transfer of
application data messages. This configuration option is provided to assist you in managing the impact of SRI
messages on the normal flow of data when a registering receiver requests the SRI record.

Note

Smart Sources do not support batching, so this option is ignored by a Smart Source.

Scope: source

Type: lbm_ulong_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

Value Description

1 Indicates that the source sends an SRI record and also flushes the implicit batching buffer to
immediately put the SRI record on the transport. This maximizes the speed at which a receiver
completes its registration, but also can impose a greater load on the overall network since it can
reduce the amount of transport batching. Default for all.

0 Indicates that the source waits for the period of time defined by ume_sri_request_response_←↩
latency (source) before sending an SRI record. This reduces overall system load, especially if
multiple receivers are registering, as it allows a single SRI record to satisfy the registration needs
of multiple receivers.

40.1.43 ume_sri_inter_sri_interval (source)

This option controls how frequently a source sends SRI records in reaction to a change in the source's regis-
tration with its Stores.

Source Registration Information (SRI) records are sent by a source to its receivers for either of two reasons:

40.1 Reference 393

• a receiver has requested an SRI, usually because it is in the process of initializing and registering, or

• the source sees a change in its registration with its Stores. For example, if a Store becomes unresponsive
and the source loses registration with it. Or if a previously failed Store returns to service, and the source
successfully registers with it.

This configuration option is concerned with the latter case (change in a source's registration with its Stores):
the source will send SRI records to receivers to inform them of the change. It sends multiple copies over time
to maximize the chances of successful reception. It uses this configuration option to determine the interval
between these SRI sends.

The default value results in the source sending 2 SRI packets every second. This value cannot be set to 0. See
also ume_sri_max_number_of_sri_per_update (source).

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

40.1.44 ume_sri_max_number_of_sri_per_update (source)

The maximum number of SRI packets sent by a source after a change in the source's registration with its
Stores.

For more information about these SRI messages, see ume_sri_inter_sri_interval (source).

Scope: source

Type: lbm_uint16_t

Default
value:

20

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

394 Ultra Messaging Persistence Options

40.1.45 ume_sri_request_interval (receiver)

The interval at which a registering receiver requests information about the persistent Store(s) from the source.

The receiver cannot complete registration with the Store(s) until the source supplies the information, in the form
of a Store Information Record (SRI). If no SRI is received within this interval, the receiver will continue to send
requests until either the information is received, or until the ume_sri_request_maximum (receiver) is reached.
If that limit is reached without having received the SRI, the receiver registration fails.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

40.1.46 ume_sri_request_maximum (receiver)

The maximum number of requests the receiver issues for a Store Information Record (SRI) from the source.

If the receiver has not received an SRI after this number of requests, it stops requesting and fails its registration.
See ume_sri_request_interval (receiver).

Scope: receiver

Type: lbm_ulong_t

Default
value:

60

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

40.1.47 ume_sri_request_response_latency (source)

The interval a source waits before sending an SRI packet in response to a request from a receiver.

40.1 Reference 395

At the expiration of this interval, the SRI record may also be slightly delayed by normal batch scheduling unless
ume_sri_flush_sri_request_response (source) is set to 1.

See ume_sri_immediate_sri_request_response (source) for more information about how and why to use this.

Note

Smart Sources do not support batching, so this option is ignored by a Smart Source.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

100 (0.1 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

40.1.48 ume_state_lifetime (receiver)

Establishes the period of time from a receiver's last activity to the deletion of the receiver's state and cache by
the Store.

You can also configure a receiver-state-lifetime for the receiver's topic on the Store. The Store uses whichever
is shorter. The default value of 0 (zero) disables this option.

See also Persistence Proxy Sources.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0 (disables lifetime)

When to
Set:

Can only be set during object initialization.

396 Ultra Messaging Persistence Options

40.1.49 ume_state_lifetime (source)

Establishes the period of time from a source's last activity to the deletion of the source's state and cache by the
Store, regardless of whether a proxy source has been created or not.

You can also configure a source-state-lifetime for the source's topic on the Store. The Store uses whichever
is shorter. The default value of 0 (zero) disables this option.

See also Persistence Proxy Sources.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0 (disables lifetime)

When to
Set:

Can only be set during object initialization.

40.1.50 ume_store (source)

Enable persistence for this source and add a Store specification to the current list of Stores specified for the
source. Unlike most other UM options, every time this option is supplied, it adds another Store specification to
the list and does NOT overwrite previous specifications.

Each entry contains the IP address, TCP port, registration ID, and group index for the Store. For the configu-
ration file as well as API string setting functions, the string value for this option is formatted as "DomainID:IP←↩
:port:RegID:GroupIDX" where DomainID is the Store's UM domain ID, IP is the Store's IP address, port is the
TCP port for the Store, RegID is the registration ID that the source desires to use, and GroupIDX is the group
index that the Store belongs to. The DomainID, RegID, and GroupIDX pieces may be omitted from the string if
desired. If so, UM assumes the value of 0 for them.

With most configuration options, a previously-specified value can be overridden by simply specifying the option
again with a new value. However, because each occurrence of ume_store adds a new Store specification,
use the IP address 0.0.0.0 and TCP port 0 to remove all previously specified Stores. This allows subsequent
Store specifications to, in effect, override the earlier Stores.

One or more Stores means the source will use persistence. If no Stores are specified, then persistence will not
be provided for the source.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
Store specification can be supplied for each call to lbm_src_topic_attr_setopt(). However, when the binary

40.1 Reference 397

form of option retrieval lbm_src_topic_attr_getopt() is used, the list of Stores is returned as an array, and the
optlen parameter should be set as:

optlen = (max_num_stores * sizeof(lbm_ume_store_entry_t));

Scope: source

Type: lbm_ume_store_entry_t

When to
Set:

Can only be set during object initialization.

40.1.51 ume_store_activity_timeout (source)

The timeout value used to indicate when a Store is unresponsive.

The Store must not be active within this interval to be considered unresponsive. This value must be much larger
than the check interval.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10,000 (10 seconds)

When to
Set:

Can only be set during object initialization.

40.1.52 ume_store_behavior (source)

The behavior that the source follows for handling Store failures.

Only quorum-consensus is allowed. The option is retained for backwards compatibility purposes.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

398 Ultra Messaging Persistence Options

String value Integer value Description

"qc", "quorum-consensus" LBM_SRC_TOPIC_ATTR_UME_S←↩
TORE_BEHAVIOR_QC

The source uses multiple Stores at
the same time based on Store and
Store QC group configuration. De-
fault for all.

40.1.53 ume_store_check_interval (source)

The interval between activity checks of the current Store.

This interval also governs how often a source checks outstanding unstabilized messages to see if they have
reached the configured ume_message_stability_timeout (source) value yet.

Scope: source

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

40.1.54 ume_store_group (source)

Add a Store QC group specification to the list of Store QC groups specified for the source.

Unlike other UM settings, every time this option is called, it adds another Store QC group specification to the
list and does NOT overwrite previous specifications. Each entry contains the group index and group size for the
group. For the configuration file as well as string versions of setting this option, the string value is formatted as
"GroupIDX:GroupSZ" where GroupIDX is the index of the group and GroupSZ is the size of the group. Because
each entry adds a new Store specification and does not overwrite previous values, an entry or string with the
group index of 0 and group size of 0 will cause all previous Store QC group specifications to be removed.

Note: When setting this option multiple times, you must set this option in group-index order, from lowest to

40.1 Reference 399

highest. In other words, do not set this option for a group index lower in value than any previously set group
index value.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
group specification can be supplied for each call to lbm_src_topic_attr_setopt(). However, when the binary
form of option retrieval lbm_src_topic_attr_getopt() is used, the list of groups is returned as an array, and the
optlen parameter should be set as:

optlen = (max_num_store_groups * sizeof(lbm_ume_store_group_entry_t));

Scope: source

Type: lbm_ume_store_group_entry_t

When to
Set:

Can only be set during object initialization.

40.1.55 ume_store_name (source)

Add a named Store specification to the list of Stores specified for the source.

Unlike other UM settings, every time this option is called, it adds another Store specification to the list and does
NOT overwrite previous specifications. Each entry contains the Store context name, registration ID, and group
index for the Store. For the configuration file as well as string versions of setting this option, the string value is
formatted as "name:RegID:GroupIDX" where "name" is the context name of the Store, (configured with the
Store option context-name), "RegID" is the registration ID that the source desires to use, and "GroupIDX" is
the group index that the Store belongs to. The RegID and GroupIDX pieces may be left off the string if desired.
If so, then the value of 0 is assumed for them. Store context names are restricted to 128 characters in length,
and may contain only alphanumeric characters, hyphens, and underscores.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
named Store specification can be supplied for each call to lbm_src_topic_attr_setopt(). However, when the
binary form of option retrieval lbm_src_topic_attr_getopt() is used, the list of named Stores is returned as an
array, and the optlen parameter should be set as:

optlen = (max_num_stores * sizeof(lbm_ume_store_name_entry_t));

Scope: source

Type: lbm_ume_store_name_entry_t

When to
Set:

Can only be set during object initialization.

400 Ultra Messaging Persistence Options

40.1.56 ume_use_ack_batching (receiver)

Enables automatic batching of consumption acknowledgements by a persistent receiver.

Automatic batching of consumption acknowledgements improves average latency and throughput of a persis-
tent receiver. The batching timer is set with ume_ack_batching_interval (context).

Warning

If this option is disabled, the application must ensure that messages are ACKed in the order received. See
ACK Ordering.

See Persistence Message Consumption for a full explanation of consumption acknowledgements.

Note

This option is incompatible with ume_explicit_ack_only (receiver). If explicit ACK is turned on, this option is
silently turned off. If both are turned on, the last one configured turns off the other.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.0, UME 5.0, UMQ 5.0.

Value Description

1 UM automatically sends acknowledges of batches of consumed messages to the persistent Store.
Default for all.

0 The application directly controls the sending of acknowledgements to the persistent Store.

40.1.57 ume_use_late_join (receiver)

Flag indicating if the receiver should participate in late join operation or not.

40.1 Reference 401

This option is retained for backwards compatibility. The use_late_join (receiver) option should be used instead.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 The receiver will participate in using late join if requested to by the source. Default for all.

0 The receiver will not participate in using late join even if requested to by the source.

40.1.58 ume_use_store (receiver)

Flag indicating if the receiver should participate in using a persistent Store or not.

If "0" is supplied, the receiver will join as a streaming receiver.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Value Description

1 The receiver will participate in using a persistent Store if requested to by the source. Default for all.

0 The receiver will not participate in using a persistent Store even if requested to by the source.

402 Ultra Messaging Persistence Options

40.1.59 ume_user_receiver_registration_id (context)

32-bit value that is used as a user set identifier to be included as the receiver registration ID in acknowledge-
ments send by any receivers in the context to sources as confirmed delivery notifications.

The value is not interpreted by UM in any way and has no relation to registration IDs used by the receiver. A
value of 0 indicates no user set value is in use and should not be sent with acknowledgements

Scope: context

Type: lbm_uint_t

Units: identifier
Default
value:

0 (no user set value in use)

When to
Set:

Can only be set during object initialization.

40.1.60 ume_write_delay (source)

For Receiver-paced Persistence (RPP) sources, overrides the Store's configured write delay setting.

The Store's write delay setting is configured by the repository-disk-write-delay option. For RPP, this source
option can be used to override the Store's setting.

See repository-disk-write-delay for more information on the option.

This option is ignored for SPP repositories.

For RPP, see RPP Configuration Specifics for interactions between this and other configuration options. See
RPP: Receiver-Paced Persistence for general information on RPP.

When the source overrides the Store's configured value, it must not exceed that value. If the source's ume_←↩
write_delay exceeds the Store's repository-disk-write-delay, the source's registration is rejected.

Scope: source

Type: lbm_uint32_t
Units: milliseconds
Default
value:

0 (disabled)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UME 5.3

40.1 Reference 403

404 Ultra Messaging Persistence Options

Chapter 41

Ultra Messaging Queuing Options

The options described in this section are for queuing, and are invalid for users of the UMS (streaming-only) and
UMP (streaming and persistent) products.

See the Guide for Queuing for more information.

41.1 Reference

41.1.1 umq_command_interval (context)

The interval at which all currently outstanding UMQ commands (registrations, de-registrations, message list
commands, indexed queueing commands, etc.) are re-sent if they have not yet been acknowledged by the
queue.

Applies to brokered queue and ULB. For general information on queuing, see Queuing.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

406 Ultra Messaging Queuing Options

41.1.2 umq_command_outstanding_maximum (context)

The maximum number of UMQ commands (registrations, de-registrations, message list commands, indexed
queueing commands, etc.) that may be outstanding at one time for each configured queue.

This option value must be greater than 0. Reducing this value may help alleviate some load on the UMQ queue
daemon, but may potentially cause registrations and other commands to take longer to complete.

Scope: context

Type: lbm_uint32_t

Units: number of outstanding commands

Default
value:

1000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMQ 5.3.1.

41.1.3 umq_delayed_consumption_report_interval (receiver)

The maximum interval to delay sending consumption reports on the receiver.

Applies to ULB. For general information on queuing, see Queuing.

Delaying consumption reports allows them to be batched together for efficiency but at the expense of delaying
the consumption reports themselves individually. The value of 0 indicates the consumption reports should not
be delayed.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1 Reference 407

41.1.4 umq_hold_interval (receiver)

The maximum interval to hold control and data information within the ULB delivery controller.

For ULB only. For general information on queuing, see Queuing.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

41.1.5 umq_index_assignment_eligibility_default (receiver)

Controls whether new ULB receivers are immediately eligible for index assignment upon registration with a ULB
source (the default), or whether they are ineligible upon registration and must be explicitly made eligible via a
call to lbm_rcv_umq_index_start_assignment().

For ULB only. For general information on queuing, see Queuing.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2/UMQ 1.2

String value Integer value Description

"Eligible" LBM_RCV_TOPIC_ATTR_UMQ_INDEX←↩
_ASSIGN_ELIGIBILITY_ELIGIBLE

The receiver may be assigned indices as
soon as it registers with a queue. Default
for all.

"Ineligible" LBM_RCV_TOPIC_ATTR_UMQ_INDEX←↩
_ASSIGN_ELIGIBILITY_INELIGIBLE

The receiver must first call lbm_rcv_umq←↩
_index_start_assignment() before it can
be assigned any indices.

408 Ultra Messaging Queuing Options

41.1.6 umq_message_stability_notification (source)

Flag indicating the source is interested in receiving notifications of message stability from UMQ via the source
event mechanism.

Even when turned off, UMQ continues to send message stability notifications to the source for retention pur-
poses. However, UMQ delivers no notification to the application.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Value Description

1 The source wishes to receive message stability notification. Default for all.

0 The source does not wish to receive message stability notifications.

41.1.7 umq_msg_total_lifetime (source)

Establishes the period of time from when a queue enqueues a message until the time the message cannot be
assigned or reassigned to a receiver. The queue deletes the message upon expiration of the lifetime.

Applies to brokered queue and ULB. For general information on queuing, see Queuing.

The default value of 0 (zero) disables this option. See also Message Lifetime.

Scope: source

Type: lbm_ulong_t
Units: milliseconds

41.1 Reference 409

Default
value:

0 (disable lifetime)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2 / UME 3.2 / UMQ 2.1

41.1.8 umq_queue_activity_timeout (context)

The timeout value used to indicate when a queue is marked inactive.

The queue must be active within this interval to be marked inactive. This value must be much larger than the
check interval.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

3000 (3.0 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

41.1.9 umq_queue_participation (receiver)

Flag indicating if the receiver desires to participate in Queuing operations or not.

For general information on queuing, see Queuing.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

410 Ultra Messaging Queuing Options

String value Integer value Description

"1" 1 The receiver desires to participate in Queuing operations. Default for all.

"0" 0 The receiver does not wish to participate in Queuing operations.

41.1.10 umq_queue_registration_id (context)

Add a broker/registration ID pair to the current list of broker/registration ID pairs.

Assigns a Registration ID when connected to the given broker name, using the format "BrokerName:RegID". If
a broker is not named or a broker does not support names, the broker will be given the name "Default".

If a Registration ID is set for a given broker, that Registration ID is passed from the source through to the
receiver. This information can be used to identify the source from which the data originated.

Each time you set this option, it adds another BrokerName:RegID pair to a list and does not overwrite previous
specifications. If you supply an empty name, the list resets.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
broker/registration ID pair specification can be supplied for each call to lbm_context_attr_setopt(). However,
when the binary form of option retrieval lbm_context_attr_getopt() is used, the list of broker/registration ID
pairs is returned as an array, and the optlen parameter should be set as:

optlen = (max_num_regid_broker_pairs * sizeof(lbm_umq_queue_entry_t));

Scope: context

Type: lbm_umq_queue_entry_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

41.1.11 umq_receiver_type_id (receiver)

32-bit value that is used as an identifier to instruct the ULB source as to the type of receiver the receiver should
be.

Used by the ULB source to associate various settings with the connecting receiver.

41.1 Reference 411

For ULB receivers, see Application Sets and Receiver Type IDs for more information.

Scope: receiver

Type: lbm_uint_t

Units: identifier
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

41.1.12 umq_retransmit_request_interval (receiver)

The interval between retransmission request messages to the ULB source.

Applies to ULB. For general information on queuing, see Queuing.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

41.1.13 umq_retransmit_request_outstanding_maximum (receiver)

The maximum number of messages to request at a single time from the ULB source.

Applies to ULB. For general information on queuing, see Queuing.

A value of 0 indicates no maximum.

412 Ultra Messaging Queuing Options

Scope: receiver

Type: lbm_ulong_t
Units: messages

Default
value:

100

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

41.1.14 umq_session_id (context)

Specifies the Session ID to use for managing ULB sources and receivers within a context.

For ULB only.

A value of 0 (zero) indicates no Session ID is to be set. Valid formats for session IDs are as follows: A
hexadecimal string with a maximum value of FFFFFFFFFFFFFFFE, prefixed with '0x'. An octal string with a
maximum value of 1777777777777777777776 prefixed with '0'. A decimal string with a maximum value of
18446744073709551614.

Scope: context

Type: lbm_uint64_t

Default
value:

0 (no session ID)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMQ 5.3.

41.1.15 umq_ulb_application_set (source)

Defines the application sets for a ULB source. Format: "Index1:ID1,ID2,...;Index2:ID3,ID4,..."

"Index1" is the numeric index which defines an application set, and "ID1" is the numeric receiver type ID asso-
ciated with one or more receivers (see umq_receiver_type_id (receiver)).

At least one application set must be specified for the source to use ULB.

41.1 Reference 413

The application set indices in the string can be specified in any order. However, they must be numbered
contiguously starting with 0 when the topic is allocated.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

For more information on application sets, see Application Sets and Receiver Type IDs.

Scope: source

Type: lbm_umq_ulb_receiver_type_entry_t

Default
value:

empty (at least one is required)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1.16 umq_ulb_application_set_assignment_function (source)

The assignment function for one or more application sets specified as a list of entries in the format, "Index1←↩
:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the desired assignment function
associated that application set.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_application_set_attr_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

String value Integer value Description

"default" LBM_SRC_TOPIC_ATTR_UMQ_ULB_A←↩
SSIGNMENT_DEFAULT

The default assignment function. Default
for all.

414 Ultra Messaging Queuing Options

String value Integer value Description
"random" LBM_SRC_TOPIC_ATTR_UMQ_ULB_A←↩

SSIGNMENT_RANDOM
Randomized assignment function.

41.1.17 umq_ulb_application_set_events (source)

The events mask of one or more application sets specified as a list of entries in the format, "Index1:value1;←↩
Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the event mask to be set asso-
ciated that application set.

The values may follow the same format as described in umq_ulb_events (source).

Application sets not listed default to a mask of 0.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_application_set_attr_t

Default
value:

empty (all application sets have a mask of 0)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1.18 umq_ulb_application_set_load_factor_behavior (source)

The behavior for the load factor for one or more application sets specified as a list of entries in the format,
"Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the load factor behavior associ-
ated that application set.

41.1 Reference 415

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_application_set_attr_t

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

String value Integer value Description

"ignored" LBM_SRC_TOPIC_ATTR_UMQ_ULB_L←↩
F_BEHAVIOR_IGNORED

Load Factor information not sent and not
processed or taken into assignment consid-
eration. Default for all.

"provisioned" LBM_SRC_TOPIC_ATTR_UMQ_ULB_L←↩
F_BEHAVIOR_PROVISIONED

Load Factor information on number of
sources sent and processed as well as
taken into consideration to reduce the active
portion size for each receiver.

"dynamic" LBM_SRC_TOPIC_ATTR_UMQ_ULB_L←↩
F_BEHAVIOR_DYNAMIC

Load Factor information sent and processed
as well as taken into consideration during
assignment to weight receiver choice.

41.1.19 umq_ulb_application_set_message_lifetime (source)

The message lifetime in milliseconds of one or more application sets specified as a list of entries in the format,
"Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the message lifetime to be set
associated that application set. A message lifetime of 0 means UMQ never discards the message.

Application sets not listed default to a timeout of 0 [forever].

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_application_set_attr_t

416 Ultra Messaging Queuing Options

Default
value:

empty (all application sets have a timeout of 0 [forever])

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1.20 umq_ulb_application_set_message_max_reassignments (source)

The maximum number of message reassignments before UMQ discards a message for one or more application
sets specified as a list of entries in the format, "Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the maximum number of reas-
signments associated that application set.

UMQ applies the initial assignment to this maximum. Setting this option to 1 means that the message will never
be reassigned. The default value of 0 means UMQ never discards the message due to too many reassignments.

Application sets not listed default to a maximum of 0.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_application_set_attr_t

Default
value:

empty (all application sets have a maximum 0 [never discard due to reassignment])

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1.21 umq_ulb_application_set_message_reassignment_timeout (source)

The message reassignment timeout (in milliseconds) of one or more application sets specified as a list of entries
in the format, "Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the message reassignment

41.1 Reference 417

timeout to be set associated that application set.

Application sets not listed default to a timeout of 10000 (10 seconds).

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_application_set_attr_t

Default
value:

empty (all application sets have a timeout of 10000 [10 sec])

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1.22 umq_ulb_application_set_receiver_activity_timeout (source)

The receiver activity timeout (in milliseconds) of one or more application sets specified as a list of entries in the
format, "Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the receiver activity timeout
associated that application set.

Application sets not listed default to an activity timeout of 10000 (10 seconds).

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_application_set_attr_t

Default
value:

empty (all application sets have a timeout of 10000 [10 sec])

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

418 Ultra Messaging Queuing Options

41.1.23 umq_ulb_application_set_receiver_keepalive_interval (source)

The interval (in milliseconds) between keepalive messages to receivers for one or more application sets speci-
fied as a list of entries in the format, "Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the receiver keepalive interval
associated that application set.

Application sets not listed default to an activity timeout of 1000 (1 second).

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_application_set_attr_t

Default
value:

empty (all application sets have a timeout of 1000 [1 sec])

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1.24 umq_ulb_application_set_round_robin_bias (source)

The bias assignment towards unassigned receivers for one or more application sets specified as a list of entries
in the format, "Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the round robin bias associated
that application set.

Large values increase the bias toward unassigned receivers. Zero (0) disables the bias.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_application_set_attr_t

Default
value:

1

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1 Reference 419

41.1.25 umq_ulb_check_interval (source)

The interval upon which ULB sources check for message reassignment, message discards, and receiver live-
ness.

See Ultra Load Balancing (ULB).

Scope: source

Type: unsigned long int
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1.26 umq_ulb_events (source)

A mask indicating what ULB events should be delivered to the source event callback. Applies to all application
sets and receiver types for the source.

For the configuration file as well as string API method of setting this option, the string value may be formatted
as hexadecimal value or a list of enumerated values separated by a '|' or ','.

Scope: source

Type: lbm_ulong_t
Units: mask
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

420 Ultra Messaging Queuing Options

String value Integer value Description

"MSG_CONSUME", "Msg←↩
Consume"

LBM_SRC_TOPIC_ATTR_UM←↩
Q_ULB_EVENT_MSG_CONS←↩
UME (0x1)

Deliver message consumption
events.

"MSG_TIMEOUT", "MsgTimeout" LBM_SRC_TOPIC_ATTR_UM←↩
Q_ULB_EVENT_MSG_TIMEO←↩
UT (0x2)

Deliver message timeout/discard
events.

"MSG_ASSIGNMENT", "Msg←↩
Assignment"

LBM_SRC_TOPIC_ATTR_UM←↩
Q_ULB_EVENT_MSG_ASSIG←↩
NMENT (0x4)

Deliver message assignment
events.

"MSG_REASSIGNMENT", "←↩
MsgReassignment"

LBM_SRC_TOPIC_ATTR_UM←↩
Q_ULB_EVENT_MSG_REASS←↩
IGNMENT (0x8)

Deliver message reassignment
events.

"MSG_COMPLETE", "Msg←↩
Complete"

LBM_SRC_TOPIC_ATTR_UM←↩
Q_ULB_EVENT_MSG_COMP←↩
LETE (0x10)

Deliver message completion
events. Messages are complete
once they are consumed or
discarded from all application
sets.

"RCV_TIMEOUT", "RcvTimeout" LBM_SRC_TOPIC_ATTR_UM←↩
Q_ULB_EVENT_RCV_TIMEO←↩
UT (0x20)

Deliver receiver timeout events.

"RCV_REGISTRATION", "Rcv←↩
Registration"

LBM_SRC_TOPIC_ATTR_UM←↩
Q_ULB_EVENT_RCV_REGIS←↩
TRATION (0x40)

Deliver receiver registration
events.

"RCV_DEREGISTRATION", "←↩
RcvDeregistration"

LBM_SRC_TOPIC_ATTR_UM←↩
Q_ULB_EVENT_RCV_DEREG←↩
ISTRATION (0x80)

Deliver receiver deregistration
events.

"RCV_READY", "RcvReady" LBM_SRC_TOPIC_ATTR_UM←↩
Q_ULB_EVENT_RCV_READY
(0x100)

Deliver receiver ready events.

41.1.27 umq_ulb_flight_size (source)

Specifies the number of messages allowed to be in flight (unconsumed) before a new message send either
blocks or triggers a notification (source event).

See Ultra Load Balancing (ULB).

Scope: source

Type: unsigned int
Units: messages

Default
value:

1000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1

41.1 Reference 421

41.1.28 umq_ulb_flight_size_behavior (source)

The behavior that UMQ follows when a message send exceeds the source's flight size.

See umq_ulb_flight_size (source).

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1

String value Integer value Description

"Block" LBM_FLIGHT_SIZE_BEHAVIOR_BLOCK The send call blocks when a message send
exceeds the source's flight size. If the mes-
sage send is a non-blocking send, the send
returns an LBM_EWOULDBLOCK. Default
for all.

"Notify" LBM_FLIGHT_SIZE_BEHAVIOR_NOTIFY A message send that exceeds the config-
ured flight size does not block but triggers a
flight size notification (source event), indicat-
ing that the flight size has been surpassed.
UMQ also sends a source event notification
if the number of in-flight messages falls be-
low the configured flight size.

41.1.29 umq_ulb_receiver_events (source)

Set the events mask of one or more receiver types specified as a list of entries in the format, "ID1:value1;ID2←↩
:value2;..."

"ID1" is the numeric receiver type ID associated with one or more receivers (see umq_receiver_type_id (re-
ceiver)), and "value1" is the evet mask to be associated with receivers of that type.

422 Ultra Messaging Queuing Options

The values may follow the same format as described in umq_ulb_events (source).

Receivers with types not listed default to a mask of 0.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_receiver_type_attr_t

Default
value:

empty (all receiver types have a mask of 0)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1.30 umq_ulb_receiver_portion (source)

The portion size of one or more receiver types specified as a list of entries in the format: "ID1:value1;ID2←↩
:value2;..."

"ID1" is the numeric receiver type ID associated with one or more receivers (see umq_receiver_type_id (re-
ceiver)), and "value1" is the portion size to be associated with receivers of that type.

Receivers with types not listed default to a portion size of 1.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_receiver_type_attr_t

Default
value:

empty (all receivers have portion size of 1)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1 Reference 423

41.1.31 umq_ulb_receiver_priority (source)

The priority of one or more receiver types specified as a list of entries in the format, "ID1:value1;ID2:value2;..."

"ID1" is the numeric receiver type ID associated with one or more receivers (see umq_receiver_type_id (re-
ceiver)), and "value1" is the priority to be associated with receivers of that type.

Receivers with types not listed default to a priority of 0.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: lbm_umq_ulb_receiver_type_attr_t

Default
value:

empty (all receivers have priority of 0)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

41.1.32 umq_ulb_source_activity_timeout (receiver)

The timeout value used to indicate when a ULB source is unresponsive.

The ULB source must not be active within this interval to be considered unresponsive. This value must be much
larger than the source check interval.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2 / UME 3.2 / UMQ 2.1

424 Ultra Messaging Queuing Options

41.1.33 umq_ulb_source_check_interval (receiver)

The interval between activity checks of a ULB source.

Allow a ULB receiver to proactively attempt re-registration with a ULB source if the receiver has not seen any
activity (including keepalives) from that source in a specified amount of time, provided the source's transport
session is still alive and valid.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2 / UME 3.2 / UMQ 2.1

41.1 Reference 425

426 Ultra Messaging Queuing Options

Chapter 42

Hot Failover Operation Options

Hot Failover (HF) allows your applications to build in sender redundancy. See Hot Failover in the Ultra Messaging
Concepts Guide for a discussion of using Hot Failover within a single receiver context or across multiple receiver
contexts.

42.1 Reference

42.1.1 delivery_control_loss_check_interval (hfx)

The interval between periodic forced loss checks.

This option defaults to 0, indicating that loss checks should only be made when a new message arrives.

Scope: hfx

Type: lbm_ulong_t
Units: msec
Default
value:

0 (no periodic loss checks)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

428 Hot Failover Operation Options

42.1.2 delivery_control_max_delay (hfx)

The minimum interval that must expire before the HFX Receiver declares a message unrecoverable and delivers
an unrecoverable loss message the application.

By default, the HFX Receiver only checks loss when it receives new messages. To enable periodic loss checks,
set the delivery_control_loss_check_interval (hfx) option.

Scope: hfx

Type: lbm_ulong_t
Units: msec
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

42.1.3 delivery_control_maximum_burst_loss (hfx)

This controls the size of a topic sequence number gap past which the gap is declared a "burst loss".

See Burst Loss for a detailed explanation of burst loss and its semantics. Note that the default value for HFX
is different than for non-HFX receivers.

Attention

For most use cases, Informatica recommends disabling "burst loss" by setting this option to a very large
number, perhaps 1,000,000,000.

Note

the burst loss control takes priority over all recovery methods. For example, if the receiver is reading a per-
sistent stream and OTR is enabled, a gap longer than delivery_control_maximum_burst_loss will immediately
declare the gap as unrecoverable without even trying to use OTR to recover. If message integrity is a high
priority, delivery_control_maximum_burst_loss should be set to a very large value.

See Hot Failover Across Multiple Contexts (HFX).

42.1 Reference 429

Scope: hfx

Type: lbm_uint_t

Units: number of messages (fragments)

Default
value:

512

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

42.1.4 delivery_control_maximum_total_map_entries (hfx)

The maximum number of map entries for the HFX order and loss maps.

This is a soft limit. When the sum of the number of loss records and the number of messages held for ordering
(messages that will be delivered once all prior messages have been delivered) is greater than this value,
the oldest consecutive sequence of loss records will be declared lost immediately to reduce the number of
outstanding map entries. A value of 0 indicates that the map should be allowed to grow without bound.

Scope: hfx

Type: size_t
Units: map entries

Default
value:

200000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

42.1.5 duplicate_delivery (hfx)

Flag indicating whether duplicate messages should be discarded or simply marked as duplicates.

Setting this to 1 overrides the hf_duplicate_delivery (receiver) setting on all underlying HFX Receivers.

Scope: hfx

Type: int

430 Hot Failover Operation Options

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

Value Description
1 The HFX delivers duplicate messages.

0 The HFX does not deliver duplicate messages. Default for all.

42.1.6 hf_duplicate_delivery (receiver)

Flag indicating if the Hot Failover receiver delivers duplicate messages or not.

In normal operation, Hot Failover only delivers the first copy received of a message.

See Hot Failover (HF) for more information.

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Value Description
1 The Hot Failover receiver delivers duplicate messages.

0 The Hot Failover receiver does not deliver duplicate messages. Default for all.

42.1 Reference 431

42.1.7 hf_optional_messages (receiver)

Indicates if a Hot Failover receiver can receive optional messages.

See also Hot Failover (HF).

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.5/UME 3.2.5/UMQ 2.1.5

Value Description
1 Hot Failover receivers can receive optional messages. Default for all.
0 Hot Failover receivers do not receive optional messages.

42.1.8 hf_receiver (wildcard_receiver)

Specifies whether to create hot failover receivers for each topic that maps to the wildcard receiver pattern.

See Hot Failover (HF) for more information.

Scope: wildcard_receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.2.2

Value Description

1 Create hot failover receivers for each matched topic.

0 Normal wildcard receiver operation. Hot failover sequence numbers are ignored. Default for all.

432 Hot Failover Operation Options

42.1.9 ordered_delivery (hfx)

Flag indicating if the HFX Receiver orders messages before delivery.

See Hot Failover Across Multiple Contexts (HFX).

Scope: hfx

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

String value Integer value Description

"1" 1 The HFX Receiver delivers messages in order. Default for all.
"-1" -1 The HFX Receiver delivers messages as soon as they are received. In

the case of fragmented messages, as soon as all fragments have been
received and reassembled.

42.1 Reference 433

434 Hot Failover Operation Options

Chapter 43

Automatic Monitoring Options

The Monitoring Options in this section apply to a given UM context.

You can override the default values of these options and apply monitoring option values to all UM contexts (trans-
ports and event queues) with the following environment variables:

• LBM_MONITOR_INTERVAL

• LBM_MONITOR_TRANSPORT

• LBM_MONITOR_TRANSPORT_OPTS

• LBM_MONITOR_FORMAT

• LBM_MONITOR_FORMAT_OPTS

• LBM_MONITOR_APPID

These variables will not override any Monitoring Options you explicitly set. The environment variables only override
Monitoring Options default values. Note that Informatica recommends the use of configuration options instead of
environment variables.

If you do not specify any monitoring options either in a UM configuration file or via lbm_context_attr_setopt() calls,
no monitoring will occur. However, if you then set the LBM_MONITOR_INTERVAL environment variable to 5, you
will turn on automatic monitoring for every UM context your application creates at 5 second intervals. If you then
set monitor_interval to 10 for a particular context, all transport sessions in that context will be monitored every 10
seconds.

For XML configuration files, you can configure an automatic monitoring context by setting the <context> attribute
name=infa_statistics_context.

See Automatic Monitoring for more information about this feature.

43.1 Reference

43.1.1 monitor_appid (context)

An application ID string used by automatic monitoring to identify the application generating the context and
transport statistics.

436 Automatic Monitoring Options

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: context

Type: string

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

43.1.2 monitor_appid (event_queue)

An application ID string used by automatic monitoring to identify the application generating the event queue
statistics.

See Event Queue Object for a full description of Event Queues.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: event_queue

Type: string

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

43.1.3 monitor_format (context)

The LBMMON format module to be used for automatic monitoring.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.14.

43.1 Reference 437

String value Integer value Description

"csv" LBM_CTX_ATTR_MON_FORMAT_CSV Use the LBMMON comma-separated values
format module. Default for all.

"pb" LBM_CTX_ATTR_MON_FORMAT_PB Use the LBMMON Protocol Buffers format
module. Not the default, but recommended;
see Monitoring Format Modules.

43.1.4 monitor_format (event_queue)

The LBMMON format module to be used for automatic monitoring.

See Event Queue Object for a full description of Event Queues.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: event_queue

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.14.

String value Integer value Description

"csv" LBM_CTX_ATTR_MON_FORMAT_CSV Use the LBMMON comma-separated values
format module. Default for all.

"pb" LBM_CTX_ATTR_MON_FORMAT_PB Use the LBMMON Protocol Buffers format
module.

438 Automatic Monitoring Options

43.1.5 monitor_format_opts (context)

An option string to be passed to the LBMMON format module for automatic monitoring of contexts and trans-
ports.

The option monitor_format (context) is used to select a formatting module for automatic monitoring. That
module is passed the value string supplied for monitor_format_opts to configure the module. The format of
the value string can vary, depending on the formatting module chosen. See Monitoring Format Modules for
module-specific details, including the valid option strings.

For example, for the "pb" (protocol buffer) module, the following directs the formatting module to pass through
and convert CSV data to protocol buffers:

context monitor_format_opts passthrough=convert

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: context

Type: string

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.14

43.1.6 monitor_format_opts (event_queue)

An option string to be passed to the LBMMON format module for automatic monitoring of event queues.

The option monitor_format (event_queue) is used to select a formatting module for automatic monitoring. That
module is passed the value string supplied for monitor_format_opts to configure the module. The format of
the value string can vary, depending on the formatting module chosen. See Monitoring Format Modules for
module-specific details, including the valid option strings.

For example, for the "pb" (protocol buffer) module, the following directs the formatting module to pass through
and convert CSV data to protocol buffers:

event_queue monitor_format_opts passthrough=convert

See Event Queue Object for a full description of Event Queues.

See Monitoring for an overview of monitoring an Ultra Messaging network.

43.1 Reference 439

Scope: event_queue

Type: string

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.14

43.1.7 monitor_interval (context)

Interval at which automatic monitoring retrieves the statistics for a context and all transport sessions on that
context.

Setting this option to zero (the default) disables automatic monitoring.

When enabled, a background context will sample and send the monitoring data. Note that a single monitoring
context will be created and configured with the monitoring options.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: context

Type: lbm_ulong_t
Units: seconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

43.1.8 monitor_interval (event_queue)

Interval at which automatic monitoring retrieves the statistics for an event queue.

Setting this option to zero (the default) disables the automatic monitoring of an event queue. When monitoring
Event Queue statistics you must enable the Event Queue UM Configuration Options, queue_age_enabled
(event_queue), queue_count_enabled (event_queue) and queue_service_time_enabled (event_queue). UM
disables these options by default, which produces no event queue statistics.

440 Automatic Monitoring Options

See Monitoring for an overview of monitoring an Ultra Messaging network.

See Event Queue Object for a full description of Event Queues.

Scope: event_queue

Type: lbm_ulong_t
Units: seconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

43.1.9 monitor_interval (receiver)

Interval at which automatic monitoring retrieves topic interest by the application.

Topic interest information contains source and topic information if the receiver has joined the source transport
session. If the topic interest information is blank, the receiver has not joined a source transport session. UM
System Monitoring uses this information to monitor the number of subscribed topics. Setting this option to zero
(the default) disables the automatic monitoring of receiver interest.

Warning

Enabling this for applications with large numbers of receivers will produce very large amounts of monitoring
data. It is not recommended unless the proto buffer formatting module is enabled.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: receiver

Type: lbm_ulong_t
Units: seconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.5.

43.1 Reference 441

43.1.10 monitor_interval (wildcard_receiver)

Interval at which automatic monitoring retrieves wildcard pattern interest by the application.

Topic interest information contains source and topic information if the receiver has joined the source transport
session. If the topic interest information is blank, the receiver has not joined a source transport session. UM
System Monitoring uses this information to monitor the number of subscribed topics. Setting this option to zero
(the default) disables the automatic monitoring of a wildcard receiver interest.

Warning

Enabling this for applications with large numbers of receivers can produce very large amounts of monitoring
data. It is not recommended unless the proto buffer formatting module is enabled.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: wildcard_receiver

Type: lbm_ulong_t
Units: seconds
Default
value:

0

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 6.5.

43.1.11 monitor_transport (context)

The LBMMON transport module to be used for automatic monitoring of a context and all transport sessions on
that context.

The monitor_transport_opts (context) option passes configuration information to the selected transport module.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Note that the UDP monitoring transport cannot be selected for automatic monitoring.

442 Automatic Monitoring Options

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

String value Integer value Description

"lbm" LBM_CTX_ATTR_MON_TRANSPORT_L←↩
BM

Use the LBMMON lbm transport module.
Default for all.

"lbmsnmp" LBM_CTX_ATTR_MON_TRANSPORT_L←↩
BMSNMP

Use the LBMMON lbmsnmp transport mod-
ule. This value is required if you use the UM
SNMP Agent.

43.1.12 monitor_transport (event_queue)

The LBMMON transport module to be used for automatic monitoring of event queues.

The monitor_transport_opts (event_queue) option passes configuration information to the selected transport
module.

Note that the UDP monitoring transport cannot be selected for automatic monitoring.

See Event Queue Object for a full description of Event Queues.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: event_queue

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

43.1 Reference 443

String value Integer value Description

"lbm" LBM_CTX_ATTR_MON_TRANSPORT_L←↩
BM

Use the LBMMON lbm transport module.
Default for all.

"lbmsnmp" LBM_CTX_ATTR_MON_TRANSPORT_L←↩
BMSNMP

Use the LBMMON lbmsnmp transport mod-
ule. This value is required if you use the UM
SNMP Agent.

43.1.13 monitor_transport_opts (context)

An option string to be passed to the LBMMON transport module for automatic monitoring of contexts and
transports.

The option monitor_transport (context) is used to select a transport module for automatic monitoring. That
module is passed the value string supplied for monitor_transport_opts to configure the module. The format of
the value string can vary, depending on the transport module chosen. See Monitoring Transport Modules for
module-specific details.

For example, for the LBM and SNMP transport modules, the following directs the transport module to use a
config file and overrides the resolver interface:

context monitor_transport_opts context|resolver_multicast_interface="en0";config=/um/mon.cfg

Note

Some UM options specify interfaces, which can be done by supplying the device name of the interface. Special
care must be taken when including this option in XML configuration files.

See Interface Device Names and XML for details.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: context

Type: string

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

444 Automatic Monitoring Options

43.1.14 monitor_transport_opts (event_queue)

An option string to be passed to the LBMMON transport module for automatic monitoring of event queues.

The option monitor_transport (event_queue) is used to select a transport module for automatic monitoring. That
module is passed the value string supplied for monitor_transport_opts to configure the module. The format of
the value string can vary, depending on the transport module chosen. See Monitoring Transport Modules for
module-specific details.

For example, for the LBM and SNMP transport modules, the following directs the transport module to use a
config file and overrides the resolver interface:

event_queue monitor_transport_opts context|resolver_multicast_interface="en0";config=/um/mon.cfg

Note

Some UM options specify interfaces, which can be done by supplying the device name of the interface. Special
care must be taken when including this option in XML configuration files.

See Interface Device Names and XML for details.

See Event Queue Object for a full description of Event Queues.

See Monitoring for an overview of monitoring an Ultra Messaging network.

Scope: event_queue

Type: string

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

43.1 Reference 445

446 Automatic Monitoring Options

Chapter 44

Deprecated Options

44.1 Reference

44.1.1 datagram_acceleration_functions (context)

DEPRECATED, do not use. Specifies the callback functions that implement Datagram Acceleration.

Refer to the description of lbm_datagram_acceleration_func_t for the callback definitions.

Scope: context

Type: lbm_datagram_acceleration_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in UM 6.10

Version: This option was deprecated in UM 6.13.1

44.1.2 delivery_control_loss_tablesz (receiver)

DEPRECATED, this controls the size of the hash table index used for storing unrecoverable loss state on a per
source per topic basis.

448 Deprecated Options

For LBT-RM and other datagram-based transport sessions only. Larger values mean larger hash tables and
probably better CPU usage under loss scenarios at the cost of more memory per source per topic. Smaller
values mean smaller hash tables and probably worse CPU usage under loss scenarios but with less memory
usage. The value used should be a prime number for efficiency.

Scope: receiver

Type: size_t
Units: table entries
Default
value:

131

When to
Set:

Can only be set during object initialization.

Version: Deprecated

44.1.3 delivery_control_order_tablesz (receiver)

DEPRECATED, this controls the size of the hash table index used for storing buffered data on a per source per
topic basis when ordered delivery is used.

For LBT-RM and other datagram-based transport sessions only. Larger values mean larger hash tables and
probably better CPU usage under loss scenarios at the cost of more memory per source per topic. Smaller
values mean smaller hash tables and probably worse CPU usage under loss scenarios but with less memory
usage. The value used should be a prime number for efficiency.

Scope: receiver

Type: size_t
Units: table entries
Default
value:

131

When to
Set:

Can only be set during object initialization.

Version: Deprecated

44.1.4 implicit_batching_type (source)

DEPRECATED, determines the algorithm to use for implicit batching.

44.1 Reference 449

This option has been deprecated because the adaptive batching algorithm has the same worst case for latency
as the default algorithm and is not better for throughput. This is because, even with adaptive batching, UM
cannot predict when the application will stop sending, at which point (unless the application calls the flush API)
the implicit batching interval must expire before the batch will be sent. To minimize latency while batching, it is
most effective to call the flush API whenever the application will not immediately send another message.

Scope: source

Type: int
When to
Set:

May be set during operation.

Version: This option was deprecated in UM 6.9.

String value Integer value Description

"default" LBM_SRC_TOPIC_ATTR_IMPLICIT_BA←↩
TCH_TYPE_DEFAULT

Implicit batching is controlled entirely by the
implicit_batching_minimum_length (source)
and implicit_batching_interval (source) op-
tions. Refer to Message Batching for ad-
ditional information. Default for all.

"adaptive" LBM_SRC_TOPIC_ATTR_IMPLICIT_BA←↩
TCH_TYPE_ADAPTIVE

Source-paced batching method that at-
tempts to adjust the amount of mes-
sages sent in each batch automatically.
The options, implicit_batching_minimum←↩
_length (source) and implicit_batching_←↩
interval (source), limit batch sizes and inter-
vals but sizes and intervals will usually be
much smaller. Setting this option may have
a negative impact on maximum throughput.

44.1.5 network_compatibility_mode (context)

DEPRECATED, enable compatibility mode which allows UM versions LBM-4.2/UME-3.2/UMQ-2.1 through UM
5.∗ to interoperate with UM versions prior to LBM-4.2/UME-3.2/UMQ-2.1 by blocking the sending of some
header option types.

This option has no effect on Ultra Messaging Versions 6.0 and later.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

450 Deprecated Options

Version: This option was implemented in LBM 4.2/UME 3.2/UMQ 2.1.

Version: This option was deprecated in UM 6.0 (documentation was updated to reflect this depreca-
tion in UM 6.9).

44.1.6 otr_request_duration (receiver)

DEPRECATED, the length of time a receiver continues to send OTR lost-message requests before giving up.
This option is deprecated in favor of otr_request_message_timeout (receiver).

See Off-Transport Recovery (OTR).

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

20000 (20 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UM 5.2

Version: This option was deprecated in UM 6.0

44.1.7 pattern_callback (wildcard_receiver)

DEPRECATED, callback function (and associated client data pointer) that is called when a pattern match is
desired for a topic discovered for a wildcard receiver if the pattern type is set to "appcb".

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

A function return value of 0 indicates the given topic should be considered part of the wildcard. A value of 1 or
more indicates the topic should NOT be considered matching the wildcard.

Scope: wildcard_receiver

Type: lbm_wildcard_rcv_compare_func_t

44.1 Reference 451

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

44.1.8 rcv_sync_cache (receiver)

DEPRECATED, UMCache only - a valid cache address (such as TCP:192.168.5.11:4567) in the standard form
of TCP:address:port enables a UM receiver to use UMCache to receive a snapshot of larger, multiple-
field messages stored by UMCache.

Receiving applications can then become synchronized with the live stream of messages sent on the receiver's
topic. address is the IP address of the machine where the UMCache runs and port is the configured port
where the cache request handler listens.

Scope: receiver

Type: umcache_reqlib_request_info_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.0/UMP 5.0/UMQ 5.0

Version: This option was deprecated in UM 6.9

44.1.9 rcv_sync_cache_timeout (receiver)

DEPRECATED, the maximum time period that a UM receiver waits for a snapshot message from the UMCache.

UMCache only.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

2000 (2 seconds)

452 Deprecated Options

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMS 5.0/UMP 5.0/UMQ 5.0

Version: This option was deprecated in UM 6.9

44.1.10 receive_thread_pool_size (context)

DEPRECATED, this option no longer functions.

It used to define the maximum number of threads available for transports (excluding the context thread). The
MTT feature is replaced in 6.11 and beyond by Transport Services Provider (XSP).

Scope: context

Type: int

Default
value:

4

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1.

Version: This option was deprecated in UM 6.9

Version: This option was removed from UM 6.11

44.1.11 resolver_active_source_interval (context)

DEPRECATED, interval between sending Topic Resolution advertisements for active sources.

A value of 0 indicates that periodic advertisements should not be sent (sources will still respond to queries).
When set to 0, the resolver_active_threshold should typically also be set to 0. See also Disabling
Aspects of Topic Resolution.

Note: Although this option is eligible to be set during operation, two considerations exist. If this option is
disabled at initialization (set to 0), you cannot re-set the option during operation.Disabling this option by setting
it to 0 (zero) during operation prevents you from re-setting the option a second time during operation.

44.1 Reference 453

Scope: context

Type: unsigned long int
Units: milliseconds
Default
value:

1000 (1 second)

When to
Set:

May be set during operation.

Version: This option was deprecated in LBM 4.0

44.1.12 resolver_active_threshold (context)

DEPRECATED, number of seconds since the last application message was sent to a source that causes that
source to be marked inactive.

Inactive sources are not advertised periodically (but will continue to respond to queries). A value of 0 indicates
that sources will advertise periodically regardless of how often the application sends messages. Note that for
publishers with large numbers of sources, this can increase the topic resolution traffic load.

However, also note that this option SHOULD be set to 0 if periodic advertisements are disabled. See Disabling
Aspects of Topic Resolution and Interrelated Configuration Options.

Scope: context

Type: unsigned long int
Units: seconds
Default
value:

60

When to
Set:

May be set during operation.

Version: This option was deprecated in LBM 4.0

44.1.13 resolver_context_advertisement_interval (context)

DEPRECATED, interval between context advertisements.

Setting this option to 0 disables context advertisements, though DRO and other functionality depends upon
context advertisements, so a value of 0 is not generally recommended.

454 Deprecated Options

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was deprecated in UM 6.0

44.1.14 resolver_maximum_advertisements (context)

DEPRECATED, maximum number of topics that will be advertised per active source interval.

A value of 0 means to advertise all topics.

Scope: context

Type: unsigned long int

Units: Number of topics

Default
value:

0 (all topics)

When to
Set:

May be set during operation.

Version: This option was deprecated in LBM 4.0

44.1.15 resolver_maximum_queries (context)

DEPRECATED, maximum number of topics that will be queried for per query interval.

A value of 0 means to query for all topics that do not have at least one source.

Scope: context

Type: unsigned long int

Units: Number of topics

Default
value:

0 (all topics with no source)

44.1 Reference 455

When to
Set:

May be set during operation.

Version: This option was deprecated in LBM 4.0

44.1.16 resolver_query_interval (context)

DEPRECATED, interval between query transmissions for receivers attempting Topic Resolution.

A value of 0 indicates queries should not be sent. See also Disabling Aspects of Topic Resolution.

Note: Although this option is eligible to be set during operation, two considerations exist. If this option is
disabled at initialization (set to 0), you cannot re-set the option during operation.Disabling this option by setting
it to 0 (zero) during operation prevents you from re-setting the option a second time during operation.

Scope: context

Type: unsigned long int
Units: milliseconds
Default
value:

100 (0.1 seconds)

When to
Set:

May be set during operation.

Version: This option was deprecated in LBM 4.0

44.1.17 resolver_query_max_interval (wildcard_receiver)

DEPRECATED, this sets the maximum interval between wildcard queries in topic resolution (when used).

Only PCRE and regex pattern types can use wildcard queries. A value of 0 indicates wildcard queries should
not be sent. UM currently queries a maximum of 250 unique wildcard patterns (receivers).

Note: Although this option is eligible to be set during operation, two considerations exist.

• If this option is disabled at initialization (set to 0), you cannot re-set the option during operation.

• Disabling this option by setting it to 0 (zero) during operation prevents you from re-setting the option a
second time during operation.

456 Deprecated Options

Scope: wildcard_receiver

Type: unsigned long int
Units: milliseconds
Default
value:

0 (do not query)

When to
Set:

Can only be set during object initialization.

Version: This option was deprecated in LBM 4.0

44.1.18 resolver_unicast_address (context)

DEPRECATED, the IP address (or domain name of the IP address) to send unicast topic resolution messages
to.

This option was deprecated in UMS 5.0. Use resolver_unicast_daemon (context) instead.

If set to 0.0.0.0 (INADDR_ANY), then topic resolution uses multicast (the default). If set to anything else, then
topic resolution messages go to the IP address specified.

Scope: context

Type: struct in_addr

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

Version: This option was deprecated in UMS 5.0.

44.1.19 resolver_unicast_destination_port (context)

DEPRECATED, the UDP port to send unicast topic resolution messages to. This is the UDP port used by the
UM resolution daemon (lbmrd).

This option was deprecated in UMS 5.0. Use resolver_unicast_daemon (context) instead.

See Port Assignments for more information about configuring ports.

44.1 Reference 457

Scope: context

Type: lbm_uint16_t

Default
value:

15380

Byte order: Network

When to
Set:

Can only be set during object initialization.

Version: This option was deprecated in UMS 5.0.

44.1.20 resolver_unicast_port (context)

DEPRECATED, the local UDP port used for unicast topic resolution messages.

This option was deprecated in UMS 5.0. Use resolver_unicast_daemon (context) instead. The UM resolution
daemon (lbmrd) will send unicast topic resolution messages to this UDP port. A value of 0 indicates that
UM should pick an open port in the range (resolver_unicast_port_low (context), resolver_unicast_port_high
(context)). See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

0 (pick open port)

Byte order: Network

When to
Set:

Can only be set during object initialization.

Version: This option was deprecated in UMS 5.0.

44.1.21 retransmit_message_map_tablesz (source)

DEPRECATED, the size of the hash table that the source uses to store messages for the retention policy in
effect.

A larger table means more messages can be stored more efficiently, but takes up more memory. A smaller
table uses less memory, but costs more CPU time as more messages are retained. See Configuring Late
Join for Large Numbers of Messages for additional information.

458 Deprecated Options

Scope: source

Type: size_t

Default
value:

131

When to
Set:

Can only be set during object initialization.

Version: This option has been deprecated.

44.1.22 retransmit_request_generation_interval (receiver)

DEPRECATED, the maximum interval between when a receiver first sends a retransmission request and when
the receiver stops and reports loss on the remaining RXs not received.

See Configuring Late Join for Large Numbers of Messages for additional information.

This option is deprecated and has no effect. Use retransmit_request_message_timeout (receiver) instead.

Scope: receiver

Type: lbm_ulong_t
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was deprecated in UM 6.0

44.1.23 source_cost_evaluation_function (context)

DEPRECATED, callback function that you can use in the lbm_src_cost_function_cb() to evaluate or deter-
mine the cost of a message path.

The DRO evaluates the cost of any new topic it detects. The callback supplied with this option can affect the
cost of topics to bias the DRO toward certain message paths.

44.1 Reference 459

Scope: context

Type: lbm_src_cost_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in UMS 5.0/UMP 5.0/UMQ 5.0

Version: This option was deprecated in UM 6.0

44.1.24 transport_datagram_max_size (context)

DEPRECATED, do not use. The maximum datagram size that can be generated by UM. The default value is
8192, the minimum is 400 bytes, and the maximum is 65535.

This configuration option is replaced by the following transport-specific options: transport_tcp_datagram_max←↩
_size (context), transport_lbtrm_datagram_max_size (context), transport_lbtru_datagram_max_size (context),
transport_lbtipc_datagram_max_size (context), transport_lbtsmx_datagram_max_size (source).

Scope: context

Type: unsigned int
Units: bytes

Default
value:

8192

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.3.5/UME 2.0.3.

Version: This option was deprecated in LBM 4.1

44.1.25 transport_lbtipc_acknowledgement_interval (receiver)

DEPRECATED, period of time between acknowledgement (keepalive) messages sent from the receiver to the
IPC source.

See also transport_lbtipc_client_activity_timeout (source).

460 Deprecated Options

Scope: receiver

Type: unsigned long int
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was deprecated in LBM 4.0

44.1.26 transport_lbtipc_client_activity_timeout (source)

DEPRECATED, the maximum period of inactivity (lack of acknowledgement keepalive messages) from a re-
ceiver before the source deletes the receiver from its active receiver table.

The IPC source signals all receivers in its active receiver's table when it writes new data to the shared memory
area. See also transport_lbtipc_acknowledgement_interval (receiver).

Scope: source

Type: unsigned long int
Units: milliseconds
Default
value:

10,000 (10 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was deprecated in LBM 4.0

44.1.27 transport_lbtrdma_datagram_max_size (context)

DEPRECATED, the maximum datagram size that can be generated for a LBT-RDMA transport session. The
default value is 4096, the minimum is 500 bytes, and the maximum is 4096.

See Message Fragmentation and Reassembly for more information.

44.1 Reference 461

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Users of kernel-bypass drivers should also see Dynamic Fragmentation Reduction.

Scope: context

Type: lbm_uint_t
Units: bytes

Default
value:

4096

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version: This option was deprecated in UM 6.9

44.1.28 transport_lbtrdma_interface (source)

DEPRECATED, do not use. Specifies the network interface over which UM LBT-RDMA sources receive con-
nection requests from topic receivers.

You can specify the full IP address of the interface, or just the network part (see Specifying Interfaces for
details).

Default is set to INADDR_ANY, meaning that it accepts incoming connection requests from any interface.

Be aware that the first source joining a transport session sets the interface with this option. Thus, setting a
different interface for a subsequent topic that maps onto the same transport session will have no effect.

Scope: source

Type: lbm_ipv4_address_mask_t

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version: This option was deprecated in UM 6.9

462 Deprecated Options

44.1.29 transport_lbtrdma_maximum_ports (context)

DEPRECATED, maximum number of LBT-RDMA sessions to allocate.

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Units: number of ports

Default
value:

5

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version: This option was deprecated in UM 6.9

44.1.30 transport_lbtrdma_port (source)

DEPRECATED, port number for a specific source's LBT-RDMA session.

Must be outside the transport_lbtrdma_port_low (context) and transport_lbtrdma_port_high (context) range.

See Port Assignments for more information about configuring ports.

Scope: source

Type: lbm_uint16_t

Default
value:

0 (zero)

Byte order: Host

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version: This option was deprecated in UM 6.9

44.1 Reference 463

44.1.31 transport_lbtrdma_port_high (context)

DEPRECATED, highest port number that can be assigned to a LBT-RDMA session.

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

20,020

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version: This option was deprecated in UM 6.9

44.1.32 transport_lbtrdma_port_low (context)

DEPRECATED, lowest port number that can be assigned to a LBT-RDMA session.

See Port Assignments for more information about configuring ports.

Scope: context

Type: lbm_uint16_t

Default
value:

20,001

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version: This option was deprecated in UM 6.9

464 Deprecated Options

44.1.33 transport_lbtrdma_receiver_thread_behavior (context)

DEPRECATED, receiver behavior for monitoring a LBT-RDMA source's shared memory area for new data.

LBT-RDMA is deprecated.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version: This option was deprecated in UM 6.9

String value Integer value Description

"pend" LBM_CTX_ATTR_RDMA_RCV_THREA←↩
D_PEND

Receiver waits (sleep) for notification from
RDMA that the source has updated the
shared memory area with new data. Default.
Default for all.

"busy_wait" LBM_CTX_ATTR_RDMA_RCV_THREA←↩
D_BUSY_WAIT

UM polls the shared memory area for new
data.

44.1.34 transport_lbtrdma_transmission_window_size (source)

DEPRECATED, size of an LBT-RDMA transport's shared memory area.

This value may vary across platforms. The actual size of the shared memory area equals the value you specify
for this option plus about 64 KB for header information. The minimum value for this option is 65,536.

Refer to Source Object for additional information.

Scope: source

Type: size_t
Units: bytes

Default
value:

25165824 (24 MB)

When to
Set:

Can only be set during object initialization.

44.1 Reference 465

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version: This option was deprecated in UM 6.9

44.1.35 ume_message_map_tablesz (source)

DEPRECATED, the size of the hash table that the source uses to store messages for the retention policy in
effect.

A larger table means more messages can be stored more efficiently, but takes up more memory. A smaller
table uses less memory, but costs more CPU time as more messages are retained. This setting no longer has
any effect.

Scope: source

Type: size_t

Default
value:

131

When to
Set:

Can only be set during object initialization.

Version: This option has been deprecated.

44.1.36 ume_primary_store_address (source)

REMOVED. IPv4 address of the persistent Store to be used as the primary Store.

A value of 0.0.0.0 (or INADDR_ANY) indicates no Store is set as the primary. In other words, persistence is not
enabled for the source.

This option is removed. Please use the ume_store (source) option instead.

Scope: source

Type: struct in_addr

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

Version: This option was removed in UME 2.0

466 Deprecated Options

44.1.37 ume_primary_store_port (source)

REMOVED. TCP port of the primary persistent Store.

This option is removed. Please use the ume_store option instead.

See Port Assignments for more information about configuring ports.

Scope: source

Type: lbm_uint16_t

Default
value:

14567

Byte order: Network

When to
Set:

Can only be set during object initialization.

Version: This option was removed in UME 2.0

44.1.38 ume_registration_id (source)

DEPRECATED, 32-bit value that is used by a persistent Store to identify a source.

If a source desires to identify itself as a previously known source (after a crash or shutdown), it should set the ID
to the value it was using before. A value of 0 indicates the source will allow the persistent Store to assign an ID.
This option is deprecated. Its use is not recommended except by legacy systems. Please use the ume_store
option instead.

Scope: source

Type: lbm_uint_t

Units: identifier
Default
value:

0 (allow persistent Store to assign ID)

When to
Set:

Can only be set during object initialization.

Version: This option was deprecated in UME 2.0

44.1 Reference 467

44.1.39 ume_retransmit_request_generation_interval (receiver)

DEPRECATED, the maximum interval between when a retransmission request is first sent and when it is given
up on and loss is reported.

This option is retained for backwards compatibility. The retransmit_request_generation_interval (receiver) op-
tion should be used instead.

Scope: receiver

Type: unsigned long int
Units: milliseconds
Default
value:

10000 (10 seconds)

When to
Set:

Can only be set during object initialization.

44.1.40 ume_retransmit_request_interval (receiver)

DEPRECATED, the interval between retransmission request messages to the persistent Store or to the source.

This option is retained for backwards compatibility. The retransmit_request_interval (receiver) option should be
used instead.

Scope: receiver

Type: unsigned long int
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

468 Deprecated Options

44.1.41 ume_retransmit_request_maximum (receiver)

DEPRECATED, the maximum number of messages to request back from the current latest message when late
joining a topic or when registering with a persistent Store.

A value of 0 indicates no maximum.

This option is retained for backwards compatibility. The retransmit_request_maximum (receiver) option should
be used instead.

Scope: receiver

Type: unsigned long int
Units: messages

Default
value:

0

When to
Set:

Can only be set during object initialization.

44.1.42 ume_retransmit_request_outstanding_maximum (receiver)

DEPRECATED, the maximum number of messages to request at a single time from the Store or source.

A value of 0 indicates no maximum.

This option is retained for backwards compatibility. The retransmit_request_outstanding_maximum (receiver)
option should be used instead.

Scope: receiver

Type: unsigned long int
Units: messages

Default
value:

10

When to
Set:

Can only be set during object initialization.

44.1 Reference 469

44.1.43 ume_secondary_store_address (source)

REMOVED. IPv4 address of the persistent Store to be used as the secondary Store.

A value of 0.0.0.0 (or INADDR_ANY) indicates no Store is set as the secondary.

This option is removed. Please use the ume_store (source) option instead.

Scope: source

Type: struct in_addr

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

Version: This option was removed in UME 2.0

44.1.44 ume_secondary_store_port (source)

REMOVED. TCP port of the secondary persistent Store.

This option is removed. Please use the ume_store (source) option instead.

See Port Assignments for more information about configuring ports.

Scope: source

Type: lbm_uint16_t

Default
value:

14567

Byte order: Network

When to
Set:

Can only be set during object initialization.

Version: This option was removed in UME 2.0

470 Deprecated Options

44.1.45 ume_tertiary_store_address (source)

REMOVED. IPv4 address of the persistent Store to be used as the tertiary Store.

A value of 0.0.0.0 (or INADDR_ANY) indicates no Store is set as the tertiary.

This option is removed. Please use the ume_store (source) option instead.

Scope: source

Type: struct in_addr

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

Version: This option was removed in UME 2.0

44.1.46 ume_tertiary_store_port (source)

REMOVED. TCP port of the tertiary persistent Store.

This option is removed. Please use the ume_store (source) option instead.

See Port Assignments for more information about configuring ports.

Scope: source

Type: lbm_uint16_t

Default
value:

14567

Byte order: Network

When to
Set:

Can only be set during object initialization.

Version: This option was removed in UME 2.0

44.1 Reference 471

44.1.47 umq_flight_size (context)

DEPRECATED, specifies the number of Multicast Immediate Messages allowed to be in flight (unstabilized at
a queue) before a new message send either blocks or triggers a notification (source event).

See Ultra Load Balancing (ULB).

Scope: context

Type: unsigned int
Units: messages

Default
value:

1000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1

Version: This option was deprecated in UMQ 6.8

44.1.48 umq_flight_size (source)

DEPRECATED, specifies the number of messages allowed to be in flight (unstabilized at a queue) before a
new message send either blocks or triggers a notification (source event).

See Ultra Load Balancing (ULB).

Scope: source

Type: unsigned int
Units: messages

Default
value:

1000

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1

Version: This option was deprecated in UM 6.8

472 Deprecated Options

44.1.49 umq_flight_size_behavior (context)

DEPRECATED, the behavior that UMQ follows when a MIM send exceeds the context's flight size.

See Multicast Immediate Messaging for general information about MIM.

See umq_flight_size (source).

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1

Version: This option was deprecated in UMQ 6.8

String value Integer value Description

"Block" LBM_FLIGHT_SIZE_BEHAVIOR_BLOCK The send call blocks when a MIM send ex-
ceeds the context's flight size. If the M←↩
IM send is a non-blocking send, the send
returns an LBM_EWOULDBLOCK. Default
for all.

"Notify" LBM_FLIGHT_SIZE_BEHAVIOR_NOTIFY A message send that exceeds the config-
ured flight size does not block but triggers
a flight size notification (context event), in-
dicating that the flight size has been sur-
passed. UMQ also sends a context event
notification if the number of in-flight mes-
sages falls below the configured flight size.

44.1.50 umq_flight_size_behavior (source)

DEPRECATED, the behavior that UMQ follows when a message send exceeds the source's flight size.

See umq_flight_size (source).

Scope: source

44.1 Reference 473

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1

Version: This option was deprecated in UM 6.8

String value Integer value Description

"Block" LBM_FLIGHT_SIZE_BEHAVIOR_BLOCK The send call blocks when a source sends
a message that exceeds its flight size. If the
source uses a non-blocking send, the send
returns an LBM_EWOULDBLOCK. Default
for all.

"Notify" LBM_FLIGHT_SIZE_BEHAVIOR_NOTIFY A message send that exceeds the config-
ured flight size does not block but triggers a
flight size notification (source event), indicat-
ing that the flight size has been surpassed.
UMQ also sends a source event notification
if the number of in-flight messages falls be-
low the configured flight size.

44.1.51 umq_message_retransmission_interval (context)

DEPRECATED, the interval between retransmissions of data messages when submitting to a Queue.

For general information on queuing, see Queuing.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

474 Deprecated Options

44.1.52 umq_message_stability_notification (context)

DEPRECATED, flag indicating the context is interested in receiving notifications of message stability from
Queues via the context event mechanism.

Even when turned off, Queues will continue to send message stability notifications to the context for retention
purposes. However, no notification will be delivered to the application.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

Value Description

1 The context wishes to receive message stability notification. Default for all.

0 The context does not wish to receive message stability notifications.

44.1.53 umq_msg_total_lifetime (context)

DEPRECATED, establishes the period of time from when a queue receives a message, or, for ULB, when a
source sends a message, until the time the message cannot be assigned or reassigned to a receiver. The
queue deletes the message upon expiration of the lifetime.

You can also set UMQ umestored option message-total-lifetime for the source's topic on the queue. However,
the message-total-lifetime option is overridden by any value assigned to umq_msg_total_lifetime (source). The
default value of 0 (zero) disables this option.

Note: This option is overridden by any message lifetime value set using send call, lbm_src_send_ex().

Scope: context

Type: lbm_ulong_t

44.1 Reference 475

Units: milliseconds
Default
value:

0 (zero)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.2 / UME 3.2 / UMQ 2.1

Version: This option was deprecated in UMQ 6.8

44.1.54 umq_queue_check_interval (context)

DEPRECATED, the interval between activity checks of the individual UMQ queues.

For general information on queuing, see Queuing.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

44.1.55 umq_queue_name (source)

DEPRECATED, the queue to submit messages to when sending.

For general information on queuing, see Queuing.

Scope: source

Type: string

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

476 Deprecated Options

44.1.56 umq_queue_participants_only (source)

DEPRECATED, flag indicating the source only desires queue participants to listen to the topic.

For general information on queuing, see Queuing.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

Value Description
1 The source desires that only queue participants listen to the topic.

0 The source desires anyone to listen to the topic without regard to queue participation. Default for all.

44.1.57 umq_queue_query_interval (context)

DEPRECATED, the interval between queries sent for resolving Queues.

This option is no longer functional.

Scope: context

Type: lbm_ulong_t
Units: milliseconds
Default
value:

200 (0.2 seconds)

When to
Set:

Can only be set during object initialization.

44.1 Reference 477

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

44.1.58 umq_require_queue_authentication (context)

DEPRECATED, indicates if an application requires a queue to authenticate itself before accepting the queue's
responses to Queue Browser commands.

For general information on queuing, see Queuing.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in UMQ 5.2.2.

Version: This option was deprecated in UMQ 6.8

Value Description

1 An application requires the queue to successfully authenticate before using browsing command
responses from the queue. Default for all.

0 An application does not require queue authentication.

44.1.59 umq_retention_intergroup_stability_behavior (context)

DEPRECATED, the behavior that the context will follow when determining the stability of a message from an
inter-group perspective.

This has a direct impact on the release policy for the context in that a message must be stable before it may be
released. To be stable, a message must first be stable within the group and then stable between groups.

478 Deprecated Options

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

String value Integer value Description

"any", "any-group" LBM_SRC_TOPIC_ATTR_UMQ_STA←↩
BLE_BEHAVIOR_ANY

Message is considered stable once it is
stable in any group. Default for all.

"majority" LBM_SRC_TOPIC_ATTR_UMQ_STA←↩
BLE_BEHAVIOR_MAJORITY

Message is considered stable once it is
stable in a majority of groups.

"all", "all-groups" LBM_SRC_TOPIC_ATTR_UMQ_STA←↩
BLE_BEHAVIOR_ALL

Message is considered stable once it is
stable in all groups.

"all-active" LBM_SRC_TOPIC_ATTR_UMQ_STA←↩
BLE_BEHAVIOR_ALL_ACTIVE

Message is considered stable once it is
stable in all active groups. A group is
considered active if it has at least a quo-
rum of active or registered queues. Inter-
group stability requires at least one stable
group.

44.1.60 umq_retention_intergroup_stability_behavior (source)

DEPRECATED, the behavior that the source will follow when determining the stability of a message from an
inter-group perspective.

This has a direct impact on the release policy for the context in that a message must be stable before it may be
released. To be stable, a message must first be stable within the group and then stable between groups.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

44.1 Reference 479

String value Integer value Description

"any", "any-group" LBM_SRC_TOPIC_ATTR_UMQ_STA←↩
BLE_BEHAVIOR_ANY

Message will be considered stable once
any group has reached intra-group stabil-
ity for the message. Default for all.

"majority" LBM_SRC_TOPIC_ATTR_UMQ_STA←↩
BLE_BEHAVIOR_MAJORITY

Message will be considered stable once
a majority of groups have reached intra-
group stability for the message.

"all", "all-groups" LBM_SRC_TOPIC_ATTR_UMQ_STA←↩
BLE_BEHAVIOR_ALL

Message will be considered stable once
all groups have reached intra-group sta-
bility for the message.

"all-active" LBM_SRC_TOPIC_ATTR_UMQ_STA←↩
BLE_BEHAVIOR_ALL_ACTIVE

Message will be considered stable once
all active groups have reached intra-
group stability for the message.

44.1.61 umq_retention_intragroup_stability_behavior (context)

DEPRECATED, the behavior that the context will follow when determining the stability of a message from an
intra-group perspective.

This has a direct impact on the release policy for the context in that a message must be stable before it may be
released. To be stable, a message must first be stable within the group and then stable between groups.

Scope: context

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

String value Integer value Description

"quorum" LBM_SRC_TOPIC_ATTR_UMQ_STAB←↩
LE_BEHAVIOR_QUORUM

Message is considered stable within the
group once a quorum (or majority) of the
queues have acknowledged the message
as stable. Default for all.

480 Deprecated Options

String value Integer value Description
"all", "all-stores" LBM_SRC_TOPIC_ATTR_UMQ_STAB←↩

LE_BEHAVIOR_ALL
Message is considered stable with the
group once all queues have acknowledged
the message as stable.

"all-active" LBM_SRC_TOPIC_ATTR_UMQ_STAB←↩
LE_BEHAVIOR_ALL_ACTIVE

Message is considered stable with the
group once all active queues have ac-
knowledged the message as stable.

44.1.62 umq_retention_intragroup_stability_behavior (source)

DEPRECATED, the behavior that the source will follow when determining the stability of a message from an
intra-group perspective.

This has a direct impact on the release policy for the context in that a message must be stable before it may be
released. To be stable, a message must first be stable within the group and then stable between groups.

Scope: source

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

String value Integer value Description

"quorum" LBM_SRC_TOPIC_ATTR_UMQ_STAB←↩
LE_BEHAVIOR_QUORUM

Message will be considered stable within
the group once a quorum (or majority) of
the queues have acknowledged the mes-
sage as stable. Default for all.

"all", "all-stores" LBM_SRC_TOPIC_ATTR_UMQ_STAB←↩
LE_BEHAVIOR_ALL

Message will be considered stable with the
group once all queues have acknowledged
the message as stable.

"all-active" LBM_SRC_TOPIC_ATTR_UMQ_STAB←↩
LE_BEHAVIOR_ALL_ACTIVE

Message will be considered stable with
the group once all active queues have ac-
knowledged the message as stable.

44.1 Reference 481

44.1.63 use_transport_thread (receiver)

DEPRECATED, this option no longer functions.

It used to determine whether UM uses a thread from the receiver thread pool to process message data or if it
uses the context thread, which is the default. The MTT feature is replaced in 6.11 and beyond by Transport
Services Provider (XSP).

Scope: receiver

Type: int

When to
Set:

Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1.

Version: This option was deprecated in UM 6.9

Version: This option was removed from UM in UM 6.11

String value Integer value Description

"1" 1 UM uses a thread from the receiver thread pool.

"0" 0 UM uses the context thread to process message data. Default for all.

482 Deprecated Options

	Introduction
	Configuration Overview
	Assignment Methods
	Assignment Flow
	Definitions
	Which Method Should I Use?
	Configuration Error Handling
	Host Name Resolution
	Configuration Files

	XML Configuration Files
	XML Configuration Concepts
	XML Reference Names
	XML Object Names
	XML Application Names

	xml:space Attribute
	Order and Rule Specifications
	Constraining Configuration Values
	Restricting Topics
	Overlapping Topics

	UM Default Values
	Reading XML Configuration Files
	Using XML Configuration Files With a UM Application
	XML Configuration File Format
	Share/Merge XML Files with XInclude
	Common XInclude Use Case

	XML Configuration File Elements
	UM Element `¨<um-configuration>`¨
	UM Element `¨<applications>`¨
	UM Element `¨<application>`¨
	UM Element `¨<application-data>`¨
	UM Element `¨<hfxs>`¨
	UM Element `¨<topic>`¨
	UM Element `¨<options>`¨
	UM Element `¨<option>`¨
	UM Element `¨<deny>`¨
	UM Element `¨<allow>`¨
	UM Element `¨<event-queues>`¨
	UM Element `¨<event-queue>`¨
	UM Element `¨<contexts>`¨
	UM Element `¨<context>`¨
	UM Element `¨<wildcard-receivers>`¨
	UM Element `¨<wildcard-receiver>`¨
	UM Element `¨<receivers>`¨
	UM Element `¨<sources>`¨
	UM Element `¨<templates>`¨
	UM Element `¨<template>`¨
	UM Element `¨<license>`¨

	XML Configuration File DTD
	Sample XML Configuration File

	Plain Text Configuration Files
	Reading Plain Text Configuration Files
	Plain Text Configuration File Format

	Attributes Objects
	Creating An Attributes Object
	Setting an Option from a Binary Value
	Setting an Option from Arrays of Binary Values

	Setting an Option from a String Value
	Getting an Option as a Binary Value
	Getting an Option as a String Value
	Deleting an Attributes Object

	Access to Current Operating Options
	Retrieving Current Option Values
	Getting Current Option as a Binary Value
	Getting Current Option as a String Value

	Modifying Current Option Values
	Setting Current Option from a Binary Value
	Setting Current Option from a String Value

	Example Configuration Scenarios
	Highest Throughput
	Lowest Latency
	Creating Multicast Sources
	Disabling Aspects of Topic Resolution
	Disabling Topic Advertisements
	Disabling Receiver Topic Queries
	Disabling Wildcard Topic Queries
	Disabling Store (Context) Name Queries
	All But the Minimum Topic Resolution Traffic

	Unicast Resolver
	Re-establish Pre-4.0 Topic Resolution
	Re-establish Pre-LBM 3.3 (Pre-UME 2.0) Port Defaults
	Configure New Port Defaults

	Interrelated Configuration Options
	Preventing NAK Storms with NAK Intervals
	Preventing Tail Loss With TSNI and NAK Interval Options
	Preventing Undetected Unrecoverable Loss
	Preventing Undetected Late Join Loss
	Preventing IPC Receiver Deafness With Keepalive Options
	Preventing Erroneous LBT-RM/LBT-RU Session Timeouts
	Preventing Errors Due to Bad Multicast Address Ranges
	Preventing Store Timeouts
	Preventing ULB Timeouts
	Preventing Unicast Resolver Daemon Timeouts
	Preventing Store Registration Hangs

	General Configuration Guidelines
	Case Sensitivity
	Specifying Interfaces
	Interface Device Names and XML

	Socket Buffer Sizes
	Port Assignments
	Ephemeral Ports
	Network VS Host Order

	Reference Entry Format

	Special Notes
	Configuring Multi-Homed Hosts
	Traversing a Firewall

	Major Options
	Reference
	broker (context)
	compatibility_include_pre_um_6_0_behavior (context)
	context_event_function (context)
	context_name (context)
	default_interface (context)
	dynamic_fragmentation_reduction (context)
	fd_management_type (context)
	file_descriptor_management_behavior (context)
	message_selector (receiver)
	multiple_receive_maximum_datagrams (context)
	operational_mode (context)
	operational_mode (xsp)
	ordered_delivery (receiver)
	receiver_callback_service_time_enabled (context)
	resolver_source_notification_function (context)
	source_event_function (context)
	source_includes_topic_index (context)
	transport (source)
	transport_demux_tablesz (receiver)
	transport_mapping_function (context)
	transport_session_multiple_sending_threads (context)
	transport_session_single_receiving_thread (context)
	transport_source_side_filtering_behavior (source)
	transport_topic_sequence_number_info_active_threshold (source)
	transport_topic_sequence_number_info_interval (source)
	transport_topic_sequence_number_info_request_interval (receiver)
	transport_topic_sequence_number_info_request_maximum (receiver)
	use_extended_reclaim_notifications (source)
	zero_transports_function (xsp)

	UDP-Based Resolver Operation Options
	Minimum Values for Advertisement and Query Intervals
	Reference
	disable_extended_topic_resolution_message_options (context)
	resolution_no_source_notification_threshold (receiver)
	resolution_number_of_sources_query_threshold (receiver)
	resolver_advertisement_maximum_initial_interval (source)
	resolver_advertisement_minimum_initial_duration (source)
	resolver_advertisement_minimum_initial_interval (source)
	resolver_advertisement_minimum_sustain_duration (source)
	resolver_advertisement_send_immediate_response (source)
	resolver_advertisement_sustain_interval (source)
	resolver_cache (context)
	resolver_context_name_activity_timeout (context)
	resolver_context_name_query_duration (context)
	resolver_context_name_query_maximum_interval (context)
	resolver_context_name_query_minimum_interval (context)
	resolver_datagram_max_size (context)
	resolver_disable_udp_topic_resolution (context)
	resolver_domain_id_active_propagation_timeout (context)
	resolver_initial_advertisement_bps (context)
	resolver_initial_advertisements_per_second (context)
	resolver_initial_queries_per_second (context)
	resolver_initial_query_bps (context)
	resolver_query_maximum_initial_interval (receiver)
	resolver_query_minimum_initial_duration (receiver)
	resolver_query_minimum_initial_interval (receiver)
	resolver_query_minimum_sustain_duration (receiver)
	resolver_query_sustain_interval (receiver)
	resolver_receiver_map_tablesz (context)
	resolver_send_final_advertisements (source)
	resolver_send_initial_advertisement (source)
	resolver_source_map_tablesz (context)
	resolver_string_hash_function (context)
	resolver_string_hash_function_ex (context)
	resolver_sustain_advertisement_bps (context)
	resolver_sustain_advertisements_per_second (context)
	resolver_sustain_queries_per_second (context)
	resolver_sustain_query_bps (context)
	resolver_unicast_activity_timeout (context)
	resolver_unicast_change_interval (context)
	resolver_unicast_check_interval (context)
	resolver_unicast_force_alive (context)
	resolver_unicast_ignore_unknown_source (context)
	resolver_unicast_keepalive_interval (context)

	Multicast Resolver Network Options
	Reference
	resolver_multicast_address (context)
	resolver_multicast_incoming_address (context)
	resolver_multicast_incoming_port (context)
	resolver_multicast_interface (context)
	resolver_multicast_outgoing_address (context)
	resolver_multicast_outgoing_port (context)
	resolver_multicast_port (context)
	resolver_multicast_receiver_socket_buffer (context)
	resolver_multicast_ttl (context)

	Unicast Resolver Network Options
	Reference
	resolver_unicast_daemon (context)
	resolver_unicast_interface (context)
	resolver_unicast_port_high (context)
	resolver_unicast_port_low (context)
	resolver_unicast_receiver_socket_buffer (context)

	TCP-Based Resolver Operation Options
	Reference
	resolver_service (context)
	resolver_service_interest_mode (context)

	Transport TCP Network Options
	TCP Transport Session Management
	Reference
	transport_tcp_interface (receiver)
	transport_tcp_interface (source)
	transport_tcp_maximum_ports (context)
	transport_tcp_port (source)
	transport_tcp_port_high (context)
	transport_tcp_port_low (context)

	Transport TCP Operation Options
	Reference
	transport_session_maximum_buffer (source)
	transport_tcp_activity_method (receiver)
	transport_tcp_activity_timeout (receiver)
	transport_tcp_activity_timeout (source)
	transport_tcp_coalesce_threshold (source)
	transport_tcp_datagram_max_size (context)
	transport_tcp_dro_loss_recovery_timeout (receiver)
	transport_tcp_exclusiveaddr (source)
	transport_tcp_listen_backlog (source)
	transport_tcp_multiple_receiver_behavior (source)
	transport_tcp_multiple_receiver_send_order (source)
	transport_tcp_nodelay (source)
	transport_tcp_receiver_socket_buffer (context)
	transport_tcp_reuseaddr (source)
	transport_tcp_sender_socket_buffer (source)
	transport_tcp_use_session_id (source)

	Transport LBT-RM Network Options
	LBT-RM Transport Session Management
	Reference
	transport_lbtrm_destination_port (source)
	transport_lbtrm_multicast_address (source)
	transport_lbtrm_multicast_address_high (context)
	transport_lbtrm_multicast_address_low (context)
	transport_lbtrm_source_port_high (context)
	transport_lbtrm_source_port_low (context)

	Transport LBT-RM Reliability Options
	LBT-RM Datagram
	LBT-RM Source Ignoring NAKs for Efficiency
	LBT-RM Receiver Suppressing NAK Generation
	Reference
	transport_lbtrm_ignore_interval (source)
	transport_lbtrm_nak_backoff_interval (receiver)
	transport_lbtrm_nak_generation_interval (receiver)
	transport_lbtrm_nak_initial_backoff_interval (receiver)
	transport_lbtrm_nak_suppress_interval (receiver)
	transport_lbtrm_receiver_socket_buffer (context)
	transport_lbtrm_send_naks (receiver)
	transport_lbtrm_source_socket_buffer (context)
	transport_lbtrm_transmission_window_limit (source)
	transport_lbtrm_transmission_window_size (source)

	Transport LBT-RM Operation Options
	Reference
	transport_lbtrm_activity_timeout (receiver)
	transport_lbtrm_coalesce_threshold (source)
	transport_lbtrm_data_rate_limit (context)
	transport_lbtrm_datagram_max_size (context)
	transport_lbtrm_preactivity_timeout (receiver)
	transport_lbtrm_rate_interval (context)
	transport_lbtrm_receiver_timestamp (context)
	transport_lbtrm_recycle_receive_buffers (context)
	transport_lbtrm_retransmit_rate_limit (context)
	transport_lbtrm_sm_maximum_interval (source)
	transport_lbtrm_sm_minimum_interval (source)
	transport_lbtrm_source_timestamp (context)
	transport_lbtrm_tgsz (source)

	Transport LBT-RU Network Options
	LBT-RU Transport Session Management
	Reference
	transport_lbtru_interface (receiver)
	transport_lbtru_interface (source)
	transport_lbtru_maximum_ports (context)
	transport_lbtru_port (source)
	transport_lbtru_port_high (context)
	transport_lbtru_port_high (receiver)
	transport_lbtru_port_low (context)
	transport_lbtru_port_low (receiver)

	Transport LBT-RU Reliability Options
	Reference
	transport_lbtru_ignore_interval (source)
	transport_lbtru_nak_backoff_interval (receiver)
	transport_lbtru_nak_generation_interval (receiver)
	transport_lbtru_nak_initial_backoff_interval (receiver)
	transport_lbtru_nak_suppress_interval (receiver)
	transport_lbtru_receiver_socket_buffer (context)
	transport_lbtru_send_naks (receiver)
	transport_lbtru_source_socket_buffer (context)
	transport_lbtru_transmission_window_limit (source)
	transport_lbtru_transmission_window_size (source)

	Transport LBT-RU Operation Options
	Reference
	transport_lbtru_acknowledgement_interval (receiver)
	transport_lbtru_activity_timeout (receiver)
	transport_lbtru_client_activity_timeout (source)
	transport_lbtru_client_map_size (source)
	transport_lbtru_coalesce_threshold (source)
	transport_lbtru_connect_interval (receiver)
	transport_lbtru_data_rate_limit (context)
	transport_lbtru_datagram_max_size (context)
	transport_lbtru_maximum_connect_attempts (receiver)
	transport_lbtru_rate_interval (context)
	transport_lbtru_recycle_receive_buffers (context)
	transport_lbtru_retransmit_rate_limit (context)
	transport_lbtru_sm_maximum_interval (source)
	transport_lbtru_sm_minimum_interval (source)
	transport_lbtru_use_session_id (source)

	Transport LBT-IPC Operation Options
	LBT-IPC Transport Session Management
	Reference
	transport_lbtipc_activity_timeout (receiver)
	transport_lbtipc_behavior (source)
	transport_lbtipc_datagram_max_size (context)
	transport_lbtipc_dro_loss_recovery_timeout (receiver)
	transport_lbtipc_id (source)
	transport_lbtipc_id_high (context)
	transport_lbtipc_id_low (context)
	transport_lbtipc_maximum_receivers_per_transport (source)
	transport_lbtipc_pend_behavior_linger_loop_count (context)
	transport_lbtipc_receiver_operational_mode (context)
	transport_lbtipc_receiver_thread_behavior (context)
	transport_lbtipc_recycle_receive_buffers (context)
	transport_lbtipc_sm_interval (source)
	transport_lbtipc_transmission_window_size (source)

	Transport LBT-SMX Operation Options
	LBT-SMX Transport Session Management
	Reference
	transport_lbtsmx_activity_timeout (receiver)
	transport_lbtsmx_datagram_max_size (source)
	transport_lbtsmx_id (source)
	transport_lbtsmx_id_high (context)
	transport_lbtsmx_id_low (context)
	transport_lbtsmx_maximum_receivers_per_transport (source)
	transport_lbtsmx_message_statistics_enabled (context)
	transport_lbtsmx_sm_interval (source)
	transport_lbtsmx_transmission_window_size (source)

	Transport Acceleration Options
	Myricom Datagram Bypass Layer (DBL)
	Reference
	dbl_lbtrm_acceleration (context)
	dbl_lbtru_acceleration (context)
	dbl_mim_acceleration (context)
	dbl_resolver_acceleration (context)

	Solarflare Onload
	Onload Stack Names
	Using Onload with UM
	Solarflare Tips

	Reference
	onload_acceleration_stack_name (context)
	onload_acceleration_stack_name (receiver)
	onload_acceleration_stack_name (source)

	UD Acceleration for Mellanox Hardware Interfaces
	Reference
	resolver_ud_acceleration (context)
	ud_acceleration (context)

	Smart Source Options
	Reference
	mem_mgt_callbacks (source)
	smart_src_enable_spectrum_channel (source)
	smart_src_max_message_length (source)
	smart_src_message_property_int_count (source)
	smart_src_retention_buffer_count (source)
	smart_src_user_buffer_count (source)
	transport_lbtrm_smart_src_transmission_window_buffer_count (source)
	transport_lbtru_smart_src_transmission_window_buffer_count (source)

	Encrypted TCP Options
	Reference
	tls_certificate (context)
	tls_certificate_key (context)
	tls_certificate_key_password (context)
	tls_cipher_suites (context)
	tls_compression_negotiation_timeout (context)
	tls_trusted_certificates (context)
	use_tls (context)

	Compressed TCP Options
	Reference
	compression (context)

	Multicast Immediate Messaging Network Options
	Reference
	mim_address (context)
	mim_destination_port (context)
	mim_incoming_address (context)
	mim_incoming_destination_port (context)
	mim_outgoing_address (context)
	mim_outgoing_destination_port (context)

	Multicast Immediate Messaging Reliability Options
	Reference
	mim_ignore_interval (context)
	mim_nak_backoff_interval (context)
	mim_nak_generation_interval (context)
	mim_nak_initial_backoff_interval (context)
	mim_nak_suppress_interval (context)
	mim_send_naks (context)
	mim_transmission_window_limit (context)
	mim_transmission_window_size (context)

	Multicast Immediate Messaging Operation Options
	Reference
	immediate_message_receiver_function (context)
	immediate_message_topic_receiver_function (context)
	mim_activity_timeout (context)
	mim_delivery_control_activity_check_interval (context)
	mim_delivery_control_activity_timeout (context)
	mim_delivery_control_order_tablesz (context)
	mim_implicit_batching_interval (context)
	mim_implicit_batching_minimum_length (context)
	mim_ordered_delivery (context)
	mim_sm_maximum_interval (context)
	mim_sm_minimum_interval (context)
	mim_sqn_window_increment (context)
	mim_sqn_window_size (context)
	mim_src_deletion_timeout (context)
	mim_tgsz (context)
	mim_unrecoverable_loss_function (context)

	Late Join Options
	Estimating Recovery Time
	Reference
	late_join (source)
	late_join_info_request_interval (receiver)
	late_join_info_request_maximum (receiver)
	retransmit_initial_sequence_number_request (receiver)
	retransmit_message_caching_proximity (receiver)
	retransmit_request_interval (receiver)
	retransmit_request_maximum (receiver)
	retransmit_request_message_timeout (receiver)
	retransmit_request_outstanding_maximum (receiver)
	retransmit_retention_age_threshold (source)
	retransmit_retention_size_limit (source)
	retransmit_retention_size_threshold (source)
	use_late_join (receiver)

	Off-Transport Recovery Options
	Reference
	otr_message_caching_threshold (receiver)
	otr_request_initial_delay (receiver)
	otr_request_log_alert_cooldown (receiver)
	otr_request_maximum_interval (receiver)
	otr_request_message_timeout (receiver)
	otr_request_minimum_interval (receiver)
	otr_request_outstanding_maximum (receiver)
	use_otr (receiver)

	Unicast Immediate Messaging Network Options
	Reference
	request_tcp_bind_request_port (context)
	request_tcp_interface (context)
	request_tcp_port (context)
	request_tcp_port_high (context)
	request_tcp_port_low (context)

	Unicast Immediate Messaging Operation Options
	Reference
	request_tcp_activity_timeout (context)
	request_tcp_exclusiveaddr (context)
	request_tcp_listen_backlog (context)
	request_tcp_reuseaddr (context)
	response_session_maximum_buffer (context)
	response_session_sender_socket_buffer (context)
	response_tcp_activity_timeout (context)
	response_tcp_deletion_timeout (context)
	response_tcp_interface (context)
	response_tcp_nodelay (context)

	Implicit Batching Options
	Reference
	implicit_batching_interval (source)
	implicit_batching_minimum_length (source)

	Delivery Control Options
	Burst Loss
	Reference
	channel_map_tablesz (receiver)
	delivery_control_loss_check_interval (receiver)
	delivery_control_maximum_burst_loss (receiver)
	delivery_control_maximum_total_map_entries (context)
	delivery_control_message_batching (context)
	mim_delivery_control_loss_check_interval (context)
	null_channel_behavior (receiver)
	source_notification_function (receiver)
	unrecognized_channel_behavior (receiver)

	Wildcard Receiver Options
	Reference
	pattern_type (wildcard_receiver)
	receiver_create_callback (wildcard_receiver)
	receiver_delete_callback (wildcard_receiver)
	resolver_no_source_linger_timeout (wildcard_receiver)
	resolver_query_maximum_interval (wildcard_receiver)
	resolver_query_minimum_duration (wildcard_receiver)
	resolver_query_minimum_interval (wildcard_receiver)
	resolver_wildcard_queries_per_second (context)
	resolver_wildcard_query_bps (context)
	resolver_wildcard_receiver_map_tablesz (context)

	Event Queue Options
	Reference
	event_queue_name (event_queue)
	queue_age_enabled (event_queue)
	queue_cancellation_callbacks_enabled (event_queue)
	queue_count_enabled (event_queue)
	queue_delay_warning (event_queue)
	queue_enqueue_notification (event_queue)
	queue_objects_purged_on_close (event_queue)
	queue_service_time_enabled (event_queue)
	queue_size_warning (event_queue)

	Ultra Messaging Persistence Options
	Reference
	ume_ack_batching_interval (context)
	ume_activity_timeout (receiver)
	ume_activity_timeout (source)
	ume_allow_confirmed_delivery (receiver)
	ume_application_outstanding_maximum (receiver)
	ume_confirmed_delivery_notification (source)
	ume_consensus_sequence_number_behavior (receiver)
	ume_consensus_sequence_number_behavior (source)
	ume_explicit_ack_only (receiver)
	ume_flight_size (source)
	ume_flight_size_behavior (source)
	ume_flight_size_bytes (source)
	ume_force_reclaim_function (source)
	ume_late_join (source)
	ume_message_stability_lifetime (source)
	ume_message_stability_notification (source)
	ume_message_stability_timeout (source)
	ume_proactive_keepalive_interval (context)
	ume_proxy_source (source)
	ume_receiver_liveness_interval (context)
	ume_receiver_paced_persistence (receiver)
	ume_receiver_paced_persistence (source)
	ume_recovery_sequence_number_info_function (receiver)
	ume_registration_extended_function (receiver)
	ume_registration_function (receiver)
	ume_registration_interval (receiver)
	ume_registration_interval (source)
	ume_repository_ack_on_reception (source)
	ume_repository_disk_file_size_limit (source)
	ume_repository_size_limit (source)
	ume_repository_size_threshold (source)
	ume_retention_intergroup_stability_behavior (source)
	ume_retention_intragroup_stability_behavior (source)
	ume_retention_size_limit (source)
	ume_retention_size_threshold (source)
	ume_retention_unique_confirmations (source)
	ume_session_id (context)
	ume_session_id (receiver)
	ume_session_id (source)
	ume_source_liveness_timeout (context)
	ume_sri_flush_sri_request_response (source)
	ume_sri_immediate_sri_request_response (source)
	ume_sri_inter_sri_interval (source)
	ume_sri_max_number_of_sri_per_update (source)
	ume_sri_request_interval (receiver)
	ume_sri_request_maximum (receiver)
	ume_sri_request_response_latency (source)
	ume_state_lifetime (receiver)
	ume_state_lifetime (source)
	ume_store (source)
	ume_store_activity_timeout (source)
	ume_store_behavior (source)
	ume_store_check_interval (source)
	ume_store_group (source)
	ume_store_name (source)
	ume_use_ack_batching (receiver)
	ume_use_late_join (receiver)
	ume_use_store (receiver)
	ume_user_receiver_registration_id (context)
	ume_write_delay (source)

	Ultra Messaging Queuing Options
	Reference
	umq_command_interval (context)
	umq_command_outstanding_maximum (context)
	umq_delayed_consumption_report_interval (receiver)
	umq_hold_interval (receiver)
	umq_index_assignment_eligibility_default (receiver)
	umq_message_stability_notification (source)
	umq_msg_total_lifetime (source)
	umq_queue_activity_timeout (context)
	umq_queue_participation (receiver)
	umq_queue_registration_id (context)
	umq_receiver_type_id (receiver)
	umq_retransmit_request_interval (receiver)
	umq_retransmit_request_outstanding_maximum (receiver)
	umq_session_id (context)
	umq_ulb_application_set (source)
	umq_ulb_application_set_assignment_function (source)
	umq_ulb_application_set_events (source)
	umq_ulb_application_set_load_factor_behavior (source)
	umq_ulb_application_set_message_lifetime (source)
	umq_ulb_application_set_message_max_reassignments (source)
	umq_ulb_application_set_message_reassignment_timeout (source)
	umq_ulb_application_set_receiver_activity_timeout (source)
	umq_ulb_application_set_receiver_keepalive_interval (source)
	umq_ulb_application_set_round_robin_bias (source)
	umq_ulb_check_interval (source)
	umq_ulb_events (source)
	umq_ulb_flight_size (source)
	umq_ulb_flight_size_behavior (source)
	umq_ulb_receiver_events (source)
	umq_ulb_receiver_portion (source)
	umq_ulb_receiver_priority (source)
	umq_ulb_source_activity_timeout (receiver)
	umq_ulb_source_check_interval (receiver)

	Hot Failover Operation Options
	Reference
	delivery_control_loss_check_interval (hfx)
	delivery_control_max_delay (hfx)
	delivery_control_maximum_burst_loss (hfx)
	delivery_control_maximum_total_map_entries (hfx)
	duplicate_delivery (hfx)
	hf_duplicate_delivery (receiver)
	hf_optional_messages (receiver)
	hf_receiver (wildcard_receiver)
	ordered_delivery (hfx)

	Automatic Monitoring Options
	Reference
	monitor_appid (context)
	monitor_appid (event_queue)
	monitor_format (context)
	monitor_format (event_queue)
	monitor_format_opts (context)
	monitor_format_opts (event_queue)
	monitor_interval (context)
	monitor_interval (event_queue)
	monitor_interval (receiver)
	monitor_interval (wildcard_receiver)
	monitor_transport (context)
	monitor_transport (event_queue)
	monitor_transport_opts (context)
	monitor_transport_opts (event_queue)

	Deprecated Options
	Reference
	datagram_acceleration_functions (context)
	delivery_control_loss_tablesz (receiver)
	delivery_control_order_tablesz (receiver)
	implicit_batching_type (source)
	network_compatibility_mode (context)
	otr_request_duration (receiver)
	pattern_callback (wildcard_receiver)
	rcv_sync_cache (receiver)
	rcv_sync_cache_timeout (receiver)
	receive_thread_pool_size (context)
	resolver_active_source_interval (context)
	resolver_active_threshold (context)
	resolver_context_advertisement_interval (context)
	resolver_maximum_advertisements (context)
	resolver_maximum_queries (context)
	resolver_query_interval (context)
	resolver_query_max_interval (wildcard_receiver)
	resolver_unicast_address (context)
	resolver_unicast_destination_port (context)
	resolver_unicast_port (context)
	retransmit_message_map_tablesz (source)
	retransmit_request_generation_interval (receiver)
	source_cost_evaluation_function (context)
	transport_datagram_max_size (context)
	transport_lbtipc_acknowledgement_interval (receiver)
	transport_lbtipc_client_activity_timeout (source)
	transport_lbtrdma_datagram_max_size (context)
	transport_lbtrdma_interface (source)
	transport_lbtrdma_maximum_ports (context)
	transport_lbtrdma_port (source)
	transport_lbtrdma_port_high (context)
	transport_lbtrdma_port_low (context)
	transport_lbtrdma_receiver_thread_behavior (context)
	transport_lbtrdma_transmission_window_size (source)
	ume_message_map_tablesz (source)
	ume_primary_store_address (source)
	ume_primary_store_port (source)
	ume_registration_id (source)
	ume_retransmit_request_generation_interval (receiver)
	ume_retransmit_request_interval (receiver)
	ume_retransmit_request_maximum (receiver)
	ume_retransmit_request_outstanding_maximum (receiver)
	ume_secondary_store_address (source)
	ume_secondary_store_port (source)
	ume_tertiary_store_address (source)
	ume_tertiary_store_port (source)
	umq_flight_size (context)
	umq_flight_size (source)
	umq_flight_size_behavior (context)
	umq_flight_size_behavior (source)
	umq_message_retransmission_interval (context)
	umq_message_stability_notification (context)
	umq_msg_total_lifetime (context)
	umq_queue_check_interval (context)
	umq_queue_name (source)
	umq_queue_participants_only (source)
	umq_queue_query_interval (context)
	umq_require_queue_authentication (context)
	umq_retention_intergroup_stability_behavior (context)
	umq_retention_intergroup_stability_behavior (source)
	umq_retention_intragroup_stability_behavior (context)
	umq_retention_intragroup_stability_behavior (source)
	use_transport_thread (receiver)

