(‘» Informatica

Ultra Messaging (version 6.13)

Configuration Guide

Contents

1 Introduction

1.1 Configuration Overview L e e
1.1.1 AssignmentMethods
1.1.2 Assignment Flow e
1.1.3 Definitions e e e
1.1.4 Which Method Should IUse?
1.1.5 Configuration Error Handling
1.1.6 Host Name Resolution e
1.1.7 Configuration Files e
1.2 Plain Text Configuration Files e
1.2.1 Reading Plain Text Configuration Files
1.3 Plain Text Configuration File Format

2 XML Configuration Files

2.1 XML Configuration Concepts e
22 XML Reference Names
221 XMLObject Names e e e e e e
222 XML Application Names e
2.3 Order and Rule Specifications
2.3.1 Constraining Configuration Values
2.3.2 Restricting Topics
2.3.3 Overlapping TopiCS e e e e e
24 UMDefault Values
2.5 Reading XML Configuration Files
2.6 Using XML Configuration Files With a UM Application
2.7 XML Configuration File Format
2.8 Merging Multiple XML Configuration Files
2.9 XML Configuration File Elements e
2.9.1 UM Element "<um-configuration>"
2.9.2 UM Element "<applications>"

2.9.3 UM Element "<application>" e

© © 0o N o o O

11
11
11
11
12

CONTENTS

2.9.4 UM Element "<application-data>"
295 UM Element"<hfxs>"
29.6 UM Element"<topic>"
2.9.7 UM Element"<options>"
2.9.8 UM Element "<option>"
29.9 UMElement"<deny>"
2.9.10 UM Element "<allow>"
2.9.11 UM Element "<event-queues>"
2.9.12 UM Element "<event-queue>"
2.9.13 UM Element "<contexts>"
2.9.14 UM Element"<context>"
2.9.15 UM Element "<wildcard-receivers>"
2.9.16 UM Element "<wildcard-receiver>".
2.9.17 UM Element "<receivers>"
2.9.18 UM Element "<sources>"
2.9.19 UM Element "<templates>"
2.9.20 UM Element "<template>"
2.9.21 UM Element "<license>"
2.10 XML Configuration File DTD oo
2.11 Sample XML Configuration File

3 Attributes Objects

3.1 Creating An Attributes Object
3.2 Setting an Option froma Binary Value

3.2.1 Setting an Option from Arrays of Binary Values

3.3 Setting an Option froma StringValue
3.4 GettinganOptionasaBinaryValue
3.5 GettinganOptionasa StringValue
3.6 Deleting an Attributes Object

4 Access to Current Operating Options

41 Retrieving Current Option Values
4.1.1 Getting Current Option as a Binary Value
4.1.2 Getting Current Optionas a StringValue
4.2 Modifying Current Option Values
4.2.1 Setting Current Option froma Binary Value
4.2.2 Setting Current Option from a String Value

5 Example Configuration Scenarios

5.1 Highest Throughput o o

5.2 LowestlLatency

CONTENTS 5
5.3 Creating Multicast Sources L 54
5.4 Disabling Aspects of Topic Resolution 54

5.4.1 Disabling Topic Advertisements 55

5.4.2 Disabling Receiver TopicQueries o e 55

5.4.3 Disabling Wildcard Topic Queries o i e 55

5.4.4 Disabling Store (Context) Name Queries e 55

5.4.5 All But the Minimum Topic Resolution Traffic 56
5,5 Unicast Resolver e 56
5.6 Re-establish Pre-4.0 Topic Resolution 56
5.7 Re-establish Pre-LBM 3.3 (Pre-UME 2.0) Port Defaults 57
5.8 Configure New Port Defaults o 57
6 Interrelated Configuration Options 59
6.1 Preventing NAK Storms with NAK Intervals 59
6.2 Preventing Tail Loss With TSNI and NAK Interval Options 60
6.3 Preventing IPC Receiver Deafness With Keepalive Options 60
6.4 Preventing Erroneous LBT-RM/LBT-RU Session Timeouts 61
6.5 Preventing Errors Due to Bad Multicast Address Ranges 62
6.6 Preventing Store Timeouts e 62
6.7 Preventing ULB Timeouts 63
6.8 Preventing Unicast Resolver Daemon Timeouts 63
6.9 Preventing Undetected Late JoinLoss L 64
6.10 Preventing Undetected Loss e 64
6.11 Preventing Store Registration Hangs 65
7 General Configuration Guidelines 67
7.1 Case Sensitivity e e 67
7.2 Specifying Interfaces 67

7.2.1 Interface Device Namesand XML L 68
7.3 SocketBuffer Sizes 68
7.4 Port Assignments e e 69

7.41 Ephemeral Ports L 69

742 Network VSHostOrder e 69
7.5 Reference Entry Format 69
8 Special Notes 71
8.1 Configuring Multi-Homed Hosts o . 71
8.2 Traversinga Firewall L 72
9 Major Options 73
9.1 Reference e 73

6 CONTENTS
9.1.1 broker (context) 73
9.1.2 compatibility_include_pre_um_6_0_behavior (context) 74
9.1.3 context_event_function (context)o 74
9.1.4 context_name (context) e e e e 75
9.1.5 datagram_acceleration_functions (context) L oo 75
9.1.6 default_interface (context) L 75
9.1.7 fd_management_type (context) e 76
9.1.8 file_descriptor_management_behavior (context) oo 77
9.1.9 message_selector (receiver) e 77
9.1.10 multiple_receive_maximum_datagrams (context)o 78
9.1.11 operational_mode (context) 79
9.1.12 operational_mode (XSP) e e e e e e e 79
9.1.13 ordered_delivery (receiver) e e e e 80
9.1.14 receiver_callback_service_time_enabled (context) 81
9.1.15 resolver_source_notification_function (context) 81
9.1.16 source_event_function (context) L 82
9.1.17 source_includes_topic_index (context)o 83
9.1.18 transport (SOUrCE) L e e e 83
9.1.19 transport_demux_tablesz (receiver)o 84
9.1.20 transport_mapping_function (context)o Lo 85
9.1.21 transport_session_multiple_sending_threads (context) 85
9.1.22 transport_session_single_receiving_thread (context) o oL 86
9.1.28 transport_source_side_filtering_behavior (source) L. 86
9.1.24 transport_topic_sequence_number_info_active_threshold (source) 87
9.1.25 transport_topic_sequence_number_info_interval (source) 88
9.1.26 transport_topic_sequence_number_info_request_interval (receiver) 88
9.1.27 transport_topic_sequence_number_info_request_maximum (receiver) 89
9.1.28 use_extended_reclaim_notifications (source) oo 89
9.1.29 zero_transports_function (xsp) 90
10 UDP-Based Resolver Operation Options 91
10.1 Minimum Values for Advertisement and Query Intervals L. 91
10.2 Reference 92
10.2.1 disable_extended_topic_resolution_message_options (context) 92
10.2.2 resolution_no_source_notification_threshold (receiver) 92
10.2.3 resolution_number_of_sources_query_threshold (receiver) 93
10.2.4 resolver_advertisement_maximum_initial_interval (source) 93
10.2.5 resolver_advertisement_minimum_initial_duration (source) 94
10.2.6 resolver_advertisement_minimum_initial_interval (source) 94
10.2.7 resolver_advertisement_minimum_sustain_duration (source) 95

CONTENTS 7
10.2.8 resolver_advertisement_send_immediate_response (source) 95
10.2.9 resolver_advertisement_sustain_interval (source) 96
10.2.10resolver_cache (context) e e 96
10.2.11 resolver_context_name_activity timeout (context) 97
10.2.12 resolver_context_name_query_duration (context) 97
10.2.13 resolver_context_name_query_maximum_interval (context) 98
10.2.14 resolver_context_name_query_minimum_interval (context) 98
10.2.15resolver_datagram_max_size (context) Lo 99
10.2.16 resolver_domain_id_active_propagation_timeout (context) 100
10.2.17 resolver_initial_advertisement_bps (context)o Lo 101
10.2.18 resolver_initial_advertisements_per_second (context) 102
10.2.19resolver_initial_queries_per_second (context) 102
10.2.20 resolver_initial_query_bps (context) L L L 103
10.2.21 resolver_query_maximum_initial_interval (receiver) 103
10.2.22 resolver_query_minimum_initial_duration (receiver) o 104
10.2.23 resolver_query_minimum_initial_interval (receiver) 104
10.2.24 resolver_query_minimum_sustain_duration (receiver) oo 105
10.2.25 resolver_query_sustain_interval (receiver) oo e 105
10.2.26 resolver_receiver_map_tablesz (context) L Lo o oo 106
10.2.27 resolver_send_final_advertisements (source)o 106
10.2.28 resolver_send_initial_advertisement (source) oo 107
10.2.29 resolver_source_map_tablesz (context) oo 108
10.2.30 resolver_string_hash_function (context) o Lo 108
10.2.31 resolver_string_hash_function_ex (context), 109
10.2.32 resolver_sustain_advertisement_bps (context)o oo, 110
10.2.33 resolver_sustain_advertisements_per_second (context) 110
10.2.34 resolver_sustain_queries_per_second (context) 111
10.2.35resolver_sustain_query_bps (context) L L L 111
10.2.36 resolver_unicast_activity _timeout (context)o 112
10.2.37 resolver_unicast_change_interval (context) L. 112
10.2.38 resolver_unicast_check_interval (context) L. 113
10.2.39 resolver_unicast_force_alive (context) o o 113
10.2.40 resolver_unicast_ignore_unknown_source (context) L. 114
10.2.41 resolver_unicast_keepalive_interval (context) 115

11 Multicast Resolver Network Options 117

111 Reference 117
11.1.1 resolver_multicast_address (context) 117
11.1.2 resolver_multicast_incoming_address (context) 118
11.1.3 resolver_multicast_incoming_port (context) 118

8 CONTENTS

11.1.4 resolver_multicast_interface (context) 119
11.1.5 resolver_multicast_outgoing_address (context) oo 119
11.1.6 resolver_multicast_outgoing_port (context) Lo oL 120
11.1.7 resolver_multicast_port (context) 120
11.1.8 resolver_multicast_receiver_socket_buffer (context) 121
11.1.9 resolver_multicast_ttl (context) L 121
12 Unicast Resolver Network Options 123
12,1 Reference 124
12.1.1 resolver_unicast_daemon (context) Lo 124
12.1.2 resolver_unicast_interface (context)o 125
12.1.3 resolver_unicast_port_high (context) L 125
12.1.4 resolver_unicast_port_low (context)o 126
12.1.5 resolver_unicast_receiver_socket_buffer (context) 126
13 TCP-Based Resolver Operation Options 127
13.1 Reference e 127
13.1.1 resolver_service (context) L e e 127
13.1.2 resolver_service_interest_ mode (context) 129
14 Transport TCP Network Options 131
14.1 TCP Transport Session Management e 131
142 Reference 132
14.2.1 transport_tcp_interface (receiver) L 132
14.2.2 transport_tcp_interface (source) 132
14.2.3 transport_tcp_maximum_ports (context) oL oo 133
14.2.4 ftransport_tCp_port (SOUICE) o e e e e e e e 133
14.2.5 ftransport_tcp_port_high (context) L L 134
14.2.6 ftransport_tcp_port_low (context) 135
15 Transport TCP Operation Options 137
15.1 Reference 137
15.1.1 ftransport_session_maximum_buffer (source)o 137
15.1.2 transport_tcp_activity method (receiver)o 138
15.1.3 ftransport_tcp_activity_timeout (receiver) Lo L o 138
15.1.4 transport_tcp_activity_timeout (source)o 139
15.1.5 transport_tcp_coalesce_threshold (source) 140
15.1.6 ftransport_tcp_datagram_max_size (context) oo oo 140
15.1.7 transport_tcp_dro_loss_recovery_timeout (receiver)o oo 141
15.1.8 ftransport_tcp_exclusiveaddr (source)o 141

15.1.9 ftransport_tcp_listen_backlog (source) 142

CONTENTS 9

15.1.10 transport_tcp_multiple_receiver_behavior (source) 142
15.1.11 transport_tcp_multiple_receiver_send_order (source) 143
15.1.12transport_tcp_nodelay (source) e e e e 144
15.1.13 transport_tcp_receiver_socket_buffer (context) 145
15.1.14 transport_tcp_reuseaddr (source) 145
15.1.15 transport_tcp_sender_socket_buffer (source) Lo o oo 146
15.1.16 transport_tcp_use_session_id (source)o e e 146
16 Transport LBT-RM Network Options 149
16.1 LBT-RM Transport Session Management i 149
16.2 Reference 150
16.2.1 ftransport_Ibtrm_destination_port (source) L Lo e 150
16.2.2 ftransport_Ibtrm_multicast_address (source) L oo 151
16.2.3 transport_Ibtrm_multicast_address_high (context) 151
16.2.4 transport_Ibtrm_multicast_address_low (context) oo oL 152
16.2.5 transport_Ibtrm_source_port_high (context) 152
16.2.6 transport_Ibtrm_source_port_low (context)o 152
17 Transport LBT-RM Reliability Options 155
17.1 LBT-RM Datagram o e 155
17.2 LBT-RM Source Ignoring NAKSs for Efficiency 156
17.3 LBT-RM Receiver Suppressing NAK Generation 156
17.4 Reference 157
17.4.1 ftransport_Ibtrm_ignore_interval (source) Lo oo 157
17.4.2 ftransport_Ibtrm_nak_backoff_interval (receiver) 158
17.4.3 ftransport_Ibtrm_nak_generation_interval (receiver) 158
17.4.4 ftransport_Ibtrm_nak_initial_backoff_interval (receiver), 159
17.4.5 transport_Ibtrm_nak_suppress_interval (receiver) 160
17.4.6 transport_Ibtrm_receiver_socket_buffer (context) 160
17.4.7 transport_Ibtrm_send_naks (receiver) 161
17.4.8 ftransport_Ibtrm_source_socket_buffer (context) oL 161
17.4.9 transport_lbtrm_transmission_window_limit (source) L. 162
17.4.10 transport_Ibtrm_transmission_window_size (source)o 162
18 Transport LBT-RM Operation Options 163
18.1 Reference 164
18.1.1 transport_Ibtrm_activity_timeout (receiver) L o oo 164
18.1.2 ftransport_Ibtrm_coalesce_threshold (source) oL, 165
18.1.3 ftransport_Ibtrm_data_rate_limit (context)o o oL 165
18.1.4 ftransport_Ibtrm_datagram_max_size (context) oo oo 166

18.1.5 transport_Ibtrm_preactivity_timeout (receiver) 166

10 CONTENTS

18.1.6 ftransport_Ibtrm_rate_interval (context) o 167
18.1.7 transport_Ibtrm_receiver_timestamp (context) 168
18.1.8 transport_Ibtrm_recycle_receive_buffers (context) 169
18.1.9 transport_lbtrm_retransmit_rate_limit (context) 169
18.1.10 transport_Ibtrm_sm_maximum_interval (source) oo 170
18.1.11 transport_Ibtrm_sm_minimum_interval (source) 170
18.1.12 transport_Ibtrm_source_timestamp (context)o oo 171
18.1.13transport_Ibtrm_tgsz (source) 171
19 Transport LBT-RU Network Options 173
19.1 LBT-RU Transport Session Management 173
19.2 Reference e 174
19.2.1 ftransport_lbtru_interface (receiver) L L L e 174
19.2.2 ftransport_lbtru_interface (source) 174
19.2.3 transport_Ibtru_maximum_ports (context) L oL 175
19.2.4 ftransport_Ibtru_port (source) e 175
19.2.5 ftransport_Ibtru_port_high (context) L 176
19.2.6 ftransport_Ibtru_port_high (receiver) L 176
19.2.7 ftransport_Ibtru_port_low (context) L 177
19.2.8 ftransport_Ibtru_port_low (receiver) L L 178
20 Transport LBT-RU Reliability Options 179
20.1 Reference L 179
20.1.1 transport_lbtru_ignore_interval (source)o 179
20.1.2 transport_Ilbtru_nak_backoff_interval (receiver)o Lo 180
20.1.3 transport_Ilbtru_nak_generation_interval (receiver) o oo 180
20.1.4 transport_lbtru_nak_initial_backoff_interval (receiver) 181
20.1.5 transport_Ibtru_nak_suppress_interval (receiver) oo 181
20.1.6 transport_Ilbtru_receiver_socket_buffer (context) 182
20.1.7 transport_lbtru_source_socket_buffer (context)o Lo oL 183
20.1.8 transport_lbtru_transmission_window_limit (source) L. 183
20.1.9 transport_lbtru_transmission_window_size (source) 183
21 Transport LBT-RU Operation Options 185
21.1 Reference 185
21.1.1 transport_Ibtru_acknowledgement_interval (receiver) 186
21.1.2 transport_lbtru_activity_timeout (receiver) L Lo 186
21.1.3 transport_Ibtru_client_activity_timeout (source) L. 187
21.1.4 transport_lbtru_client_map_size (source)o oo 187
21.1.5 transport_Ibtru_coalesce_threshold (source) oo 188

21.1.6 transport_lbtru_connect_interval (receiver) 188

CONTENTS 11
21.1.7 transport_lbtru_data_rate_limit (context) L. 189
21.1.8 transport_Ibtru_datagram_max_size (context) 189
21.1.9 transport_Ibtru_maximum_connect_attempts (receiver) 190
21.1.10transport_Ibtru_rate_interval (context) L Lo 190
21.1.11 transport_Ibtru_recycle_receive_buffers (context) 191
21.1.12 transport_Ibtru_retransmit_rate_limit (context) o o oo, 192
21.1.18 transport_Ibtru_sm_maximum_interval (source)o 192
21.1.14 transport_Ibtru_sm_minimum_interval (source)o 193
21.1.15transport_Ibtru_use_session_id (source)o 193
22 Transport LBT-IPC Operation Options 195
22.1 LBT-IPC Transport Session Management i 195
222 Reference L 196
22.2.1 ftransport_lbtipc_activity_timeout (receiver) Lo 196
22.2.2 transport_lbtipc_behavior (source)o 196
22.2.3 ftransport_lbtipc_datagram_max_size (context)o 197
22.2.4 transport_lbtipc_dro_loss_recovery_timeout (receiver)o oL 198
22.2.5 ftransport_lbtipc_id (source) e 198
22.2.6 transport_lbtipc_id_high (context)o 199
22.2.7 transport_lbtipc_id_low (context) 199
22.2.8 transport_lbtipc_maximum_receivers_per_transport (source) L. 200
22.2.9 transport_lbtipc_pend_behavior_linger_loop_count (context) 200
22.2.10 transport_Ibtipc_receiver_operational_mode (context) oL 201
22.2.11 transport_Ibtipc_receiver_thread_behavior (context) 201
22.2.12 transport_Ibtipc_recycle_receive_buffers (context)o oL 202
22.2.13transport_lbtipc_sm_interval (source) Lo 203
22.2.14 transport_Ibtipc_transmission_window_size (source)o 203
23 Transport LBT-SMX Operation Options 205
23.1 LBT-SMX Transport Session Management 205
23.2 Reference 206
23.2.1 transport_lbtsmx_activity_timeout (receiver)o Lo 206
23.2.2 transport_lbtsmx_datagram_max_size (source)o oo 206
23.2.3 ftransport_lbtsmx_id (source) e e e e 207
23.2.4 transport_lbtsmx_id_high (context)o L 208
23.2.5 transport_Ibtsmx_id_low (context) L 208
23.2.6 transport_lbtsmx_maximum_receivers_per_transport (source) L. 209
23.2.7 transport_lbtsmx_message_statistics_enabled (context) o oL 209
23.2.8 transport_lbtsmx_sm_interval (source)o o 210
23.2.9 transport_lbtsmx_transmission_window_size (source)o 210

12 CONTENTS
24 Transport Acceleration Options 213
241 Myricom® Datagram Bypass Layer (DBL™) 213
242 Reference L 214
24.21 dbl_Ibtrm_acceleration (context) 214
24.2.2 dbl_Ibtru_acceleration (context) 214
24.2.3 dbl_mim_acceleration (context) 215
24.2.4 dbl_resolver_acceleration (context) oL 215
24.3 Solarflare® Onload e e e 216
244 Reference L 217
24.4.1 onload_acceleration_stack_name (receiver) Lo 217
24.4.2 onload_acceleration_stack_name (source)o oo e e e e 218
24.5 UD Acceleration for Mellanox® Hardware Interfaces 218
24.6 Reference L e 219
24.6.1 resolver_ud_acceleration (context)o e 219
24.6.2 ud_acceleration (context) e e e e e 220
25 Smart Source Options 221
25.1 Reference L 221
25.1.1 mem_mgt_callbacks (source) 221
25.1.2 smart_src_enable_spectrum_channel (source)o o oo 222
25.1.3 smart_src_max_message_length (source)o oL 222
25.1.4 smart_src_message_property_int_count (source) 223
25.1.5 smart_src_retention_buffer_count (source) Lo 224
25.1.6 smart_src_user_buffer_count (source)o 225
25.1.7 transport_lbtrm_smart_src_transmission_window_buffer_count (source) 225
25.1.8 transport_Ibtru_smart_src_transmission_window_buffer_count (source) 227
26 Encrypted TCP Options 229
26.1 Reference 229
26.1.1 tls_certificate (context) e 229
26.1.2 tls_certificate_key (context) 229
26.1.3 tls_certificate_key_password (context) oL oo 230
26.1.4 tls_cipher_suites (context) 230
26.1.5 tls_compression_negotiation_timeout (context) 231
26.1.6 tls_trusted_certificates (context) 231
26.1.7 use_tls (context) e e e 232
27 Compressed TCP Options 233
271 Reference L 233
27.1.1 compression (CoNtext) e e 233

CONTENTS

13

28 Multicast Immediate Messaging Network Options

28.1

Reference e

28.1.1
28.1.2
28.1.3
28.1.4
28.1.5
28.1.6

mim_address (context) L
mim_destination_port (context)
mim_incoming_address (context) L
mim_incoming_destination_port (context) Lo
mim_outgoing_address (context)

mim_outgoing_destination_port (context)o

29 Multicast Immediate Messaging Reliability Options

29.1

Reference e

29.1.1
29.1.2
29.1.3
29.1.4
29.15
29.1.6
29.1.7
29.1.8

mim_ignore_interval (context) L
mim_nak_backoff_interval (context) oL
mim_nak_generation_interval (context)o
mim_nak_initial_backoff_interval (context) Lo
mim_nak_suppress_interval (context) Lo
mim_send_naks (context) L
mim_transmission_window_limit (context) L.

mim_transmission_window_size (context)

30 Multicast Imnmediate Messaging Operation Options

30.1

Reference e

30.1.1
30.1.2
30.1.3
30.1.4
30.1.5
30.1.6
30.1.7
30.1.8
30.1.9

immediate_message_receiver_function (context)o oo
immediate_message_topic_receiver_function (context) oL
mim_activity_timeout (context) L
mim_delivery_control_activity_check_interval (context)
mim_delivery_control_activity_timeout (context)
mim_delivery_control_order_tablesz (context) L.
mim_implicit_batching_interval (context)o
mim_implicit_batching_minimum_length (context)

mim_ordered_delivery (context)

30.1.10 mim_sm_maximum_interval (context)

30.1.11 mim_sm_minimum_interval (context)

30.1.12 mim_sgn_window_increment (context)o oo

30.1.183 mim_sgn_window_size (context)

30.1.14 mim_src_deletion_timeout (context)o

30.1.15mim_tgsz (context) e e e e e

30.1.16 mim_unrecoverable_loss_function (context)

31 Late Join Options

31.1

Estimating Recovery Time e

235
235
235
236
236
237
237
238

239
239
239
240
240
240
241
242
242
243

245
245
245
246
246
247
247
248
248
249
249
250
250
251
251
252
252
253

255

14

CONTENTS

31.2 Reference e
31.21 late_join(source)
31.2.2 late_join_info_request_interval (receiver)

31.2.3 late_join_info_request_maximum (receiver)

31.2.4 retransmit_initial_sequence_number_request (receiver)

31.2.5 retransmit_message_caching_proximity (receiver)
31.2.6 retransmit_request_interval (receiver)
31.2.7 retransmit_request_maximum (receiver)

31.2.8 retransmit_request_message_timeout (receiver)

31.2.9 retransmit_request_outstanding_maximum (receiver)

31.2.10 retransmit_retention_size_limit (source)
31.2.11 retransmit_retention_size_threshold (source)

31.2.12use_late_join (receiver) oo

32 Off-Transport Recovery Options

32.1 Reference e
32.1.1 otr_message_caching_threshold (receiver)
32.1.2 otr_request_initial_delay (receiver)
32.1.3 otr_request_log_alert_cooldown (receiver)
32.1.4 otr_request_maximum_interval (receiver)
32.1.5 otr_request_message_timeout (receiver)
32.1.6 otr_request_minimum_interval (receiver)
32.1.7 otr_request_outstanding_maximum (receiver)

32.1.8 use_otr(receiver)

33 Unicast Immediate Messaging Network Options

33.1 Reference
33.1.1 request_tcp_bind_request_port (context) L.
33.1.2 request_tcp_interface (context) L.
33.1.3 request_tcp_port (context)o o oL
33.1.4 request_tcp_port_high (context)

33.1.5 request_tcp_port_low (context)

34 Unicast Immediate Messaging Operation Options

341 Reference
34.1.1 request_tcp_exclusiveaddr (context)
34.1.2 request_tcp_listen_backlog (context)
34.1.3 request_tcp_reuseaddr (context)
34.1.4 response_session_maximum_buffer (context)
34.1.5 response_session_sender_socket_buffer (context)

34.1.6 response_tcp_deletion_timeout (context)

CONTENTS 15
34.1.7 response_tcp_interface (context) L 277
34.1.8 response_tcp_nodelay (context)o 277

35 Implicit Batching Options 279

35.1 Reference 279
35.1.1 implicit_batching_interval (source) o 279
35.1.2 implicit_batching_minimum_length (source) 279

36 Delivery Control Options 281

36.1 BurstLoss e e 282

36.2 Reference L e 283
36.2.1 channel_map_tablesz (receiver) e 283
36.2.2 delivery_control_loss_check_interval (receiver) o L. 283
36.2.3 delivery_control_maximum_burst_loss (receiver)o 284
36.2.4 delivery_control_maximum_total_map_entries (context) 284
36.2.5 delivery_control_message_batching (context) 285
36.2.6 mim_delivery_control_loss_check_interval (context) L. 286
36.2.7 null_channel_behavior (receiver) e 286
36.2.8 source_natification_function (receiver)o oL 287
36.2.9 unrecognized_channel_behavior (receiver) L Lo 287

37 Wildcard Receiver Options 289

371 Reference L e 289
37.1.1 pattern_type (wildcard_receiver) e 289
37.1.2 receiver_create_callback (wildcard_receiver) L oL o 290
37.1.3 receiver_delete_callback (wildcard_receiver)o 290
37.1.4 resolver_no_source_linger_timeout (wildcard_receiver) o oL 291
37.1.5 resolver_query_maximum_interval (wildcard_receiver) 291
37.1.6 resolver_query_minimum_duration (wildcard_receiver). L. 292
37.1.7 resolver_query_minimum_interval (wildcard_receiver) L. 292
37.1.8 resolver_wildcard_queries_per_second (context)o 293
37.1.9 resolver_wildcard_query_bps (context)o oL 293
37.1.10resolver_wildcard_receiver_map_tablesz (context) oL 294

38 Event Queue Options 295

38.1 Reference L 295
38.1.1 event_queue_name (event_qUEUE) i i e e e e e 295
38.1.2 queue_age_enabled (event_queue) Lo 295
38.1.3 queue_cancellation_callbacks_enabled (event_queue) 296
38.1.4 queue_count_enabled (event_queue) Lo oL 297
38.1.5 queue_delay_warning (event_queue)o e e e 297

16 CONTENTS

38.1.6 queue_enqueue_notification (event_queue)o o 298
38.1.7 queue_objects_purged_on_close (event_queue) 298
38.1.8 queue_service_time_enabled (event_queue)o oo oo 299
38.1.9 queue_size_warning (event_queue) e 299
39 Ultra Messaging Persistence Options 301
39.1 Reference e 301
39.1.1 ume_ack_batching_interval (context)o 301
39.1.2 ume_activity_timeout (receiver) L 302
39.1.3 ume_activity_timeout (source) L 302
39.1.4 ume_allow_confirmed_delivery (receiver) 303
39.1.5 ume_application_outstanding_maximum (receiver)o 303
39.1.6 ume_confirmed_delivery_notification (source) L. 304
39.1.7 ume_consensus_sequence_number_behavior (receiver) 305
39.1.8 ume_consensus_sequence_number_behavior (source)o 306
39.1.9 ume_explicit_ack_only (receiver) L 306
39.1.10ume_flight_size (source) e 307
39.1.11 ume_flight_size_behavior (source) 307
39.1.12ume_flight_size_bytes (source) e 308
39.1.13ume_force_reclaim_function (source)o 309
39.1.14ume_late_join (SOUrCE) i i e e e e e e e e 309
39.1.15ume_message_stability_lifetime (source)o 310
39.1.16 ume_message_stability_notification (source) oo oo oo 310
39.1.17 ume_message_stability_timeout (source) Lo oo 311
39.1.18 ume_proactive_keepalive_interval (context)o o oo 312
39.1.19Ume_proxy_SOUrCe (SOUICE) . . . « . v v v v v e e e e e e e e e e e 312
39.1.20 ume_receiver_liveness_interval (context) L L o 313
39.1.21 ume_receiver_paced_persistence (receiver)o e e 313
39.1.22 ume_receiver_paced_persistence (SOUICe) o o e i e e e 314
39.1.28 ume_recovery_sequence_number_info_function (receiver) 315
39.1.24 ume_registration_extended_function (receiver) Lo oo Lo 315
39.1.25 ume_registration_function (receiver) 316
39.1.26 ume_registration_interval (receiver) Lo 316
39.1.27 ume_registration_interval (source) e e 317
39.1.28 ume_repository_ack_on_reception (source)o 317
39.1.29 ume_repository_disk_file_size limit(source)o 318
39.1.30 ume_repository_size_limit (source)o 319
39.1.31 ume_repository_size_threshold (source) 319
39.1.32 ume_retention_intergroup_stability_behavior (source) o oL 320

39.1.33 ume_retention_intragroup_stability_behavior (source) o oL 321

CONTENTS 17

39.1.34 ume_retention_size_limit (source)o 322
39.1.35ume_retention_size_threshold (source) Lo 322
39.1.36 ume_retention_unique_confirmations (source)o oo oo 323
39.1.37ume_session_id (context) 324
39.1.38ume_session_id (receiver) L e e e e e e e 324
39.1.39 ume_session_id (SOUICE) o o e e e 325
39.1.40 ume_source_liveness_timeout (context)o 325
39.1.41 ume_sri_flush_sri_request_response (source) 326
39.1.42 ume_sri_immediate_sri_request_response (SOUrCe) v oo e e 326
39.1.43ume_sri_inter_sri_interval (source) Lo 327
39.1.44 ume_sri_max_number_of_sri_per_update (source) oo oo 328
39.1.45ume_sri_request_interval (receiver) L Lo 328
39.1.46 ume_sri_request_maximum (receiver)o e e e e 329
39.1.47 ume_sri_request_response_latency (source)o 329
39.1.48 ume_state_lifetime (receiver) e 330
39.1.49ume_state_lifetime (source) e 330
39.1.50ume_Store (SOUICE) o o v i e e e e e e e e e e e 331
39.1.51 ume_store_activity_timeout (source) oL 332
39.1.52 ume_store_behavior (SOUrce)o e e e e 332
39.1.53 ume_store_check_interval (source) Lo 333
39.1.54 ume_store_group (SOUICE) v v i i i e e e 333
39.1.55 ume_store_name (SOUrCE) v v i i e e e e e e e e 334
39.1.56 ume_use_ack_batching (receiver) 335
39.1.57ume_use_late_join (receiver) e e 335
39.1.58 ume_use_store (receiver) e e e e e e e 336
39.1.59 ume_user_receiver_registration_id (context)o oL 337
39.1.60ume_write_delay (Source) e e e 337
40 Ultra Messaging Queuing Options 339
40.1 Reference L e 339
40.1.1 umg_command_interval (context) 339
40.1.2 umg_command_outstanding_maximum (context) 340
40.1.3 umq_delayed_consumption_report_interval (receiver) 340
40.1.4 umgq_hold_interval (receiver) e 341
40.1.5 umq_index_assignment_eligibility_default (receiver) oo, 341
40.1.6 umqg_message_stability_notification (source)o Lo 342
40.1.7 umqg_msg_total_lifetime (source) L 342
40.1.8 umgqg_queue_activity timeout (context) 343
40.1.9 umqg_queue_participation (receiver) e e 343

40.1.10umqg_queue_registration_id (context) 344

18 CONTENTS
40.1.11umgq_receiver_type_id (receiver) e e 344
40.1.12umq_retransmit_request_interval (receiver) oL 345
40.1.183 umq_retransmit_request_outstanding_maximum (receiver) 345
40.1.14umqg_session_id (context) L e e e e e 346
40.1.15umq_ulb_application_set (source) 346
40.1.16 umqg_ulb_application_set_assignment_function (source) L. 347
40.1.17umq_ulb_application_set_events (source) 348
40.1.18 umqg_ulb_application_set_load_factor_behavior (source) 348
40.1.19 umq_ulb_application_set_message_lifetime (source) 349
40.1.20 umqg_ulb_application_set_message_max_reassignments (source) 350
40.1.21 umq_ulb_application_set_message_reassignment_timeout (source) 350
40.1.22 umq_ulb_application_set_receiver_activity_timeout (source) 351
40.1.23 umq_ulb_application_set_receiver_keepalive_interval (source) 351
40.1.24 umqg_ulb_application_set_round_robin_bias (source) L. 352
40.1.25umq_ulb_check_interval (source) e e 352
40.1.26 umqg_ulb_events (SOUrCE) e e e e e e e 353
40.1.27umq_ulb_flight_size (source) e e 354
40.1.28 umq_ulb_flight_size_behavior (source) L 354
40.1.29umq_ulb_receiver_events (SOUICE) v v i i i e e e e e e 355
40.1.30 umqg_ulb_receiver_portion (SOUICE) o i i e e e e e e 356
40.1.31 umqg_ulb_receiver_priority (SOUrCe) e e e e e e 356
40.1.32umqg_ulb_source_activity_timeout (receiver)o Lo 357
40.1.33umq_ulb_source_check_interval (receiver) L o oo 357

41 Hot Failover Operation Options 359

411 Reference L 359
41.1.1 delivery_control_loss_check_interval (hfx) oo, 359
41.1.2 delivery_control_max_delay (hfx) 360
41.1.3 delivery_control_maximum_burst_loss (hfx) oo o oo 360
41.1.4 delivery_control_maximum_total_map_entries (hfx)o L. 361
41.1.5 duplicate_delivery (hfx) e 361
41.1.6 hf_duplicate_delivery (receiver) e 362
41.1.7 hf_optional_messages (receiver) e e e e e 362
41.1.8 hf_receiver (wildcard_receiver) 363
41.1.9 ordered_delivery (hfx) L e e e 363

42 Automatic Monitoring Options 365

421 Reference L 365
42.1.1 monitor_appid (context) e 365
42.1.2 monitor_appid (event_queue) e e e e e 366
42.1.3 monitor_interval (context) L 366

CONTENTS 19

42.1.4 monitor_interval (event_queue) 367
42.1.5 monitor_interval (receiver) L e e e e 367
42.1.6 monitor_interval (wildcard_receiver) 368
42.1.7 monitor_transport (context) L 368
42.1.8 monitor_transport (event_queue)o e e 369
42.1.9 monitor_transport_opts (context)o 369
42.1.10 monitor_transport_opts (event_queue) 370
43 Deprecated Options 373
43.1 Reference L 373
43.1.1 delivery_control_loss_tablesz (receiver) o 373
43.1.2 delivery_control_order_tablesz (receiver) 374
43.1.3 implicit_batching_type (source) e 374
43.1.4 network_compatibility_mode (context)o 375
43.1.5 otr_request_duration (receiver) L e e 375
43.1.6 pattern_callback (wildcard_receiver) L L 376
43.1.7 rcv_sync_cache (receiver) o e e e e e e e 376
43.1.8 rcv_sync_cache_timeout (receiver) Lo 377
43.1.9 receive_thread_pool_size (context) L 377
43.1.10resolver_active_source_interval (context)o Lo 378
43.1.11 resolver_active_threshold (context) L 378
43.1.12resolver_context_advertisement_interval (context) 379
43.1.13 resolver_maximum_advertisements (context) L. 379
43.1.14resolver_maximum_queries (context)o 380
43.1.15resolver_query_interval (context) Lo e 380
43.1.16 resolver_query_max_interval (wildcard_receiver) 381
43.1.17 resolver_unicast_address (context)o 381
43.1.18 resolver_unicast_destination_port (context) oL 0oL 382
43.1.19resolver_unicast_port (context)o 382
43.1.20 retransmit_message_map_tablesz (source)o oo 383
43.1.21 retransmit_request_generation_interval (receiver) oo 383
43.1.22 retransmit_retention_age_threshold (source) L. 384
43.1.23 source_cost_evaluation_function (context)o oL 385
43.1.24 transport_datagram_max_size (context)o 385
43.1.25 transport_Ibtipc_acknowledgement_interval (receiver)o 386
43.1.26 transport_Ibtipc_client_activity_timeout (source) o oL 386
43.1.27 transport_Ibtrdma_datagram_max_size (context)o 387
43.1.28 transport_Ibtrdma_interface (source) Lo o 387
43.1.29 transport_Ibtrdma_maximum_ports (context)o 388

43.1.30transport_lbtrdma_port (source) 388

20 CONTENTS
43.1.31 transport_Ibtrdma_port_high (context) 389
43.1.32 transport_Ibtrdma_port_low (context)o L 389
43.1.38 transport_Ibtrdma_receiver_thread_behavior (context) 390
43.1.34 transport_Ibtrdma_transmission_window_size (source) 390
43.1.35ume_message_map_tablesz (source) 391
43.1.36 ume_primary_store_address (SOUrCe) oo e e e e e 391
43.1.37 ume_primary_store_port (SOUrCe) i i e e e e e 392
43.1.38 ume_registration_id (SOUrCe) e e e e e 392
43.1.39 ume_retransmit_request_generation_interval (receiver) 393
43.1.40 ume_retransmit_request_interval (receiver) Lo Lo 393
43.1.41 ume_retransmit_request_maximum (receiver) oo e e e 394
43.1.42 ume_retransmit_request_outstanding_maximum (receiver) 394
43.1.43 ume_secondary_store_address (SOUrCe) o i e e e e e e 395
43.1.44 ume_secondary_store_port (SOUICe) o i i e e e e e e 395
43.1.45ume_tertiary_store_address (SOUrce)o e e e 396
43.1.46 ume_tertiary_store_port (source) e e 396
43.1.47umgq_flight_size (context) 397
43.1.48 umq_flight_size (source) e 397
43.1.49umq_flight_size_behavior (context) L 398
43.1.50 umq_flight_size_behavior (source) 398
43.1.51 umqg_message_retransmission_interval (context) o oo 399
43.1.52 umqg_message_stability_notification (context) o oL 400
43.1.58 umq_msg_total_lifetime (context)o 400
43.1.54 umqg_queue_check_interval (context) 401
43.1.55umqg_queue_Nname (SOUICE) v v v v vt e e e e e e e e 401
43.1.56 umqg_queue_participants_only (SOUrce)o e e 402
43.1.57umqg_queue_query_interval (context) L 402
43.1.58 umq_require_queue_authentication (context) oL 403
43.1.59 umq_retention_intergroup_stability_behavior (context) 403
43.1.60 umq_retention_intergroup_stability_behavior (source)o 404
43.1.61 umq_retention_intragroup_stability_behavior (context) 405
43.1.62 umq_retention_intragroup_stability_behavior (source) 406
43.1.63 use_transport_thread (receiver) L e e 407

44 Option Categories 409

441 UMUDP PortValues 409

442 UMTCP PortValues o e e e e e 409

44.3 UM Multicast Group Values e 410

44.4 UM Timer Interval Values 410

445 Options That May Be Set During Operation 412

CONTENTS

44.6 Options that Cannot Be Set Via Configuration Files

Chapter 1

Introduction

This document describes how Ultra Messaging-based user applications are configured.

For information on configuring other UM components, see:

* Lbmrd (Unicast Resolver Daemon) Configuration

SRS (TCP-based Resolver Service) Configuration

DRO Configuration

+ Persistent Store Configuration

For policies and procedures related to Ultra Messaging Technical Support, see UM Support.
© Copyright (C) 2004-2020, Informatica LLC. All Rights Reserved.

This software and documentation are provided only under a separate license agreement containing restrictions
on use and disclosure. No part of this document may be reproduced or transmitted in any form, by any means
(electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

A current list of Informatica trademarks is available on the web at https://www.informatica.«
com/trademarks.html.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party
notices are included with the product.

This software is protected by patents as detailedat ht tps: //www.informatica.com/legal/patents.+
html.

The information in this documentation is subject to change without notice. If you find any problems in this documen-
tation, please report them to us in writing at Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are
provided.

INFORMATICA LLC PROVIDES THE INFORMATION IN THIS DOCUMENT "AS I1S" WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FIT«
NESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

This document assumes familiarity with the UM Concepts Guide.

See UM Glossary for Ultra Messaging terminology, abbreviations, and acronyms.

https://ultramessaging.github.io/UM_Support.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/legal/patents.html
https://www.informatica.com/legal/patents.html

24 Introduction

1.1 Configuration Overview

For Ultra Messaging applications, you can set a variety of operational options to customize the application's behavior
or performance. You assign values to these options in configuration files or by using API calls. You can assign option
values to objects upon or after object creation. Within an object, the implemented option values are referred to as
attributes.

Ultra Messaging uses intelligent default values for configuration options, enabling applications to run "out of the
box." However, expect to customize Ultra Messaging options to optimize your operating environment. You can use
different ways to configure option default and customized value assignments.

1.1.1 Assignment Methods

You can use the following ways to set attributes with configuration options:

plain text configuration file

The simplest way to configure an application, a plain text configuration file (sometimes called a "flat" file) allows
you to re-define UM's default berhaviors. These new defaults are read into a process-global configuration buffer,
and are used as UM objects are created. Note that after reading a plain text configuration file, an application
can still override the defaults on a per-object basis using UM's API.

XML configuration file

An XML configuration file provides a more sophisticated way to set UM's default behavior, allowing users to
customize UM's default behavior on a per-application and/or per-object basis. And while an application can still
override the defaults, restrictions can be imposed, constraining applications to only certain options and certain
values of those options.

attributes objects API

The application program can call API functions to create UM attributes objects and set configuration options in
those objects. The attributes objects are then used to create other UM messaging objects to set those options.

Alternatively, there are API functions which allow you to modify a subset of configurable options on already-
created UM messaging objects.

The following image shows the different ways Ultra Messaging stores and assigns option values before, during, and
after primitive object creation. Primitive objects are sources, receivers, wildcard receivers, event queues, contexts,
or HFX objects. The ultimate result is a primitive object with the assigned values residing in current attributes.

1.1 Configuration Overview 25

UM UM

initia f current '; 1bm config (pathname)

default - default fee — plaintext
attributes \ attributes _ configuration file

lbm * attr_create()

XML
configuration file

lbm * attr setopti)

custom
attributes
object

1bm * attr getopti)

1bm config sl file () 1bm * createi..NULL, ..}

application

1bm config xmml stringl)
- g nd lbm * createl(..,custom, ..)

/

XML config
table

if populated lbm * setopt()

UM

current

attributes lbm * getopti)

primitive object

The initial default attributes is the set of factory defaults in Ultra Messaging. At process initialization time, these
factory defaults are copied into a set of internal process-global attribute structures (current default attributes).

An application can modify desired options by reading a plaintext configuration file. UM will store these values in
current default attributes, overwriting the factory defaults.

An instantiated primitive object uses values from current default attributes, the XML config table, and the custom
attributes object, and then holds the results in current attributes.

An XML configuration file can pass its setting to an object being created either by directly populating the XML config
table, or by creating a custom attributes object.

1.1.2 Assignment Flow

The above diagram implies, but does not fully explain, the flow of attribute value assignment that UM performs when
an application creates a primitive object. This flow is described below, and is important in understanding how and
when default values are overridden:

1. If applicable, copy plain text configuration file values to current process-global default attributes.

. Start creating object.

. Custom attributes object(s) created/populated (if applicable).

E VS R \V)

. If lom_x_create() has a NULL attr, copy current default attributes into current attributes. Otherwise, copy
custom attributes object values into current attributes.

5. Read applicable options from the XML config table into the current attributes. Do not overwrite options set
with Ibm_config(), or Iom_x_attr_setopt(), which were tagged when modified.

6. Finish object creation.

7. current attributes can be changed further (only certain options) via Ibm_x_setopt().

26 Introduction

1.1.3 Definitions

Before discussing how UM options can be set, some terminology is in order.

Option

A single configuration item that controls some aspect of UM operation. An option typically resides in a con-
figuration file, but can also be assigned a value via API call. We use options to assign values to an object's
attributes.

Attribute

An operational characteristic of an object. An attribute's value is set by an option, hence, there is a one-to-one
correspondence between options and attributes. (Note: This use of the term "attribute" is unrelated to, and not
to be confused with, "attribute" in XML syntax. In this document, we refer to the latter as "XML attribute".)

XML attribute

See above. In XML syntax, XML attributes are parameters for XML elements.

Custom attributes object

A UM object that contains custom attribute values (set by options) for a specific UM object. Separate (and
multiple) sets of attributes can exist for each application, though only one can be used when creating a primitive
object.

Initial default attributes

The default attributes values built into UM. UM and your applications use these if you have not set any options
for the attributes.

Primitive object

Specifically, an object that is a source, receiver, wildcard receiver, event queue, context, or HFX object.

Configuration file
This comes in two types: XML and plain text. Configuration files contain assigned values for options, but the
different types are read/copied at different times during the creation of an object.

XML config table

Contains option values that are read from the XML configuration file.

Current default attributes

The attributes values used to create an object in the absence of custom attributes values.

Current attributes

The attribute values for an instantiated UM object that control the current operation of that object.

Scope

The type of object to which an option can apply. Possible scopes are context, source, receiver, wildcard_«
receiver, event_queue, and hfx.

1.1 Configuration Overview 27

1.1.4 Which Method Should | Use?

For the four basic assignment methods listed above, following are some scenarios where specific methods are
selected.

» To change a default option value and apply it to all objects you create, call Ibm_config() for one or more con-
figuration files. For example, to use LBT-RM rather than TCP for all sources, create a plain text configuration
file containing

source transport LBTRM

and pass its file name to Ibm_config().
Note

The C API offers APIs Ibm_x_attr_create_default() to create an attribute object with initial factory default
values. This is unaffected by default overrides from configuration files. No such corresponding method
exists for the Java or .NET APlIs.

+ To customize specific options before an object is created for a specific object instance, use a custom attributes
object. Also, you can assign XML data to the XML config table directly from your application via Ibm_config«
_xml_string().

» To create sets of custom values to be used when creating primitive objects, call lbm_config_xml_file() and
specify an XML configuration file. This is useful for setting specific default options on a per-topic or per-
context basis, which cannot be done with a plain text configuration file. For an example where a sending
application uses specific options and values, create an XML configuration file with the application's name
(optional) that specifies those options and values. Then pass the XML file name and application name to
Ibm_config_xml_file().

» To change an option after an object is created, modify the current attributes for the object. (Note that many
options cannot be changed after an object has been created.)

These methods can be used in combination. See Assignment Methods to see the relationships between attributes
and the various UM API function calls that affect them.

1.1.5 Configuration Error Handling

Prior to UM version 6.13, an error in a configuration file typically resulted in the remainder of the configuration file
not being processed.

As of UM version 6.13, UM will attempt to process the entire configuration file, even if there are errors. Any lines
which cannot be properly parsed will generate an error to the logger, but subsequent lines will still be processed.

Note that the API function will return a bad status to indicate that one or more errors were encountered, and the
application can decide what to do. For example:

err = lbm_config("test.cfg");
(err == LBM_FAILURE) {
fprintf (stderr, "Warning, ignoring lbm_config error: %s\n", lbm_errmsg());

}

The last error encountered will be returned by the Ibm_errmsg() call. Note that all errors are also reported via the
UM logger callback; see Ibm_log(). Thus, if the "test.cfg" file has two errors in it, both will be logged to the logger,
and the last one is returned by Ibm_errmsg().

Why Ignore Errors?

Normally an application would want to exit if lbm_config() returned an error. However, here is an example use case
for considering it a warning and continuing with the application execution.

28 Introduction

Let's imagine that future UM version 42.0 has a new configuration option, "receiver predict_next_message 1", which
allows receivers to receive messages before they are sent, achieving the elusive goal of negative latency. The user
could include this option in the master configuration file, and all applications at version 42.0 and beyond will benefit
from negative latencies. Applications at version 6.13 through 41 will log an error when they encounter that option,
but will continue to load the rest of the configuration file, and will run normally.

Thus, new configuration options can be included in a master configuration file, and older versions will log warnings
about but will still run.

Note however that any pre-6.13 applications will return an error and not process the rest of the configuration file.

Also note that the user must be very careful to examine the error messages logged to ensure that all errors are
expected (due to earlier versions not understanding options included for later versions). If lbm_config errors are
ignored, it would be easy to overlook a mistyped option and have it not take effect.

XML Errors
If an XML configuration file is being used, the basic XML structure must be valid for the parser to read the whole file.

For example:

<?xml version="1.0" 2>
<um-configuration version="1.0">
<mistake />
<applications>
<application>
<contexts>
<context>
<options type="context">
<option name="request_tcp_port_low" -value="13000">
<option name="request_tcp_port_high" -value="13010">
</option>
</options>
</context>
</contexts>
</application>
</applications>
</um-configuration>

This XML file will be rejected without applying the two request port options because of the "<mistake />" element.

However, if the XML elements are properly coded, invalid option names or values will follow the same pattern as flat
configuration files: errors will be reported, and parsing will continue.

For example:

<?xml version="1.0" 2>
<um-configuration version="1.0">
<applications>
<application>
<contexts>
<context>
<options type="context">
<option name="mistake" -value="1">
<option name="request_tcp_port_low" -value="13000">
<option name="request_tcp_port_high" -value="13010">
</option>
</options>
</context>
</contexts>
</application>
</applications>
</um-configuration>

This XML file will be accepted and the request TCP port range will be applied. The "mistake" option will log an error.
And the API will return LBM_FAILURE, which the application can decide to ignore.

Daemon Config Files

This behavior of continuing execution in the event of errors is extended to the UMP Store and the DRO for UM
configuration configuration files. That is, an error found in a UM configuration file will be logged, and the daemon
will continue to run. Users should again be very careful to examine log files to prevent mistyped options from leading
to undesired behavior.

However, for the Store and DRO configuration XML files, this "log and continue" error handling is not used. Errors
in the Store or DRO configuration files will prevent them from running.

1.2 Plain Text Configuration Files 29

1.1.6 Host Name Resolution

Many of UM's configuration options specify an IP address. Prior to UM version 6.10 these needed to be specified in
dotted numeric format. For example, 10.23.19.210. Starting in version 6.10, any configuration option that accepts
an IP address can also accept a DNS host name (the few exceptions are noted in the documentation). For example,
myhost.mydomain.com. Note that the DNS name system is not necessarily used when host names are specified;
for example, most Unix systems will first look up the name in /etc/hosts.

When host names are specified, the name is resolved to an IP address when the configuration option is parsed.
If you change the IP address associated with a name, that change will not take effect until the configuration file is
re-read, typically by restarting the application.

1.1.7 Configuration Files
There are two types of UM Configuration files:

* Plain Text Configuration Files
» XML Configuration Files
You can read Configuration files either by API call, or automatically upon application launch by specifying a file

name in an environment variable. See Assignment Methods and Assignment Flow for details on how these options
replace or override default values.

There are some UM configuration options which cannot be set via configuration files. These are options whose
values are function pointers or data structures. These options can only be set via API functions *_setopt. For
example, context resolver_source_notification_function has a function pointer as its value. See Options that
Cannot Be Set Via Configuration Files for the full list.

1.2 Plain Text Configuration Files

The plain text configuration file (sometimes called a "flat" file), when invoked, writes option values into UM's current
default attributes. These are then read and used in the creation of all objects.

See Example Configuration Scenarios for example configuration files.

1.2.1 Reading Plain Text Configuration Files

There are two ways to read a plain text configuration file to set values in current default attributes.
API function Ibm_config()

You can call the API multiple times with different file names to set configuration options in phases.

When you create UM objects (such as a context or receiver), UM sets attributes for that object using the current
default attributes. Hence, you must call Ibm_config() before creating objects (Ibm_x_create()).

30 Introduction

Environment variable LBM_DEFAULT_CONFIG_FILE

Reads configuration file when your application is started. You can set this variable to a full pathname or a URL;
for example:

export LBM_DEFAULT_CONFIG_FILE=/home/lbm/lbtrm.cfg

(You can still use the Ibm_config() API on a different file to make additional changes.)

1.3 Plain Text Configuration File Format

A plain text configuration file contains lines that each take the form:
scope_keyword option_name option_value

where:

scope_keyword - the scope to which the option applies,
option_name - the predefined name for the option, and
option_value - the new value to be assigned to that option.

Allowable values for these parameters are given throughout the rest of this document. Any text following a hash
character # (also known as a pound sign, number sign, or octothorp) is interpreted as comment text and is ignored.

For example:

Set transport_tcp_port_low to 4901
context transport_tcp_port_low 4901
And set transport_tcp_port_high to 4920
context transport_tcp_port_high 4920

Note

For plain text configuration files, do not enclose any fields in double quotation marks (").

Chapter 2

XML Configuration Files

XML configuration files let you address many different applications and operating requirements, removing the need
to programmatically set and reset options for them. A single XML file can contain options for multiple applications.
Moreover, for a single application, you can configure multiple named contexts, event queues, etc., with different
values for the same options.

See Example Configuration Scenarios for example configuration files.

2.1 XML Configuration Concepts

The primary motivation for using XML-based configuration is to be able to configure different instances of the
same object in different ways. For example, with a single XML configuration file, you can specify different options for
different applications. Or, within a given application, you can specify different options for different context objects. Or
within a given context, you can specify different options for different topic-based objects (sources and/or receivers).
You can do this without the necessity of writing special application code to do it.

Users often have large sets of configuration options that apply to multiple applications or objects. Rather than having
to reproduce the entire set for each application or object, femplates can be used to give common sets a name that
can be referenced in applications or objects in the XML file.

Applications may also override configuration options specified in an XML configuration file, either by using a plain
text configuration file, or by using UM's API.

However, it is also possible for the XML configuration file to impose restrictions on the application's ability to override
options. Using <allow> and <deny> elements, and the order attribute, XML files can constrain application to
using specific values for desired options.

2.2 XML Reference Names

Given that XML configuration files are intended to allow different objects to be configured differently, there needs to
be a way to identify which object should have which configuration. This is done with application and object names,
which the XML file references.

Context and Event Queue names are case-sensitive and can consist of only alpha-numeric ASCII characters, dash
(-), and underscore (_). They must be 127 characters or less.

Valid examples:

32 XML Configuration Files

» abc
« 123-abc

* XYZ_xyz
Invalid examples:

» abc xyz (no spaces allowed)
» 123.abc (no period allowed)

* XYZ,xyz (no comma allowed)

Template and application names are case-sensitive and can consist of any printable ASCII characters. They must
be 99 characters or less.

2.2.1 XML Object Names
The simplest apps create UM objects without using attribute objects. For example:

err = lbm_context_create(&ctx, NULL, NULL, NULL);

Passing NULL for the context attribute object causes UM to simply use the defaults (as possibly modified by a
configuration file).

However, if there is a chance that you will want to be able to configure the objects differently, you should create an
attribute object using the appropriate "x_attr_create_from_xml()" API, giving it a descriptive name. For example:

lbm_context_attr_t =*ctx_attr;

err = lbm_context_attr_create_from_xml (&ctx_attr, "main_ctx");
err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);

You can do this even if you do not yet make use of an XML file. If no XML file has been read, that Ibm_context_«
attr_create_from_xml() does the same thing as Ilbm_context_attr_create().

However, if an XML file is supplied and it specifies a configuration for a context named "main_ctx", the "x_attr_«
create_from_xml()" API will first load the attribute object with the default values and will then apply the proper XML
defaults to the attribute object. Desired options can then be overridden using the appropriate "x_attr_setopt()" or
"x_attr_str_setopt()" APIs.

The full set of XML-enabled attribute creation APIs are: Ibm_context_attr_create_from_xml(), Ibm_src_topic_«
attr_create_from_xml(), Ibm_rcv_topic_attr_create_from_xmli(), Ibm_event_queue_attr_create_from_xml(),
Ibm_wildcard_rcv_attr_create_from_xml(), Ilbom_hfx_attr_create_from_xml().

Note

It is also possible to call Ibom_context_attr_create_from_xml() passing NULL as the context name. This
matches a XML <context> element that has no name attribute. An unnamed "<context>" element only
matches unnamed contexts.

2.3 Order and Rule Specifications 33

2.2.2 XML Application Names

An XML configuration file groups configurations into one or more <application> elements. Normally, each
<application> is given a unique name, using the "name" attribute. It is also permissible to include an
<application> element without a name attribute (the "unnamed" application element).

When an application starts and attempts to use an XML configuration file, the application normally gives UM its
name, which UM will match to one of the XML file's <application> elements. It is also permissible that the applica-
tion does not give itself a name, in which case UM will match the unnamed <application> element.

Unlike most XML elements, the <applications> element does not have a way to allow applications with names that
have no matching application element. For example, let's say the XML file contains:

<?xml version="1.0" 2>
<um-configuration version="1.0">
<applications>
<application name="appl">

</application>
<application name="app2">

</application>
<application>

</application>
</applications>
</um-configuration>

If an application starts up and is named "app3", it will fail to initialize. The above file only allows applications named
"app1", "app2", and applications that do not set a name. Note that if the unnamed application element is removed
from that XML file, then an unnamed application will fail to initialize.

There are several ways to give an application the name that can be referenced by an XML configuration file:

+ Set the environment variable LBM_XML_CONFIG_APPNAME. (But be aware that it is ignored if the lbm_«
config() APl is used to read the XML configuration file.)

» Read the XML configuration file using the lbm_config_xml_file() API.

* Invoke the UMM feature using the Ibm_set_umm_info() API or using the LBM_UMM_INFO environment
variable. See UM Manager Overview for more information on UMM.

Note that the application name is not related to the executable file name of the program, or the operating system
process name. The application name is assigned via one of the above methods only.

2.3 Order and Rule Specifications

An XML configuration file can constrain how an application may override the values supplied in the XML configu-
ration file. It can also restrict which topics the application may publish and subscribe to. These two use cases are
handled slightly differently.

2.3.1 Constraining Configuration Values
The way to think of the order attribute in the <option> element is as follows:

» Fororder "allow, deny" the XML should contain zero or more values that are allowed. If a user-supplied
value doesn't match any of them, it is denied.

34 XML Configuration Files

» For order "deny, allow" the XML should contain zero or more values that are denied. If a user-supplied
value doesn't match any of them, it is allowed.

Consider the following fragment of XML:

<receivers>
<topic>
<options type="receiver">
<option name="ordered_delivery" order="deny,allow">
<deny>0</deny>
</option>
</options>
</topic>
</receivers>

This prevents the user from setting ordered_delivery (receiver) to 0, but allows values 1 and -1. But the values 1 and
-1 are not explicitly allowed. The order attribute is setto "deny, allow", has "allow" as the default behavior if
the user-supplied value doesn't match one of "<allow>" or "<deny>" values.

Contrast with this fragment:

<receivers>
<topic>
<options type="receiver">
<option name="ordered_delivery" order="allow,deny">
<allow>1</allow>
</option>
</options>
</topic>
</receivers>

This allows the value 1 but denies all others. The order attribute is setto "allow, deny", has "deny" as the
default behavior if the user-supplied value doesn't match one of "<allow>" or "<deny>" values.

2.3.2 Restricting Topics
Consider the following fragment of XML:

<receivers order="allow,deny">
<topic topicname="general_info" rule="allow"/>
<topic topicname="alerts" rule="allow"/>
</receivers>

This allows the application to create receivers for topics "general_info" and "alerts" and disallows all others. The
order attribute is set to "allow, deny", has "deny" as the default behavior if the user-supplied topic doesn't
match one of "<allow>" or "<deny>" values.

Contrast with this fragment:

<receivers order="deny,allow">
<topic topicname="authorize" rule="deny"/>
</receivers>

This allows the application to subscribe to any topic except "authorize". The order attribute is set to
"deny,allow", has "allow" as the default behavior if the user-supplied value doesn't match one of "<allow>" or
"<deny>" values.

Warning

With the above <topic> elements, an application can bypass the intended restrictions by using a wildcard
receiver, perhaps with the pattern ".x". This allows the application to effectively subscribe to all topics. The
<topic> elements do not restrict wildcard receivers.

2.3 Order and Rule Specifications 35

Since wildcard patterns can be complex, users who wish to restrict applications should either disallow wildcard
receivers, or carefully constrain them. For example:

<receivers order="deny,allow">
<topic topicname="authorize" rule="deny"/>
</receivers>
<wildcard-receivers order="allow,deny">
<wildcard-receiver pattern=""abc.*$" rule="allow"/>
<wildcard-receiver pattern=""xyz.*$" rule="allow"/>
</wildcard-receivers>

This allows the application to create any single-topic receiver except for the topic "authorize", and it allows two
patterns for wildcard receivers (neither of which will match the topic "authorize").

Another, more-restrictive example:

<receivers order="allow,deny">
<topic topicname="general_info" rule="allow"/>
<topic topicname="alerts" rule="allow"/>
</receivers>
<wildcard-receivers order="allow,deny"/>

This only allows the application to subscribe to the two topics "general_info" and "alerts", and it completely disallows
any wildcard receivers.

2.3.3 Overlapping Topics

There are some use cases where a special property of the order attribute is useful: the order in which allow and
deny rules are applied. When multiple <topic> elements match a given topic name due to overlapping wildcard
patterns, the order of applying the rules can be important to obtain the desired behavior.

Consider this example:

<receivers order="deny,allow">

<topic pattern=""trade" rule="deny"/>

<topic pattern=""trade\.NASD" rule="allow"/>
</receivers>

Let's assume that the application subscribes to "trade.NASD.xyz". This matches both patterns. By ordering the
patterns as deny first, followed by allow, the last match is allow, which allows the topic to be created. The last rule
to match determines the permission.

Whereas subscribing to "trade.abc.xyz" will only match the deny, and will be prevented.
Also note that subscribing to "quote", which does not match either topic, follows the default rule, which is allow.
So the above XML allows all non-trade subscriptions, but only allows NASD trade subscriptions.

Contrast with this example:

<receivers order="allow,deny">
<topic pattern=""trade" rule="allow"/>
<topic pattern=""trade\.NASD" rule="deny"/>
</receivers>

Let's again assume that the application subscribes to "trade.NASD.xyz". This also matches both patterns, but in
this case the allows are first and the denies are last. Thus, "trade.NASD.xyz" is prevented.

So while the previous example only allowed NASD trades, this example allows any trades except NASD.

Also note that subscribing to "quote", which does not match either topic, follows the default rule, which is deny.

36 XML Configuration Files

2.4 UM Default Values

The following examples will help to illustrate how UM defaults work. In the code fragments shown, the UM API calls
shown are assumed to be the first UM API calls made since the process started.

No Attribute Object, No Config File

test.c:

err = lbm_context_create(&ctx, NULL, NULL, NULL);
/* The context has request_tcp_port_low = 14393 (factory default) »*/

1. When UM initializes, the "factory defaults" are copied to the process-global internal attribute objects.
2. Inthe call to Ibm_context_create(), setting the "att r" parameter to NULL causes UM to use the process-

global internal context attribute object to create the context.

No Attribute Object, Plain Text Configuration File
test.cfg:

context request_tcp_port_low 12000
test.c:

err = lbm_config("test.cfg");
err = lbm_context_create (&ctx, NULL, NULL, NULL);
/* The context has request_tcp_port_low = 12000 =/

1. When UM initializes, the "factory defaults" are copied to the process-global internal attribute objects.

2. The call to Ibm_config() reads the options in the file "test.cfg" and applies them to the process-global internal
attribute objects. This overrides the factory default for request_tcp_port_low (context).

3. Inthe call to Ibm_context_create(), setting the "att r" parameter to NULL causes UM to use the process-
global internal context attribute object to create the context.

Attribute Object, Plain Text Configuration File
test.cfg:

context request_tcp_port_low 12000
test.c:

= lbm_config("test.cfg");

err = lbm_context_attr_create (&ctx_attr);

err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);
/* The context has request_tcp_port_low = 12000 =*/

1. When UM initializes, the "factory defaults" are copied to the process-global internal attribute objects.

2. The call to Ibm_config() reads the options in the file "test.cfg" and applies them to the process-global internal
attribute objects. This overrides the factory default for request_tcp_port_low (context).

3. The Ibm_context_attr_create() API copies the process-global internal context attribute object, with the over-
ridden request_tcp_port_low (context).

4. The call to Ibm_context_create() passes the attribute object with the overridden request_tcp_port_low (con-
text).

2.4 UM Default Values 37

Note

The use of Ibm_context_attr_create() is not recommended. See next example.

Attribute Object, Plain Text and XML Configuration Files

In this example, the user intends the default for request_tcp_port_low (context) to be overridden to 13000, but there's
a problem.

test.xml:

<?xml version="1.0" 2>
<um-configuration version="1.0">
<applications>
<application>
<contexts>
<context>
<options type="context">
<option name="request_tcp_port_low" -value="13000">
</option>
</options>
</context>
</contexts>
</application>
</applications>
</um-configuration>

test.cfg:

context request_tcp_port_low 12000
test.c:

err = lbm _config _xml_file("test.xml", NULL);

err = lbm_config("test.cfg");

err = lbm_context_attr_create (&ctx_attr);

err = lbm_context_create(&ctx, ctx_attr, NULL, NULL);
/+ The context has request_tcp_port_low = 12000!! =/

1. When UM initializes, the "factory defaults" are copied to the process-global internal attribute objects.

2. The call to Ibm_config_xml_file() reads the elements in the file "test.xml!" and stores them internally. Note
that Ibm_config_xml_file() does not modify the process-global internal attribute objects.

3. The call to Ibm_config() reads the options in the file "test.cfg" and applies them to the process-global internal
attribute objects. This overrides the factory default for request_tcp_port_low (context) with 12000.

4. The Ibm_context_attr_create() API copies the process-global internal context attribute object, with the over-
ridden request_tcp_port_low (context). Note that the XML default is not applied when the attribute object is
created using Ibm_context_attr_create().

5. The call to Ibm_context_create() passes the attribute object with the overridden request_tcp_port_low (con-
text) of 12000.

In this example, the use of Ibm_context_attr_create() resulted in the XML file's default being ignored. However,
see the next example.

Attribute Object, Plain Text and XML Configuration Files, Plus Restriction
In this example, the application is constrained to only allow 12000.

test.xml:

<?xml version="1.0" 2>

<um-configuration version="1.0">
<applications>
<application>
<contexts>
<context>

<options type="context">
<option name="request_tcp_port_low" —-value="13000"
order="allow,deny">

38 XML Configuration Files

<allow>13000</allow>
</option>
</options>

</context>
</contexts>

</application>
</applications>

</um-configuration>

test.cfg:

context request_tcp_port_low 12000

test.c:

err
err

lbm_config_xml_file("test.xml", NULL);
lbm_config("test.cfg");

err lbm_context_attr_create (&ctx_attr);

err lbm_context_create (&ctx, ctx_attr, NULL, NULL);
/* ERROR RETURNED! «/

As with the previous example, the default value supplied in the XML configuration file is ignored due to the use
of Ibm_context_attr_create(). However, the XML file's restrictions applied by order="allow, deny" and
<allow>13000</allow> are applied at object creation time. Since only 13000 is allowed, but 12000 was
attempted, the Ibm_context_create() API fails.

Attribute Object From XML, Plain Text and XML Configuration Files, Plus Restriction

test.xml:

<?xml version="1.0" 2>
<um-configuration version="1.0">
<applications>
<application>
<contexts>
<context>
<options type="context">
<option name="request_tcp_port_low" default-value="13000"
order="allow,deny">
<allow>13000</allow>
</option>
</options>
</context>
</contexts>
</application>
</applications>
</um-configuration>

test.cfg:

context request_tcp_port_low 12000

test.c:

err
err

lbm_config_xml_file("test.xml", NULL);
lbm_config("test.cfg");

err lbm_context_attr_create_from_xml (&ctx_attr, NULL);
err lbm_context_create (&ctx, ctx_attr, NULL, NULL);

/* The context has request_tcp_port_low = 13000 =/

In this example, the attribute object is created using the Ibm_context_attr_create_from_xmli() API. It is created
without a name, and therefore matches the "<context>" option that has no name attribute. This allows the
default-value attribute to override the default present in the internal process-global context attribute object.
So the call to Ibm_context_create() succeeds.

Note that if the plain text configuration file "test.cfg" had other UM options set, those overridden defaults would have
appeared in the attribute object created by Ibm_context_attr_create_from_xml().

Named Attribute Object, XML Configuration File
In this example, the context is named.

test.xml:

2.5 Reading XML Configuration Files 39

<?xml version="1.0" 2>
<um-configuration version="1.0">
<applications>
<application name="Appl">
<contexts>
<context name="MainCtx">
<options type="context">
<option name="request_tcp_port_low" -value="13000"
order="allow,deny">
<allow>13000</allow>
</option>
</options>
</context>
</contexts>
</application>
</applications>
</um-configuration>

test.c:

err = lbm_config_xml_file("test.xml", "Appl");

err = lbm_context_attr_create_from_xml (&ctx_attr, "MainCtx");
r = lbm_context_create (&ctx, ctx_attr, NULL, NULL);

In this example, the application and context names are specified and matched in the XML file. This is the recom-
mended way of using UM. In fact, even if no XML file is used at all, the x_attr_create_from_xml () APIs
are recommended to be used, and descriptive names supplied. This "future-proofs" your code so that flexible XML
configurations can be added later on without needing to change your source code.

2.5 Reading XML Configuration Files

There are multiple ways to read an XML configuration file to assign values while creating a primitive object.

API function Ibm_config_xml_file()

Reads an XML configuration file into XML config table. Call this before the primitive create API. This does not
change the current default attributes. Use a file path, or a URL beginning with http:// or ftp://.

API function Ibm_config_xml_string()

Populates the XML config table directly from your application. Call this before the primitive create API. This
does not change the current default attributes.

API function Ibm_x_attr_create_from_XML()

Creates a custom attributes object containing the values from an XML configuration file. The values can then be
applied to a primitive object being created by calling API "lom_x_create()" and specifying this custom attributes
object in the second parameter.

Environment variable LBM_XML_CONFIG_FILENAME

Reads the file into the XML config table. These settings are then available to all applications when they start.
Use a file path, or a URL beginning with http:// or ftp://.

Environment variable LBM_XML_CONFIG_APPNAME

Reads options for a specific application from the LBM_XML_CONFIG_FILENAME variable's filename. This
initiates the specified application's configuration; set this environment variable for every application. Note that
this variable is ignored if the XML configuration file is read using the Ibm_config() API.

API function Ibm_set_umm_info()

Initiates the application to read options for an application and user from the UMM daemon. The Java API and
.NET API is com::latencybusters::Ibm::LBM::setUmmInfo().

http://
ftp://
http://
ftp://

40 XML Configuration Files

Environment variable LBM_UMM_INFO
Initiates the application to read options for an application and user from the UMM daemon. Set this variable for

every application/user combination, in the following format:

export LBM_UMM_INFO=application_name:user_name:password@ip:port

2.6 Using XML Configuration Files With a UM Application
The following procedure describes a general approach to implementing XML configuration files.

1. Create an XML configuration file using an XML editor or text editor. Just for this example, name the file,
UM_CONFIG.XML.

2. Insert desired templates in the <templates> element. Each template holds configuration options shared
by multiple applications or primitive UM objects. You can apply multiple templates to an application and its
primitive UM objects, however if the same option appears in multiple templates, the option value in the /last
template overrides the option value in any previous templates. See <templates>.

3. Insert an <application> element for your UM application in the <applications> element and reference any
relevant templates created in the previous step. Just for this example, name the application, SENDAPP. See
<applications>.

4. Within the <contexts> element, configure the application's <context> element and context options. And
since our example application, SENDAPP is a sending application, also configure its Source options. (If
this was a receiving application, you would configure Receiver or Wildcard Receiver options. Note that most
real-world applications both send and receive messages, and would therefore have both.) If your application
creates multiple Contexts, enter multiple <context> elements within the <contexts> element, inserting the
appropriate source, receiver or wildcard receiver options. See <contexts>.

5. Configure the applications Event Queue options. See <event-queues>.

6. Save the XML configuration file, UM_CONFIG.XML, and load it onto the machine where the application (S«
ENDAPP) runs.

7. Have the application (SENDAPP) read the XML file. The preferred way to do this is the lbm_config_«
xml_file() APIl. However, if it is not possible to modify the application's code, set the following environment
variables:

+ Set LBM_XML_CONFIG_FILENAME to UM_CONFIG.XML.
» Set LBM_XML_CONFIG_APPNAME to SENDAPP.

8. Start SENDAPP.

2.7 XML Configuration File Format

A UM XML Configuration File follows standard XML conventions. The first line should be:

<?xml version="1.0" encoding="UTF-8" 2>

2.8 Merging Multiple XML Configuration Files 41

followed by UM elements.

An XML configuration file generally comprises two primary elements: templates and applications. Organized and
contained within these are option value assignments. Applications containers let you set options for specific appli-
cations. To provide more global control over applications, or to simply reduce repetition, you can create templates
to hold option settings that are to be used in one or more different applications.

XML configuration files use the high-level structure shown in the following example. This example includes only
some container elements, and no options.

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="Sending">
<options type="source">
</options>
<options type="context">
</options>
</template>
</templates>
<applications>
<application name="Sending-Topicl">
<contexts>
<context name="Sending-LBTRM">
<sources>
<topic topicname="Topicl">
<options type="source">
</options>
</topic>
</sources>
</context>
</contexts>
<event-queues>
<event-queue/>
<event-queue name="EQ-1"/>
</event-queues>
</application>
</applications>
</um-configuration>

2.8 Merging Multiple XML Configuration Files

For UM XML configuration files and UMP store daemon XML configuration files, you can use the Xinclude mecha-
nism to merge multiple configuration files.

To include an external file, use the following syntax:

<xi:include xmlns:xi=http://www.w3.0rg/2003/XInclude" href="filename.xml" />

Files to be included must be formatted such that all elements are enclosed in a single container element, as shown
in the following examples:

Example 1

<ume-attributes>
<option type="store" name="allow-proxy-source" value="1"/>
<option type="lbm-context" name="resolver_multicast_address" value="239.255.38.0" />
<option type="lbm-context" name="resolver_multicast_port" value="19999" />
</ume-attributes>

Example 2

<topics>
<topic pattern="." type="PCRE">
<ume-attributes>
<option type="store" name="repository-type" value="disk"/>
<option type="store" name="retransmission-request-forwarding" value="0"/>
</ume-attributes>
</topic>
</topics>

42

XML Configuration Files

2.9 XML Configuration File Elements

Here's a "cheat sheet" showing all of the XML elements.

<um-configuration>

<license format="...">...</license>
<templates>
<template name="...">
<options type="...">
<option name="..." « lt-value="..." order="...">
<allow>...</allow>
<deny>...</deny>
</option>
</options>
</template>
</templates>
<applications>
<application name="..." template="...">
<contexts order="..." template="...">
<context name="..." template="..." rule="...">
<options ...>...</options> (see templates for expansion)
<sources template="..." order="...">
<topic template="..." rule="..." topicname="..." pattern="...">
<options ...>...</options> (see templates for expansion)
</topic>
</sources>
<receivers order="..." template="...">
<topic template="..." rule="..." topicname="..." pattern="...">
<options ...>...</options> (see templates for expansion)
</topic>
</receivers>
<wildcard-receivers template="..." order="...">
<wildcard-receiver template="..." rule="..." pattern="..." pattern-type="...">
<options >...</options> (see templates for expansion)
</wildcard-receiver>
</wildcard-receivers>
</context> </contexts>
<hfxs template="..." order="...">
<topic template="..." rule="..." topicname="..." pattern="...">
<options >...</options> (see templates f expansion)
</topic>
</hfxs>
<event-queues template="..." order="...">
<event-queue name="..." template="..." rule="...">
<options >...</options> (see templates for expansion)

</event-queue>
</event-queues>

</application>
</applications>
</um-configuration>

2.9.1 UM Element "<um-configuration>"

Container element that holds the UM configuration. Also defines the version of the configuration format used by the

file.
 Children: <license>, <templates>, <applications>

XML Attributes:

2.9 XML Configuration File Elements

43

Attribute | Description Valid Values

Default Value

version Version number of user's configuration file. | string

1.0

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">

</um-configuration>

2.9.2 UM Element "<applications>"

Container element that holds the configurations for different applications.

« Parent: <um-configuration>

+ Children: <application>

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<applications>

</applications>

</um-configuration>

2.9.3 UM Element "<application>"
Container element that holds the configuration for a specific application.

Note

Applications that set a name which is not included by any <application> element will fail. There is no

"default" <application> element that allows and configures applications with non-matching names.

 Cardinality: 0 .. unbounded
+ Parent: <applications>

» Children: <contexts>, <event-queues>, <hfxs>, <application-data>

XML Attributes:

44 XML Configuration Files
Attribute | Description Valid Values | Default Value
name A case-sensitive label which UM | string (If omitted, matches applications that

matches to an application's assigned
name. An application is typically
assigned a name via API, e.g. lbm«
_config_xml_file(), or by environment
variable, LBM_XML_CONFIG_APP+«
NAME. See XML Reference Names
for more information. Names are
case-sensitive and can consist of any
printable ASCII characters. They must
be 99 characters or less.

don't set a name.)

template | A case-sensitive label which UM | string
matches to a template's assigned
name.

(If omitted, no template is applied.)

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="FIX_Config.Prod">
</template>
</templates>
<applications>
<application name="FIX.01l" template="FIX_Config.Prod">
</application>
</applications>

</um-configuration>

2.9.4 UM Element "<application-data>"

Free-form text comment field. Deprecated; do not use.

» Parent: <options>, <application>

 Default Value: Deprecated; do not use.

XML Attributes:
Attribute Description Valid Values Default Value
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default
spaces, linefeeds) are handled in the | "preserve" - Retain whitespace

Attribute.

element content. See xml:space | exactly as entered.

Deprecated; do not use.

2.9 XML Configuration File Elements 45

2.9.5 UM Element "<hfxs>"

Container element that holds the configuration for HFX objects. The contained <topic> elements are matched
by topic to the HFX objects created by the application. The order="..." attribute is used to constrain the
application's access to topics. See Order and Rule Specifications for details.

See UM Hot Failover Across Contexts Objects for more information on HFX.

+ Parent: <application>

+ Children: <topic>

XML Attributes:
Attribute | Description Valid Values | Default Value
template | A case-sensitive label which UM matches to | string (If omitted, no template is applied.)

a template's assigned name.

order Valid values are "deny,allow" and "al- | string "deny,allow"
low,deny". Used to control how HFX usage
is restricted. See Order and Rule Specifica-
tions and Overlapping Topics.

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="FIX_Config.Prod">
</template>
</templates>
<applications>
<application name="FIX.0l" template="FIX_ Config.Prod">
<hfxs template="FIX_Config.Prod" order="deny,allow">
</hfxs>
</application>
</applications>

</um-configuration>

2.9.6 UM Element "<topic>"

Used to match UM objects (sources, receivers, HFX receivers) by their topic names, and control their use and
configuration. The attributes t opicname and pattern are mutually exclusive; you may not supply both.
Warning

If the rule attribute is being used to restrict the application's receivers, remember that wildcard receivers
must also be restricted. For example, if the application must be prevented from subscribing to the "authorize"
topic, it is not enough to use:

<topic topicname="authorize" rule="deny"/>

Wildcards must also be limited or forbidden. For example, to forbid all wildcard receivers:

<wildcard-receivers order="allow,deny"/>

46 XML Configuration Files

 Cardinality: 0 .. unbounded
» Parent: <hfxs>, <sources>, <receivers>

 Children: <options>

XML Attributes:
Attribute Description Valid Values Default Value
template A case-sensitive label which | string (If omitted, no template is ap-
UM matches to a template's plied.)
assigned name.
rule Used to restrict the usage of | "allow" - Permitthe match- | allow

topics. See Order and Rule | ing topic.
Specifications. Note that a | "deny" - Prevent the match-
particular object might match | ing topic.
more than one <topic> el-
ement due to overlapping pat-
tern matching. See Overlap-

ping Topics.

pattern Regular expression to match | string (no default; either
against the topic name of the topicname or pattern
application object being cre- must be specified)
ated.

topicname | Name of topic to match | string (no default; either
against the application object topicname or pattern
being created. Requires exact must be specified)
match.

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="FIX_Config.Prod">
</template>
</templates>
<applications>
<application name="FIX.01" template="FIX_Config.Prod">
<hfxs order="deny,allow">
<topic template="FIX_Config.Prod" topicname="Orders" rule="deny"\>
</hfxs>
</application>
</applications>
</hfxs>

</um-configuration>

2.9.7 UM Element "<options>"

Container element that holds a set of UM options of a specific scope (context, source, etc.).

 Cardinality: 0 .. unbounded

« Parent: <template>, <event-queue>, <context>, <topic>, <wildcard-receiver>

2.9 XML Configuration File Elements 47

+ Children: <option>, <application-data>

XML Attributes:
Attribute | Description Valid Values Default Value
type UM configuration scope | "event—queue" - Event | (no default; must be specified)

of the <option> ele- | queue scope options.
ments contained within this | "context" - Context scope

<options> element. options.
"source" - Source scope
options.
"receiver" - Receiver

scope options.
"wildcard-receiver"

- Wildcard receiver scope
options.

"hfx" - HFX scope options.

Example:

The <options> element can be contained within many other elements. This example only shows it used within
the <template> element, but its syntax and usage is the same when used elsewhere.

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="FIX_Config.Prod">
<options type="context">
</options>
</template>

</templates>

</um-configuration>

2.9.8 UM Element "<option>"

Configure a specific configuration option. The contained <allow> and <deny> elements are used to allow the
XML file to constrain how the application may override the option's value. See Order and Rule Specifications for
details.

+ Parent: <options>

+ Children: <allow>, <deny>

XML Attributes:
Attribute Description Valid Values | Default Value
name Option name. string (no default; must be specified)
default-value | Value to set the option. string (if omitted, the option's default value
is not changed.)
order Valid values are "deny,allow" and "al- | string "deny,allow"
low,deny". Used to control how option
values are restricted. See Order and
Rule Specifications.

48 XML Configuration Files

Example:

The <options> element can be contained within many other elements. This example only shows it used within
the <template> element, but its syntax and usage is the same when used elsewhere.

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="FIX_ Config.Prod">
<options type="context">
<option name="default_interface" -value="10.1.2.3" order="deny,allow">
</option>
</options>
</template>

</templates>

</um-configuration>

2.9.9 UM Element "<deny>"

Contains an option value that the application is explicitly prevented from using. See Order and Rule Specifications.

» Parent: <option>

XML Attributes:
Attribute Description Valid Values Default Value
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default
spaces, linefeeds) are handled in the | "preserve" - Retain whitespace
element content. See xml:space | exactly as entered.
Attribute.
Example:

The <options> element can be contained within many other elements. This example only shows it used within
the <template> element, but its syntax and usage is the same when used elsewhere.

In this example, the application may configure any interface except loopback (127.0.0.1).

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="FIX_Config.Prod">
<options type="context">
<option name="default_interface">
<deny>127.0.0.1</deny>
</option>
</options>
</template>

</templates>

</um-configuration>

2.9 XML Configuration File Elements 49

2.9.10 UM Element "<allow>"

Contains an option value that the application is explicitly allowed to use. See Order and Rule Specifications.

+ Parent: <option>

XML Attributes:
Attribute Description Valid Values Default Value
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default
spaces, linefeeds) are handled in the | "preserve" - Retain whitespace
element content. See xml:space | exactly as entered.
Attribute.
Example:

The <options> element can be contained within many other elements. This example only shows it used within
the <template> element, but its syntax and usage is the same when used elsewhere.

This example also demonstrates a specific case where the <option> element has order="allow, deny"
which sets the default behavior for overriding the option to deny. This effectively constrains the application's
ability to override the default value to only those values explicitly allowed. Importantly, the value specified in
default-value="..." must be explicitly allowed, as shown in this example.

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="FIX_Config.Prod">
<options type="context">
<option name="default_interface" -value="10.1.2.3" order="allow,deny">
<allow>10.1.2.3</allow>
</option>
</options>
</template>

</templates>

</um-configuration>

2.9.11 UM Element "<event-queues>"

Container element that holds the configuration for event queues. The <event-queue> elements contained within
<event-queues> are matched to the event queue objects created by the application. The order="..."
attribute is used to constrain the application's use of event queues. See Order and Rule Specifications for details.

+ Parent: <application>

+ Children: <event-queue>

XML Attributes:
Attribute | Description Valid Values | Default Value
template | A case-sensitive label which UM matches to | string (If omitted, no template is applied.)
a template's assigned name.
order Valid values are "denyallow" and "al- | string "deny,allow"

low,deny". Used to control how event queue
usage is restricted. See Order and Rule
Specifications.

50

XML Configuration Files

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">

<templates>
<template

name="EVQ_FIX Config.Prod">

</template>

</templates>
<applications>
<application name="FIX.01">
<event-queues template="EVQ_FIX_ Config.Prod" order="deny,allow">

</event

—queues>

</application>

</applications>

</um-configuration>

2.9.12 UM Element "<event-queue>"

Container of configuration for a single event queue.

+ Cardinality: 0 .. unbounded

* Parent:

<event-queues>

+ Children: <options>

XML Attributes:

Attribute

Description

Valid Values

Default Value

name

Name of the event queue.
Supplied as a parameter to
Ibm_event_queue_attr—
_create_from_xml()

Ibm_event_queue_attr_«
set_from_xml(). Names are
case-sensitive and can consist
of only alpha-numeric ASCII
characters, dash (-), and un-
derscore (_). They must be

127 characters or less.

and

string

(If omitted, matches applica-
tions that don't set an event
queue name.)

template

A case-sensitive label which
UM matches to a template's
assigned name.

string

(If omitted, matches applica-
tions that don't set a name.)

rule

Used to restrict the usage of
event queues. See Order and
Rule Specifications.

"allow" - Permit the match-
ing object.
"deny" - Prevent the match-
ing object.

allow

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">

<templates>
<template

name="EVQ_FIX_ Config.Prod">

2.9 XML Configuration File Elements 51

</template>
</templates>
<applications>
<application name="FIX.01">
<event-queues template="EVQ_FIX Config.Prod" order="deny,allow">
<event-queue name="EVQ_FIX" rule="allow">
</event-queue>
</event-queues>
</application>
</applications>

</um-configuration>

2.9.13 UM Element "<contexts>"

Container element that holds the configurations for context objects. The <context> elements contained within
<contexts> are matched to the context objects created by the application. For contexts that do not match any
of the contained <context> elements, the default permission is determined by the order="..." attribute.

+ Parent: <application>

» Children: <context>

XML Attributes:
Attribute | Description Valid Values | Default Value
template | A case-sensitive label which UM matches to | string (If omitted, no template is applied.)
a template's assigned name.
order Valid values are "deny,allow" and "al- | string "deny,allow"

low,deny". Used to control how context us-
age is restricted. See Order and Rule Speci-
fications.

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="CTX_FIX_Config.Prod">
</template>
</templates>
<applications>
<application name="FIX.01">
<contexts template="CTX_FIX Config.Prod" order="deny,allow">
</contexts>
</application>
</applications>

</um-configuration>

52

XML Configuration Files

2.9.14 UM Element "<context>"

Container of configuration for a single context.

+ Cardinality: O .. unbounded

« Parent: <contexts>

» Children: <sources>, <receivers>, <wildcard-receivers>, <options>

XML Attributes:

Attribute

Description

Valid Values

Default Value

name

Name of the context. Supplied
as a parameter to lbm_«
context_attr_create_from«
_xml() and Ibm_context
attr_set_from_xml(). Names
are case-sensitive and can
consist of only alpha-numeric
ASCII characters, dash (-),
and underscore (_). They must
be 127 characters or less.

string

(If omitted, matches applica-
tions that don't set a context
name.)

template

A case-sensitive label which
UM matches to a template's
assigned name.

string

(If omitted, no template is ap-
plied.)

rule

Used to restrict the usage of
contexts. See Order and Rule
Specifications.

"allow" - Permit the match-
ing object.
"deny" - Prevent the match-
ing object.

allow

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">

<templates>

<template name="CTX_FIX Config.Prod">

</template>

</templates>
<applications>
<application name="FIX.01">
<contexts template="CTX_FIX Config.Prod" order="deny,allow">

<context name="CTX_FIX"

</context>

</contexts>

</application>

</applications>

</um-configuration>

rule="allow">

2.9.15 UM Element "<wildcard-receivers>"

Container element that holds the configurations for wildcard receiver objects. The <wildcard-receiver> elements
contained within <wildcard-receivers> are matched to the wildcard receiver objects created by the appli-

cation.

2.9 XML Configuration File Elements 53

Note

If the user desires to constrain the use of wildcard receivers, it should be done with order="allow, deny"
and rule="allow" attributes (which denies all wildcards except those specifically allowed). The use of
order="deny,allow" and rule="deny" to allow any wildcard except those specifically denied will
not work as desired. For example, denying the pattern ".x" will still permit the use of "".x", which will match
the same topics (i.e. all of them).

* Parent: <context>

e Children: <wildcard-receiver>

XML Attributes:
Attribute | Description Valid Values | Default Value
template | A case-sensitive label which UM | string (If omitted, no template is applied.)
matches to a template's assigned
name.
order Valid values are "deny,allow" and "al- | string "deny,allow" (But note that this
low,deny". Used to control how wildcard value is not useful for restrictingwildcard
receiver usage is restricted. See Order receivers. "allow, deny" should al-
and Rule Specifications. ways be used.)
Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="CTX_FIX Config.Prod">
</template>
</templates>
<applications>
<application name="FIX.01">
<contexts template="CTX_FIX Config.Prod" order="deny,allow">
<context name="CTX_FIX" rule="allow">
<wildcard-receivers template="WC_FIX_Config.Prod" order="deny,allow">
</wildcard-receivers>
</context>
</contexts>
</application>
</applications>

</um-configuration>

2.9.16 UM Element "<wildcard-receiver>"
Container of configuration for a single wildcard receiver.

+ Cardinality: O .. unbounded
« Parent: <wildcard-receivers>

+ Children: <options>

XML Attributes:

54 XML Configuration Files
Attribute Description Valid Values Default Value
template A case-sensitive label which | string (If omitted, no template is ap-
UM matches to a template's plied.)
assigned name.
rule Used to restrict the usage of | "allow" - Permit the | allow
wildcard receivers. See Order | matching object.
and Rule Specifications. "deny" - Prevent the match-
ing object. (Note that this
is not a useful setting for
restricting wildcard receivers
since the application can
choose a different pattern
that matches the forbidden
topic.)
pattern Match wildcard receivers with | string (no default; must be speci-
this pattern. Note that this fied)
string is matched exactly to
the pattern supplied to the
wildcard receiver. This pat-
tern is not intended to match
more than one wildcard re-
ceiver.
pattern-type | Type of wildcard receiver pat- | "pcre" - Perl regular ex- | "pcre"
tern matching engine the | pression. This is the only
wildcard receiver is using. | supported selection.
Only "pcre" is supported. "regex" - Posix regular

expression. Deprecated; do
not use.
"application-callback
- Application-supplied pattern
matcher. Deprecated; do
not use.

9

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="CTX_FIX Config.Prod">

</template>
</templates>

<applications>
<application name="FIX.01">

<contexts template="CTX_FIX_Config.Prod" order="deny,allow">

<context name="CTX_FIX" rule="allow">

<wildcard-receivers template="WC_FIX Config.Prod" order="deny,allow">

<wildcard-receiver pattern="WC_FIX"
</Qiidcardfreceiver>
</&iidcard—receivers>
</ééétext>
</éé$texts>
</éé§lication>
</ééélications>

</um-configuration>

rule="allow">

2.9 XML Configuration File Elements 55

2.9.17 UM Element "<receivers>"

Container element that holds the configurations for receiver objects. The <topic> elements contained within
<receivers> are matched to the receiver objects created by the application. For receivers that do not match
any of the contained <topic> elements, the default permission is determined by the order="..." attribute.

» Parent: <context>

+ Children: <topic>

XML Attributes:
Attribute | Description Valid Values | Default Value
template | A case-sensitive label which UM matches to | string (If omitted, no template is applied.)

a template's assigned name.

order Valid values are "denyallow" and "al- | string "deny,allow"
low,deny". Used to control how receiver us-
age is restricted. See Order and Rule Speci-
fications.

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="CTX_FIX Config.Prod">
</template>
</templates>
<applications>
<application name="FIX.01">
<contexts template="CTX_FIX_Config.Prod" order="deny,allow">
<context name="CTX_FIX" rule="allow">
<receivers template="RCV_FIX_ Config.Prod" order="deny,allow">
</receivers>
</context>
</contexts>
</application>
</applications>

</um-configuration>

2.9.18 UM Element "<sources>"

Container element that holds the configurations for source objects. The <topic> elements contained within
<sources> are matched to the source objects created by the application. For sources that do not match any of
the contained <topic> elements, the default permission is determined by the order="..." attribute.

« Parent: <context>

+ Children: <topic>

XML Attributes:

56 XML Configuration Files

Attribute | Description Valid Values | Default Value

template | A case-sensitive label which UM matches to | string (If omitted, no template is applied.)
a template's assigned name.

order Valid values are "denyallow" and "al- | string "deny,allow"

low,deny". Used to control how source usage
is restricted. See Order and Rule Specifica-
tions.

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="CTX_FIX Config.Prod">
</template>
</templates>
<applications>
<application name="FIX.01">
<contexts template="CTX_FIX Config.Prod" order="deny,allow">
<context name="CTX_FIX" rule="allow">
<sources template="SRC_FIX_Config.Prod" order="deny,allow">
</sources>
</context>
</contexts>
</application>
</applications>

</um-configuration>

2.9.19 UM Element "<templates>"

Container element that holds one or more configuration template definitions. A configuration template holds a set
of UM configuration options. See XML Configuration File Format for information on templates.

» Parent: <um-configuration>

* Children: <template>

Example:

<?xml version="1.0" encoding="UTEF-8" 2>
<um-configuration version="1.0">
<templates>

</templates>

</um-configuration>

2.9.20 UM Element "<template>"

Container element that holds a collection of UM configuration options which can be referenced by other elements.
See XML Configuration File Format for information on templates.

2.9 XML Configuration File Elements

57

 Cardinality: 0 .. unbounded

» Parent: <templates>

 Children: <options>

XML Attributes:
Attribute | Description Valid Values | Default Value
name A case-sensitive label assigned to the template, | string (no default; must be specified)

which can be referenced by most other elements
via their "template" attribute. Names are case-
sensitive and can consist of any printable ASCII
characters. They must be 99 characters or less.

Example:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">

<templates>

<template name="FIX_ Config.Prod">

</template>

</templates>

</um-configuration>

2.9.21

UM Element "<license>"

Identifies the UM product license, either as the license key or as a pointer to a license file, as an alternative to
setting it in an environment variable. The content within the <license>...</license> is either afile name
or a license string, depending on the value supplied for the format attribute.

» Parent: <um-configuration>

XML Attributes:
Attribute Description Valid Values Default Value
format Specifies how the content within the | "f£ilename" - The license element | string

<license>...</license> is
interpreted.

contains the name of a file that con-
tains the license key.

"string" - The license element
contains the actual license key.

xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default
spaces, linefeeds) are handled in the | "preserve" - Retain whitespace
element content. See xml:space | exactly as entered.
Attribute.
Example 1:

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">

<license format="filename">um_license.txt</license>

</um-configuration>

58 XML Configuration Files

Example 2:

<?xml version="1.0" encoding="UTF-8" 2>

<um-configuration version="1.0">
<license format="string">

Product=LBM, UME, UMQ, UMDRO:Organization=User or Org:Expiration-Date=never:License-Key=1234 5678 9ABC DEFO
</license>

</um-configuration>

2.10 XML Configuration File DTD

The XML configuration file DTD is integrated into UM and appears below.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT um-configuration (license | templates | applications)*>
<!ATTLIST um-configuration version CDATA #REQUIRED>

<!ELEMENT license (#PCDATA)>

<!ATTLIST license format (filename | string) "string">

<!ATTLIST license xml:space (default | preserve) "default">
<!ELEMENT templates (templatex)>

<!ELEMENT template (options+)>

<!ATTLIST template name CDATA #REQUIRED>

<!ELEMENT options (option | application-data) x>

<!ATTLIST options type (event-queue | context | source | receiver | wildcard-receiver | hfx) #IMPLIED>
<!ELEMENT option (allow | deny) %>

<!ATTLIST option name CDATA #REQUIRED>

<!ATTLIST option default-value CDATA #IMPLIED>

<!ATTLIST option order CDATA #IMPLIED>

<!ELEMENT application-data (#PCDATA)>

<!ATTLIST application-data xml:space (default | preserve) "default">
<!ELEMENT allow (#PCDATA)>

<!ATTLIST allow xml:space (default | preserve) "default">

<!ELEMENT deny (#PCDATA)>

<!ATTLIST deny xml:space (default | preserve) "default">

<!ELEMENT applications (application«)>

<!ELEMENT application (contexts | event-queues | hfxs | application-data)+>

<!ATTLIST application name CDATA #IMPLIED>

<!ATTLIST application template CDATA #IMPLIED>
<!ELEMENT contexts (contextx)>

<!ATTLIST contexts template CDATA #IMPLIED>

<!ATTLIST contexts order CDATA #IMPLIED>

<!ELEMENT event-queues (event-queuex)>

<!ATTLIST event-queues template CDATA #IMPLIED>
<!ATTLIST event-queues order CDATA #IMPLIED>
<!ELEMENT hfxs (topicx)>

<!ATTLIST hfxs template CDATA #IMPLIED>

<!ATTLIST hfxs order CDATA #IMPLIED>

<!ELEMENT event-queue (optionsx)>

<!ATTLIST event-queue name CDATA #IMPLIED>

<!ATTLIST event-queue template CDATA #IMPLIED>
<!ATTLIST event-queue rule (allow | deny) "allow">
<!ELEMENT context (sources | receivers | wildcard-receivers | options)+>
<!ATTLIST context name CDATA #IMPLIED>

<!ATTLIST context template CDATA #IMPLIED>

<!ATTLIST context rule (allow | deny) "allow">
<!ELEMENT sources (topicx)>

<!ATTLIST sources template CDATA #IMPLIED>

<!ATTLIST sources order CDATA #IMPLIED>

<!ELEMENT receivers (topicx)>

<!ATTLIST receivers template CDATA #IMPLIED>
<!ATTLIST receivers order CDATA #IMPLIED>

<!ELEMENT wildcard-receivers (wildcard-receiverx*)>
<!ATTLIST wildcard-receivers template CDATA #IMPLIED>
<!ATTLIST wildcard-receivers order CDATA #IMPLIED>
<!ELEMENT topic (optionsx)>

<!ATTLIST topic template CDATA #IMPLIED>

<!ATTLIST topic rule (allow | deny) "allow">
<!ATTLIST topic pattern CDATA #IMPLIED>

<!ATTLIST topic topicname CDATA #IMPLIED>

<!ELEMENT wildcard-receiver (optionsx)>

<!ATTLIST wildcard-receiver template CDATA #IMPLIED>
<!ATTLIST wildcard-receiver rule (allow | deny) "allow">
<!ATTLIST wildcard-receiver pattern CDATA #IMPLIED>
<!ATTLIST wildcard-receiver pattern-type (pcre | regex | application-callback) #IMPLIED>

2.11 Sample XML Configuration File 59

2.11 Sample XML Configuration File
A sample XML configuration file appears below and has the following notable aspects.

+ Contains object attributes for a UM context and source.
+ Application name is Sending.
+ Uses a template of attributes also called Sending-LBTRM.

» The template, Sending-LBTRM, uses the order attribute for the fd_management_type to allow all file de-
scriptor types except DEVPOLL. However the Sending-LBTRM application further restricts the file descriptor
types to exclude EPOLL in addition to DEVPOLL.

<?xml version="1.0" encoding="UTF-8" 2>
<um-configuration version="1.0">
<templates>
<template name="Sending-LBTRM">
<options type="source">

<option default-value="0" name="late_join"/>
<option default-value="500" name="resolver_advertisement_maximum_initial_interval"/>
<option default-value="5000" name="resolver_advertisement_minimum_initial_ duration"/>
<option default-value="10" name="resolver_advertisement_minimum_initial_interval"/>
<option mlt-value="60" name="resolver_advertisement_minimum_sustain_duration"/>
<option fault-value="1000" name="resolver_advertisement_sustain_interval"/>
<option default-value="lbtrm" name="transport"/>
<option default-value="14400" name="transport_lbtrm_destination_port"/>
<option default-value="0.0.0.0" name="transport_lbtrm multicast_address"/>
</options>

<options type="context">
<option default-value="wsaeventselect" name="fd_management_type" order="deny,allow">

<deny>wincompport</deny>

</option>
<option default-value="5000" name="mim_delivery_control_activity_check_interval"/>
<option default-value="60000" name="mim_delivery_control_activity_timeout"/>
<option default-value="6000" name="mim_delivery_control_loss_check_interval"/>
<option default-value="2000000" name="resolver_initial_advertisement_bps"/>
<option default-value="2000" name="resolver_initial_advertisements_per_second"/>
<option default-value="2000" name="resolver_initial_queries_per_second"/>
<option default-value="2000000" name="resolver_initial_query_bps"/>

</options>

</template>

</templates>
<applications>

<application name="Sending">
<contexts order="deny,allow">
<context rule="allow" template="Sending-LBTRM">
<sources order="deny,allow">
<topic rule="allow" topicname="IXCM">
<options type="source">

<option default-value="1" name="late_join"/>
<option default-value="lbtrm" name="transport"/>
<option default-value="14488" name="transport_lbtrm_destination_port"/>
<option default-value="224.12.5.101" name="transport_lbtrm multicast_address"/>
</options>
</topic>
</sources>

<receivers order="deny,allow"/>
<wildcard-receivers order="deny,allow"/>
<options type="context">

<option default-value="224.9.10.11" name="resolver_multicast_address"/>
<option default-value="224.9.10.11" name="resolver_multicast_incoming_address"/>
<option default-value="12965" name="resolver_multicast_incoming_port"/>
<option default-value="224.9.10.11" name="resolver_multicast_outgoing_address"/>
<option default-value="12965" name="resolver_multicast_outgoing_port"/>
<option default-value="12965" name="resolver_multicast_port"/>
<option default-value="224.9.10.12" name="resolver_multicast_interface"/>
<option default-value="0" name="resolver_multicast_receiver_socket_buffer"/>
<option default-value="wsaeventselect" name="fd_management_type" order="deny,allow">
<deny>wincompport</deny>

</option>

</options>

</context>

</contexts>

<event—-queues order="deny,allow">

60

XML Configuration Files

<event-queue rule="allow">
<options type="event-queue">
<option default-value="lbm" name="monitor_transport"/>
<option lt-value="" name="monitor_appid"/>
</options>
</event-queue>
</event-queues>
</application>
</applications>
</um-configuration>

Chapter 3

Attributes Objects

Many UM primitive objects have a corresponding attributes object, which contains the configuration information
specific to that UM object type. You can set configuration options in an attributes object, and supply the attributes
when creating the UM object. This allows assignment of different options for different instances of UM objects. The
following table lists the UM primitive objects and corresponding attributes objects.

UM object Corresponding Attributes Object(s)
Ibm_context_t Ibm_context_attr_t
Ibm_topic_t Ibm_src_topic_attr_t, Ibm_rcv_topic_attr—

t

Ibm_wildcard_rcv«~ | Ilbm_wildcard_rcv_attr_t
t

Ibm_event_queue~ | Ibm_event_queue_attr_t
t

Ibm_hfx_t Ibm_hfx_attr_t

You call API functions to create attributes objects and set, retrieve, or delete their values. These APl names are
based on the attributes object name and are shown in the following table, using the context object as an example.
See the C API for all attributes APls.

Action UM API function

Create Attributes Object Ibm_context_attr_create_from_xml()
Set Option from Binary Value | Ibm_context_attr_setopt()

Set Option from String Value | Ibm_context_attr_str_setopt()

Get Option as Binary Value Ibm_context_attr_getopt()

Get Option as String Value Ibm_context_attr_str_getopt()
Delete Attributes Object Ibm_context_attr_delete()

For other object types, replace context with src_topic, rcv_topic, wildcard_rcv, event_queue, or hfx.

The following sections describe in detail the use of these UM API functions. The APIs related to Ibm_context_attr«
_t objects are used for the purpose of illustration, but the instructions (if not the specifics) apply to all UM attributes
objects.

62 Attributes Objects

3.1 Creating An Attributes Object

In the following example, the call to Ibm_context_attr_create_from_xml() creates the custom attributes object,
and initializes each option from the current default values. Subsequent calls to lbm_context_attr_setopt() or
Ibm_context_attr_str_setopt() modify only the option values in the attributes object.

lbm_context_attr_t x attrib;

int rc;
rc = lbm_context_attr_create_from_xml (&attrib, "MyCtx");
(rc !'= 0)

{
/+ Immediately after UM returns error, capture error details. =/
int errnum = lbm_errnum();
const char x errmsg = lbm_errmsg();
fprintf (stderr, "Error %d returned from lbm_context_attr_create_from_xml (), %s\n",
errnum, errmsg);

This example also illustrates the proper way to determine the success or failure of an UM API call. Most UM API
calls return 0 to indicate success, and -1 to indicate failure. To retrieve the specific UM error code for the failure, call
Ibm_errnum(). To retrieve a text string describing the error code, call lbom_errmsg().

3.2 Setting an Option from a Binary Value

For an option of type other than "string", call lbm_context_attr_setopt() to set its value. (See the C API reference
for details on this API.) The final two parameters in the API are a pointer to a variable containing the option value,
and a variable of type size_t that contains the correct length of the option value variable.

The example code below sets three options. First, we set operational_mode (context) to sequential. Then we set
the transport_tcp_port_low (context) and transport_tcp_port_high (context) values to 4901 and 4920, respectively.

lbm_context_attr_t x attrib; /* Must have already been created =/
int rc;

unsigned short int optval;

size_t optlen;

/* Set the operational_mode =*/
optlen = sizeof (optval);
optval = LBM_CTX_ATTR_OP_SEQUENTIAL;
rc = lbm_context_attr_setopt (attrib, "operational mode", &optval, optlen);
(rc !'= 0) {
/* Handle error */

}

/+ Set transport_tcp_port_low x/
optlen = sizeof (optval);
optval = 4901;
rc = lbm_context_attr_setopt (attrib, "transport_tcp_port_low", &optval, optlen);
(rc !'= 0) {
/* Handle error */

}

/* Set transport_tcp_port_high x/
optlen = sizeof (optval);
optval = 4920;
rc = lbm_context_attr_setopt (attrib, "transport_tcp_port_high", &optval, optlen);
(rc !'= 0) {
/+ Handle error =/

3.3 Setting an Option from a String Value 63

3.2.1 Setting an Option from Arrays of Binary Values

There are some configuration options which expect an array of a particular type. The *_setopt() APl uses its "optlen”
parameter to determine the number of valid elements in the array.

For example, when using umqg_ulb_application_set (source) to configure a ULB source's application sets, the Ibm«
_umgq_ulb_receiver_type_entry_t structure is used to define one mapping between receiver type ID and appli-
cation set index. It is common to have more than one receiver type and/or more than one application set, so the
application code must pass an array of lbm_umq_ulb_receiver_type_entry_t structures. Note how Ibm_src_topic«
_attr_setopt()'s "optlen" is calculated in the following code:

lbm_umg_ulb_receiver_type_entry_t appsets[32]; /* This application’s worst case need. =/
int optlen, num_valid_elements;

/+* We need three entries, the equiv of "source umg_ulb_application_set 0:10,20;1:100". */
appsets[0] .application_set_index = 0;

appsets[0].id = 10; /% Receiver type ID. x/

appsets|[l].application_set_index = 0;

appsets([1l].id = 20; /% Receiver type ID. =/

appsets[2].application_set_index = 1;

appsets([2].id = 100; /* Receiver type ID. */

num_valid_elements = 3;

optlen = num_valid_elements x sizeof (lbm_umqg _ulb_receiver_type_entry_t);
rc = lbm_src_topic_attr_setopt (tattr, "umg ulb_application_set", appsets, optlen);
(rc !'= 0) {
/* Handle error */

3.3 Setting an Option from a String Value

Setting an option from a string value effectively does the same thing that setting an option from a binary value does.
However, the option value is passed as a null-terminated string, rather than as value and length pointers. UM uses
this mechanism to process options in a configuration file. Thus, the format used for option values must match the
format you would use in a configuration file.

In the following example, as before, we set the operational mode to sequential. Then we set the transport TCP port
low and high values to 4901 and 4920, respectively.

lbm_context_attr_t = attrib; /x Must have already been created */
int rc;

/* Set the operational_mode */
rc = lbm_context_attr_str_setopt (attrib, "operational_mode", "sequential");
it (rc !'= 0) {

/* Handle error */

}

/% Set transport_tcp_port_low x/
rc = lbm_context_attr_str_setopt (attrib, "transport_tcp_port_low", "4901");
if (rc !'= 0) {

/* Handle error */

}

/+ Set transport_tcp_port_high x/
rc = lbm_context_attr_str_setopt (attrib, "transport_tcp_port_high", "4920");
(rc !'= 0) {
/+ Handle error */

}

64 Attributes Objects

3.4 Getting an Option as a Binary Value

Getting an option as a binary value is very similar to setting an option from a binary value: it requires knowledge of
not only the option name, but its type as well. The final two parameters in the call to Ilbm_context_attr_getopt() are
a pointer to a variable to receive the current option value, and a pointer to a variable of type size_t which contains
the length of the option value variable. This length must be correct for the specified option.

In the example code below, we get the option values for operational mode and the transport TCP port low and high
values.

lbm_context_attr_t = attrib; /* Must have already been created x/
int rc;

unsigned short int optval;

size_t optlen;

/* Get the operational_mode =*/

optlen = sizeof (optval);
rc = lbm_context_attr_getopt (attrib, "operational_mode", &optval, &optlen);
if (rc !'= 0) {

/+ Handle error */
}
/* optval now contains LBM_CTX_ATTR_OP_EMBEDDED or LBM_CTX_ATTR_OP_SEQUENTIAL =/

/% Get transport_tcp_port_low %/ optlen = sizeof (optval);
rc = lbm_context_attr_getopt (attrib, "transport_tcp_port_low", &optval, &optlen);
(rc !'= 0) {
/* Handle error x/

/* optval now contains the value of transport_tcp_port_low, which should be 4901 =/

/% Get transport_tcp_port_high x/ optlen = sizeof (optval);
rc = lbm_context_attr_getopt (attrib, "transport_tcp_port_high", &optval, &optlen);
if (rc !'=0) {
/* Handle error =*/
}
/% optval now contains the value of transport_tcp_port_high, which should be 4920 x/

3.5 Getting an Option as a String Value

Getting an option as a string value effectively does the same thing that getting an option as a binary value does.
However, the option value is returned as a null-terminated string, just as you would specify the option value in a
configuration file. The final two parameters in the call to Ibm_context_attr_str_getopt() are a pointer to a string
variable to receive the current option value, and a pointer to a variable of type size_t which contains the maximum
size of the option value string variable.

In the example code below, we get the option values for operational mode and the transport TCP port low and high
values.

lbm_context_attr_t = attrib; /* Must have already been created =/
int rc;
char optval_string[256];

/+ Get the operational_mode =/

optlen = sizeof (optval_string);
rc = lbm_context_attr_str_getopt (attrib, "operational_mode", optval_string, &optlen);
(rc !'= 0) {

/* Handle error */

}

/+ optval_string now contains either "embedded" or "sequential" x/

/* Get transport_tcp_port_low =%/
optlen = sizeof (optval_string);
rc = lbm_context_attr_str_getopt (attrib, "transport_tcp_port_low",
optval_string, &optlen);
(rc !'= 0) {

/+ Handle error =/
}
/* optval_string now contains the string value of transport_tcp_port_low,

which should be "4901" «/

3.6 Deleting an Attributes Object

65

/% Get transport_tcp_port_high */ optlen = sizeof (optval_string);
rc = lbm_context_attr_str_getopt (attrib, "transport_tcp_port_high",
optval_string, &optlen);
(rc !'= 0) |
/* Handle error =*/

}

/* optval_string now contains the string value of transport_tcp_port_high,
which should be "4920" «/

3.6 Deleting an Attributes Object

Once the attributes object is no longer needed, it should be deleted.

lbm_context_attr_t = attrib; /* Must have already been created =/
int rc;

rc = lbm_context_attr_delete (attrib);
(rc !'= 0) {
/* Handle error */

66

Attributes Objects

Chapter 4

Access to Current Operating Options

After a UM object is created, the current operating option values can be retrieved, and a small subset of its current
operating options can be modified. UM API functions supporting such actions operate on the object itself, rather
than on an attributes object.

4.1 Retrieving Current Option Values

Almost all UM objects allow their current attributes' option values to be retrieved during operation. UM API functions
supporting such actions operate on the object itself.

The UM objects which support these actions are Ibm_src_t, Ibm_rcv_t, Ibm_context_t, and Ibm_event_queue_t.
For each such object, there are corresponding API functions to get an option as a binary value, and get an option
as a string value. These APl names are based on the object name, suffixed with _getopt(), and _str_getopt(). As
an illustration of this convention, the API functions for working with lbm_event_queue_t objects are shown in the
following table.

Action UM API function
Get Option from Binary Value | Ibm_event_queue_getopt()
Get Option from String Value | Ibm_event_queue_str_getopt()

For other object types, replace event_queue with context, src_topic, rcv_topic, wildcard_rcv, or hfx.

4.1.1 Getting Current Option as a Binary Value

Getting an option as a binary value is very similar to setting an option from a binary value: it requires knowledge of
not only the option name, but its type as well. The final two parameters in the call to Ibm_event_queue_getopt()
are a pointer to a variable to receive the current option value, and a pointer to a variable of type size_t which
contains the length of the option value variable. This length must be correct for the specified option.

In the example code below, the option value for the queue size warning is retrieved.

unsigned long int optval;
size_t optlen;

68 Access to Current Operating Options

lbm_event_queue_t evqg; /* must be previously created =/
int rc;

/* Get the queue size warning value =/

optlen = sizeof (optval);
rc = lbm_event_qgueue_getopt (&evqg, "queue_size_warning", &optval, &optlen);
(rc !'= 0) {

/* Handle error =*/
}

/* optval now contains the value of queue_size_warning, which should be 5000 =/

4.1.2 Getting Current Option as a String Value

Getting an option as a string value effectively does the same thing that getting an option as a binary value does.
However, the option value is returned as a null-terminated string, just as you would specify the option value in a
configuration file. The final two parameters in the call to Ibm_event_queue_str_getopt() are a pointer to a string
variable to receive the current option value, and a pointer to a variable of type size_t which contains the maximum
size of the option value string variable.

In the example code below, the option value for the queue size warning is retrieved.

char optval_string[256];

size_t optlen;

lbm_event_queue_t evqg; /* must be previously created =/

int rc;

/* Get the queue size warning value =/

optlen = sizeof (optval_string);
rc = lbm_event_queue_str_getopt (&evg, "queue_size_warning", optval_string, &optlen);
(rc !'= 0) |

/* Handle error */
}

/* optval now contains the value of queue_size_warning, which should be "5000" x/

4.2 Modifying Current Option Values

A small subset of UM object options may be modified after the object is created. See the individual option descrip-
tions to determine if an options value may be changed after the UM object is created.

The UM objects which support these actions are lbm_src_t, Ibm_rcv_t, Ibm_context_t, and Ibm_event_queue_t.
For each such object, there are corresponding API functions to set an option from a binary value and set an option
from a string value. These APl names are based on the object name, suffixed with _setopt() and _str_setopt().

As an illustration of this convention, the API functions for working with Ibm_event_queue_t objects are shown in
the following table.

Action UM API function
Set Option from Binary Value | Ibm_event_queue_setopt()
Set Option from String Value | Ibm_event_queue_str_setopt()

For other object types, replace event_queue with context, src_topic, rcv_topic, wildcard_rcv, or hfx.

The following sections describe in detail the use of these UM API functions. The APlIs related to lbm_event_«
queue_t objects are used for the purpose of illustration, but the instructions (if not the specifics) apply to all such

4.2 Modifying Current Option Values 69

UM objects.

4.2.1 Setting Current Option from a Binary Value

Setting an option from a binary value requires knowledge of not only the option name, but its type and allowable
values as well. The final two parameters in the call to Ibm_event_queue_setopt() are a pointer to a variable which
contains the option value to be set, and a pointer to a variable of type size_t which contains the length of the option
value variable. This length must be correct for the specified option.

In the example code below, we set the queue size warning to 5000 events.

unsigned long int optval;

size_t optlen;

lbm_event_queue_t evqg; /* must be previously created %/
int rc;

/* Set the queue size warning =/

optlen = sizeof (optval);

optval = 5000;

rc = lbm_event_qgueue_setopt (&evqg, "queue_size_warning", &optval, &optlen);
(rc !'= 0) |

/* Handle error */

}

4.2.2 Setting Current Option from a String Value

Setting an option from a string value effectively does the same thing that setting an option from a binary value does.
However, the option value is passed as a null-terminated string, rather than as value and length pointers. This is
similar to the mechanism used by UM to process options in a configuration file. Thus, the format used for option
values must match the format you would use in a configuration file.

As before, we set the queue size warning to 5000 events.

lbm_event_gqueue_t evqg; /% must be previously created »/
int rc;

/* Set the queue size warning =/
rc = lbm_event_queue_setopt (&evqg, "queue_size_warning", "5000");
(rc !'= 0) {
/* Handle error =/

}

70

Access to Current Operating Options

Chapter 5

Example Configuration Scenarios

5.1 Highest Throughput
The following configuration option tunes UM for the highest possible throughput.

LBM can be configured to make efficient use of CPU time, leading

to the highest-possible throughput (bytes per second or messages

per second). This may come at the expense of latency at low

message rates. The following line configures LBM to accumulate

8KB of messages (or for wait implicit_batching_interval) before sending.

HH= = H K K

source implicit_batching minimum length 8192

5.2 Lowest Latency

This is an example configuration that favors low latency at the expense of higher CPU utilization and potentially
lower throughput.

#

Latency can be reduced at the expense of network efficiency and
system CPU time by adjusting implicit batching parameters. The
default parameters hold messages for up to 200 milliseconds or until
2048 bytes are waiting to go. The lowest possible latency 1is
obtained by setting the minimum batching length to 1 byte, which
effectively disables the implicit batching feature. For example:

H= = K K W

context mim_implicit_batching minimum_ length 1
source implicit_batching minimum length 1

Latency can be kept to a minimum with UM by writing receiving
applications that can accept messages in the order they arrive.

See https://communities.informatica.com/infakb/faq/5/Pages/80043.aspx
for more information. Here’s how to use arrival-order delivery:

HH= = K W

receiver ordered_delivery O

#

72 Example Configuration Scenarios

Disable Nagel’s algorithm (batching) for TCP responses to eliminate
queuing latency when sending only single responses.
#

context response_tcp_nodelay 1

If you are running a LAN environment with under 100 machines, you can
drastically improve your recovery related latencies without significant
additional network overhead by using the following UM loss recovery parameter.
See https://communities.informatica.com/infakb/faq/5/Pages/80070.aspx

for additional information about this and other recovery parameters.

= 3= FH FH

receiver transport_lbtrm_nak_backoff_interval 10

5.3 Creating Multicast Sources

This is an example configuration file that changes the default transport to reliable multicast so all sources created
send messages over LBT-RM.

#

UM can be configured to create sources using the LBT-RM reliable
multicast protocol instead of the default TCP.

#

source transport LBT-RM

Stable and reliable operation with multicast requires careful
setting of rate control limits.

It’s generally best to start with small limits and gradually
increase them after testing indicates that they can be safely
sustained on your network.

The following example limits (new) data to 10 Mbps and retransmissions
to 1 Mbps (10%).

H= FH FH o S S S S

context transport_lbtrm_data_rate_limit 10000000
context transport_lbtrm_retransmit_rate_limit 1000000

5.4 Disabling Aspects of Topic Resolution

If you need to reduce the amount of Topic Resolution traffic on your network, use the following Configuration options
and values in a Ultra Messaging Configuration file.

Note

Ultra Messaging does not recommend disabling both advertisements and queries because topics may not
resolve at all.

5.4 Disabling Aspects of Topic Resolution 73

5.4.1 Disabling Topic Advertisements

You can disable topic advertisements in the Initial Phase, Sustaining Phase or both phases of topic resolution.
Disabling Initial Phase Advertisements

Use the following options to disable topic advertisements in only the Initial Phase.

source resolver_advertisement_minimum_initial_interval O

source resolver_advertisement_maximum_initial_ interval O

Disabling Sustaining Phase Advertisements

Use the following option to disable topic advertisements in only the Sustaining Phase.

source resolver_advertisement_sustain_interval 0

5.4.2 Disabling Receiver Topic Queries

You can disable the querying of topics by receivers in the Initial Phase, Sustaining Phase or both phases of topic
resolution.

Disabling Initial Phase Queries

Use the following options to disable topic queries in only the Initial Phase.

receiver resolver_qgquery_minimum_initial_interval 0

receiver resolver_query_maximum_initial_interval 0

Disabling Sustaining Phase Queries

Use the following options to disable topic queries in only the Sustaining Phase.

receiver resolver_query_sustain_interval 0
receiver resolution_number_of_sources_query_threshold 0

5.4.3 Disabling Wildcard Topic Queries

Use the following options to disable topic queries by wildcard receivers.

wildcard_receiver resolver_query_minimum_interval 0
wildcard_receiver resolver_query_maximum_interval 0

5.4.4 Disabling Store (Context) Name Queries

When using Persistence, use the following options to disable context name queries by sources.

resolver_context_name_query_maximum_interval 0
resolver_context_name_qguery_minimum_interval 0

74 Example Configuration Scenarios

5.4.5 All But the Minimum Topic Resolution Traffic

A minimalist approach to topic resolution can take different forms based on you requirements. One approach is
to disable all traffic except for queries in the sustaining phase. Add the following settings to your Ultra Messaging
configuration file to implement this approach.

source resolver_advertisement_minimum_initial_interval O
source resolver_advertisement_sustain_interval 0
receiver resolver_query_minimum_initial_interval 0
receiver resolution_number_of_ sources_qguery_threshold 1
wildcard_receiver resolver_qguery_minimum_interval 0

5.5 Unicast Resolver

To use the unicast resolver, use a configuration file like the following example:

Topic resolution can be configured to use unicast traffic with an
LBM resolver daemon (lbmrd) instead of the default which uses multicast.
Be sure to insert the IP address of your lbmrd below.

HH= = K K

context resolver_unicast_daemon 127.0.0.1:15380

5.6 Re-establish Pre-4.0 Topic Resolution

Ultra Messaging topic resolution prior to LBM Version 4.0 did not have resolution phases. To implement pre-4.0
topic resolution, include the following configuration option changes in your Ultra Messaging configuration file.

- Disable Advertisements in 4.0 Initial Phase
source resolver_advertisement _minimum_initial_ interval O

- Re-establish pre-4.0 Advertisement Behavior
source resolver_advertisement_minimum_sustain_duration 0
context resolver_sustain_advertisement_bps 0

¥ —— Disable Queries in 4.0 Initial Phase
receiver resolver_query_minimum_initial_interval O

- Re—establish pre-4.0 Query Behavior

receiver resolver_query_sustain_interval 100

receiver resolver_query_minimum_sustain_duration 0
context resolver_sustain_query_bps 0

receiver resolution_number_of_sources_qguery_threshold 1

- Re-establish pre-4.0 Wildcard Query Behavior
wildcard_receiver resolver_qgquery_minimum_interval 0

5.7 Re-establish Pre-LBM 3.3 (Pre-UME 2.0) Port Defaults 75

5.7 Re-establish Pre-LBM 3.3 (Pre-UME 2.0) Port Defaults

To use the early default ports (prior to LBM 3.3 and UME 2.0), the following configuration file may be used.

context mim_destination_port 4401

context mim_incoming_destination_port 4401
context mim_outgoing_destination_port 4401
context resolver_multicast_port 2965

context resolver_multicast_incoming_port 2965
context resolver_multicast_outgoing_port 2965
context resolver_unicast_destination_port 5380
context resolver_unicast_port_high 4406
context resolver_unicast_port_low 4402
source transport_lbtrm_destination_port 4400
context transport_lbtrm_source_port_high 4399
context transport_lbtrm_source_port_low 4390
context transport_lbtru_port_high 4389
context transport_lbtru_port_high 4380
receiver transport_lbtru_port_high 4379
receiver transport_lbtru_port_low 4360
context request_tcp_port_high 4395

context request_tcp_port_low 4391

context transport_tcp_port_high 4390

context transport_tcp_port_low 4371

source ume_primary_store_port 4567

source ume_secondary_store_port 4567

source ume_tertiary_store_port 4567

Note

Alternatively, UM will use the early port settings when the environment variable LBM_USE_ORIG_DEFAU«
LT _PORTS is set to 1.

5.8 Configure New Port Defaults

In the unusual case that you must run older versions of Ultra Messaging (less than LBM 3.3 / UME 2.0) on certain
machine(s) and need these older version to work with the machines running the current versions of UMS and UMP,
you can use the following configuration file for the older versions to synchronize port usage between old and current
versions.

context mim_destination_port 14401

context mim_incoming_destination_port 14401
context mim_outgoing_destination_port 14401
context resolver_multicast_port 12965

context resolver_multicast_incoming_port 12965
context resolver_multicast_outgoing_port 12965
context resolver_unicast_destination_port 15380
context resolver_unicast_port_high 14406
context resolver_unicast_port_low 14402
source transport_lbtrm_destination_port 14400
context transport_lbtrm_source_port_high 14399
context transport_lbtrm_source_port_low 14390
context transport_lbtru_port_high 14389
context transport_lbtru_port_low 14380
receiver transport_lbtru_port_high 14379
receiver transport_lbtru_port_low 14360
context request_tcp_port_high 14395

76 Example Configuration Scenarios
context request_tcp_port_low 14391

context transport_tcp_port_high 14390

context transport_tcp_port_low 14371

source ume_primary_store_port 14567

source ume_secondary_store_port 14567

source ume_tertiary_store_port 14567

Chapter 6

Interrelated Configuration Options

Some Ultra Messaging configuration options are related in ways that might not be immediately apparent. Changing
the value for one option without adjusting its related option can cause problems such as NAK storms, tail loss, etc.
This section identifies these relationships and recommends a best practice for setting the interrelated options.

The following sections discuss configuration option relationships.

6.1 Preventing NAK Storms with NAK Intervals

The NAK generation interval should be sufficiently longer than the NAK backoff interval so that the source, after
receiving the first NAK from a receiver, has time to retransmit the missing datagram and prevent a NAK storm from
all receivers. LBTRM, LBTRU, and MIM all use NAK generation and backoff intervals. The NAK behavior for all
transports is the same.

Interrelated Options:

« transport_lbtrm_nak_backoff_interval (receiver)

« transport_Ibtrm_nak_generation_interval (receiver)
« transport_Ibtru_nak_backoff_interval (receiver)

« transport_Ibtru_nak_generation_interval (receiver)
» mim_nak_backoff_interval (context)

* mim_nak_generation_interval (context)

Recommendation:

Set the NAK generation interval to at least 2x the NAK backoff interval.

Example:

#

To avoid NAK storms, set NAK generation interval to at least 2x the
NAK backoff interval.

#

receiver transport_lbtrm_nak_backoff_interval 200 # .2 seconds
receiver transport_lbtrm_nak_generation_interval 10000 # 10 seconds

See also:

Transport LBT-RM Reliability Options
Transport LBT-RU Reliability Options
Multicast Immediate Messaging Reliability Options

78 Interrelated Configuration Options

6.2 Preventing Tail Loss With TSNI and NAK Interval Options

Tail loss refers to the situation where a receiver (subscriber) does not receive the last few (tail) messages sent
by a source (publisher). When unrecoverable loss occurs on a transport, due to the possibility of multiple topic-
level messages being contained in a single transport-level sequence number (due to implicit batching), a receiver
does not know which particular messages were unrecoverable until the arrival of later messages (revealing earlier
gaps in topic-level sequence number) or until the arrival of Topic Sequence Number Information (TSNI) records
sent periodically by a publisher. Specific topic-level knowledge of sequence gaps is a prerequisite for the receiver
to deliver event callbacks to the application indicating that unrecoverable loss has occurred, because those event
callbacks are per-receiver (topic-level). A TSNI active threshold that is too small relative to the TSNI and/or NAK
generation interval may prevent the reporting of tail loss to the application, especially with ordered delivery.

Interrelated Options:
« transport_topic_sequence_number_info_active_threshold (source)
« transport_topic_sequence_number_info_interval (source)
« transport_Ibtrm_nak_generation_interval (receiver)

« transport_Ibtru_nak_generation_interval (receiver)

Recommendation:

Set the TSNI active threshold to at least 4x the topic sequence number info interval (TSNI) plus the NAK
generation interval.

Example:
#
NOTE: transport_topic_sequence_number_info_active_threshold is in seconds.
#
source transport_topic_sequence_number_info_interval 2000
receiver transport_lbtrm_nak_generation_interval 10000

source transport_topic_sequence_number_info_active_threshold 60

See also:

Transport LBT-RM Reliability Options
Transport LBT-RU Reliability Options

6.3 Preventing IPC Receiver Deafness With Keepalive Options

With an LBT-IPC transport, an activity timeout that is too small relative to the session message interval may cause
receiver deafness. If a timeout is too short, the keepalive messages might not be received in time to prevent the
receiver from being deleted or disconnecting because the source appears to be gone.

Interrelated Options:

« transport_Ibtipc_activity _timeout (receiver)

« transport_lbtipc_sm_interval (source)

6.4 Preventing Erroneous LBT-RM/LBT-RU Session Timeouts 79

Recommendations:

Set the activity timeout to at least 2x the session message interval

Example:
#
To avoid receiver deafness:
— set client activity timeout to at least 2x the acknowledgement interval.
— set activity timeout to at least 2x the session message interval.
#
receiver transport_lbtipc_activity_timeout 60000
source transport_lbtipc_sm_interval 10000
See also:

Transport LBT-IPC Operation Options

6.4 Preventing Erroneous LBT-RM/LBT-RU Session Timeouts

An LBT-RM or LBT-RU receiver-side quiescent timeout may delete a transport session that a source is still active
on. This can happen if the timeout is too short relative to the source's interval between session messages (which
serve as a session keepalive).

Interrelated Options:

« transport_Ibtrm_activity_timeout (receiver)
« transport_lbtrm_sm_maximum_interval (source)
« transport_Ibtru_activity timeout (receiver)

« transport_Ibtru_sm_maximum_interval (source)

Recommendations:

Set the receiver LBT-RM or LBT-RU activity timeout to at least 3x the source session message maximum
interval.

Example:

#
To avoid erroneous session timeouts, set receiver transport activity
timeout to at least 3x the source session message maximum interval.

#

receiver transport_lbtrm activity_timeout 60000

source transport_lbtrm_sm_maximum_interval 10000

receiver transport_lbtru_activity_timeout 60000

source transport_lbtru_sm maximum_interval 10000
See also:

Transport LBT-RM Operation Options
Transport LBT-RU Operation Options

80 Interrelated Configuration Options

6.5 Preventing Errors Due to Bad Multicast Address Ranges

Sometimes it is easy to accidentally reverse the low and high values for LBT-RM multicast addresses, which actually
creates a very large range. Aside from excluding intended addresses, this can cause error conditions.

Interrelated Options:

« transport_lbtrm_multicast_address_low (context)

« transport_Ibtrm_multicast_address_high (context)

Recommendations:

Ensure that the intended low and high values for LBT-RM multicast addresses are not reversed

Example:

#

To avoid incorrect LBT-RM multicast address ranges, ensure that you have not
reversed the low and high values.

#

context transport_lbtrm multicast_address_low 224.10.10.10

context transport_lbtrm multicast_address_high 224.10.10.14

See also:

Transport LBT-RM Network Options

6.6 Preventing Store Timeouts

When using Persistence, a store may be erroneously declared unresponsive if its activity timeout expires before it
has had adequate opportunity to verify it is still active via activity check intervals.

Interrelated Options:

» ume_store_activity_timeout (source)

» ume_store_check_interval (source)

Recommendations:

Set the store activity timeout to at least 5x the activity check interval

Example:

#

To avoid erroneous store activity timeouts, set the activity
timeout to at least 5x the activity check interval.

#

source ume_store_activity_timeout 3000

source ume_store_check_interval 500

6.7 Preventing ULB Timeouts 81

6.7 Preventing ULB Timeouts

When using ULB queuing, ULB source or receiver may be erroneously declared unresponsive if its activity timeout
expires before it has had adequate opportunities to attempt to re-register via activity check intervals if the source
appears to be inactive. It is also possible for sources to attempt to reassign messages that have already been
processed.

Interrelated Options:

umg_ulb_source_activity_timeout (receiver)
umg_ulb_source_check_interval (receiver)
umaq_ulb_application_set_message_reassignment_timeout (source)
umaq_ulb_application_set_receiver_activity_timeout (source)

umaq_ulb_check_interval (source)

Recommendations:

Set the ULB source activity timeout to at least 5x the ULB source activity check interval.
Set the ULB application set message reassignment timeout to at least 5x the ULB check interval.
Set the ULB receiver activity timeout to at least 5x the ULB check interval.

Example:

#

To avoid erroneous ULB source, receiver or application set message activity
timeouts, set the activity timeout to at least 5x the activity check interval.

#

receiver umqg_ulb_source_activity_timeout 10000

receiver umqg_ulb_source_check_interval 1000

source umg_ulb_application_set_message_reassignment_timeout 50000
source umg_ulb_application_set_receiver_activity_timeout 10000

source umg_ulb_check_interval 1000

See also:

Ultra Messaging Queuing Options]]])

6.8 Preventing Unicast Resolver Daemon Timeouts

A unicast resolver daemon may be erroneously declared inactive if its activity timeout expires before it has had
adequate opportunity to verify that it is still alive.

Interrelated Options:

* resolver_unicast_activity_timeout (context)

« resolver_unicast_check_interval (context)

Recommendations:

Set the unicast resolver daemon activity timeout to at least 5x the activity check interval. Or, if activity notification
is not desired, set both options to 0.

82 Interrelated Configuration Options

Example:

#

To avoid erroneous unicast resolver daemon timeouts, set the activity
timeout to at least 5x the activity check interval.

#

context resolver_unicast_activity_timeout 1000

context resolver_unicast_check_interval 200

See also:

UDP-Based Resolver Operation Options

6.9 Preventing Undetected Late Join Loss

If during a Late Join operation, a transport times out while a receiver is requesting retransmission of missing mes-
sages, this can cause lost messages to go undetected and likely become unrecoverable.

Interrelated Options:

 retransmit_request_generation_interval (receiver)
« transport_tcp_activity_timeout (receiver)

« transport_Ibtrm_activity _timeout (receiver)

« transport_Ibtru_activity timeout (receiver)

« transport_lbtipc_activity timeout (receiver)

Recommendations:

Set the Late Join retransmit request interval to a value less than its transport's activity timeout value

Example:
#
To avoid a transport inactivity timeout while requesting Late Join
retransmissions, set the Late Join retransmit request interval to a value
less than its transport’s activity timeout.
#

receiver retransmit_request_generation_interval 10000
receiver transport_lbtrm_activity_timeout 60000

See also:

Late Join Options

6.10 Preventing Undetected Loss

It is possible that an unrecoverable loss due to unsatisfied NAKs or a transport activity timeout may go unreported
if the delivery controller loss check is disabled or has too long an interval. For UMP stores, the loss check interval
must be enabled. Two options (three, if using LBT-RM) are interrelated and must be set according to the guidelines
below.

6.11 Preventing Store Registration Hangs 83

Interrelated Options:

« delivery_control_loss_check_interval (receiver)
« transport_lbtrm_activity_timeout (receiver)
« transport_Ibtrm_nak_generation_interval (receiver)

« transport_lbtru_activity_timeout (receiver)

Recommendations:

For LBT-RM, set the transport activity timeout to value greater than the sum of the delivery control loss check
interval and the NAK generation interval. Also, set the NAK generation interval to at least 4x the delivery control
loss check interval.

For LBT-RU, set the transport activity timeout to value greater than the delivery control loss check interval

For UMP, always enable and set accordingly the delivery control loss check interval when configuring a store

Example:
#
To avoid undetected or unreported loss, set NAK generation to 4x the delivery
control check interval, and ensure that these two combined are less than the
transport activity timeout
#

receiver delivery_control_loss_check_interval 2500
receiver transport_lbtrm_activity_timeout 60000
receiver transport_lbtrm nak_generation_interval 10000

See also:

Delivery Control Options

6.11 Preventing Store Registration Hangs

The following configuration options come into play when sources register with stores in a lossy environment:

Interrelated Options:

» ume_sri_request_interval (receiver)

* ume_sri_request_maximum (receiver)

« transport_topic_sequence_number_info_request_interval (receiver)

« transport_topic_sequence_number_info_request_maximum (receiver)
« transport_tcp_activity_timeout (receiver)

« transport_Ibtrm_activity_timeout (receiver)

« transport_lbtru_activity_timeout (receiver)

« transport_Ibtipc_activity_timeout (receiver)

The sri_request "interval" and "maximum" options multiply to define a duration over which the receiver requests
Store Information Records (SRI) messages from the source. Similarly, the transport_topic_sequence_number_«
info_request "interval" and "maximum" options multiply to define a duration over which the receiver requests Trans-
port Topic Sequence Number Info (TSNI) messages from the source.

Recommendations:

84

Interrelated Configuration Options

The two request durations should be twice the value of the appropriate transport activity timer.

Example:

#

To avoid hung store registration, set the durations of the SRI and TSNI
requests to 2x the transport activity timeout.

#

receiver
receiver
receiver
receiver
receiver

Warning

transport_lbtrm_activity_timeout 60000
ume_sri_request_maximum 120

ume_sri_request_interval 1000
transport_topic_sequence_number_info_request_maximum 120
transport_topic_sequence_number_info_request_interval 1000

As of this version of UM, the default values for these options do not satisfy this recommendation. Users
are advised to double the values for ume_sri_request_maximum (receiver) and transport_topic_sequence_«
number_info_request_maximum (receiver).

Chapter 7

General Configuration Guidelines

7.1 Case Sensitivity

All Ultra Messaging scope, option, and value strings are case-insensitive. Thus, the following are identical:

context fd_management_type wincompport
Context Fd_Management_Type WinCompPort
CONTEXT FD_MANAGEMENT_TYPE WINCOMPPORT

7.2 Specifying Interfaces

The *_interface options require a network interface, usually supplied as a string (from a configuration file or in
source code via *_attr_str_setopt()), the syntax used for network interface specifications is CIDR notation:

a.b.c.d/num

where 'num' is the optional number of leading 1 bits in the netmask. If the '/num' is omitted, it defaults to 32
(netmask 255.255.255.255), which means that it must be an exact match for the interface's IP address. However, if
'/num’ is supplied, it tells Ultra Messaging to find an interface within that network. This makes it easier to share a
configuration file between many (possibly multi-homed) machines on the same network.

For example:

context resolver_unicast_interface 192.168.0.0/24

specifies a netmask of 255.255.255.0 and would match the interface 192.168.0.3 on one host, and 192.168.0.251
on another host.

You can also set network interfaces by device name. When setting a configuration option's interface by device name,
you must use double quotes, as illustrated below.

context resolver_unicast_interface "enQO"

Finally, you can also set network interfaces by DNS host name. When setting a configuration option's interface by
DNS name, simply replace the dotted IP address with the host name, as illustrated below.

context resolver_unicast_interface myhost.mydomain.com/24

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation

86 General Configuration Guidelines

Notice the use of the optional netmask even though the host name will typically resolve to a specific host IP address.
In this case, UM will zero out the host bits of myhost's address and find any interface within that network. If the
netmask is omitted, an exact match to myhost's address is needed.

7.2.1 Interface Device Names and XML

As mentioned above, when a device name is supplied as an interface specification, the device name must be
enclosed in double quotes. This presents a problem when the configuration option is specified within an XML file.
In XML files, the values for all options must be enclosed in double quotes, but those quotes are only used by the
XML parser to delimit the value. The quote characters themselves are not passed to the UM configuration parser.
But the UM configuration parser needs the double quotes to indicate that the device name is being used.

The solution is to use the "™ escape when specifying device names for interfaces within an XML file. The XML
parser will convert those to actual double quote characters as part of the value passed to UM.

For example:

<options type="context">
<option name="resolver_multicast_interface" -value=""enlO" ">
</option>

</options>

Another example:

<options type="context">
<option name="monitor_transport_opts"
—-value="context |resolver_multicast_interface="enO";source|transport=lbt-rm">
</option>
</options>

(The repeated semicolon looks strange; the first one closes the
multicast_interface option from the transport option.)

, and the second one separates the resolver_«

7.3 Socket Buffer Sizes

When specifying send or receive socket buffer sizes, keep the following platform-specific information in mind.

Linux

The kernel value net.core.rmem_max dictates the highest value allowed for a receive socket. The kernel value
net.core.wmem_max dictates the highest value allowed for a sending socket. Increase these values to increase
the amount of buffering allowed.

Windows

Windows should allow socket buffer sizes to be set very high if needed without requiring registry changes.

See our whitepaper Topics in High Performance Messaging for background and guidelines on UDP
buffer sizing.

https://www.informatica.com/downloads/1568_high_perf_messaging_wp/Topics-in-High-Performance-Messaging.htm

7.5 Reference Entry Format 87

7.4 Port Assignments

There are a large number of configuration options which are network port numbers. In many cases, ranges of
ports are specified so that multiple instances of UM-based programs can be run on the same machine without
interference. Each instance will find a free port in the configured range. However, if the range is not large enough,
an instance of UM can fail to initialize due to ports not being available.

Port range exhaustion can also happen if other software packages assign to ports in the range configured for UM.
Users should be careful to configure all their networking packages to use non-overlapping port numbers.

7.4.1 Ephemeral Ports

The operating system allocates a range of ports for ephemeral ports. These ports are allocated dynamically as-
needed by networking packages, including UM, for sockets that don't need a well-known, predictable port number.
See Wikipedia's article Ephemeral port for ephemeral port ranges used by popular operating systems.

UM port configurations should avoid the host's ephemeral port range. Since these ports are allocated dynamically
by the operating system, these allocations can interfere with UM by exhausting UM port ranges.

7.4.2 Network VS Host Order

When the UM C APl is used to set configuration options programmatically, port numbers can be specified as a string
or as a binary value. For example, here is an option being set by binary value:

unsigned short int optval = 4901; /% host byte order required =/
size_t optlen = sizeof (optval);
rc = lbm_context_attr_setopt (attrib, "transport_tcp_port_low", &optval, optlen);

See Setting an Option from a Binary Value.

There are some port options whose binary values must be supplied in network order. For example:

unsigned short int optval = htons(4901); /* network byte order required x*/
size_t optlen = sizeof (optval);
rc = lbm_source_attr_setopt (attrib, "transport_tcp_port", &optval, optlen);

It is generally the case where setting a port to a specific value (i.e. not setting up a range) requires network order.
Whereas setting the high and low port values of a range are done in host order.

The reference documentation for each port option specifies the byte order required when binary values are being
specified. For example, transport_tcp_port (source) has a table row that says:

Byte Network
order:

7.5 Reference Entry Format

This section describes the format of each option reference entry.

https://en.wikipedia.org/wiki/Ephemeral_port#Range

88 General Configuration Guidelines

Each entry begins with a brief description of the option. Following the description is a series of items that defines
permissible usage and describes the values for the option.

Scope

Defines the scope to which the option applies.

Type
Defines the data type of the option. The type is required for calls to the x_setopt() and *_getopt() API functions.

Units

Defines the units in which the option value is expressed. This item is optional.

Default value

For range-valued options, indicates the base default value for the option.

Byte order
For options whose value is an IP address or port, defines the byte ordering (Host or Network) expected by the
API for x_setopt() calls, and returned by the API for x_getopt() calls.

May be set during operation

If an option may be set after the UM object is created, it is so indicated here.

Next, for enumerated-valued options with limited specific choices, a table details the permissible String Value (con-
figuration file), Integer Value (programmatic attribute setting), and a Description of each choice that includes default
value designations.

Alternately, for switch-valued options (0 or 1), a table describes the meaning of each of the two possible values. The
default value is noted within the description.

Chapter 8

Special Notes

8.1 Configuring Multi-Homed Hosts

By default, UM will select the first multicast-capable, non-loopback interface for multicast topic resolution. If you are
fortunate, on a multi-homed host, the correct interface will be selected. However, this fortuitous selection should not
be relied upon. Moving the interface card to a different slot, a change in the operating system kernel, and numerous
other factors can lead to a different ordering of interfaces as reported by the operating system. This in turn can lead
UM to a select a different interface after the change.

It is strongly recommended that the actual interface be specified. The resolver_multicast_interface (context) option
allows you to explicitly specify the multicast interface. Note that this also changes the interface for LBT-RM and
multicast immediate messaging.

Other interface options:

resolver_unicast_interface (context) when using the unicast resolver
request_tcp_interface (context) when using the request/response messaging
transport_lbtru_interface (receiver)

transport_lbtru_interface (source)

transport_tcp_interface (receiver)

transport_tcp_interface (source)

TCP transport:

transport_tcp_port_low (context)
transport_tcp_port_high (context)
transport_tcp_port (source)

LBT-RM transport:

transport_lbtrm_source_port_low (context)
transport_lbtrm_source_port_high (context)
transport_lbtrm_destination_port (source)

LBT-RU transport:

transport_lbtru_port_low (context)
transport_lbtru_port_high (context)
transport_lbtru_port (source)
transport_lbtru_port_low (receiver)
transport_lbtru_port_high (receiver)

90 Special Notes

Multicast immediate messaging:

mim_destination_port (context)
mim_incoming_destination_port (context)
mim_outgoing_destination_port (context)

Requests:

request_tcp_port (context)
request_tcp_port_low (context)
request_tcp_port_high (context)

In addition, since machines acting as a firewall are often multi-homed as well, see Configuring Multi-Homed Hosts
for additional considerations.

8.2 Traversing a Firewall

To use UM across a firewall, several port options may need to be changed. The options of interest include:

Multicast resolver:

resolver_multicast_port (context)

Unicast resolver:

resolver_unicast_port (context)
resolver_unicast_port_low (context)
resolver_unicast_port_high (context)
resolver_unicast_destination_port (context)

Chapter 9
Major Options

Options in this group have a major impact on the operation of Ultra Messaging. Most UM application developers will
need to be aware of the default values of these options or perhaps override them.

9.1 Reference

9.1.1 broker (context)

Add a broker specification to the list of brokers. Unlike most other UM settings, every time this setting is called,
it adds one or more service specifications to the list, and does NOT overwrite previous specifications.

For the configuration file as well as string APl method of setting this option, you can specify multiple brokers with
a comma or semicolon-separated list on a single line. Each entry contains the broker IP address (or domain
name of the IP address) and destination port in the format IP:Dest_Port [, IP:Dest_Port].

An entry or string with the IP address of 0.0.0.0 and port 0 removes all previous broker specifications.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
broker specification can be supplied for each call to Ibm_context_attr_setopt(). However, when the binary
form of option retrieval Ibm_context_attr_getopt() is used, the list of brokers is returned as an array, and the
optlen parameter should be set as:

optlen = (max_num_brokers x sizeof (lbm_transport_broker_entry_t));
Scope: context
Type: Ibm_transport_broker_entry_t
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UMQ 6.8

92

Major Options

9.1.2 compatibility_include_pre_um_6_0_behavior (context)

Enable Ultra Messaging 6.x applications to inter-operate with pre-6.0 applications.

Enabling this option increases overhead data on the wire and slightly changes some operational behaviors of
UMP sources.

9.1.3

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.7

String value

Integer value

Description

"1 "

1

Inter-operate with pre-6.0 applications.

"o

0

Disable Inter-operation with pre-6.0 applications. Default for all.

context_event_function (context)

Callback function (and associated client data pointer) that is called when a context event occurs. This callback
may be called inline or from an event queue, if one is given.

If called inline, the callback function used should not block or it will block the context thread processing. See
Ibm_context_event_cb_proc.

Scope: context

Type: Ibm_context_event_func_t

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMQ 1.0.

9.1 Reference

93

9.1.4 context_name (context)

The name of the context, limited to 128 alphanumeric characters, hyphens or underscores.

This is only used for XML Configuration Files.

Scope: context

Type: string

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.3/UME 3.3/UMQ 2.3.

9.1.5 datagram_acceleration_functions (context)

Specifies the callback functions that implement Datagram Acceleration.

Refer to the description of Ibm_datagram_acceleration_func_t for the callback definitions.

Scope: context

Type: Ibm_datagram_acceleration_func_t
Default NULL

value:

When to | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.
Version: This option was implemented in UM 6.10

9.1.6 default_interface (context)

Specifies the network interface to be used as the default setting for all other interface configuration options.

94

Major Options

You can specify the full IP address of an interface, or just the network part (see Specifying Interfaces for details).
Default is set to INADDR_ANY, meaning that it will not bind to a specific interface.

Scope: context

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 6.10

9.1.7 fd_management_type (context)

Define the mechanism UM uses for socket file descriptor (FD) management.

For more information, search on "file descriptors” in the Informatica Knowledge Base.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

String value Integer value Description

"poll" LBM_CTX_ATTR_FDTYPE_POLL FD management uses poll(). Unix only.

"select" LBM_CTX_ATTR_FDTYPE_SELECT FD management uses select(). Unix only.
Default for Unix.

"epoll" LBM_CTX_ATTR_FDTYPE_EPOLL FD management uses epoll(). Linux ker-
nel 2.6 or later only.

"devpoll" LBM_CTX_ATTR_FDTYPE_DEVPOLL FD management uses the /dev/poll driver.

Solaris 8 or later only.

"wsaeventselect"

LBM_CTX_ATTR_FDTYPE_WSAEV

FD management uses WSAEventSelect()
and WaitForMultipleObjects(), which im-
poses a limit of 64 file descriptors. Win-
dows only.

"wincompport"

LBM_CTX_ATTR_FDTYPE_WINCPORT

FD management uses Windows comple-
tion ports and completion routines. Avoids
the 64 file descriptor limit set by WSA«
EventSelect(). Windows XP or later only.
Default for Windows.

9.1 Reference 95

9.1.8 file_descriptor_management_behavior (context)

Set how the context monitors file descriptors (sockets) for events.

The "busy_wait" selection can reduce latency and especially latency outliers (jitter), at the expense of the thread
consuming 100% CPU.

Only use "busy_wait" if there are enough cores to allocate a core exclusively to each receive thread. If there are
too few cores, enabling "busy_wait" can actually increase latencies due to threads time-sharing CPU resources.
Also, pinning threads to cores is highly recommended to prevent thread migration across cores.

See Receive Thread Busy Waiting for more information.

Scope: context
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UM 6.12.1
String value | Integer value Description
"pend" LBM_CTX_ATTR_FD _MANAGEMENT « Causes the context or XSP thread to go to
BEHAVIOR_PEND sleep waiting for socket events to happen.

Default for all.

"busy_wait" LBM_CTX_ATTR_FD_MANAGEMENT_« The context or XSP thread will check repeat-
BEHAVIOR_BUSY_WAIT edly in a tight loop (busy waiting) for socket
events to happen.

9.1.9 message_selector (receiver)

Enables UM to pass a message selector string to any receiver.

The value must be an expression that conforms to JMS message selector syntax as defined in the Oracle JMS

96 Major Options

specification.

Scope: receiver

Type: string

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMQ 5.3.

9.1.10 multiple_receive_maximum_datagrams (context)

The number of datagrams requested to be read at a time from a UDP-based transport socket.

Normally, UM reads one datagram at a time from each socket that has data. This option allows the reading
of multiple datagrams in a single read (using recvmmsg()), and processing them in a tight loop. This improves
efficiency and can reduce average latency.

Value of 0 means do NOT use recvmmsg().

Only supported for LBT-RM and LBT-RU transport types. The multiple_receive_maximum_datagrams option
does not apply to MIM or Topic Resolution.

Requires glibc 2.12 or later. This option is ignored for non-Linux platforms.

See Receive Multiple Datagrams for more information.

Scope: context

Type: Ibm_uint32 _t

Units: datagrams

Default 0

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in UM 6.8. However, it did not work correctly until UM 6.9.

9.1 Reference

9.1.11 operational_mode (context)

The mode in which UM's context thread operates to process events.

See Embedded Mode and Sequential Mode for more information.

Scope: context
Type: int
When to | Can only be set during object initialization.
Set:
String value | Integer value Description

"embedded" | LBM_CTX ATTR_OP_EMBEDDED A thread is spawned within UM to handle process-
ing of events (timers and socket events). Default
for all.

"sequential” LBM_CTX_ATTR_OP_SEQUENTIAL | The application is responsible for calling lbm«
_context_process_events() to process events.
Sequential mode does not support Multi-Transport

Threads.
9.1.12 operational_mode (xsp)

The mode in which UM operates to process events.

Refer to Embedded Mode for additional information.
Scope: Xsp
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UM 6.11

98 Major Options

String value | Integer value Description

"embedded" | LBM_CTX_ATTR_OP_EMBEDDED A thread is spawned within UM to handle process-
ing of events (timers and socket events). Default
for all.

"sequential” LBM_CTX_ATTR_OP_SEQUENTIAL | The application is responsible for calling lbm_<«
xsp_process_events() to process events.

9.1.13 ordered_delivery (receiver)

Indicates whether or not the topic should have its data delivered in order and reassembled.

For LBT-RM, LBT-RU, TCP-LB or LBT-IPC transport sessions only. (This option also applies to TCP when using
Late Join because the Late Join messages are not part of the TCP message stream.)

Changing this option from the default value to a value of 0 (zero) results in message fragments being delivered
as soon as they fully arrive. Value -1 allows arrival order delivery after the reassembly of large messages.

Note that ordering only applies to a specific topic from a single publisher. UM does not ensure ordering across
topics, or on a single topic across different publishers.

See Message Ordering and Message Fragmentation and Reassembly for more information.

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

String value | Integer value | Description

" 1 UM delivers topic messages to a receiver in-order and reassembles large
messages. Default for all.

1" -1 UM delivers topic messages to a receiver as they arrive and may be out
of order. Duplicate delivery is possible. However, UM reassembles large
messages. Your application can use the sequence_number field of
1bm_msg_t objects to order or discard messages.

9.1 Reference

99

String value

Integer value

Description

"o

0

UM delivers topic messages to a receiver as they arrive and may be out of
order.

WARNING: This mode of operation is deprecated and may be removed in
a future UM version. The user is advised to use mode -1.

UM delivers large messages as individual fragments of less than the maxi-
mum datagram size for the transport in use. Duplicate delivery is possible.
This mode is incompatible with Message Properties.

9.1.14

receiver_callback_service_time_enabled (context)

Indicates if UM collects receiver callback statistics, which provide the maximum, mean and minimum time in
microseconds required to complete wildcard, hot-failover, and regular receiver callbacks.

Enabling this function slightly decreases the efficiency of the receive code path, but provides operators with
greater visibility of application behavior.

9.1.15

Scope: context

Type: int

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.5

Value | Description
1 UM collects receiver callback statistics.
0 UM does NOT collects receiver callback statistics. Default for all.

resolver_source_notification_function (context)

Application callback function (and associated client data pointer) that is called when a new source is discovered
for any topic, even if the application does not have a matching receiver.

100 Major Options

Contrast this with source_notification_function (receiver).

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

If this feature is used with a context that is connected to an SRS for Topic Resolution, resolver_service <«
interest_mode (context) may need to be set to "flood". See TCP-Based TR Interest.

Scope: context

Type: Ibm_src_notify_func_t

Default NULL

value:

When fo | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.

9.1.16 source_event_function (context)

Callback function (and associated client data pointer) that is called when a context source event (such as a
multicast immediate mode source wakeup event) occurs.

This callback may be called inline or from an event queue, if one is given. If called inline, the callback function
used should not block or it will block the context thread processing.

Scope: context

Type: Ibm_context_src_event_func_t

Default NULL

value:

When to | Can only be set during object initialization.

Set:

Config File: Cannot be set from an UM configuration file.
Version: This option was implemented in LBM 3.4/UME 2.1.

9.1 Reference 101

9.1.17 source_includes_topic_index (context)

Determines whether the topic index is included in the source string generated for messages and new source
notifications.

Users should not disable this.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0.

Value | Description

1 Indicates the topic index should be included in the source string. Default for all.
0 Indicates the topic index should not be included.

9.1.18 transport (source)

The transport type to be used for created sources.

Note

With Smart Sources, only LBT-RM and LBT-RU are supported.

Note

With Transport Services Provider (XSP), only LBT-RM, LBT-RU, and TCP are supported.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

Major Options

String value Integer value Description

"tcp” LBM_SRC_TOPIC_ATTR_TRANSP« TCP over IPv4. Default for all.
ORT_TCP

"lbtrm", "lbt-rm" LBM_SRC_TOPIC_ATTR_TRANSP« UDP-based reliable multicast with uni-
ORT_LBTRM cast NAKs.

"Ibtru”, "lbt-ru" LBM_SRC _TOPIC_ATTR_TRANSP+ UDP-based reliable unicast with unicast
ORT_LBTRU NAKs.

"Ibtipc”, "Ibt-ipc" LBM_SRC _TOPIC_ATTR_TRANSP+ Inter-Process Communication between

ORT_LBTIPC

processes on the same host using a
shared memory area.

"Ibtsmx", "lbt-smx"

LBM_SRC_TOPIC_ATTR_TRANSP«
ORT_LBTSMX

Shared Memory Acceleration. Ultra-
low-latency Inter-Process Communica-
tion transport between processes on the
same host using a shared memory area.
Restrictions apply.

"broker"

LBM_SRC_TOPIC_ATTR_TRANSP«
ORT_BROKER

Sources send messages to a broker,
which manages the messages for con-
sumption.

"Ibtrdma”, "Ibt-rdma"

LBM_SRC_TOPIC_ATTR_TRANSP«
ORT_LBTRDMA

InfiniBand Remote Direct Memory Ac-
cess transport. Deprecated in UM 6.9.

9.1.19 transport_demux_tablesz (receiver)

Specifies the size of the table used for storing receiver delivery controllers used by UM for message delivery.

Must be a power of two (1, 2, 4, 8, 16, etc.). If not a power of two, UM generates a log warning and uses the
next highest power of two. For most use cases with low to moderate numbers of topics per transport session,
the default suffices. For large numbers of topics and in cases where the lowest latency is desired, set the option

to the next higher power of two than the number of topics expected on the transport session.

See Transport Demultiplexer Table Size for more information.

Scope: receiver

Type: size_t

Default 1

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2/UME 3.2.

9.1 Reference 103

9.1.20 transport_mapping_function (context)

Application callback function (and associated client data pointer) that is called when a context is about to join a
new transport session.

This callback provides an opportunity for the user to map the transport session in question to an XSP.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

Scope: context

Type: Ibm_transport_mapping_func_t

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.
Version: This option was implemented in UM 6.11

9.1.21 transport_session_multiple_sending_threads (context)

Flag that indicates the application intends to use multiple sending threads per transport session.
Disabling this flag can improve send efficiency but renders the send functions thread-unsafe.

For the most-efficient sending method, see Smart Sources.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

104 Major Options

Value | Description

1 Indicates the application does intend to use multiple sending threads per transport session and
that UM should make that assumption. Default for all.
0 Indicates the application does not intend to use multiple sending threads per transport session and

that UM should make that assumption.

9.1.22 transport_session_single_receiving_thread (context)

Flag that indicates the application intends to use only a single thread for receiving.

This improves message reception latency and outliers by converting certain thread-safe operations to more-
efficient thread-unsafe operations. For example, certain bus-locked operations (e.g. atomic increment) are
replaced by non-bus-locked equivalents (e.g. non-atomic increment).

See Single Receiving Thread for more information and restrictions.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in UM 6.12
Value | Description
1 The user intends to ensure that only one thread is used to process LBM transport messages.
0 No assumptions will be made by LBM regarding threading. Default for all.

9.1.23 transport_source_side_filtering_behavior (source)

Enable and set the behavior for UM sources to filter out topics prior to sending to clients.

This option is not applicable for multicast-based sources (LBT-RM). These control messages are sent to the

9.1 Reference 105

TCP UIM port (also known as the "request port") of the senders context and processed internally.

This option affects the transport session underlying the source rather than the source itself. See Source Object
for additional information.

Scope: source
Type: int
When to | Can only be set during object initialization.
Set:
String value | Integer value Description
"none" LBM_SRC_TOPIC_ATTR_SSF_NONE The source sends all data to all clients re-

gardless of the topics they are listening to.
Default for all.

"inclusion” LBM_SRC_TOPIC_ATTR_SSF_INCLUSI«~ | The source sends only that data to a client
ON that the client specifically requests.

"ulb” LBM_SRC_TOPIC_ATTR_SSF_ULB The ULB source sends control and data only
to the ULB client that the source has specif-
ically assigned for a given message. See
ULB Performance for more information.

9.1.24 transport_topic_sequence_number_info_active threshold (source)

Duration in seconds that an inactive source sends contiguous Topic Sequence Number Info (TSNI) messages.
A value of 0 indicates that sources continue sending TSNIs until data messages resume, with no timeout.
TSNIs are sent at an interval defined by transport_topic_sequence_number_info_interval (source).

See also Interrelated Configuration Options.

Scope: source

Type: Ibm_ulong_t

Units: seconds

Default 60

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

106

Major Options

9.1.25 transport_topic_sequence_number_info_interval (source)

The interval between Topic Sequence Number Info (TSNI) messages that a source sends.

TSNI messages are enabled on all transports except LBT-SMX, and they carry the topic sequence number of
the latest message sent by the source. The interval is also a source inactivity threshold. In other words, a
source does not send TSNIs during normal data transmission, but once the source is inactive for as long as
this interval, it starts sending TSNI messages. A value of 0 turns off TSNI messages for the source.

See also Interrelated Configuration Options.

9.1.26 transport_topic_sequence_number_info_request_interval (receiver)

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 5000 (5 second)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 3.3

The interval at which the receiver requests a Topic Sequence Number Information Record (TSNI) from the

source.

Controlling these requests helps reduce receiver start-up traffic on your network.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

9.1 Reference 107

9.1.27 transport_topic_sequence_number_info_request_maximum (receiver)

The maximum number of requests the receiver issues for a Topic Sequence Number Information Record (TSNI)
from the source.

If the receiver has not received an TSNI after this number of requests, it stops requesting.

Scope: receiver

Type: Ibm_ulong_t

Default 60

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

9.1.28 use_extended_reclaim_notifications (source)

Specifies which reclaim notification your application receives.

The expanded notification, LBM_SRC_EVENT_UME_MESSAGE_RECLAIMED_EX, contains a flag, LBM_S«

RC_EVENT_UME_MESSAGE_RECLAIMED EX FLAG_FORCED that UME sets if the reclamation is a forced
reclaim.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.2.

Value | Description

1 Indicates your application receives the expanded reclaim notification. Default for all.

108 Major Options
Value | Description
0 Indicates your application receives the standard reclaim notification that is identical to the expanded

notification but without the "Forced" flag.

9.1.29 zero_transports_function (xsp)

Application callback function (and associated client data pointer) that is called when the number of transports
associated with a given XSP falls to zero.

This callback provides an opportunity to delete the given XSP.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

Scope:

Xsp

Type:

Ibm_xsp_zero_transports_func_t

Default
value:

NULL

When
Set:

to

Can only be set during object initialization.

Config File:

Cannot be set from an UM configuration file.

Version:

This option was implemented in UM 6.11

Chapter 10

UDP-Based Resolver Operation Options

This section describes configuration options for UDP-based TR. The options generally apply equally to both Multi-
cast UDP and Unicast UDP Topic Resolution. See Topic Resolution Overview for more information.

The following topic resolution options have been deprecated in LBM Version 4.0.

« resolver_active_source_interval (context)

* resolver_active_threshold (context)

« resolver_maximum_advertisements (context)
* resolver_maximum_queries (context)

* resolver_query_interval (context)

See Re-establish Pre-4.0 Topic Resolution for option values that configure the topic resolution used in LBM Version
3.6 and prior versions. You should also comment out or remove from your Ultra Messaging Configuration file the
deprecated configuration options shown above.

10.1 Minimum Values for Advertisement and Query Intervals

These intervals have the following effective minimal values.

« 10 ms for Initial Phase Advertisements
« 20 ms for Initial Phase Queries
« 30 ms Wildcard Queries

» 100 ms for Sustaining Phase Advertisements and Queries

100 ms for Context Name Queries (mostly for persistence)

These effective minimums exist because the internal timer that schedules advertisements and queries fires at the
stated interval, i.e., every 10 ms for Initial Phase Advertisements, every 20 ms for Initial Phase Queries, etc. If you
set the option's value below the minimum, after the initial advertisement or query at 0 ms, the resolver schedules
the second advertisement or query at the first timer "tick", which is the minimum.

Subsequent advertisements or queries can only be issued at the next timer "tick". If you increase this option from
the default to a value that is not a multiple of the minimum, the resolver maintains the rate you establish as an
average over subsequent "ticks".

110 UDP-Based Resolver Operation Options

As an example, if you set resolver_advertisement_sustain_interval (source) or resolver_query_sustain_interval (re-
ceiver) to 10 ms, the resolver schedules the second advertisement or query after the initial (0 ms) at the first timer
"tick", which is 100 ms. Subsequent advertisements or queries can only be issued at the next timer "tick" (every 100
ms). If you increase either option from the default to 1.25 seconds, for example and not a multiple of 100 ms, the
resolver maintains the rate you establish as an average over subsequent "ticks". That is, the second advertisement
or query goes out at the 1300 ms "tick". The resolver tracks the tardiness of this advertisement (50 ms) and adjusts
the next advertisement or query, which goes out at 2500 ms, giving an average of 1250 ms or 1.25 seconds.

10.2 Reference

10.2.1 disable_extended_topic_resolution_message_options (context)

This is a topic resolution compatibility option that, when set to 1, lets LBM 4.0 (or later) installations work with
LBM 3.5.3 / UME 2.2.4 (or earlier) installations.

If you do not have early-version installations in the network, leave this option at 0.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.0.
Value | Description
1 Enable compatibility with earlier-version installations (and disable some message structure features).
0 Normal current-version compatibility. Strongly recommended. Default for all.

10.2.2 resolution_no_source_notification_threshold (receiver)

The threshold for the number of unanswered topic resolution queries before UM delivers a LBM_MSG_NO_«
SOURCE_NOTIFICATION for the topic.

10.2 Reference 111

The receiver does not stop querying after the delivery of this notification. A value of 0 indicates no notifications
will be sent.

Scope: receiver

Type: Ibm_ulong_t

Units: Number of queries

Default 0 (do not notify)

value:

When fo | May be set during operation.
Set:

10.2.3 resolution_number_of _sources_query_threshold (receiver)

The threshold for the number of sources a topic must have before topic resolution queries are not sent.

A value of zero results in no topic resolution queries being generated. See also Disabling Aspects of Topic
Resolution.

Scope: receiver

Type: Ibm_ulong_t

Units: Number of sources

Default 10000000 (10 million)

value:

When to | May be set during operation.
Set:

10.2.4 resolver_advertisement_maximum_.initial_interval (source)

The longest - and last - interval in the initial phase of topic advertisement.

A value of 0 disables the initial phase of advertisement. See also Disabling Aspects of Topic Resolution.

Scope: source
Type: Ibm_ulong_t
Units: milliseconds

112

UDP-Based Resolver Operation Options

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2.5 resolver_advertisement_minimum_initial_duration (source)

The duration of the initial phase of topic advertisement.

A value of 0 guarantees that the initial phase of advertisement never completes.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 5000 (5 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2.6 resolver_advertisement_minimum_initial_interval (source)

Interval between the first topic advertisement sent upon creation of the source and the second advertisement

sent by the source.

A value of 0 disables the initial phase of advertisement. This option has an effective minimum of 10 ms. See
UDP-Based Resolver Operation Options.

See also Disabling Aspects of Topic Resolution.

Scope: source

Type: Ibm_ulong_t
Units: milliseconds
Default 10 (0.01 seconds)

value:

10.2 Reference

113

10.2.7 resolver_advertisement_minimum_sustain_duration (source)

When to

Set:

Can only be set during object initialization.

‘ Version:

‘ This option was implemented in LBM 4.0 ‘

The duration of the sustaining phase of topic advertisement.

A value of 0 guarantees that the sustaining phase of advertising never completes.

Scope: source

Type: Ibm_ulong_t

Units: seconds

Default 60 (1 minute)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2.8 resolver_advertisement_send_immediate_response (source)

Allows you to disable the normal immediate response to queries and wildcard queries.

Sources normally send topic advertisements (TIR) immediately in response to topic queries (TQR) for a local
topic or wildcard queries (WC-TQR) with a pattern that matches a local topic. This helps to resolve topics

quickly. However, these immediate TIRs are also inefficient; each TIR is sent in a UDP datagram of its own.

In contrast, TIRs sent using the normal, rate-limited phases of advertisement are batched, with multiple Tl
Rs collected into a single UDP datagram. For systems with large numbers of sources and receivers, allowing
immediate response to queries can lead to high short-term network loading and packet loss. In these cases,
it can be beneficial to disable immediate responses, at the expense of longer times required to resolve new

receivers.

Scope: source

Type: Ibm_uint_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2/UME 3.2/UMQ 2.1

114 UDP-Based Resolver Operation Options

Value | Description

1 Sources immediately send advertisements (TIR) in response to topic queries (TQR) or wildcard
queries (WC-TQR). Default for all.

0 Sources delay sending advertisements (TIR) in response to topic queries (TQR) or wildcard queries
(WC-TQR).

10.2.9 resolver_advertisement_sustain_interval (source)

Interval between sending topic advertisements in the sustaining phase of topic advertisement.

A value of 0 disables the sustaining phase of advertisement. This option has an effective minimum of 100 ms.
See UDP-Based Resolver Operation Options.

See also Disabling Aspects of Topic Resolution.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2.10 resolver_cache (context)

Whether or not to enable the resolver cache to hold topic resolution information. Disabling the resolver cache
uses less memory, but can increase network load. Informatica recommends against disabling the resolver
cache.

10.2 Reference 115

Warning

The resolver cache must be enabled if wildcard receivers and/or if resolver_service (context) is used.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description
1 Topic resolution information will be cached. Default for all.
0 Do not cache topic resolution information.

10.2.11 resolver_context_name_activity timeout (context)

Period of inactivity before a context name is declared unresolved.

The minimum amount of time without any context name resolution traffic that must pass before UM declares a
resolved context name unresolved. Context name resolution traffic is defined as the reception of context name
advertisements and/or unicast control traffic from the resolved context.

Scope: context

Type: Ibm_uint64_t

Units: milliseconds

Default 60000 (60 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.0

10.2.12 resolver_context_name_query_duration (context)

Maximum period of time UM sends context name queries.

116 UDP-Based Resolver Operation Options

The maximum duration for which UM sends context name queries for a given context name. UM sends queries
until the context name resolves. A value of 0 means queries have no time limit and UM continues to query until
the context name resolves.

Scope: context

Type: Ibm_uint64_t

Units: milliseconds

Default 0 (query for as long as unresolved)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.0

10.2.13 resolver_context_name_query_maximum_interval (context)

The longest interval between sending context name queries.

A value of 0 disables context name queries.

This option has an effective minimum of 100 ms. See UDP-Based Resolver Operation Options.

See also Disabling Aspects of Topic Resolution.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.0

10.2.14 resolver_context_name_query_minimum_interval (context)

Interval between the first context name query sent upon creation of the UMP source using named stores and
the second query sent.

10.2 Reference

117

A value of 0 disables context name queries. This option has an effective minimum of 100 ms. See UDP-Based

Resolver Operation Options.

See also Disabling Aspects of Topic Resolution.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 100 (0.1 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.0

10.2.15 resolver_datagram_max_size (context)

The maximum UDP datagram payload size that can be generated for topic resolution advertisements and
queries. Note that this does not include UDP, IP, or packet overhead added by the network stack. The default
value is 8192, the minimum is 500 bytes, and the maximum is 65535.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max

Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and

Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Scope: context

Type: Ibm_uint_t

Units: bytes

Default 8192

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0.

118

UDP-Based Resolver Operation Options

10.2.16 resolver_domain_id_active_propagation_timeout (context)

Indicates how a context learns the ID of its own Topic Resolution Domain (TRD).

See Topic Resolution Domain.

Scope: context

Type: int

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.7.1

String value

Integer value

Description

g

-1

Learn TRD ID from other contexts in the same TRD, without
restriction. This is the method Ultra Messaging has tradition-
ally used.

This method assigns TRD IDs quickly to avoid partial connec-
tivity. However, note that to change a TRD ID, you must recon-
figure and restart all DROs, if present. Then you must delete
all application contexts, and then re-create all application con-
texts.

Note: With this option value, newly-created contexts can learn
from earlier versions of Ultra Messaging software.

"o

Learn TRD ID only from a DRO directly. Do not learn the TRD
ID from other contexts in the same TRD. Consider using this
option with a TRD that has many contexts and a possible need
to change a TRD ID. Default for all.

10.2 Reference

119

String value

Integer value

Description

"1" to "2147483647"

110 2,147,483,647

Learn TRD ID from other contexts in the same TRD that have
heard the domain ID advertised by a DRO within this timeout
value in seconds. Use the following formula:

3 x {propagation-interval}/1000 + {maximum expected dura-
tion of DRO outage}

where propagation-interval is an attribute value of the DRO
configuration option "<route-info>" element, which defaults
to 1000. With a timeout value set, a restarted context does
not learn obsolete TRD IDs from un-restarted contexts, but
instead, learns from DROs or restarted contexts. You do not
need to bring all contexts to a deleted state simultaneously
before you re-create the first context.

Note: During this timeout period, there is a risk for temporary
incomplete connectivity in networks with no DROs.

10.2.17 resolver_initial_advertisement_bps (context)

Maximum advertisement rate during the initial phase of topic advertisement.

A value of 0 means that initial phase advertisements for the topic are not limited to a maximum number of bits
per second. Note that the topic's advertisements are still subject to being rate limited by resolver_initial_«
advertisements_per_second (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: Ibm_uint64_t

Units: bits per second

Default 1000000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

120

UDP-Based Resolver Operation Options

10.2.18 resolver_initial_advertisements_per_second (context)

Maximum number of advertisements sent within a one second period during the initial phase of topic advertise-

ment.

A value of 0 means that initial phase advertisements for the topic are not limited to a maximum number of ad-
vertisements per second. Note that the topic's advertisements are still subject to being rate limited by resolver«

_initial_advertisement_bps (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: Ibm_ulong_t

Units: advertisements

Default 1000

value:

When tfo | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2.19 resolver_initial_queries_per_second (context)

Maximum number of queries sent within a one second period during the initial phase of topic querying.

A value of 0 means that initial phase queries for the topic are not limited to a maximum number of queries
per second. Note that the topic's queries are still subject to being rate limited by resolver_initial_query_bps

(context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: Ibm_ulong_t

Units: advertisements

Default 1000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2 Reference 121

10.2.20 resolver_initial_query_bps (context)

Maximum query rate during the initial phase of topic querying.

A value of 0 means that initial phase queries for the topic are not limited to a maximum number of bits per
second. Note that the topic's queries are still subject to being rate limited by resolver_initial_queries_per_«
second (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: Ibm_uint64_t

Units: bits per second

Default 1000000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2.21 resolver_query_maximum_initial_interval (receiver)

The longest - and last - interval in the initial phase of topic querying.

A value of 0 disables the initial phase of querying.

See also Disabling Aspects of Topic Resolution.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

122

UDP-Based Resolver Operation Options

10.2.22 resolver_query_minimum_initial_duration (receiver)

The duration of the initial phase of topic querying.

A value of 0 guarantees that the initial phase of querying never completes.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 5000 (5 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2.23 resolver_query_minimum_initial_interval (receiver)

Interval between the first topic query sent upon creation of the receiver and the second query sent by the

receiver.

A value of 0 disables the initial phase of querying. This option has an effective minimum of 20 ms. See
UDP-Based Resolver Operation Options.

See also Disabling Aspects of Topic Resolution.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 20 (0.02 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2 Reference

123

10.2.24

resolver_query_minimum_sustain_duration (receiver)

The duration of the sustaining phase of topic querying.

A value of 0 guarantees that the sustaining phase of querying never completes.

10.2.25

Scope: receiver

Type: Ibm_ulong_t

Units: seconds

Default 60 (1 minute)

value:

When fo | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

resolver_query_sustain_interval (receiver)

Interval between sending topic queries in the sustaining phase of topic querying.

A value of 0 disables the sustaining phase of querying. This option has an effective minimum of 100 ms. See
UDP-Based Resolver Operation Options.

See also Disabling Aspects of Topic Resolution.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

124 UDP-Based Resolver Operation Options

10.2.26 resolver_receiver_map_tablesz (context)

The size of the hash table used for storing receiver topic information used for topic resolution. This value should
be a prime number.

For UM deployments with very large numbers of topics (more than 100,000), increasing this number can im-
prove efficiency.

Scope: context

Type: size_t

Units: map entries

Default 131111

value:

When to | Can only be set during object initialization.
Set:

10.2.27 resolver_send_final_advertisements (source)

Controls whether or not a source sends "final advertisements" before deletion.

A final advertisement is an announcement that the source object is being deleted. Without final advertisements,
receivers are not informed that a source has been deleted until all sources on a transport session are deleted
and the transport session is disposed. At that point, any receivers to sources on that transport session will
simultaneously be delivered an EOS event.

However, if the source has final advertisements enabled, the source will send the final advertisement and trigger
the delivery of the EOS event in a more-timely way. They also give other contexts an opportunity to purge the
source from their local topic resolution cache.

Note: the final advertisements are not necessarily sent immediately upon deletion of the source. They are
scheduled with other topic resolution traffic and obey the rate limits. As a result, if an application is in the
process of cleaning up prior to exit and it deletes the context object too soon after the deletion of its sources,
the final advertisements may not be sent at all. Typically this will simply result in a less-timely notification of
EOS as transport sessions time out, but there are some circumstances where the time required to deliver EOS
is not technically bounded. If timely delivery of EOS is important, it is recommended to add a few seconds of
delay after the sources are deleted before deleting the context.

This setting does not affect the topic resolution phases you have configured, which execute as expected. See
Disabling Aspects of Topic Resolution.

10.2 Reference

125

Scope: source
Type: Ibm_uint_t
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 6.10
Value | Description
1 Source sends final advertisements before deletion.
0 Source does not send any final advertisements before deletion. Default for all.

10.2.28 resolver_send _initial_advertisement (source)

Controls whether or not a source sends an advertisement upon creation.

Turning off this advertisement speeds source creation and reduces the number of messages on your network

through application initialization.

See Disabling Aspects of Topic Resolution.

Scope: source
Type: Ibm_uint_t
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 4.0
Value | Description
1 Source sends a topic advertisement immediately upon creation. Default for all.
0 Source does not send an advertisement upon creation. This setting does not affect the topic
resolution phases you have configured, which execute as expected.

126

UDP-Based Resolver Operation Options

10.2.29

resolver_source_map_tablesz (context)

The size of the hash table used for storing source topic information used by topic resolution. This value should

be a prime number.

For UM deployments with very large numbers of topics (more than 100,000), increasing this number can im-

prove efficiency.

10.2.30

Scope: context

Type: size_t

Units: map entries

Default 131111

value:

When to | Can only be set during object initialization.
Set:

resolver_string_hash_function (context)

The hash function to use for hashing topic name strings for source and receiver topics.

The application may choose from a list of defined hash functions or it may define its own hash function, as
identified by the string value of this option. When setting a hash function, note that:

« If set through a configuration file or a call to Ibm_context_attr_str_setopt(), only the string values classic,

djb2, sdbm, or murmur2 are valid. (If retrieved by a call to Ibm_context_attr_str_getopt(), one of these
string values is returned.)

« If set through a call to Ibm_context_attr_setopt(), you must pass a pointer to a hash function. Use this
method for hash functions other than the four pre-defined functions.

Informatica's own testing has indicated that the default (murmur2) outperforms all the others, but there may be
topic string formats for which a different function is better. Informatica suggests careful testing before changing

the hash function.

Scope: context

Type: Ibm_str_hash_func_t

Default NULL

value:

When fo | Can only be set during object inifialization.

Set:

10.2 Reference

127

String value | Integer value | Description

"classic" n.a. A "classic" good string hash function. Works best when topic names have
a constant prefix with a changing suffix.

"djb2" n.a. The Dan Bernstein algorithm from comp.lang.c. Works best when topic
names have a changing prefix with a constant suffix.

"sdom" n.a. sdbm database library (used in Berkeley DB). A useful alternative to djb2.

"murmur2" n.a. Good all-around hash function by Austin Appleby. Best for medium to long
topic strings. Default for all.

10.2.31 resolver_string_hash_function_ex (context)

The hash function to use for hashing topic name strings for source and receiver topics.

This option is similar to the resolver_string_hash_function (context) except for the following differences: This
option can be set via only Ibm_context_attr_setopt() (not from a configuration file or Iom_context_attr_str
_setopt()). Hence, this also means you cannot use the string options (classic, etc.). You can pass a string
length to the hash function, allowing it to then possibly run faster by operating on multiple-character strings at
a time. Note that if -1 is passed in, you must use a strlen to calculate the length. The hash function accepts a
clientd pointer, which you can set as needed, and which is passed back in each time the function is called.

This option is the better choice when setting your own custom hash function. Note that both the resolver_«
string_hash_function and resolver_string_hash_function_ex options set the same attributes, hence, if you use
both (not recommended) one will override the other.

Scope: context

Type: Ibm_str_hash_func_ex t

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.

128

UDP-Based Resolver Operation Options

10.2.32

resolver_sustain_advertisement_bps (context)

Maximum advertisement rate during the sustaining phase of topic advertisement.

A value of 0 means that sustaining phase advertisements for the topic are not limited to a maximum number of
bits per second. Note that the topic's advertisements are still subject to being rate limited by resolver_sustain«

_advertisements_per_second (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: Ibm_uint64_t

Units: bits per second

Default 1000000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2.33

resolver_sustain_advertisements_per_second (context)

Maximum number of advertisements sent within a one second period during the sustaining phase of topic
advertisement.

A value of 0 means that sustaining phase advertisements for the topic are not limited to a maximum number
of advertisements per second. Note that the topic's advertisements are still subject to being rate limited by
resolver_sustain_advertisement_bps (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: Ibm_ulong_t

Units: advertisements

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

10.2 Reference 129

10.2.34 resolver_sustain_queries_per_second (context)

Maximum number of queries sent within a one second period during the sustaining phase of topic querying.

A value of 0 means that sustaining phase queries for the topic are not limited to a maximum number of queries

per second. Note that the topic's queries are still subject to being rate limited by resolver_sustain_query_bps
(context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

10.2.35

Scope: context

Type: Ibm_ulong_t

Units: advertisements

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

resolver_sustain_query_bps (context)

Maximum query rate during the sustaining phase of topic querying.

A value of 0 means that sustaining phase queries for the topic are not limited to a maximum number of bits per
second. Note that the topic's queries are still subject to being rate limited by resolver_sustain_queries_per_«
second (context).

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Scope: context

Type: Ibm_uint64_t

Units: bits per second

Default 1000000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

130

UDP-Based Resolver Operation Options

10.2.36

Indicates the maximum time between messages from a unicast resolver daemon before UM declares it inactive

resolver_unicast_activity _timeout (context)

and stops sending normal topic resolution traffic via that daemon.

UM will still send keepalives to the daemon. A value of 0 will force all resolver daemons to be treated as
permanently active.

10.2.37

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 1000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMS 5.0

resolver_unicast_change_interval (context)

Indicates how often UM will change to the next available unicast resolver daemon.

The actual value used is random, and is selected from the range (1/2xchange_interval, 3/2xchange_interval). If
all resolver daemons have been marked inactive, UM enters a quick-change mode where it uses a random value
from the range (1/4xchange_interval, 3/4xchange_interval) in order to more quickly locate an active daemon.

See resolver_unicast_daemon (context) option.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 200

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMS 5.0

10.2 Reference 131

10.2.38 resolver_unicast_check_interval (context)

Indicates how often a UM checks for resolver activity in order to determine liveness.

A value of 0 will disable activity checks. This setting only applies to the unicast resolver.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 200

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMS 5.0

10.2.39 resolver_unicast_force_alive (context)

Controls whether a context with no sources or receivers should register with and send keepalive messages to
a configured Unicast Topic Resolver.

By default, at least one source or receiver must exist in a context before it registers with a configured Unicast
Topic Resolver.

However, some receiving application designs use resolver_source_notification_function (context) to notify them
of discovered sources, and do not create a receiver until sources are discovered. If these designs use unicast
topic resolution, they should set this option to "1".

Scope: context

Type: Ibm_uint16_t

When to | Can only be set during object initialization.
Set:

132

UDP-Based Resolver Operation Options

Value | Description

1 Contexts send keepalive messages to the Unicast Resolver at the resolver_unicast_keepalive_«
interval (context) regardless of whether the context has any sources or receivers that require topic
resolution.

0 Contexts do not send keepalive messages to the Unicast Resolver until sources or receivers have

been created. Then Contexts send keepalives at the resolver_unicast_keepalive_interval (context).
Default for all.

10.2.40 resolver_unicast_ignore_unknown_source (context)

Indicates whether contexts using unicast topic resolution accept topic resolution udp datagrams that originate
from any Ibmrd or only the specific Ibmrd configured for use.

Note: Do not modify this setting without guidance from Informatica.

Scope: context

Type: int

When tfo | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.7.1

String value

Integer value

Description

"o

0

A context using unicast topic resolution accepts traffic from lbmrd resolver
daemons not configured for use by the context.

nqn

Contexts using unicast topic resolution accept topic resolution udp data-
grams that originate from only the specific Ibmrd configured for use. The
context discards topic resolution datagrams from unrecognized origins and
logs a message. This prevents applications at the same IP address, but
in different topic resolution domains that might share resolver unicast port
ranges, from processing unintended topic resolution traffic while lbmrd re-
solver daemons time out stale client entries. Default for all.

10.2 Reference

133

10.2.41 resolver_unicast_keepalive_interval (context)

Indicates how often keepalive messages should be sent to a resolver daemon.

Keepalives are only sent if no other traffic has been sent since the last keepalive interval expired.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 500

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMS 5.0

134 UDP-Based Resolver Operation Options

Chapter 11

Multicast Resolver Network Options

The image below shows a simplified relationship between the primary multicast resolver network options.

Um <_> resolver_ multicast_address
Context & 3 resolver multicast _port

resolver multicast interface

See Topic Resolution Overview for general information on Topic Resolution.

11.1 Reference

11.1.1 resolver_multicast_address (context)

Multicast address (or domain name of the multicast address) used for Topic Resolution.

This option automatically sets the values for resolver_multicast_incoming_address (context) and resolver_«
multicast_outgoing_address (context) as evidenced by the default values for all three options, which are the
same.

136

Multicast Resolver Network Options

See also UDP-Based Topic Resolution Details.

Scope: context

Type: struct in_addr

Default 224.9.10.11

value:

When to | Can only be set during object initialization.
Set:

11.1.2 resolver_multicast_incoming_address (context)

Incoming multicast address (or domain name of the multicast address) used for finer control of Topic Resolution.

This value may be set to 0.0.0.0 (INADDR_ANY), to switch off listening to topic resolution messages. This
means that queries from receivers or advertisements from sources will not be handled.

See also resolver_multicast_outgoing_address (context).

Scope: context

Type: struct in_addr

Default 224.9.10.11

value:

When to | Can only be set during object initialization.
Set:

11.1.3 resolver_multicast_incoming_port (context)

Incoming multicast port used for finer control of Topic Resolution.

See also resolver_multicast_outgoing_port (context).

See Port Assignments for more information about configuring ports.

11.1 Reference

137

Scope: context

Type: Ibm_uint16_t

Default 12965

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

11.1.4 resolver_multicast_interface (context)

Specifies which network interface UM sends/receives all multicast traffic (Topic Resolution, LBT-RM, Multicast
Immediate Messaging).

Can specify full IP address of interface, or just network part (see Specifying Interfaces for details). Default is set
to default_interface (context), if specified. Otherwise, it is set to the default multicast interface as determined by
UM (the first multicast-capable, non-loopback interface).

Scope: context

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0

value:

When to | Can only be set during object initialization.
Set:

11.1.5 resolver_multicast_outgoing_address (context)

Outgoing multicast address (or domain name of the multicast address) used for finer control of Topic Resolution.

See also resolver_multicast_incoming_address (context).

Scope: context

Type: struct in_addr

Default 224.9.10.11

value:

When to | Can only be set during object initialization.

Set:

138 Multicast Resolver Network Options

11.1.6 resolver_multicast_outgoing_port (context)

Outgoing multicast port used for finer control of Topic Resolution.

See also resolver_multicast_incoming_port (context).

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 12965

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

11.1.7 resolver_multicast_port (context)

Multicast port used for Topic Resolution.

This option automatically sets the values for resolver_multicast_incoming_port (context) and resolver_«
multicast_outgoing_port (context) as evidenced by the default values for all three options, which are the same.

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 12965

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

11.1 Reference 139

11.1.8 resolver_multicast_receiver_socket_buffer (context)

Value used to set SO_RCVBUF value of the resolver receivers.

In some cases the OS will not allow all of this value to be used. A value of 0 instructs UM to use the default OS
values. See Socket Buffer Sizes for platform-dependent information. See also our white paper Topics in High
Performance Messaging for background and guidelines on UDP buffer sizing.

Scope: context

Type: Ibm_ulong_t

Units: bytes

Default 8388608 (8MB)

value:

When to | Can only be set during object initialization.
Set:

11.1.9 resolver_multicast_ttl (context)

The IP TTL (hop count) to use for a Topic Resolution packet.

A value of 1 confines the packet to the local network (but may also cause high CPU usage on some routers).
Also controls TTL on LBT-RM packets.

Scope: context

Type: Ibm_uint8_t

Default 16

value:

When to | Can only be set during object initialization.

Set:

140 Multicast Resolver Network Options

Chapter 12

Unicast Resolver Network Options

The image below shows a simplified relationship between the primary unicast resolver network options.

reso lver_lulicast_daanc-n
Interface:Local Port—>DaemonlIP:RemotePort

\

’f N

Context ° '

resolver unicast interface

resolver unicast port low

resolver unicast port high

If using multiple Ibmrd instances with a single context, you can configure resolver_unicast_interface and
resolver_unicast_port_low/high and omit the Interface:LocalPort section of resolver_unicast_daemon.

See also Unicast Topic Resolution for general information on Unicast Topic Resolution.

142 Unicast Resolver Network Options

12.1 Reference

12.1.1 resolver_unicast_daemon (context)

Enable Unicast UDP-based TR and add one or more unicast resolver daemon (lbmrd) specifications to the
current lomrd list. Unlike most other UM settings, every time this setting is called, it adds one or more daemon
specifications to the list, and does NOT overwrite previous specifications.

Setting this option Disables Multicast UDP-based TR, but does not affect whether TCP-based TR is enabled or
disabled. See UDP-Based Topic Resolution Details.

For the configuration file as well as string APl method of setting this option, the string value consists of one or
more Ibmrd specifications separated by commas or semicolons, formatted as follows:

[Iface[:Src_Port]—->]IP:Dest_Port[,...]

» Iface is the interface to use (previously set via resolver_unicast_interface (context)).

* Src_Port is the source port to use (previously resolver_unicast_port (context)). Normally only specified
if firewalls require specific source ports be used.

» IP is the resolver daemon's IP address (previously resolver_unicast_address (context)).

* Dest_Port is the resolver daemon's UDP port (previously resolver_unicast_destination_port (context)).

You can omit either the Src_Port or both the Iface and Src_Port, in which case the default settings
resolver_unicast_interface (context) and resolver_unicast_port (context) are used.

Because each entry adds a new daemon specification and does not overwrite previous values, a special con-
struct must be used to clear a previously-specified list. An entry with the IP address of 0.0.0.0 and port of 0
removes all previous daemon specifications. This can be useful if multiple configuration files are used, and a
later file should override the daemon list from an earlier file.

Possible formats of each entry are as follows:

Interface:LocalPort->DaemonIP:RemotePort
Interface->DaemonIP:RemotePort
DaemonIP:RemotePort

You can specify Interface in any of the ways described in Specifying Interfaces.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only
one lbmrd specification can be supplied for each call to Ibm_context_attr_setopt(). However, when the binary
form of option retrieval Ibm_context_attr_getopt() is used, the list of Ibmrds is returned as an array, and the
optlen parameter should be set as:

optlen = (max_num_lbmrds x sizeof (lbm_ucast_resolver_entry_t));

12.1 Reference

143

Scope: context

Type: Ibm_ucast_resolver_entry t

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMS 5.0

12.1.2 resolver_unicast_interface (context)

Specifies the network interface over which UM receives unicast Topic Resolution messages.

Can specify full IP address of interface, or just network part (see Specifying Interfaces for details). Default is
set to default_interface (context)>, if specified. Otherwise, it is set to INADDR_ANY, meaning that it will accept
unicast Topic Resolution messages on any interface.

Scope: context

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

12.1.3 resolver_unicast_port_high (context)

The highest local UDP port in a range of ports used for unicast topic resolution messages.

The UM resolution daemon (lbmrd) sends unicast topic resolution messages to the UDP port range defined by
this option and resolver_unicast_port_low (context).

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 14406

value:

Byte order: Host

When to | Can only be set during object initialization

Set:

144 Unicast Resolver Network Options

12.1.4 resolver_unicast_port_low (context)

The lowest local UDP port in a range of ports used for unicast topic resolution messages.

The UM resolution daemon (Ibmrd) sends unicast topic resolution messages to the UDP port range defined by
this option and resolver_unicast_port_high (context).

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 14402

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

12.1.5 resolver_unicast_receiver_socket_ buffer (context)

Value used to set SO_RCVBUF value of the UDP receivers for unicast topic resolution messages.

In some cases the OS will not allow all of this value to be used. A value of 0 instructs UM to use the default OS
values. See ref socketbuffersizes for platform-dependent information.

Scope: context

Type: Ibm_ulong_t

Units: bytes

Default 8388608 (8MB)

value:

When to | Can only be set during object initialization.
Set:

Chapter 13

TCP-Based Resolver Operation Options

See TCP-Based Topic Resolution Details for general information on TCP-based Topic Resolution.

13.1 Reference

13.1.1 resolver_service (context)

Enable TCP-based TR and add one or more (up to 5) Stateful Resolver Service (SRS) specifications to the
current SRS list.

The SRS is used to provide TCP-based Topic Resolution services. For general information on Topic Resolution,
see Topic Resolution Description. For details on TCP-based TR, see TCP-Based Topic Resolution Details.

Unlike most other UM settings, every time this setting is called, it adds one or more service specifications to
the list, and does NOT overwrite previous specifications. Multiple SRS instances are recommended for fault
tolerance. See TCP-Based TR and Fault Tolerance.

Setting this option does not affect whether UDP-based TR is enabled or disabled. It is appropriate in many use
cases to have both TCP and UDP TR enabled. For example, see TCP-Based TR Version Interoperability.

Warning

Do not turn off the resolver cache when TCP-based TR is used. See resolver_cache (context).

For the configuration file as well as string APl method of setting this option, the string value consists of one or
more (up to 5) SRS specifications separated by commas or semicolons, formatted as follows:

146

TCP-Based Resolver Operation Options

[Iface[:Src_Port]->]IP:Dest_Port[,...]

« Iface is the interface to use.

* Src_Port is the source port to use. Normally only specified if firewalls require specific source ports be

used.

« IP isthe SRS's IP address.

» Dest_Port is the SRS's TCP listening port.

You can omit either the Src_Port or both the Iface and Src_Port, in which case the interface defaults
to default_interface (context), if specified, and the port defaults to 0, which allocates an ephemeral port.

Because each entry adds a new SRS specification and does not overwrite previous values, a special construct
must be used to clear a previously-specified list. An entry with the IP address of 0.0.0.0 and port of 0 removes
all previous SRS specifications. This can be useful if multiple configuration files are used, and a later file should
override the SRS list from an earlier file.

Possible formats of each entry are as follows:

Interface:LocalPort—->SrsIP:RemotePort
Interface->SrsIP:RemotePort

SrsIP:RemotePort

You can specify Interface in any of the ways described in Specifying Interfaces.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only
one SRS specification can be supplied for each call to Ibm_context_attr_setopt(). However, when the binary
form of option retrieval Ibm_context_attr_getopt() is used, the list of SRSes is returned as an array, and the

optlen parameter should be set as:

optlen = (max_num_srs * sizeof (lbm_resolver_service_entry_t));
Scope: context
Type: Ibm_resolver_service_entry_t
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UMQ 6.12

13.1 Reference

147

13.1.2

resolver_service_interest_mode (context)

Allows an SRS to perform interest-based filtering of source advertisements (SIRs).

With filter mode enabled, the SRS will only send SIRs for sources that the context is interested in (has a receiver

for). This reduces the Topic Resolution traffic to the context.

With flood mode, the SRS will send SIRs for all topics to the context. This mode is normally not needed, except
when the resolver_source_notification_function (context) or resolver_event_function features are used.

See TCP-Based TR Interest for more information.

Scope: context

Type: Ibm_uint8_t

Default 1

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.13

String value | Integer value Description
"filter" LBM_CTX_ATTR_INTEREST _MODE_Fl+~ | Filter Mode. The SRS sends SIRs for
LTER sources the context is interested in. Default
for all.
"flood" LBM_CTX_ATTR_INTEREST_MODE_F+«- Flood Mode. The SRS sends SIRs for all
LOOD topics.

148 TCP-Based Resolver Operation Options

Chapter 14

Transport TCP Network Options

14.1 TCP Transport Session Management

The image below shows a simplified relationship between the primary TCP transport network options.

context transport_tcp_port_low
context transport_tcp_port_high
context transport_tcp_maxzimum_ports
source transport_tcp_port

source transport_tcp_interface

", TCP
4 REeceiver

TCP PR Mmessages
Source s TCP

-

receiver transport_tcp_interface

When a source is created, the application can explicitly map it to a transport session by setting the transport_tcp«
_port (source) option. If a previous source was created on the same context with the same port number, this new
source will be mapped to the same transport session. However, two different contexts on the same host may not
share the same port number. If a source is created with a port number that is already in use, UM will return an error.

Alternatively, if the application does not explicitly specify a source port, UM will implicitly assign the new source to
a pool of transport sessions defined when the context was created. The pool is defined as a range of port numbers
specified by the options transport_tcp_port_low (context) and transport_tcp_port_high (context). In addition, the
option transport_tcp_maximum_ports (context) defines the number of transport sessions in the pool.

When a new source is created and the source port is not explicitly defined, UM will check to see how many transport
sessions are currently active from the pool within the context. If it is less than transport_tcp_maximum_ports
(context) then UM will attempt to use the next port in the range transport_tcp_port_low (context) to transport_«
tcp_port_high (context). If that port is already in use, UM continues along the range until it finds an unused port,

150 Transport TCP Network Options

then it uses that port to create the transport session. However, if the context already has activated all transport
sessions in the pool, then the new topic is mapped to one of the existing transport sessions, in round-robin fashion.

Notice that the default range of ports, 14371 to 14390, is 30 ports. But the default number of transport sessions
in the pool is 10. This allows three contexts to be created on the same host and use the same configuration. If
more than 3 contexts are intended to co-exist on the same host, the port range and number of transport session per
context must be managed to give a unique port number to every transport session.

The option transport_tcp_interface (source) may be used on TCP sources to choose particular interface, overriding
the default INADDR_ANY which accepts connections on all interfaces. Similarly, transport_tcp_interface (receiver)
may be used on receivers to choose a particular interface.

14.2 Reference

14.2.1 transport_tcp_interface (receiver)

Specifies the network interface to which UM receivers bind before connecting to sources.

You can specify the full IP address of interface, or just the network part (see Specifying Interfaces for details).
Default is set to default_interface (context), if specified.

Scope: receiver

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

14.2.2 transport_tcp_interface (source)

Specifies the network interface over which UM accepts connection requests (from topic receivers).

You can specify the full IP address of interface, or just the network part (see Specifying Interfaces for details).

Be aware that this option is applied to the transport session when the first topic is created on that session.
Thus, setting a different interface for a subsequent topic that maps onto the same transport session will have
no effect. Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning
that it will not bind to a specific interface. You can also modify the default by setting the option to 0.0.0.0/0 which
produces the same result.

14.2 Reference 151

Scope: source

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

14.2.3 transport_tcp_maximum_ports (context)

Maximum size of TCP source transport session pool.

See TCP Transport Session Management for how TCP source transport sessions are managed.

Scope: context

Type: Ibm_uint16_t

Units: number of ports

Default 10

value:

When to | Can only be set during object initialization.
Set:

14.2.4 transport_tcp_port (source)

The TCP port to be used for the source transport session.

Setting this option to non-zero overrides the use of the pool of TCP source transport sessions.

The UM source listens on this port. Receivers that join the source's transport session connect to this port, and
the source sends message data across that connection.

See TCP Transport Session Management for how TCP source transport sessions are managed.

See Port Assignments for more information about configuring ports.

152 Transport TCP Network Options

Note that this port is only used by TCP sources. Receiver port numbers are taken from the host's Ephemeral
Ports and are not configurable.

Scope: source

Type: Ibm_uint16_t

Default 0 (pick open port)

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

14.2.5 transport_tcp_port_high (context)

High TCP port number of range for pool of TCP source transport sessions.

When transport_tcp_port (source) is not specified, a newly-created transport session will use an unused port
from this range. The UM source listens on this port. Receivers that join the source's transport session connect
to this port, and the source sends message data across that connection.

See also transport_tcp_port_high (context).

See TCP Transport Session Management for how TCP source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Note that this range of ports is only used by TCP sources. Receiver port numbers are taken from the host's
Ephemeral Ports and are not configurable.

Scope: context

Type: Ibm_uint16_t
Default 14390

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

14.2 Reference 153

14.2.6 transport_tcp_port_low (context)

Low TCP port number of range for pool of TCP source transport sessions.

When transport_tcp_port (source) is not specified, a newly-created transport session will use an unused port
from this range. The UM source listens on this port. Receivers that join the source's transport session connect
to this port, and the source sends message data across that connection.

See also transport_tcp_port_high (context).

See TCP Transport Session Management for how TCP source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Note that this range of ports is only used by TCP sources. Receiver port numbers are taken from the host's
Ephemeral Ports and are not configurable.

Scope: context

Type: Ibm_uint16_t

Default 14371

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

154 Transport TCP Network Options

Chapter 15

Transport TCP Operation Options

15.1 Reference

15.1.1 transport_session_maximum_buffer (source)

Value used to control the maximum amount of data buffered in UM for the transport session used for the topic.

For the normal multiple receiver behavior, this value represents the total buffered by all TCP receivers. For the
bounded_latency and source_paced multiple receiver behavior, this value represents the individual receiver
buffered amount. This option affects the transport session underlying the source rather than the source itself.
The transport session uses the value from the first source created on the session and ignores subsequent
sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: Ibm_ulong_t

Units: bytes

Default 65536

value:

When to | Can only be set during object initialization.
Set:

156 Transport TCP Operation Options

15.1.2 transport_tcp_activity_method (receiver)

The type of timeout method to use for TCP receivers to detect "half-open" TCP connections.

For TCP sessions only.

This defines how transport_tcp_activity_timeout (receiver) is interpreted. Note that transport_tcp_activity <«
timeout (receiver) defaults to 0 (disabled), meaning that half-open TCP connections may not be detected in a

timely way.
Scope: receiver
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 3.3.8/UME 2.0.6.
String value Integer value Description
"timer" LBM_RCV_TOPIC_ATTR_TCP_ACTI« Timer method that requires new TCP

VITY_TIMEOUT_TIMER

session data to be sent to determine if the
connection is alive. Default for all.

"SO_KEEPALIVE"

LBM_RCV_TOPIC_ATTR_TCP_ACTI«
VITY_TIMEOUT_SO_KEEPALIVE

Set SO_KEEPALIVE on the TCP con-
nection which uses the TCP keepalive
support in the operating system to deter-
mine if the connection is alive. When you
use the SO _KEEPALIVE method, UM
uses transport_tcp_activity _timeout (re-
ceiver) value to set the idle and probe
times for SO_KEEPALIVE. The idle time
is 90% of the timeout value at most. The
probe time is 10% with 10 seconds as the
minimum.

15.1.3 transport_tcp_activity timeout (receiver)

A timeout used by a receiver to close a TCP transport session that has no activity.

For TCP sessions only.

Normally, when a source transport session is deleted by the sending application, the TCP connection is closed,
which the receiver detects within a few milliseconds. However, there are unusual situations where a temporary

15.1 Reference 157

network outage prevents the receiver from detecting the closing of the connection, resulting in a "half-open”
connection. This situation can prevent the receiver from detecting the closed connection for an unbounded
time.

This timeout can be used to detect and close half-open connections.

This option has two different meanings, depending on the setting of transport_tcp_activity _method (receiver).
See that option for details.

A value greater than zero turns the timer on.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 0

value:

When tfo | Can only be set during object initialization.
Set:

15.1.4 transport_tcp_activity timeout (source)

This timeout option enables a source to use SO_KEEPALIVE to detect when a receiver does not cleanly
disconnect or is no longer reachable from the source.

For TCP sessions only.

When the timeout expires, a DISCONNECT source event is delivered. This option affects only Linux or Windows
platforms. Outstanding TCP retransmit timers must expire before this timer starts. With a default Linux or
Windows system configuration, TCP retransmit timers may take minutes or even hours to expire. Therefore the
total time taken to detect an unreachable receiver may be significantly higher than the value configured for this
timeout. A value of zero (0) defers TCP timeout to OS settings.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 0

value:

When to | Can only be set during object initialization.
Set:

158 Transport TCP Operation Options

15.1.5 transport_tcp_coalesce_threshold (source)

UM passes implicitly batched messages to the Operating System sendmsg() as a set unless the size of the set
exceeds the coalescing threshold at which point the messages are coalesced and passed to the O/S as one
copy.

This option accommodates the different number of iovecs supported by different O/Ss. Tuning this option
balances the efficiency of less iovecs handled by the OS vs. the expense of an additional copy operation of the
messages before sending. The default values are also the maximum allowable values.

Scope: source

Type: int

Units: number of individual messages

Default 1024 for Linux, Microsoft Windows, Darwin; 16 for Solaris, AIX, HPUX
value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 2.3.

15.1.6 transport_tcp_datagram_max_size (context)

The maximum datagram size that can be generated for a TCP transport session. While TCP does not use
UDP datagrams, this option limits the size of the UM message which is given to the underlying transport type,
including all UM headers and overhead. It does not include TCP, IP, or packet overhead added by the network
stack. The default value is 65535, the minimum is 500 bytes, and the maximum is 65535.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max
Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

15.1 Reference 159

Scope: context

Type: Ibm_uint_t

Units: bytes

Default 65535

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

15.1.7 transport_tcp_dro_loss_recovery_ timeout (receiver)

For TCP transport sessions originating from a DRO endpoint portal, delay declaring as unrecoverable a lost
message.

Message streams traversing a DRO can have the message order changed. If the DRO's outgoing transport
session uses the TCP protocol, these out-of-order messages will normally trigger immediate unrecoverable
loss. This timeout allows an opportunity for the messages to be re-ordered properly.

The value 0 disables this delay (i.e. receivers immediately declare unrecoverable loss).

See DRO Reliable Loss for more information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 6.12

15.1.8 transport_tcp_exclusiveaddr (source)

Indicate whether the TCP session should set SO_EXCLUSIVEADDRUSE or not before it binds.

Applicable only to Windows. The default setting in Windows allows multiple binds to the same port. By de-

160 Transport TCP Operation Options

fault, UM will set SO_EXCLUSIVEADDRUSE to minimize port sharing. Refer to Microsoft's web site for more
information on SO_EXCLUSIVEADDRUSE.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description

1 Set SO_EXCLUSIVEADDRUSE. Default for Windows.
0 Do not set SO_EXCLUSIVEADDRUSE.

15.1.9 transport_tcp_listen_backlog (source)

The backlog used in the TCP listen() call to set the queue length for incoming connections.

If 20 or more receivers will be joining this source, it may be beneficial to increase this number.

Scope: source

Type: int

Units: number of queued connections

Default 5

value:

When to | Can only be set during object initialization.
Set:

15.1.10 transport_tcp_multiple_receiver_behavior (source)
This option determines the flow control behavior of a TCP source that is sending to multiple receivers.

In particular, it addresses the scenario where some receivers are consuming messages slower than other
receivers (or not at all). In this scenario, pending messages will be buffered by the source up to the configured

15.1 Reference

161

limit specified by the transport_session_maximum_buffer (source) option. Once that limit is reached, the source
can either wait for slow receivers (resulting in a blocked source) or discard messages from the buffer (resulting
in gaps and potentially unrecoverable loss of messages for slow receivers).

This option affects the transport session underlying the source rather than the source itself. The transport
session uses the value from the first source created on the session and ignores the value set for subsequent

sources.

Refer to Source Object for additional information.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

String value

Integer value

Description

"normal”

LBM_SRC_TOPIC_ATTR_TCP_MUL«
TI_RECV_NORMAL

The application will wait for the slow-
est receiver rather than discarding recent
messages. This slows down all sources
on the TCP session. Default for all.

"source_paced"

LBM_SRC_TOPIC_ATTR_TCP_MUL+
TI_RECV_SOURCE_PACED

The application sends as fast as it can
even if recent messages headed for any
or all receivers must be discarded. Note
that for applications requiring source-
paced behavior, LBT-RU and LBT-RM are
more efficient than source-paced TCP,
so this setting is primarily for scenarios
where UDP-based protocols are not vi-
able.

"bounded_latency"

LBM_SRC_TOPIC_ATTR_TCP_MUL«
TI_RECV_BOUNDED_LATENCY

The application sends as fast as the
fastest receiver can consume data even
if recent data headed for slower receivers
must be discarded. Deprecated since
UM 6.9.

15.1.11

transport_tcp_multiple_receiver_send_order (source)

In the case of multiple receivers, this option determines whether datagrams are sent to each receiver in the
established order of receivers, or if receivers are selected in random order for each datagram transmission.

162 Transport TCP Operation Options

Using random ordering can avoid giving one receiver a consistent latency advantage, at the expense of slightly
higher per-message processing (calculating the random number).

Scope: source
Type: int
When to | Can only be set during object initialization.
Set:
String value | Integer value Description
"serial" LBM_SRC_TOPIC_ATTR_TCP_MULTI_« | Select receivers to receive a datagram
RECV_SEND_ ORDER_SERIAL based on current established order. Default
for all.
"random" LBM_SRC _TOPIC_ATTR_TCP_MULTI «+ For each datagram sent, select receivers
RECV_SEND_ ORDER_RANDOM in random order, for the sake of "fairness".
Note that this option adds a small amount of
CPU overhead.

15.1.12 transport_tcp_nodelay (source)

Controls whether the context sets TCP_NODELAY before it binds to the source port.

Setting TCP_NODELAY disables Nagle's algorithm, which somewhat decreases the efficiency and throughput
of TCP, but decreases the latency of individual messages.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description
1 TCP transport sockets should set TCP_NODELAY (disable Nagle). Default for all.
0 TCP transport sockets should not set TCP_NODELAY (leave Nagle enabled).

15.1 Reference

163

15.1.13 transport_tcp_receiver_socket_buffer (context)

Value used to set SO_RCVBUF value of the TCP receivers for topics. In some cases the OS will not allow all
of this value to be used.

A value of 0 instructs UM to use the default OS values. See Socket Buffer Sizes for platform-dependent

information.

Scope: context

Type: Ibm_ulong_t

Units: bytes

Default 0 (use TCP autotuning)

value:

When to | Can only be set during object initialization.
Set:

15.1.14 transport_tcp_reuseaddr (source)

Whether the TCP session should set SO REUSEADDR or not before it binds.

Warning

This option is not recommended for Microsoft Windows users because the SO_REUSEADDR socket option in
Windows allows a socket to forcibly bind to a port in use by another socket. Multiple sockets using the same

port results in indeterminate behavior.

Scope: source
Type: int
When to | Can only be set during object initialization.

Set:

164

Transport TCP Operation Options

Value | Description
1 Set SO_REUSEADDR.
0 Do not set SO_REUSEADDR. Default for all.

15.1.15 transport_tcp_sender_socket_buffer (source)

Value used to set the SO_SNDBUF value of the TCP session.

In some cases the OS will not allow all of this value to be used. A value of 0 instructs UM to use the OS defaults.
See Socket Buffer Sizes for platform-dependent information.

Scope: source

Type: Ibm_ulong_t

Units: bytes

Default 0 (use TCP autotuning)

value:

When to | Can only be set during object initialization.
Set:

15.1.16 transport_tcp_use_session_id (source)

Control whether a session ID is used for TCP Transport sessions.

This option should be set to 0 if a version 6.0 (and beyond) TCP source must interoperate with a version pre-6.0

receiver.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.0

15.1 Reference 165

Value | Description
1 Indicates the application desires TCP to use a session ID. Default for all.

0 Indicates the application does not desire TCP to use a session ID. For use when version pre-6.0
receivers must be used with TCP sources that are version 6.0 and beyond.

166 Transport TCP Operation Options

Chapter 16

Transport LBT-RM Network Options

16.1 LBT-RM Transport Session Management
The image below shows a simplified relationship between the primary LBT-RM transport network options.
transport lbtrm multicast address

transport lbtrm multicast address low
transport lbtrm multicast address high

transport lbtrm destination port

addr : port

Data via

LBT-RM Multicast Cloud LBT-RM

Source Receiver

-

" |—— NAKs (unicast)

"y,
—\ O
transport lbtrm source port low
transport lbtrm source port high

Note

for a multi-homed LBT-RM source, the interface LBT-RM multicast resolver interface specified with resolver«
_multicast_interface (context) will be used as the source for LBT-RM.

168 Transport LBT-RM Network Options

When a source is created, the application can explicitly map it to a transport session by setting the transport_«
Ibtrm_multicast_address (source) and transport_lbtrm_destination_port (source) options. If a previous source was
created on the same context with the same group/port pair, this new source will be mapped to the same transport
session. Note that two different contexts on the same host may share the same group/port pair, and the resulting
transport sessions will be separate and independent.

Alternatively, if the application does not explicitly specify a multicast group and destination port, UM will implicitly
assign the new source to a pool of transport sessions defined when the context was created. The pool is defined as a
range of multicast groups specified by the options transport_Ibtrm_multicast_address_low (context) and transport«—
_Ibtrm_multicast_address_high (context). The number of transport sessions in the pool is the range of the two
multicast group IP addresses, as represented by a 32-bit number. For example, the default settings 224.10.10.«
10 and 224.10.10.14 are represented by the numbers OxEOOAOAOA and OxEOOAOQAOE. This represents 5 different
groups, so the pool contains 5 transport sessions (all with the same destination port).

When a new source is created and the multicast group is not explicitly defined, UM will check to see how many
transport sessions are currently active from the pool within the context. If it is less than the number in the pool, then
UM will activate the next transport session in the range. However, if the context already has activated all transport
sessions in the pool, then the new topic is mapped to one of the existing transport sessions, in round-robin fashion.

16.2 Reference

16.2.1 transport_lbtrm_destination_port (source)

The UDP destination port used for this Topic when the transport is LBT-RM.

See LBT-RM Transport Session Management for how LBT-RM source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Scope: source

Type: Ibm_uint16_t

Default 14400

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

16.2 Reference 169

16.2.2 transport_Ibtrm_multicast_address (source)

The preferred multicast address (or domain name of the multicast address) for this Topic when the transport is
LBT-RM.

If 0.0.0.0 (INADDR_ANY), the default, the context will use a round-robin method to select an address in the
configured multicast multicast address range: transport_lbtrm_multicast_address_high (context) - transport_«
Ibtrm_multicast_address_low (context).

See LBT-RM Transport Session Management for how LBT-RM source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Scope: source

Type: struct in_addr

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

16.2.3 transport_Ibtrm_multicast_address_high (context)

Multicast address (or domain name of the multicast address) used as the highest value to assign to LBT-RM
sessions.

See LBT-RM Transport Session Management for how LBT-RM source transport sessions are managed.

Scope: context

Type: struct in_addr

Default 224.10.10.14

value:

When to | Can only be set during object initialization.
Set:

170 Transport LBT-RM Network Options

16.2.4 transport_Ibtrm_multicast_address_low (context)

Multicast address (or domain name of the multicast address) used as the lowest value to assign to LBT-RM
sessions.

See LBT-RM Transport Session Management for how LBT-RM source transport sessions are managed.

Scope: context

Type: struct in_addr

Default 224.10.10.10

value:

When to | Can only be set during object initialization.
Set:

16.2.5 transport_Ibtrm_source_port_high (context)

Highest port number value used for LBT-RM source session's unicast NAK processing. Receivers send NAKs
to this port for to request retransmission. Each LBT-RM session must use a unique port value. Note that this
does not control the UDP source port on the outbound LBT-RM stream.

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 14399

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

16.2.6 transport_Ibtrm_source_port_low (context)

Lowest port number value used for LBT-RM source session's unicast NAK processing. Receivers send NAKs
to this port for to request retransmission. Each LBT-RM session must use a unique port value. Note that this
does not control the UDP source port on the outbound LBT-RM stream.

16.2 Reference

171

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 14390

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

172 Transport LBT-RM Network Options

Chapter 17

Transport LBT-RM Reliability Options

17.1 LBT-RM Datagram

Loss Resulting in Unrecovered Message Loss

An LBT-RM receiver will attempt to recover lost datagrams. The options transport_Ibtrm_nak_backoff_interval (re-
ceiver) and transport_lbtrm_nak_generation_interval (receiver) control the timing of the recovery effort. Timers for
both start when loss is detected. The following timeline illustrates a case where a receiver is notified of unrecover-
able message loss following repeated datagram loss.

transport 1btrm nak initial backoff interval 3, SEREEERRRRRRIEES)-|
transport 1btrm nak backoff interral |-Q‘. Sco——c:)-|
Kw interval randomization period

Messages Sent

lhm_sr c_send {)

N l l l / NAK Loss .

Datagram Loss
NAK Loss

o — =)

rev
l K transport 1btrm nak generation interval
Loss Detected

LBM MSG DATA

Retransmission Loss

Y
.

Messages Received Transport Statistics Updated

unrecovered tmo

174 Transport LBT-RM Reliability Options

Note

the actual length of the interval randomization periods are between 1/2 and 3/2 of the configured interval value.
In the diagram above, time periods are not drawn to scale to simplify the diagram.

Set transport_Ibtrm_nak_backoff_interval (receiver) to the NAK service time that could be reasonably expected
from the receiver's location in the network plus some cushion for network congestion. Set transport_lbtrm_nak_«
generation_interval (receiver) to the latency budget established for the transport layer. See our whitepaper Topics
in High Performance Messaging forbackground on latency budgets. See also the KB article Reducing
Loss Recovery Latencies for more advice on tuning.

Note

these parameters relate to loss at the transport session (datagram) level, not the topic level. See Delivery
Control Options for information on how applications are informed of topic-level unrecoverable loss.

17.2 LBT-RM Source Ignoring NAKs for Efficiency

Bandwidth efficiency of an LBT-RM source may be improved by avoiding useless retransmissions. Consider the
case of an LBT-RM source that has received a NAK for a datagram that it has just retransmitted. If the NAK
and the retransmission crossed on the network, it is likely that the receiver generating the NAK will receive the
retransmission just sent. If so, there's no need for the source to send another retransmission, so the NAK can be
safely ignored.

NAKs for a given datagram are ignored for transport_Ibtrm_ignore_interval (source) following the retransmission of
that datagram. A NAK will be serviced as normal following the passage of the interval.

When ignoring a NAK, the source can send an NCF (NAK ConFirmation) instead of a retransmission. See NAK
Suppression for more information.

17.3 LBT-RM Receiver Suppressing NAK Generation

LBT-RM sources want receivers to be notified that their NAKs have been heard. Prompt notification via a retrans-
mission or NCF can suppress useless NAK generation. There are a variety of circumstances where the source
does not send a retransmission in response to a receiver's NAK. For example, NAKs received during the ignore
interval do not generate retransmissions. Another example would be if previous retransmissions have used up all
the retransmission bandwidth for the current rate limiter interval.

The image below illustrates a receiver's reaction to an NCF.

https://www.informatica.com/downloads/1568_high_perf_messaging_wp/Topics-in-High-Performance-Messaging.htm
https://www.informatica.com/downloads/1568_high_perf_messaging_wp/Topics-in-High-Performance-Messaging.htm
https://kb.informatica.com/faq/5/Pages/80070.aspx
https://kb.informatica.com/faq/5/Pages/80070.aspx

17.4 Reference

175

Src

NAK NCF

NAK

interval randomization period

4

e

transport 1btrm nak suppress interval

L J

transport 1btrm nak backoff interval

Following the receipt of an NCF, a receiver suppresses all NAK generation for that sequence number until transport:-
_Ibtrm_nak_suppress_interval (receiver) passes. NAK generation resumes with the usual transport_lbtrm_nak_«
backoff_interval (receiver) if repair was not received during the suppression interval.

Note

the actual length of the interval randomization period is between 1/2 and 3/2 of the configured interval value.

In the diagram above, time periods are not drawn to scale to simplify the diagram.

17.4 Reference

17.4.1 transport_lbtrm_ignore_interval (source)

The interval to ignore NAKs after a retransmission is sent.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.
Set:

176 Transport LBT-RM Reliability Options

17.4.2 transport_Ibtrm_nak_backoff_interval (receiver)

The maximum interval between transmissions of LBT-RM NAKSs for a given sequence number, after the first
NAK.

When an LBT-RM receiver detects a sequence number gap, it delays an initial amount before sending its first
NAK (controlled by transport_lbtrm_nak_initial_backoff_interval (receiver)), and then delays an a separately
configurable time between sending subsequent NAKs for the same sequence number. This configuration option
controls those subsequent delays.

The actual time the receiver will wait to NAK again is random. The algorithm used to determine the time range
is (1/2 = backoff_interval - 3/2 x backoff_interval). This will result in a delay longer or shorter than the specified
value.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

See also transport_Ibtrm_nak_initial_backoff_interval (receiver).

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When to | Can only be set during object initialization.
Set:

17.4.3 transport_Ibtrm_nak_generation_interval (receiver)

The maximum time that a piece of data may be outstanding before the data is unrecoverably lost.

For LBT-RM transport sessions only. Although the minimum valid value is 5 milliseconds, larger values are
advisable. This option affects the transport session underlying the receiver rather than the receiver itself.
The transport session uses the value from the first receiver created on the session and ignores subsequent
receivers' configuration.

Refer to Receiver Object and Interrelated Configuration Options for additional information.

17.4 Reference 177

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

17.4.4 transport_Ibtrm_nak_initial_backoff_interval (receiver)

The interval between loss detection and transmission of the first LBT-RM NAK.

When an LBT-RM receiver detects a sequence number gap, it delays an initial amount before sending its first
NAK controlled by this option, and then delays an a separately configurable time between sending subsequent
NAKs for the same sequence number, controlled by transport_Ibtrm_nak_backoff_interval (receiver).

The actual time the receiver will wait to NAK is random. The algorithm used to determine the time range is (1/2
x initial_backoff_interval - 3/2 x initial_backoff_interval). This will result in a delay longer or shorter than the
specified value. A value of 0 indicates that the receiver should immediately send a NAK. Note that this is rarely
a good idea; see UM Recovery of Lost Packets.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

See also transport_lbtrm_nak_backoff_interval (receiver).

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 50 (0.05 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4/UME 2.1.

178

Transport LBT-RM Reliability Options

17.4.5 transport_Ibtrm_nak_suppress_interval (receiver)

The time that an LBT-RM receiver will suppress sending a NAK for a missing datagram after an NCF is received

from the source.

The source sends an NCF in response to a NAK which the source temporarily cannot retransmit. For example,
if the source gets a NAK for a sequence number for which it has recently sent a retransmission, it will send an
NCF with reason code "ignored". The receiver responds by suppressing NAKs for that sequence number for
the interval configured by this option. See NAK Suppression for more information about NCFs.

For LBT-RM transport sessions only. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

17.4.6 transport_Ibtrm_receiver_socket_buffer (context)

Value used to set SO_RCVBUF value of the LBT-RM receiver multicast socket.

In some cases the OS will not allow all of this value to be used. See Socket Buffer Sizes for platform-dependent
information. See also our white paper Topics in High Performance Messaging for background and guidelines

on UDP buffer sizing.

Scope: context

Type: Ibm_ulong_t

Units: bytes

Default 8388608 (8MB)

value:

When to | Can only be set during object initialization.

Set:

17.4 Reference 179

17.4.7 transport_Ibtrm_send_naks (receiver)

This flag indicates whether LBT-RM should send negative acknowledgements (NAKs) for missing packets or
not.

For LBT-RM transport sessions only. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description

1 NAKs are sent for missing packets to request retransmission. Default for all.
0 Do not send NAKSs for missing packets.

17.4.8 transport_Ibtrm_source_socket_buffer (context)

Value used to set SO_SNDBUF value of the LBT-RM send multicast socket.

In some cases the OS will not allow all of this value to be used. See Socket Buffer Sizes for platform-dependent
information. A value of 0 instructs UM to use the OS default.

Scope: context

Type: Ibm_ulong_t

Units: bytes

Default 1048576 (1MB)

value:

When to | Can only be set during object initialization.
Set:

180 Transport LBT-RM Reliability Options

17.4.9 transport_Ibtrm_transmission_window_limit (source)

Caps the total amount of memory that a transmission window uses, which includes data and overhead.

For example, if the transport_Ibtrm_transmission_window_size (source) is 24 MB (default) and the source
sends (with flush flag set) 1.2 million messages with a 20-byte payload and 230-byte header, the actual amount

of memory used can approximate 300 MB. The default value of 0 (zero) disables the transmission window size
limit.

Scope: source

Type: size t

Units: bytes

Default 0 (zero)

value:

When to | Can only be set during object initialization.
Set:

17.4.10 transport_Ibtrm_transmission_window_size (source)

The maximum amount of buffered payload data, excluding UM headers, that the LBT-RM source is allowed to
retain for retransmissions.

The minimum valid value is 65,536 bytes. This option affects the transport session underlying the source rather
than the source itself. The transport session uses the value from the first source created on the session and
ignores subsequent sources' configuration.

Scope: source

Type: size_t

Units: bytes

Default 25165824 (24 MB)

value:

When to | Can only be set during object initialization.
Set:

Chapter 18

Transport LBT-RM Operation Options

Reliable multicast protocols like LBT-RM rely on sequence numbers and the arrival of data after a loss as evidence
that the loss happened. What would happen if the last packet sent by a source was lost? How would receivers learn
of the loss if no further messages were sent?

LBT-RM generates session messages when the sources on a transport session stop sending. These messages
contain the expected last sequence number for the session so that receivers can detect loss even when sources
aren't sending. Session messages also help to maintain state in multicast routers and switches that require regular
traffic to prevent the reclamation of unused forwarding entries.

The image below illustrates the sending of session messages.

lbm src send(.., LBM MSG FLUSH)
transport lbtrm sm minimum interwval
{i transport lbtrm sm maximum interval (x2)
. _ _ _
I f_ f ﬁ* !
sre —1 ' ' —
Session Messages

Data
Messages

No session messages are generated as long as the interval between Ibm_src_send() calls that generate writes
to LBT-RM is less than transport_lbtrm_sm_minimum_interval (source) option. The interval between session mes-
sages starts at transport_Ibtrm_sm_minimum_interval (source) and doubles till it reaches transport_Ibtrm_sm_«
maximum_interval (source) at which point the interval continues at that level.

The absence of activity on a transport session is the only indication receivers get that a source is gone or no longer
available through any network path. LBT-RM receivers reset a session activity timer for each data message or
session message that arrives. If the activity timer ever expires, all receivers on the transport session receive an
LBM_MSG_EOS event. This is illustrated in the following timeline:

182 Transport LBT-RM Operation Options

Last Data Message Last Session Message

transport| lbtrm activity timeout

.

rcv ‘v [

>t

LBM MSG_DATA LBM MSG_EOS
Message Received

The activity timer is controlled with the transport_Ibtrm_activity_timeout (receiver) option.

18.1 Reference

18.1.1 transport_Ibtrm_activity_timeout (receiver)

The maximum time that an LBT-RM session may be quiescent before it is deleted and an EOS event is delivered
for all topics using this transport session.

For LBT-RM transport sessions only. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 60000 (60 seconds)

value:

When to | Can only be set during object initialization.
Set:

18.1 Reference 183

18.1.2 transport_Ibtrm_coalesce_threshold (source)

UM passes implicitly batched messages to the Operating System sendmsg() as a set unless the size of the set
exceeds the coalescing threshold at which point the messages are coalesced and passed to the O/S as one
copy.

This option accommodates the different number of iovecs supported by different O/Ss. Tuning this option
balances the efficiency of less iovecs handled by the OS vs. the expense of an additional copy operation of
the messages before sending. The default value is also the maximum allowable value for Solaris, AIX and
HPUX. For Linux and Microsoft Windows and Darwin, the maximum allowable value is 1023. These maximum
allowable values are one less than what the O/S provides. This option affects the transport session underlying
the source rather than the source itself. The transport session uses the value from the first source created on
the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: int

Units: number of individual messages

Default 15

value:

When to | Can only be set during object initialization.
Set:

18.1.3 transport_Ibtrm_data_rate_limit (context)

Maximum aggregate transmission rate of all LBT-RM sessions' original data plus retransmissions for this par-
ticular context.

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Note: For backwards compatibility with earlier versions, the lbm_context_attr_setopt() function will accept
both 32 and 64 bit values for this option. Note however that a 32-bit value can only specify a rate limit a little
larger than 4 Gbps.

Scope: context

Type: lbm_uint64_t

Units: bits per second

Default 10000000 (10 Mbps)

value:

When fo | Can only be set during object initialization.
Set:

184 Transport LBT-RM Operation Options

18.1.4 transport_Ibtrm_datagram_max_size (context)

The maximum UDP datagram payload size that can be generated for a LBT-RM transport session. Note that
this does not include UDP, IP, or packet overhead added by the network stack. The default value is 8192, the
minimum is 500 bytes, and the maximum is 65535.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max
Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Scope: context

Type: Ibm_uint_t

Units: bytes

Default 8192

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

18.1.5 transport_lbtrm_preactivity_timeout (receiver)

The time that a newly-joined LBT-RM transport session can have no activity before the receiver decides the
transport session is dead.

This option typically does not need to be set for deployments using UM version 3.3 and beyond. If this option is
set to 0 (the default), then the activity timeout for a newly-joined transport session is the same as transport_«
Ibtrm_activity_timeout (receiver).

18.1 Reference 185

The purpose of this option is for a receiver to allow an extended timeout for a newly-created source transport
session to have no activity prior to the first application message (or TSNI) being sent.

This option is most useful when sending applications use UM versions prior to 3.3, which did not use Topic Se-
quence Number Information messages (TSNIs; see transport_topic_sequence_number_info_interval (source)).
In these cases, the source does not start the transport session until the first application message is sent. If the
sending application might delay sending its first message for more than transport_Ibtrm_activity_timeout (re-
ceiver) (60 seconds by default), the receiver will decide that the transport session is dead and will disconnect.
Assuming that the source is still actually alive, the receiver will subsequently re-join the session, which can lead
to "flapping".

This flapping can be prevented by setting transport_Ibtrm_preactivity_timeout to a value greater than the worst-
case delay before the sending application sends its first message.

In UM version 3.3 and beyond, LBT-RM sources enable TSNIs by default, which ensures that some transport
session activity will happen within 5 seconds, by default. Thus, there is no longer any need to set a different
timeout for a newly-joined transport session. But note that it also extends the time required for a receiver to
detect that a newly-joined source transport session is actually dead.

This option may still have some utility in UM version 3.3 and beyond if TSNIs need to be disabled.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 0 (zero)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4.1/UME 2.1.1.

18.1.6 transport_Ibtrm_rate_interval (context)

Period that LBT-RM rate limiter runs.

Reducing period reduces burst intensity, but also increases CPU load. Refer to Rate Controls for additional
information about the UM rate limiting algorithm.

Scope: context

Type: Ibm_ulong_t
Units: milliseconds
Default 10

value:

Transport LBT-RM Operation Options

Set:

When to

Can only be set during object initialization.

String value | Integer value | Description

"10" 10 LBT-RM rate limiter runs every 10 milliseconds. Default for all.
"20" 20 LBT-RM rate limiter runs every 20 milliseconds.

"50" 50 LBT-RM rate limiter runs every 50 milliseconds.

"100" 100 LBT-RM rate limiter runs every 100 milliseconds.

18.1.7 transport_lbtrm_receiver_timestamp (context)
Controls whether high-resolution timestamps for received packets are delivered to the receiver callback.

For LBT-RM transport sessions only.

Refer to High-resolution Timestamps for additional information.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.9
Value | Description

1 Receive timestamps delivered to receive callback.

0 Receive timestamps not delivered. Default for all.

18.1 Reference 187

18.1.8 transport_Ibtrm_recycle_receive_buffers (context)

Enables the use of buffer recycling for socket operations.

See Receive Buffer Recycling for more information, including restrictions on the use of this feature.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.12

Value | Description

1 Use buffer recycling.

0 Buffer recycling is not used. Default for all.

18.1.9 transport_Ibtrm_retransmit_rate_limit (context)

Maximum aggregate transmission rate of all LBT-RM sessions' retransmissions for this particular context.

This should always be less than the value used for original data. Refer to Rate Controls for additional informa-
tion about the UM rate limiting algorithm.

Note: For backwards compatibility with earlier versions, the lbm_context_attr_setopt() function will accept
both 32 and 64 bit values for this option. Note however that a 32-bit value can only specify a rate limit a little
larger than 4 Gbps.

Scope: context

Type: Ibm_uint64_t

Units: bits per second

Default 5000000 (5 Mbps)

value:

When to | Can only be set during object initialization.
Set:

188 Transport LBT-RM Operation Options

18.1.10 transport_Ibtrm_sm_maximum_interval (source)

The maximum interval between LBT-RM session messages.

In lieu of data being sent, LBT-RM sends session messages to inform receivers of sequence numbers and to
let receivers know that the sender is still transmitting. This option affects the transport session underlying the
source rather than the source itself. The transport session uses the value from the first source created on the
session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

18.1.11 transport_Ibtrm_sm_minimum_interval (source)

The minimum interval between LBT-RM session messages.

In lieu of data being sent, LBT-RM sends session messages to inform receivers of sequence numbers and to
let receivers know that the sender is still transmitting. This option affects the transport session underlying the
source rather than the source itself. The transport session uses the value from the first source created on the
session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When to | Can only be set during object initialization.
Set:

18.1 Reference

189

18.1.12 transport_Ibtrm_source_timestamp (context)

Controls whether high-resolution timestamps for transmitted packets are delivered to the source event callback.

For LBT-RM transport sessions only. Refer to High-resolution Timestamps for additional information.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in UM 6.9
Value | Description

Transmit timestamps delivered to receive callback.

Transmit timestamps not delivered. Default for all.

18.1.13 transport_Ibtrm_tgsz (source)

The transmission group size used for this Topic when LBT-RM is used.

This value must be greater than 0 and must be a power of 2 no greater than 32K. This option affects the
transport session underlying the source rather than the source itself. The transport session uses the value from

the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for add

itional information.

Scope: source

Type: Ibm_uint16_t
Units: packets
Default 8

value:

190

Transport LBT-RM Operation Options

When
Set:

to

Can only be set during object initialization.

Chapter 19

Transport LBT-RU Network Options

19.1 LBT-RU Transport Session Management

The image below illustrates the relationship between the primary LBT-RU network options.

context
context

transport_lbtru_port_low
transport_lbtru_port_high

context transport_lbtru_maxzimum_ports
source transport_lbtru_port
source transport_lbtru_interface

=
e
-
-
-
-

P

P request, ack, nak
] f
LEI-RU I LEI-RU
Linicast UDP .
Source i REeceiver
:-"- II‘I
Messages Sl

receiver transport_lbtru_port_low
receiver transport_lbtru_port_high
receiver transport_lbtru_intertface

When a source is created, the application can explicitly map it to a transport session by setting the transport_Ibtru«
_port (source) option. If a previous source was created on the same context with the same port, this new source
will be mapped to the same transport session. However, two different contexts on the same host may not share the
same port number. If a source is created with a port number that is already in use, UM will return an error.

Alternatively, if the application does not explicitly specify a source port, UM will implicitly assign the new source to
a pool of transport sessions defined when the context was created. The pool is defined as a range of port numbers
specified by the options transport_Ibtru_port_low (context) and transport_Ibtru_port_high (context). In addition, the
option transport_Ibtru_maximum_ports (context) defines the number of transport sessions in the pool.

When a new source is created and the source port is not explicitly defined, UM will check to see how many transport

192 Transport LBT-RU Network Options

sessions are currently active from the pool within the context. If it is less than the number in the pool, then UM will
activate the next transport session in the range. However, if the context already has activated all transport sessions
in the pool, then the new topic is mapped to one of the existing transport sessions, in round-robin fashion.

Notice that the default range of ports, 14380 to 14389, is 10 ports. But the default number of transport sessions in
the pool is 5. This allows two contexts to be created on the same host and use the same configuration. If more than
2 contexts are intended to co-exist on the same host, the port range and number of transport session per context
must be managed to give a unique port number to every transport session.

The option transport_lbtru_interface (source) may be used on LBT-RU sources to choose particular interface, over-
riding the default INADDR_ANY which accepts connections on all interfaces. Similarly, transport_Ibtru_interface
(receiver) may be used on receivers to choose a particular interface for outgoing connections.

19.2 Reference

19.2.1 transport_lbtru_interface (receiver)

Specifies the network interface over which UM LBT-RU receivers read application data messages.

Can specify full IP address of interface, or just network part (see Specifying Interfaces for details).

Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it
will accept incoming connection requests from any interface.

Scope: receiver

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

19.2.2 transport_lbtru_interface (source)

Specifies the network interface over which UM LBT-RU sources receive connection requests from topic re-
ceivers.

Can specify full IP address of interface, or just network part (see Specifying Interfaces for details). Be aware
that this option is applied to the transport session when the first topic is created on that session. Thus, setting
a different interface for a subsequent topic that maps onto the same transport session will have no effect.

19.2 Reference 193

Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it
will accept incoming connection requests from any interface.

Scope: source

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

19.2.3 transport_Ibtru_maximum_ports (context)

Maximum size of LBT-RU source transport session pool.

See LBT-RU Transport Session Management for how LBT-RU source transport sessions are managed.

Scope: context

Type: Ibm_uint16_t

Units: number of ports

Default 5

value:

When to | Can only be set during object initialization.
Set:

19.2.4 transport_lbtru_port (source)
The UDP port to be used for the source transport session.
This is the source-side option. For receive-side ports, see transport_lbtru_port_low (receiver).
Setting this option to non-zero overrides the use of the pool of LBT-RU source transport sessions.
See LBT-RU Transport Session Management for how LBT-RU source transport sessions are managed.

See Port Assignments for more information about configuring ports.

194 Transport LBT-RU Network Options

Scope: source

Type: Ibm_uint16_t

Default 0 (use open port)

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

19.2.5 transport_lbtru_port_high (context)

High UDP port number of range for pool of LBT-RU source transport sessions.

When transport_|Ibtru_port (source) is not specified, a newly-created transport session will use an unused port
from this range. Receivers that join the source's transport session send connection requests, acknowledge-
ments, and NAKSs to the source port.

See also transport_Ibtru_port_high (context).

This is the source-side option. For the corresponding receiver option, see transport_Ibtru_port_high (receiver).

See LBT-RU Transport Session Management for how LBT-RU source transport sessions are managed.

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 14389

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

19.2.6 transport_lbtru_port_high (receiver)

High port number to use for receiving LBT-RU data.

19.2 Reference 195

This is the receive-side option. For the corresponding source option, see transport_lbtru_port_high (context).

When a newly-created receiver joins a source's transport session, it finds a free port from this range, binds to
it, and informs the source of the receiver's IP and port. The UM source will send message data to that IP and
port.

Unlike most UM port ranges, if the library is not able to find an unused port in this range, it will log a warning
(Core-5688-3300), but instead of failing the receiver creation, it will allocate a port from the host's ephemeral
pool and operate normally. Thus, it is possible for a receiver to get messages on a port outside of the configured
range.

See Port Assignments for more information about configuring ports.

Scope: receiver

Type: Ibm_uint16_t

Default 14379

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

19.2.7 transport_lbtru_port_low (context)

Low UDP port number of range for pool of LBT-RU source transport sessions.

When transport_|Ibtru_port (source) is not specified, a newly-created transport session will use an unused port
from this range. Receivers that join the source's transport session send connection requests, acknowledge-
ments, and NAKSs to the source port.

See also transport_Ibtru_port_high (context).

This is the source-side option. For the corresponding receiver option, see transport_Ibtru_port_low (receiver).

See LBT-RU Transport Session Management for how LBT-RU source transport sessions are managed.

See Port Assignments for more information about configuring ports.

196

Transport LBT-RU Network Options

Scope: context

Type: Ibm_uint16_t

Default 14380

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

19.2.8 transport_lbtru_port_low (receiver)

Low port number to use for receiving LBT-RU data.

This is the receive-side option. For the corresponding source option, see transport_Ibtru_port_low (context).

When a newly-created receiver joins a source's transport session, it finds a free port from this range, binds to
it, and informs the source of the receiver's IP and port. The UM source will send message data to that IP and

Unlike most UM port ranges, if the library is not able to find an unused port in this range, it will log a warning
(Core-5688-3300), but instead of failing the receiver creation, it will allocate a port from the host's ephemeral
pool and operate normally. Thus, it is possible for a receiver to get messages on a port outside of the configured

See Port Assignments for more information about configuring ports.

Scope: receiver

Type: Ibm_uint16_t

Default 14360

value:

Byte order: Host

When fo | Can only be set during object initialization.
Set:

Chapter 20

Transport LBT-RU Reliability Options

LBT-RU's reliability options closely model LBT-RM's. The descriptions and illustrations in Transport LBT-RM Relia-
bility Options generally apply to LBT-RU, with appropriate option name changes.

20.1 Reference

20.1.1 transport_Ibtru_ignore_interval (source)

The interval to ignore NAKs after a retransmission is sent.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.
Set:

198 Transport LBT-RU Reliability Options

20.1.2 transport_Ibtru_nak_backoff_interval (receiver)

The maximum interval between transmissions of LBT-RU NAKs for a given sequence number, after the first
NAK.

When an LBT-RU receiver detects a sequence number gap, it delays an initial amount before sending its first
NAK (controlled by transport_Ibtru_nak_initial_backoff_interval (receiver)), and then delays an a separately
configurable time between sending subsequent NAKs for the same sequence number. This configuration option
controls those subsequent delays.

The actual time the receiver will wait to NAK again is random. The algorithm used to determine the time range
is (1/2 = backoff_interval - 3/2 x backoff_interval). This will result in a delay longer or shorter than the specified
value.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

Refer to Receiver Object and Interrelated Configuration Options for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When to | Can only be set during object initialization.
Set:

20.1.3 transport_Ibtru_nak_generation_interval (receiver)

The maximum time that a piece of data may be outstanding before the data is unrecoverably lost.

For LBT-RU transport sessions only. Although the minimum valid value is 5 milliseconds, larger values are
advisable. This option affects the transport session underlying the receiver rather than the receiver itself.
The transport session uses the value from the first receiver created on the session and ignores subsequent
receivers' configuration.

Refer to Receiver Object and Interrelated Configuration Options for additional information.

Scope: receiver

Type: Ibm_ulong_t

20.1 Reference

199

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

20.1.4 transport_Ibtru_nak_initial_backoff_interval (receiver)

The interval between loss detection and transmission of the first LBT-RU NAK.

When an LBT-RU receiver detects a sequence number gap, it delays an initial amount before sending its first
NAK controlled by this option, and then delays an a separately configurable time between sending subsequent

NAKs for the same sequence number, controlled by transport_Ibtru_nak_backoff_interval (receiver).

The actual time the receiver will wait to NAK is random. The algorithm used to determine the time range is
(1/2 = initial_backoff_interval - 3/2 x initial_backoff_interval). This can result in a wait interval longer than the

specified value. A value of 0 indicates that the receiver should immediately send a NAK.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-

uration.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default 0 (disabled)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.10

20.1.5 transport_Ibtru_nak_suppress_interval (receiver)

The time that an LBT-RU receiver will suppress sending a NAK for a missing datagram after an NCF is received

from the source.

The source sends an NCF in response to a NAK which the source temporarily cannot retransmit. For example,

200 Transport LBT-RU Reliability Options

if the source gets a NAK for a sequence number for which it has recently sent a retransmission, it will send an
NCF with reason code "ignored". The receiver responds by suppressing NAKs for that sequence number for

the interval configured by this option. See NAK Suppression for more information about NCFs. For LBT-RU
transport sessions only.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-
uration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

20.1.6 transport_Ibtru_receiver_socket_buffer (context)

Value used to set SO_RCVBUF value of the LBT-RU receiver unicast socket (both sender and receiver sides).

In some cases the OS will not allow all of this value to be used. See Socket Buffer Sizes for platform-dependent
information.

See also our white paper Topics in High Performance Messaging for background and guidelines on UDP buffer
sizing.

Scope: context

Type: Ibm_ulong_t

Units: bytes

Default 8388608 (8MB)

value:

When to | Can only be set during object initialization.
Set:

20.1 Reference 201

20.1.7 transport_Ibtru_source_socket_buffer (context)

Value used to set SO_SNDBUF value of the LBT-RU send multicast socket.

In some cases the OS will not allow all of this value to be used. See Socket Buffer Sizes for platform-dependent
information. A value of 0 instructs UM to use the OS default.

Scope: context

Type: Ibm_ulong_t

Units: bytes

Default 1048576 (1MB)

value:

When to | Can only be set during object initialization.
Set:

20.1.8 transport_Ibtru_transmission_window_limit (source)

Caps the total amount of memory that a transmission window uses, which includes data and overhead.

For example, if the transport_Ibtru_transmission_window_size (source) is 24 MB (default) and the source sends
20 byte messages with the "flush” flag, the actual amount of memory used can approximate 300 MB. The default
value of this option does not limit the transmission window.

Scope: source

Type: size_t

Units: bytes

Default 0 (zero)

value:

When to | Can only be set during object initialization.
Set:

20.1.9 transport_Ibtru_transmission_window_size (source)
The maximum amount of buffered data that the LBT-RU source is allowed to retain for retransmissions.

The minimum valid value is 65536 bytes. This option affects the transport session underlying the source rather

202 Transport LBT-RU Reliability Options

than the source itself. The transport session uses the value from the first source created on the session and
ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: size t

Units: bytes

Default 25165824 (24 MB)

value:

When tfo | Can only be set during object initialization.
Set:

Chapter 21

Transport LBT-RU Operation Options

LBT-RU's operational options closely model LBT-RM's. The descriptions and illustrations in Transport LBT-RM
Operation Options generally apply to LBT-RU, with appropriate option name changes.

The following options are present for LBT-RU but not LBT-RM:

« transport_Ibtru_client_map_size (source)
« transport_lbtru_connect_interval (receiver)
« transport_Ibtru_acknowledgement_interval (receiver)

« transport_lbtru_client_activity_timeout (source)

The image below illustrates the timing of the latter two LBT-RU unique options:

No messages sent after this point

— transport_lbtru client_activity timeout

src i
CKs
Messages Sen
rcv ;]

LBT-BU Receiver Dies

transport lbtru acknowledgement interwval

21.1 Reference

204 Transport LBT-RU Operation Options

21.1.1 transport_Ibtru_acknowledgement_interval (receiver)

The interval between sending acknowledgements.

For LBT-RU transport session only. Each client continually sends acknowledgements to let the source know
that the client is still alive. This option affects the transport session underlying the receiver rather than the
receiver itself. The transport session uses the value from the first receiver created on the session and ignores
subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.
Set:

21.1.2 transport_Ibtru_activity_timeout (receiver)

The maximum time that an LBT-RU session may be quiescent before it is deleted and an EOS event is delivered
for all topics using this transport session.

For LBT-RU transport sessions only. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 60000 (60 seconds)

value:

When to | Can only be set during object initialization.
Set:

21.1 Reference 205

21.1.3 transport_Ibtru_client_activity timeout (source)

The maximum time that an LBT-RU client may be quiescent, i.e. not sending ACKs, before the sender assumes
that it is dead and stops sending to it.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

21.1.4 transport_Ibtru_client_map_size (source)

The size of the hash table used to store client information and state.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: size t

Units: table entries

Default 7

value:

When to | Can only be set during object initialization.
Set:

206 Transport LBT-RU Operation Options

21.1.5 transport_Ibtru_coalesce threshold (source)

UM passes implicitly batched messages to the Operating System sendmsg() as a set unless the size of the set
exceeds the coalescing threshold at which point the messages are coalesced and passed to the O/S as one
copy.

This option accommodates the different number of iovecs supported by different O/Ss. Tuning this option
balances the efficiency of less iovecs handled by the OS vs. the expense of an additional copy operation of
the messages before sending. The default value is also the maximum allowable value for Solaris, AIX and
HPUX. For Linux and Microsoft Windows and Darwin, the maximum allowable value is 1023. These maximum
allowable values are one less than what the O/S provides. This option affects the transport session underlying
the source rather than the source itself. The transport session uses the value from the first source created on
the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: int

Units: number of messages

Default 15

value:

When to | Can only be set during object initialization.
Set:

21.1.6 transport_Ibtru_connect_interval (receiver)

The interval between sending connection requests.

For LBT-RU transport session only. This option affects the transport session underlying the receiver rather than
the receiver itself. The transport session uses the value from the first receiver created on the session and
ignores subsequent receivers' configuration.

Refer to Receiver Object for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 100 (0.1 seconds)

value:

When to | Can only be set during object initialization.
Set:

21.1 Reference

207

21.1.7 transport_Ibtru_data_rate_limit (context)

Maximum aggregate transmission rate of all LBT-RU sessions original data for this particular context.

Refer to Rate Controls for additional information about the UM rate limiting algorithm.

Note: For backwards compatibility with earlier versions, the Ibm_context_attr_setopt() function will accept
both 32 and 64 bit values for this option. Note however that a 32-bit value can only specify a rate limit a little

larger than 4 Gbps.

Scope: context

Type: Ibm_uint64_t

Units: bits per second

Default 10000000 (10 Mbps)

value:

When to | Can only be set during object initialization.
Set:

21.1.8 transport_Ibtru_datagram_max_size (context)

The maximum UDP datagram payload size that can be generated for a LBT-RU transport session. Note that
this does not include UDP, IP, or packet overhead added by the network stack. The default value is 8192, the
minimum is 500 bytes, and the maximum is 65535.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max

Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and

Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

208

Transport LBT-RU Operation Options

Scope: context

Type: Ibm_uint_t

Units: bytes

Default 8192

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

21.1.9 transport_Ibtru_maximum_connect_attempts (receiver)

The maximum number of connect attempts to make before this transport session is deleted and an EOS event

is delivered for all topics using this transport session.

This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers' config-

uration.

Refer to Receiver Object for additional information.

21.1.10 transport_Ibtru_rate_interval (context)

Scope: receiver

Type: Ibm_ulong_t

Default 600

value:

When to | Can only be set during object initialization.
Set:

Period that LBT-RU rate limiter runs.

Reducing period reduces burst intensity, but also increases CPU load. Refer to Rate Controls for additional

information about the UM rate limiting algorithm.

21.1 Reference

209

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 100

value:

When to | Can only be set during object initialization.
Set:

String value | Integer value | Description

"10" 10 LBT-RU rate limiter runs every 10 milliseconds.

"20" 20 LBT-RU rate limiter runs every 20 milliseconds.

"50" 50 LBT-RU rate limiter runs every 50 milliseconds.

"100" 100 LBT-RU rate limiter runs every 100 milliseconds. Default for all.
21.1.11 transport_lbtru_recycle_receive_buffers (context)

Enables the use of buffer recycling for socket operations.

See Receive Buffer Recycling for more information, including restrictions on the use of this feature.

Scope: context
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UM 6.12
Value | Description
1 Use buffer recycling.
0 Buffer recycling is not used. Default for all.

210 Transport LBT-RU Operation Options

21.1.12 transport_lbtru_retransmit_rate_limit (context)

Maximum aggregate transmission rate of all LBT-RU sessions retransmissions for this particular context.

This should always be less than the value used for original data. Refer to Rate Controls for additional informa-
tion about the UM rate limiting algorithm.

Note: For backwards compatibility with earlier versions, the lbm_context_attr_setopt() function will accept

both 32 and 64 bit values for this option. Note however that a 32-bit value can only specify a rate limit a little
larger than 4 Gbps.

Scope: context

Type: Ilbm_uint64_t

Units: bits per second

Default 5000000 (5 Mbps)

value:

When to | Can only be set during object initialization.
Set:

21.1.13 transport_Ibtru_sm_maximum_interval (source)

The maximum interval between LBT-RU session messages.

In lieu of data being sent, LBT-RU sends session messages to each client to inform them of sequence numbers
and to let receivers know that the sender is still transmitting. This option affects the transport session underlying
the source rather than the source itself. The transport session uses the value from the first source created on
the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

21.1 Reference

211

21.1.14 transport_Ibtru_sm_minimum_interval (source)

The minimum interval between LBT-RU session messages.

In lieu of data being sent, LBT-RU sends session messages to each client to inform them of sequence numbers
and to let receivers know that the sender is still transmitting. This option affects the transport session underlying
the source rather than the source itself. The transport session uses the value from the first source created on
the session and ignores subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When to | Can only be set during object initialization.
Set:

21.1.15 transport_Ibtru_use_session_id (source)

Control whether a session ID is used for LBT-RU Transport sessions.

This option should be set to 0 if a version 3.3 (and beyond) LBT-RU source must interoperate with a version

pre-3.3 receiver.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 3.3

212 Transport LBT-RU Operation Options

Value | Description
1 Indicates the application desires LBT-RU to use a session ID. Default for all.

0 Indicates the application does not desire LBT-RU to use a session ID. For use when version pre-3.3
receivers must be used with TCP sources that are version 3.3 and beyond.

Chapter 22

Transport LBT-IPC Operation Options

The image below illustrates the timing of an LBT-IPC transport session.

transport lbtipe sm interval

sSrc | ! i |

L

Source Deleted

Session Session
Message Message
rcv T < - >t
L J
Receiver LBM_MSG EOS
c;‘;‘;?i:‘ﬂ::h transport lbtipe activity timeout
sends signal
semaphore

The Source Session Message mechanism enables the receiver to detect when a source goes away and works
similarly to LBT-RU. It operates independently of message writes/reads in the Shared Memory Area.

22.1 LBT-IPC Transport Session Management

When a source is created, the application can explicitly map it to a transport session by setting the transport_«
Ibtipc_id (source) option. If a previous source was created on the same context with the same ID number, this new
source will be mapped to the same transport session. Note that ID numbers can be re-used by different contexts on
the same host. The resulting transport sessions will be separate, independent, and non-interfering.

Alternatively, if the application does not explicitly specify a source ID, UM will implicitly assign the new source to a
pool of transport sessions defined when the context was created. The pool is defined as a range of ID numbers
specified by the options transport_lIbtipc_id_low (context) and transport_lIbtipc_id_high (context). The numeric range
defines the number of transport sessions in the pool.

When a new source is created and the source port is not explicitly defined, UM will check to see how many transport
sessions are currently active from the pool within the context. If it is less than the configured range of IDs then UM

214 Transport LBT-IPC Operation Options

will use the next ID in the range transport_Ibtipc_id_low (context) to transport_lbtipc_id_high (context). However,
if the context already has activated all transport sessions in the pool, then the new topic is mapped to one of the
existing transport sessions, in round-robin fashion.

22.2 Reference

22.2.1 transport_Ibtipc_activity_timeout (receiver)

The maximum period of inactivity (lack of session messages) from an IPC source before the UM delivers an
EOS event for all topics using the transport session.

Refer to Receiver Object and Interrelated Configuration Options for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 60,000 (60 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

22.2.2 transport_Ibtipc_behavior (source)

Desired flow control behavior when multiple receivers have joined the same LBT-IPC transport session.

See also Transport LBT-IPC. This option affects the transport session underlying the source rather than the
source itself. The transport session uses the value from the first source created on the session and ignores
subsequent sources' configuration.

Refer to Source Object for additional information.

Scope: source

Type: Ibm_ushort_t

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

22.2 Reference

215

String value

Integer value

Description

"source_paced"

LBM_SRC_TOPIC_ATTR_LBTIPC_BE«
HAVIOR_SOURCE_PACED

Your application writes as fast as it can to
the LBT-IPC shared memory area. Slower
receivers can experience loss. A source
does not consider if any receivers have
successfully read a message before it re-
claims it. Default for all.

"receiver_paced"

LBM_SRC_TOPIC_ATTR_LBTIPC_BE+«
HAVIOR_RECEIVER_PACED

Your application writes to the LBT-IPC
shared memory area only as fast as the
slowest receiver consumes data. A source
will not reclaim a message until all re-
ceivers have successfully read the mes-
sage. This slows down all receiver on the
LBT-IPC transport session.

22.2.3 transport_Ibtipc_datagram_max_size (context)

The maximum datagram size that can be generated for a LBT-IPC transport session. While IPC does not
use UDP datagrams, this option limits the size of the UM message which is given to the underlying transport
type, including all UM headers and overhead. The default value is 65535, the minimum is 500 bytes, and the

maximum is 65535.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max
Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Scope: context

Type: Ibm_uint_t

Units: bytes

Default 65535

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4. T/UME 3. 177UMQ 1.1

216

Transport LBT-IPC Operation Options

22.2.4 transport_Ibtipc_dro_loss_recovery_timeout (receiver)

For IPC transport sessions originating from a DRO endpoint portal, delay declaring as unrecoverable a lost

message.

Message streams traversing a DRO can have the message order changed. If the DRO's outgoing transport
session uses the IPC protocol, these out-of-order messages will normally trigger immediate unrecoverable loss.
This timeout allows an opportunity for the messages to be re-ordered properly.

The value 0 disables this delay (i.e. receivers immediately declare unrecoverable loss).

See DRO Reliable Loss for more information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 6.12

22.2.5 transport_Ibtipc_id (source)

The preferred Transport ID for a specific source's LBT-IPC session.

If 0, the UM context attempts to find one in the given Transport ID range of transport_lbtipc_id_low (context)
and transport_Ibtipc_id_high (context).

See LBT-RU Transport Session Management and Sources and LBT-IPC for more information.

Scope: source

Type: Ibm_uint16_t
Default 0 (use open ID)
value:

22.2 Reference

217

When
Set:

to

Can only be set during object initialization.

Version:

This option was implemented in LBM 3.5ea2/UME 2.2ea1

22.2.6 transport_Ibtipc_id_high (context)

Highest transport ID of the range of available LBT-IPC Transport IDs.

See LBT-RU Transport Session Management and Sources and LBT-IPC for more information.

Scope: context

Type: Ibm_uint16_t

Default 20,005

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

22.2.7 transport_Ibtipc_id_low (context)

Lowest transport ID of the range of available LBT-IPC Transport IDs.

See LBT-RU Transport Session Management and Sources and LBT-IPC for more information.

Scope: context

Type: Ibm_uint16_t

Default 20,001

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

218 Transport LBT-IPC Operation Options

22.2.8 transport_Ibtipc_maximum_receivers_per_transport (source)

The maximum number of receiving contexts that can join an IPC transport session.

Once a receiving context joins an IPC transport session, it can receive messages on multiple topics. Increasing
this value increases the amount of shared memory allocated per transport session by a negligible amount.

Scope: source

Type: Ibm_ushort_t

Default 20

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

22.2.9 transport_Ibtipc_pend_behavior_linger_loop_count (context)

When using pend as the LBTIPC receiver thread behavior, the receiver loop can linger in a temporary busy wait
behavior before pending again.

At high sustained rates or during short bursts of data, this can result in a significant reduction in the number
of kernel calls if more data arrives relatively quickly. Once the burst subsides, the CPU utilization drops again
since the receiver would be pending. The default value of 1 results in legacy pend behavior. If the value is set
large, significant CPU will be consumed.

Scope: context

Type: Ibm_ulong_t

Default 1

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.10

22.2 Reference 219

22.2.10 transport_lbtipc_receiver_operational_mode (context)

The mode in which UM operates to process LBT-IPC messages.

See Embedded Mode for additional information.

Scope: context
Type: int
When to | Can only be set during object initialization.
Set:
String value | Integer value Description

"embedded" | LBM_CTX_ATTR_OP_EMBEDDED UM spawns a thread to process received LBT-IPC
messages. Default for all.

"sequential” LBM_CTX_ATTR_OP_SEQUENTIAL | Your application must call lbm_context_«
process_Ibtipc_messages() to process received
LBT-IPC messages. If you also set the context's
operational_mode option to sequential, your
application must donate an additional thread
to service the lbm_context_process_events()
calls. Note: You can use sequential mode with the
C API, but not with the Java APl or .NET API. The
Java and .NET APIs do not provide an equivalent
Ibm_context_process_lbtipc_messages() API
for LBT- IPC.

22.2.11 transport_lbtipc_receiver_thread_behavior (context)

Receiver behavior for monitoring the signaling semaphore set by the IPC source when it writes new data to the
shared memory area.

Note that the IPC thread is not the same as the Context thread.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

220 Transport LBT-IPC Operation Options

String value | Integer value Description
"pend" LBM_CTX_ATTR_IPC_RCV_THREAD_ + Receiver waits (sleep) for notification from
PEND OS that IPC source has updated the signal-

ing semaphore. This option is best when the
IPC source frequently writes new data to the
shared area. Default for all.

"busy_wait" LBM_CTX_ATTR_IPC_RCV_THREAD_ « Provides the lowest latency as the receiver
BUSY_WAIT monopolizes the CPU core looking for an in-
cremented semaphore. This option works
best for infrequent or sporadic message de-
livery from the IPC source, but involves a
CPU cost.

22.2.12 transport_lbtipc_recycle_receive_buffers (context)

Enables the use of buffer recycling for IPC operations.

See Receive Buffer Recycling for more information, including restrictions on the use of this feature.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.12

Value | Description
1 Use buffer recycling.

0 Buffer recycling is not used. Default for all.

22.2 Reference

221

22.2.13 transport_lbtipc_sm_interval (source)

Time period between sessions message sent from source to receivers.

Refer to Source Object and Interrelated Configuration Options for additional information.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 10,000 (10 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

22.2.14 transport_Ibtipc_transmission_window_size (source)

Size of an LBT-IPC transport's shared memory area.

This value may vary across platforms. The actual size of the shared memory area equals the value you specify
for this option plus about 64 KB for header information. The minimum value for this option is 65,536. Refer to
Source Object for additional information.

Scope: source

Type: size_t

Units: bytes

Default 25165824 (24 MB)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

222 Transport LBT-IPC Operation Options

Chapter 23

Transport LBT-SMX Operation Options

The image below illustrates the timing of an LBT-SMX transport session.

transport lbtsme =m interval

SKC | g
) Source Deleted
Session Session
Message Message
rcv »” >t

LEM_MSG_EOS

transport lbtosmx sctivity timeout

The Source Session Message mechanism enables the receiver to detect when a source goes away and works
similarly to LBT-RU. It operates independently of message writes/reads in the Shared Memory Area.

23.1 LBT-SMX Transport Session Management

When a source is created, the application can explicitly map it to a transport session by setting the transport_«
Ibtsmx_id (source) option. If a previous source was created on the same context with the same ID number, this new
source will be mapped to the same transport session. Note that ID numbers can be re-used by different contexts on
the same host. The resulting transport sessions will be separate, independent, and non-interfering.

Alternatively, if the application does not explicitly specify a source ID, UM will implicitly assign the new source to a
pool of transport sessions defined when the context was created. The pool is defined as a range of ID numbers
specified by the options transport_lbtsmx_id_low (context) and transport_lbtsmx_id_high (context). The numeric
range defines the number of transport sessions in the pool.

When a new source is created and the source port is not explicitly defined, UM will check to see how many transport
sessions are currently active from the pool within the context. If it is less than the configured range of IDs then UM
will use the next ID in the range transport_lbtsmx_id_low (context) to transport_Ibtsmx_id_high (context). However,

224 Transport LBT-SMX Operation Options

if the context already has activated all transport sessions in the pool, then the new topic is mapped to one of the
existing transport sessions, in round-robin fashion.

23.2 Reference

23.2.1 transport_Ibtsmx_activity timeout (receiver)

The maximum period of inactivity (lack of updates to the source's shared activity counter) from an SMX source
before UM delivers an EOS event for all topics using the transport session.

You should configure this option to a value greater than the source's transport_Ibtsmx_sm_interval so receivers
do not erroneously report a source as inactive.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 60,000 (60 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.1

23.2.2 transport_Ibtsmx_datagram_max_size (source)

The maximum datagram size that can be sent for an LBT-SMX transport session.

While SMX does not use UDP datagrams, this option limits the size of the UM message which is given to the
underlying transport type, including all UM headers and overhead. This value includes 16 bytes of header
information per message, plus an additional 24 bytes of reserved space for compatibility with other egress
transports when re-sending SMX messages through a UM Dynamic Router. Therefore, the largest usable
message size for the default setting of 8192 bytes would be 8176 bytes (8192 - 16 - 24). The minimum is 32
bytes. The maximum size is limited by available memory.

This option imposes a hard limit on message size because the LBT-SMX transport does not support datagram
fragmentation or reassembly. Unlike other transports that do support fragmentation, attempts to send messages
larger than the datagram size configured by this option fail.

23.2 Reference

225

The minimum value for this option is 32 bytes. Unlike other transports, there is no hard-coded maximum value;
the maximum is limited only by the amount of memory available.

Note: The source's configured transport_Ibtsmx_transmission_window_size (source) must be at least twice as
large as the source's configured transport_lbtsmx_datagram_max_size. If the transmission window has not
been configured to be large enough to hold at least two maximum-sized SMX datagrams, then a warning will
be issued and the source's transport_lbtsmx_transmission_window_size option will be automatically adjusted

upwards to the nearest power-of-2 size in bytes that can fit at least two maximum-sized datagrams.

See Message Fragmentation and Reassembly for more information.

Informatica does not recommend setting datagram max size options to the network MTU. See Datagram Max

Size and Network MTU.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and

Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Scope: source

Type: Ibm_uint_t

Units: bytes

Default 8192

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.1

23.2.3 transport_Ibtsmx_id (source)

The preferred Transport ID for a specific source's LBT-SMX session.

To use this option, configure a non-zero value. For the default value of 0 (zero), the UM context selects the next
available Transport ID in the Transport ID range of transport_Ibtsmx_id_low (context) and transport_Ibtsmx_«

id_high (context).

See LBT-RU Transport Session Management and Sources and LBT-SMX for more information.

226

Transport LBT-SMX Operation Options

Scope: source

Type: lbm_uint16_t

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.1

23.2.4 transport_Ibtsmx_id_high (context)

Highest transport ID in the range of available LBT-SMX Transport IDs.

See LBT-RU Transport Session Management and Sources and LBT-SMX for more information.

Scope: context

Type: Ibm_uint16_t

Default 30,005

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.1

23.2.5 transport_Ibtsmx_id_low (context)

Lowest transport ID in the range of available LBT-SMX Transport IDs.

See LBT-RU Transport Session Management and Sources and LBT-SMX for more information.

Scope: context

Type: Ibm_uint16_t

Default 30,001

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.1

23.2 Reference 227

23.2.6 transport_Ibtsmx_maximum_receivers_per_transport (source)

The maximum number of receiving contexts that can join an SMX transport session.

Once a receiving context joins an SMX transport session, it can receive messages on multiple topics. Increasing
this value increases the amount of shared memory allocated per transport session by a negligible amount.

Scope: source

Type: Ibm_ushort_t

Default 64

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.1

23.2.7 transport_Ibtsmx_message_statistics_enabled (context)

Controls whether or not UM records LBT-SMX transport statistics

Enabling statistics gives better visibility of application behavior, at the expense of a small but measurable
amount of latency.

Scope: context

Type: int

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.1

Value | Description

1 UM records source and receiver LBT-SMX transport statistics.

228 Transport LBT-SMX Operation Options

Value | Description

0 UM does not record source and receiver LBT-SMX transport statistics. Default for all.

23.2.8 transport_Ibtsmx_sm_interval (source)

Time period between updates to an LBT-SMX source's shared activity counter, which enables connected re-
ceivers to determine the source's liveness.

You should configure this option to a value less than the receivers' corresponding transport_Ibtsmx_activity «
timeout (receiver) setting so receivers do not time out sources too early.

Refer to Source Object for additional information.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 10,000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.1

23.2.9 transport_Ibtsmx_transmission_window_size (source)

Size of an LBT-SMX transport's shared memory area.

Must be a power of two and be twice a large as the source's transport_Ibtsmx_datagram_max_size (source).
If you configure a value that is not a power of 2 or is less than twice the size of the maximum datagram size,
UM issues a warning log message and automatically rounds up the value of this option to the next power of 2
window size that can fit at least two maximum-sized datagrams. The minimum value for this option is 64 bytes.

Refer to Source Object for additional information.

Scope: source
Type: size t

23.2 Reference

229

Units: bytes

Default 131072 (128 KB)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.1

230 Transport LBT-SMX Operation Options

Chapter 24

Transport Acceleration Options

Transport acceleration options enable kernel-bypass acceleration in conjunction with the following vendor
solutions:

« Myricom® Datagram Bypass Layer (DBL™)

+ Solarflare® Onload

* Mellanox® 10-Gigabit Ethernet or InfiniBand hardware

24.1 Myricom® Datagram Bypass Layer (DBL™)

DBL is a kernel-bypass technology that accelerates sending and receiving UDP traffic and operates with DBL-
enabled Myricom 10-Gigabit Ethernet adapter cards for Linux and Microsoft® Windows.

DBL does not support fragmentation and reassembly, so do not send messages larger than the MTU size configured
on the DBL interface.

DBL acceleration is compatible with the following Ultra Messaging transport types:

LBT-RM (UDP-based reliable multicast)
+ LBT-RU (UDP-based reliable unicast)
» Multicast Immediate Messaging

» Multicast Topic Resolution

To use DBL Transport Acceleration, perform the following steps:

1. Install the Myricom 10-Gigabit Ethernet NIC.
2. Install the DBL shared library.
3. Update your search path to include the location of the DBL shared library.

4. Set option transport_x_datagram_max_size and option resolver_datagram_max_size (context) to a value of
no more than 28 bytes smaller than the Myricom interface's configured MTU size.

232 Transport Acceleration Options

24.2 Reference

24.2.1 dbl_Ibtrm_acceleration (context)
Flag indicating if DBL acceleration is enabled for LBT-RM transports.

See Myricom® Datagram Bypass Layer (DBL™).

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0.

Value | Description
1 DBL acceleration is enabled for LBT-RM.
0 DBL acceleration is not enabled for LBT-RM. Default for all.

24.2.2 dbl_Ibtru_acceleration (context)

Flag indicating if DBL acceleration is enabled for LBT-RU transports.

See Myricom® Datagram Bypass Layer (DBL™).

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0.

24.2 Reference 233

Value | Description
1 DBL acceleration is enabled for LBT-RU.
0 DBL acceleration is not enabled for LBT-RU. Default for all.

24.2.3 dbl_mim_acceleration (context)

Flag indicating if DBL acceleration is enabled for MIM.

See Myricom® Datagram Bypass Layer (DBL™).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0.

Value | Description
1 DBL acceleration is enabled for MIM.
0 DBL acceleration is not enabled for MIM. Default for all.

24.2.4 dbl_resolver_acceleration (context)

Flag indicating if DBL acceleration is enabled for topic resolution.

See Myricom® Datagram Bypass Layer (DBL™).

234 Transport Acceleration Options

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0.

Value | Description

1 DBL acceleration is enabled for topic resolution.

0 DBL acceleration is not enabled for topic resolution. Default for all.

24.3 Solarflare® Onload

Solarflare Onload is a kernel-bypass technology that accelerates message traffic and operates with Solarflare 10+«
GbE Ethernet NICs.

Note

Onload does not support fragmentation and reassembly, so do not send messages larger than the MTU size
configured on the Solarflare interface.

Warning

Onload does not support both accelerated and non-accelerated processes subscribing to the same multicast
group on the same host. An attempt to do so will result in the non-accelerated process becoming "deaf" to
the shared multicast group. See "Onload User Guide", chapter 9.11 "Multicast Operation and Stack Sharing",
sub-section "Multicast Receive - Onload Stack and Kernel Stack”.

Ultra Messaging loads the Onload library dynamically during Ultra Messaging initialization on the following Ultra
Messaging platforms:

* Linux-glibc-2.3-i686

* Linux-glibc-2.3-x86_64 Linux-glibc-2.5-x86_64
Onload default behavior accelerates all sockets. You can access the Onload onload_set_stackname API extension

to select the sockets you want to accelerate by using UM configuration options. Selecting sockets with a stackname
lets you accelerate data transmission sockets and not sockets for control messages, topic resolution, or responses.

You can select a stackname with the configuration options onload_acceleration_stack_name (receiver) and onload«
_acceleration_stack_name (source) for the following Ultra Messaging transport types:

» LBT-RM (UDP-based reliable multicast)
» LBT-RU (UDP-based reliable unicast)
+ TCP

24.4 Reference 235

Note

If you set the LBM_SUPPRESS_ONLOAD environment variable to any value, Ultra Messaging does not dy-
namically load the Onload library at runtime. In this case, you cannot use the onload_acceleration_stack_«
name options.

If you use the onload_set_stackname API directly for any other accelerated sockets, note that after Ultra Messaging
accelerates a transport socket, Ultra Messaging resets the stackname to the default for all threads by calling:
onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_NOCHANGE, ");

Ultra Messaging resets the stackname during source creation and when a receiver matched topic opens a transport
session.

To enable Onload socket acceleration for selected transports, perform the following steps:

1. Install Onload.
2. Set the Onload environment variable EF_ DONT_ACCELERATE = 1 to disable Onload default behavior.

3. To enable acceleration for all applications in an environment, export the following environment variable:
export LD_PRELOAD-=libonload.so

4. To enable acceleration on a per-application basis, start the application as in the following example:
onload <app_name> [app_options]

5. Set UM configuration option onload_acceleration_stack_name (source) according to the thread the source
uses.

Note: Disable batching to ensure that it is the application thread that sends the data out.

6. Set UM configuration option onload_acceleration_stack_name (receiver) according to the thread the receiver
uses.

Note: Receiver transports might not share the same thread if MTT is enabled.

7. Set option transport_x_datagram_max_size and option resolver_datagram_max_size (context) to a value of
no more than 28 bytes smaller than the Solarflare interface's configured MTU size.

For detailed information about onload stack names, refer to the Solarflare® Onload User Guide.

24.4 Reference

24.4.1 onload_acceleration_stack_name (receiver)

The stackname to use when creating an OpenOnload transport data socket.

The stackname must be eight characters or less. Because this is a transport setting, the first receiver applies
its configuration option setting, and other receivers that join the transport inherit the setting of the first source.
To disable the stackname, set this option to NULL, which must be all uppercase.

Note: Use of this option requires Solarflare OpenOnload and applies to LBT-RM, LBT-RU, and TCP transports.

236

Transport Acceleration Options

Scope: receiver

Type: string

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.5.

24.4.2 onload_acceleration_stack_name (source)

The stackname to use when creating an OpenOnload transport data socket.

The stackname must be eight characters or less. Because this is a transport setting, the first source applies its
configuration option setting, and other sources that join the transport inherit the setting of the first source. To
disable the stackname, set this option to NULL, which must be all uppercase.

Note: Use of this option requires Solarflare OpenOnload and applies to LBT-RM, LBT-RU, and TCP transports.

Scope: source

Type: string

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.5.

24.5 UD Acceleration for Mellanox® Hardware Interfaces

UD (Unreliable Datagram) acceleration is a kernel-bypass technology that accelerates sending and receiving UDP
traffic and operates with Mellanox 10-Gigabit Ethernet or InfiniBand adapter cards for 64-bit Linux on X86 platforms.

UD acceleration does not support fragmentation and reassembly, so do not send messages larger than the MTU

size configured on the Mellanox interface.

UD acceleration is available for the following Ultra Messaging transport types:

+ LBT-RM (UDP-based reliable multicast)

» LBT-RU (UDP-based reliable unicast)

24.6 Reference 237

+ Multicast Immediate Messaging

» Multicast Topic Resolution
To use UD acceleration, perform the following steps:

1. Install the Mellanox NIC.
2. Install the VMA package, which is part of the UD acceleration option .
3. Include the appropriate transport acceleration options in your Ultra Messaging Configuration File.

4. Set option transport_x_datagram_max_size and option resolver_datagram_max_size (context) to a value of
no more than 28 bytes smaller than the Mellanox interface's configured MTU size.

24.6 Reference

24.6.1 resolver_ud_acceleration (context)

Flag indicating if Accelerated Multicast is enabled for Topic Resolution. Accelerated Multicast requires Mellanox
InfiniBand or 10 Gigabit Ethernet hardware.

UD Acceleration of topic resolution relies on hardware-supported loopback, which InfiniBand provides, but
which the 10 Gigabit Ethernet ConnectX hardware does not.

Note: If 10 Gigabit Ethernet ConnectX hardware is used and multiple UM contexts are desired on the host, this
option must be disabled.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 5.2.

Value | Description
1 Accelerated Topic Resolution is enabled.

0 Accelerated Topic Resolution is not enabled. Default for all.

238 Transport Acceleration Options

24.6.2 ud_acceleration (context)

Flag indicating if Accelerated Multicast is enabled for LBT-RM.

Accelerated Multicast requires InfiniBand or 10 Gigabit Ethernet hardware and the purchase and installation

of the Ultra Messaging Accelerated Multicast Module. See your Ultra Messaging representative for licensing
specifics.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.1.

Value | Description
1 Accelerated Multicast is enabled.

0 Accelerated Multicast is not enabled. Default for all.

Chapter 25

Smart Source Options

See Smart Sources for introductory information on Smart Sources.

25.1 Reference

25.1.1 mem_mgt_callbacks (source)

Callback functions (and optional associated client data pointer) that are called when a Smart Source allocates,
reallocates, and deallocates memory.

The callbacks are called by the user thread that invokes Ibm_ssrc_create() for create, and by Ilbm_ssrc_«
delete() for delete. See Ibm_mem_mgt_malloc_cb_func, Ibom_mem_mgt_realloc_cb_func, Ibm_mem_«-
mgt_free_cb_func.

See Smart Sources and Memory Management for restrictions.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: Ibm_mem_mgt_callbacks_t

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.
Version: This option was implemented in UM 6.11

240 Smart Source Options

25.1.2 smart_src_enable_spectrum_channel (source)

This option enables spectrum channel use with Smart Sources.

See Smart Sources and Spectrum for restrictions.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.11

Value | Description

1 The source will allocate spectrum channel resources.

0 The source will not allocate spectrum channel resources. Default for all.

25.1.3 smart_src_max_message_length (source)

The number of bytes allocated for application messages to each Smart Source buffer.

Smart Source buffers are pre-allocated when the source is created. The final allocation size is the value
specified for this option, plus the sizes required for internal headers, plus a possible padding value intended to
ensure that the final internal buffer allocation is a power of 2. Because of these additions, the actual amount of
memory allocated can be over twice as much as requested.

There are three types of buffers sized by smart_src_max_message_length: user buffers, retention buffers (for
late join), and transmission window buffers (for transport retransmissions). User buffers and retention buffers
are created by Ibm_ssrc_create(), and are deleted by Ibm_ssrc_delete(). Transmission window buffers are
created only when the first Smart Source on a transport session is created, and are deleted when the last
Smart Source on a transport session is deleted.

25.1 Reference 241

Different numbers of buffers can be allocated for each buffer type. See smart_src_user_buffer_count (source)
for user buffers, transport_Ibtrm_smart_src_transmission_window_buffer_count (source) and transport_Ibtru«
_smart_src_transmission_window_buffer_count (source) for transmission window buffers, and smart_src_«
retention_buffer_count (source) for retention buffers.

The smart_src_max_message_length option affects both the transport session underlying the source and also
the source itself. The transport session uses the value from the first source created on the session when it
allocates the transmission window; subsequent sources created on the same session do not affect the trans-
mission window. However, the sizes of the user buffers and retention buffers are specific to each Smart Source
on a session.

The default value was specifically chosen so that for a Smart Source with no optional headers (no message
properties, no spectrum channel, etc.), the total memory consumed per buffer, including internal headers, is
512 bytes.

Note that unlike most UM configuration options, the default value for smart_src_max_message_length is likely
to change with new versions of UM. This is because the addition of new capabilities to the Smart Sources
feature often requires the addition of internal headers to the message buffer, thus reducing the available user
space while staying within the 512-byte total buffer size default target. To assist application designers who want
to use the default, the constant SSRC_DEFAULT_MAX_MSG_LEN is defined in lbm.h.

Also note that the application designer can avoid that uncertainty by simply defining smart_src_max_message«
_length to be the maximum size of his messages, and allowing the final allocation size of the message buffer
to vary by UM version. This is the recommended approach.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int

Units: bytes

Default SSRC_DEFAULT_MAX_MSG_LEN (368)
value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.10

25.1.4 smart_src_message_property_int_count (source)

The maximum number of 32-bit integer message properties that can be set on messages for a particular Smart
Source.

See Smart Sources and Message Properties for restrictions.

242

Smart Source Options

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int

Units: 32-bit integer properties

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.11

25.1.5 smart_src_retention_buffer_count (source)

The number of Smart Source buffers that are allocated for Late Join and other topic level retransmission features

such as Off Transport Recovery.

Once created, the application cannot change the number of buffers. Also, the number of buffers should be a
power of 2. If a value is supplied that is not a power of 2, the value is increased to the next larger power of two

and a warning message is logged.

The buffer size is determined by smart_src_max_message_length (source), see that option description for more

detalils.

The normal Late Join options "retransmit_retention_x" do not apply to Smart Sources.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int

Units: buffers

Default 1024

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.10

25.1 Reference 243

25.1.6 smart_src_user_buffer_count (source)

The number of Smart Source buffers that are allocated when the source is created.

Once created, the application cannot change the number of buffers. Also, the number of buffers should be a
power of 2. If a value is supplied that is not a power of 2, the value is increased to the next larger power of two
and a warning message is logged.

The buffer is sized by the smart_src_max_message_length (source) option.

See Smart Sources for more information about Smart Sources.

Scope: source

Type: int

Units: buffers

Default 32

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.10

25.1.7 transport_Ibtrm_smart_src_transmission_window_buffer_count (source)

The number of Smart Source buffers allocated for transport-level retransmissions.

Once created, the application cannot change the number of buffers. Also, the number of buffers should be a
power of 2. If a value is supplied that is not a power of 2, the value is increased to the next larger power of two
and a warning message is logged.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

The option smart_src_max_message_length (source) is used to size the buffers (see that option description for
more details). This means that the first Smart Source created on the session defines the maximum possible
size of user messages for all Smart Sources on the transport session. It is not legal to create a subsequent
Smart Source on the same transport session with a larger max message size, although smaller values are
permissible.

The normal LBT-RM transmission window options "transport_lbtrm_transmission_window_x" do not apply to
Smart Sources.

244 Smart Source Options

See Smart Sources for more information about Smart Sources.

25.1 Reference 245

Scope: source

Type: int

Units: buffers

Default 16384 (16K)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.10

25.1.8 transport_Ibtru_smart_src_transmission_window_buffer_count (source)

The number of Smart Source buffers allocated for transport-level retransmissions.

Once created, the application cannot change the number of buffers. Also, the number of buffers should be a
power of 2. If a value is supplied that is not a power of 2, the value is increased to the next larger power of two
and a warning message is logged.

This option affects the transport session underlying the source rather than the source itself. The transport ses-
sion uses the value from the first source created on the session and ignores subsequent sources' configuration.

The option smart_src_max_message_length (source) is used to size the buffers (see that option description for
more details). This means that the first Smart Source created on the session defines the maximum possible
size of user messages for all Smart Sources on the transport session. It is not legal to create a subsequent
Smart Source on the same transport session with a larger max message size, although smaller values are
permissible.

The normal LBT-RU transmission window options "transport_Ibtru_transmission_window_x" do not apply to
Smart Sources.

Note

If transport_source_side_filtering_behavior (source) is enabled, each connecting receiver will be assigned
its own transmission window buffer. As the number of connecting receivers increases, the total memory
consumption of the source can become very large.

See Smart Sources for more information about Smart Sources.

246

Smart Source Options

Scope: source

Type: int

Units: buffers

Default 16384 (16K)

value:

When fo | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.11

Chapter 26

Encrypted TCP Options

26.1 Reference

26.1.1 tls_certificate (context)

When TLS is enabled, this option specifies the path to a file containing an OpenSSL-compatible PEM-formatted
certificate that will be presented as the TLS server certificate when a TLS connection is established by a client.

See Encrypted TCP.

Scope: context

Type: string

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.9

26.1.2 tls_certificate_key (context)

When TLS is enabled, this option specifies the path to a file containing the private key associated with the
"server" certificate.

248 Encrypted TCP Options

The server certificate is specified by the tls_certificate (context) option. Note that this private key must be
protected from intruders. For that reason, when the certificate and private key files are generated, the private

key file is typically encrypted with a passphrase. The passphrase is supplied using the tls_certificate_key_«
password (context) option.

Scope: context

Type: string

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.9

26.1.3 tls_certificate_key password (context)
When TLS is enabled, this option specifies the passphrase needed to decrypt the server private key file.

The private key file is specified by the tls_certificate_key (context) option.

Scope: context

Type: string

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.9

26.1.4 tls_cipher_suites (context)

When TLS is enabled, this option defines the list of one or more (comma separated) names of cipher suites
that are acceptable to this context.

The names are in OpenSSL format (the names with dashes). If more than one name is supplied, they should
be in descending order of preference. When a remote context negotiates encrypted TCP, the two sides must

find a cipher suite in common, otherwise the connection will be canceled. The default is highly secure and is
recommended.

26.1 Reference

249

For information on valid cipher suite specifications, see Encrypted TCP.

Scope: context

Type: string

Default DHE-RSA-AES256-GCM-SHA384

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.9

26.1.5 tls_compression_negotiation_timeout (context)

The number of milliseconds allowed for TLS and/or compression handshake and negotiation.

This negotiation happens when the TCP connection is initiated. If the negotiation does not complete within this
amount of time, the connection is canceled. Note that in many cases, this will result in a retry a short time later.

If the timeout is caused by mismatched endpoints, it can result in unbounded flapping of the connection.

Scope: context

Type: int

Units: milliseconds

Default 5000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.9

26.1.6 tls_trusted_certificates (context)

When TLS is enabled, this option specifies the path to a file containing one or more OpenSSL-compatible
PEM-formatted TLS client certificates and certificate authorities.

If this option is not supplied, the default behavior is to use the system-level trusted certificates and certificate
authorities (operating-system dependent). The TLS server uses these trusted certificates to verify the identity of
connecting clients. If a client connects and presents a certificate which is not in the server's trusted certificates
file, the connection will be canceled. Note that in many cases, this will result in a retry a short time later, which
can lead to unbounded flapping of the connection.

250

Encrypted TCP Options

Scope: context

Type: string

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.9

26.1.7 use_tls (context)

This option enables data encryption on all TCP links established within the context.

This includes but may not be limited to TCP transports, Late Join, and Request/Response.

Scope: context

Type: int

Default 0

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in UM 6.9
String value | Integer value | Description

nqn

1

All TCP data will be encrypted.

0"

0

No encryption will be implemented. Default for all.

Chapter 27

Compressed TCP Options

271

27141

This option enables compression and sets the desired data compression algorithm on all TCP links established

Reference

compression (context)

within the context.

This includes but may not be limited to TCP transports, Late Join, and Request/Response. Currently, only LZ4

lossless data compression is supported.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.9.

String value | Integer value Description

"none" LBM_CTX_ATTR_COMPRESSION_NONE | No compression will be implemented. De-
fault for all.

"lz4" LBM_CTX_ATTR_COMPRESSION_LZ4 All TCP data will be compressed using LZ4.

252 Compressed TCP Options

Chapter 28

Multicast Immediate Messaging Network
Options

The multicast address and port used for incoming and outgoing multicast immediate messages can be set with
mim_address (context) and mim_destination_port (context) options.

A context may use different multicast addresses and/or ports for incoming and outgoing messages by setting one
or more of:

* mim_incoming_address (context)
* mim_outgoing_address (context)
* mim_incoming_destination_port (context)

* mim_outgoing_destination_port (context)

In case of conflict, the most recently set option wins.

As with LBT-RM on multi-homed hosts, the interface UM uses for MIM follows the interface used with multicast topic
resolution. See resolver_multicast_interface (context).

Warning

The addresses and ports you configure for MIM traffic should not overlap with any addresses or ports - or
address and port ranges - configured for LBT-RM transports or Topic Resolution traffic. For example, do not
use the same multicast address for both Topic Resolution (resolver_multicast_address (context)) and MIM
(mim_address (context)). Use different addresses and ports for all multicast address options and port options.

See also Multicast Imnmediate Messaging for general information on MIM.

28.1 Reference

28.1.1 mim_address (context)

Convenience option to set both the incoming and outgoing multicast addresses for multicast immediate mes-
sages.

254

Multicast Inmediate Messaging Network Options

See mim_outgoing_address (context) and mim_incoming_address (context) for their respective default values.
See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: struct in_addr

Default n.a.

value:

When to | Can only be set during object initialization.
Set:

28.1.2 mim_destination_port (context)

The UDP destination port that multicast immediate messages are sent to and received from.

See Port Assignments for more information about configuring ports. See Multicast Inmediate Messaging for
general information about MIM.

Scope: context

Type: Ibm_uint16_t

Default 14401

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

28.1.3 mim_incoming_address (context)

The IP multicast address (or domain name of the multicast address) that multicast immediate messages are

received from.

The value 0.0.0.0 disables reception of multicast immediate messages. See Multicast Immediate Messaging
for general information about MIM.

Scope:

context

Type:

struct in_addr

28.1 Reference

255

28.1.4 mim_incoming_destination_port (context)

The UDP destination port that multicast immediate messages are received from.

Default 0.0.0.0

value:

When to | Can only be set during object initialization.
Set:

See Port Assignments for more information about configuring ports. See Multicast Immediate Messaging for
general information about MIM.

Scope: context

Type: Ibm_uint16_t

Default 14401

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

28.1.5 mim_outgoing_address (context)

The IP multicast address (or domain name of the multicast address) that multicast immediate messages are

sent to.

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: struct in_addr

Default 224.10.10.21

value:

When to | Can only be set during object initialization.

Set:

256 Multicast Inmediate Messaging Network Options

28.1.6 mim_outgoing_destination_port (context)

The UDP destination port that multicast immediate messages are sent to.

See Port Assignments for more information about configuring ports. See Multicast Inmediate Messaging for
general information about MIM.

Scope: context

Type: Ibm_uint16_t

Default 14401

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

Chapter 29

Multicast Immediate Messaging Reliability
Options

For every MIM reliability option, there is a corresponding LBT-RM reliability option. For more information on how
MIM reliability options interact and for illustrations, see Transport LBT-RM Reliability Options.

See also Multicast Inmediate Messaging for general information on MIM.

29.1 Reference

29.1.1 mim_ignore_interval (context)

The interval to ignore NAKs after a retransmission is sent.
For multicast immediate message senders only. Similar to transport_Ibtrm_ignore_interval (source).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.
Set:

258 Multicast Inmediate Messaging Reliability Options

29.1.2 mim_nak_backoff_interval (context)
The maximum interval between transmissions of MIM NAKSs for a given sequence number, after the first NAK.
Similar to transport_lbtrm_nak_backoff_interval (receiver).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When to | Can only be set during object initialization.
Set:

29.1.3 mim_nak_generation_interval (context)
The maximum time that a piece of data may be outstanding before the data is unrecoverably lost.
For multicast immediate message receivers only. Similar to transport_Ibtrm_nak_generation_interval (receiver).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

29.1.4 mim_nak_initial_backoff_interval (context)

The interval between loss detection and transmission of the first MIM NAK.

29.1 Reference

259

For multicast immediate message receivers only. Similar to transport_Ibtrm_nak_initial_backoff_interval (re-

ceiver).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 50 (0.05 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4/UME 2.1.

29.1.5 mim_nak_suppress_interval (context)

The time that an LBT-RM receiver will suppress sending a NAK for a missing datagram after an NCF is received

from the source.

The source sends an NCF in response to a NAK which the source temporarily cannot retransmit. For example,
if the source gets a NAK for a sequence number for which it has recently sent a retransmission, it will send an
NCF with reason code "ignored". The receiver responds by suppressing NAKs for that sequence number for

the interval configured by this option. See NAK Suppression for more information about NCFs.

For multicast immediate message receivers only.

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

260 Multicast Inmediate Messaging Reliability Options

29.1.6 mim_send_naks (context)

This flag indicates whether LBT-RM should send negative acknowledgements (NAKs) for missing packets or
not.

For multicast immediate message receivers only. Similar to transport_Ibtrm_send_naks (receiver).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description

1 NAKs are sent for missing packets to request retransmission. Default for all.
0 Do not send NAKSs for missing packets.

29.1.7 mim_transmission_window_limit (context)

Caps the total amount of memory that a transmission window uses, which includes data and overhead.

For multicast immediate message senders only. Similar to transport_lbtrm_transmission_window_limit
(source).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: size_t

Units: bytes

Default 0 (zero)

value:

When to | Can only be set during object initialization.
Set:

29.1 Reference

261

29.1.8 mim_transmission_window_size (context)

The maximum amount of buffered payload data, excluding UM headers, that the LBT-RM source is allowed to

retain for retransmissions.

For multicast immediate message senders only. Similar to transport_Ibtrm_transmission_window_size (source).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: size_t

Units: bytes

Default 25165824 (24 MB)

value:

When to | Can only be set during object initialization.
Set:

262 Multicast Inmediate Messaging Reliability Options

Chapter 30

Multicast Immediate Messaging Operation
Options

For many MIM operation options, there is a corresponding LBT-RM operation option. For more information on how
MIM operation options interact and for illustrations, see Transport LBT-RM Operation Options.

Note that the LBT-RM rate controller also governs MIM transmission rates. Hence there is no separate option for
setting MIM transmission rate.

See also Multicast Immediate Messaging for general information on MIM.

30.1 Reference

30.1.1 immediate_message receiver_function (context)

Callback function (and associated event queue and client data pointer) called when a topicless immediate
message is received.

A value of NULL (the default) disables this feature.
Alternatively, the API Ibm_context_rcv_immediate_msgs() can be used.

See Immediate Messaging for general information on immediate messages.

Scope: context

Type: Ibm_context_rcv_immediate_msgs_func«
t

Default NULL

value:

When to | Can only be set during object initialization.

Set:

Config File: Cannot be set from an UM configuration file.

264 Multicast Inmediate Messaging Operation Options

30.1.2 immediate_message topic_receiver_function (context)

Callback function (and associated event queue and client data pointer) that is called when an immediate mes-
sage is received for a topic for which there is no receiver.

A value of NULL (the default) disables this feature.

Alternatively, the API Ibm_context_rcv_immediate_topic_msgs() can be used.

See Immediate Messaging for general information on immediate messages.

Scope: context

Type: Ibm_context_rcv_immediate_msgs_func«—
t

Default NULL

value:

When to | Can only be set during object initialization.

Set:

Config File: Cannot be set from an UM configuration file.

30.1.3 mim_activity_timeout (context)

The maximum time that an LBT-RM session may be quiescent before it is deleted and an EOS event is delivered
for all topics using this transport session.

For multicast immediate message receivers only. Similar to transport_Ibtrm_activity_timeout (receiver). How-
ever, multicast immediate message channels do not deliver an EOS indication.

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds
Default 60000 (60 seconds)
value:

30.1 Reference 265

When to | Can only be set during object initialization.
Set:

30.1.4 mim_delivery_control_activity_check_interval (context)

The interval between activity checks of a Multicast Immediate Messaging delivery controller.

Multiple MIM delivery controllers may exist to accommodate multiple messages from a single MIM sender
received across more than one DRO. These multiple delivery controllers allow for duplicate message detection.

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 5000 (5 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0.

30.1.5 mim_delivery_control_activity _timeout (context)

The maximum time that a Multicast Immediate Messaging delivery controller may be quiescent before it is
deleted.

MIM delivery controllers may be created to accommodate multiple messages from a single MIM sender received
across more than one DRO. These multiple delivery controllers allow for duplicate message detection.

See Multicast Inmediate Messaging for general information about MIM.

Scope: context
Type: Ibm_ulong_t
Units: milliseconds

266

Multicast Inmediate Messaging Operation Options

Default 60000 (60 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0.

30.1.6 mim_delivery_control_order_tablesz (context)

For multicast immediate messages with ordered delivery, this controls the size of the hash table used to hold

data.

See Multicast Immediate Messaging for general information about MIM.

Scope: context

Type: size t

Units: table entries

Default 1031

value:

When to | Can only be set during object initialization.
Set:

30.1.7 mim_implicit_batching_interval (context)

The maximum timeout between when the first message of an implicitly batched immediate message is queued
until the batch is sent. A message will not stay in the queue longer than this value before being sent in the worst

case.

See Implicit Batching for details. See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When fo | Can only be set during object initialization.

Set:

30.1 Reference 267

30.1.8 mim_implicit_batching_minimum_length (context)

The minimum length of an implicitly batched multicast immediate message. When the total length of the implic-
itly batched messages reaches or exceeds this value, the batch is sent.

See Implicit Batching for details. See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: size_t

Units: bytes

Default 2048 (8192 for Microsoft Windows)

value:

When to | Can only be set during object initialization.
Set:

30.1.9 mim_ordered_delivery (context)

For multicast immediate messages only. Indicates whether or not the MIM source should have its data delivered
in order.

The default value also guarantees fragmentation and reassembly of large messages. Changing this option
from the default value results in large messages being delivered as individual fragments of less than 8K each,

requiring the application to reassemble them. See also Ordered Delivery for more information about large
message fragmentation and reassembly.

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

268 Multicast Inmediate Messaging Operation Options

Value | Description

1 Indicates the source should have its data delivered in order. Default for all.
0 The source should have its data delivered as soon as possible and may come in out of order.

30.1.10 mim_sm_maximum_interval (context)

The maximum interval between LBT-RM session messages.

For multicast immediate message senders only. Similar to transport_Ibtrm_sm_maximum_interval (source).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

30.1.11 mim_sm_minimum_interval (context)
The minimum interval between LBT-RM session messages.
For multicast immediate message senders only. Similar to transport_Ibtrm_sm_minimum_interval (source).

See Unicast Immediate Messaging for more information.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When to | Can only be set during object initialization.
Set:

30.1 Reference

269

30.1.12 mim_sqn_window_increment (context)

Determines the increment by which the sequence number window is moved when detecting the receipt of

duplicate multicast immediate messages.

For multicast immediate message receivers only.

Must be a multiple of 8 and an even divisor of mim_sqn_window_size (context).

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: messages

Default 8192

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2.8/UME 3.2.8/UMQ 2.1.8

30.1.13 mim_sqn_window_size (context)

For multicast immediate message receivers only. Determines the window size used to detect the receipt of
duplicate multicast immediate messages. Must be a multiple of 8.

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: messages

Default 16384

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2.8/UME 3.2.8/UMQ 2.1.8

270 Multicast Inmediate Messaging Operation Options

30.1.14 mim_src_deletion_timeout (context)
The timeout after a multicast immediate message is sent before the internal source is deleted and cleaned up.

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 30000 (30 seconds)

value:

When to | Can only be set during object initialization.
Set:

30.1.15 mim_tgsz (context)

The transmission group size used for this Topic when LBT-RM is used.

For multicast immediate message senders only. Similar to transport_Ibtrm_tgsz (source).

See Unicast Immediate Messaging for more information.

Scope: context

Type: Ibm_uint16_t

Units: packets

Default 8

value:

When to | Can only be set during object initialization.
Set:

30.1 Reference

271

30.1.16 mim_unrecoverable_loss_function (context)

Callback function (and associated client data pointer) that is called when a MIM receiver has unrecoverable

loss.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

See Multicast Inmediate Messaging for general information about MIM.

Scope:

context

Type:

Ibm_mim_unrecloss_func_t

Default
value:

NULL

When
Set:

to

Can only be set during object initialization.

Config File:

Cannot be set from an UM configuration file.

272 Multicast Inmediate Messaging Operation Options

Chapter 31

Late Join Options

Late Join allows sources to save a predefined amount of their messaging traffic for late-joining receivers. Sources
set the configuration options that determine whether they use Late Join or not, and receivers set options that
determine whether they will participate in Late Join recovery if sources use Late Join.

UMP's persistent store is built on Late Join technology. In the Estimating Recovery Time discussion below, the
terms Late Join buffers and UMP store are roughly equivalent.

For more, review Late Join in the Ultra Messaging Concepts Guide, especially Configuring Late Join for Large
Numbers of Messages.

31.1 Estimating Recovery Time

Late Join message recovery time is a function of how much data must be recovered and how fast messages are
retransmitted. To estimate Late Join recovery time R in minutes, use the formula:

R=D/ (1 - (txrate / rxrate))
where:

D is the downtime (in minutes) across all receivers

txrate is the average source transmission rate of normal (live stream) messages during recovery (in kms-
gs/sec).

rxrate is the average source retransmission rate from source-side Late Join buffers during recovery (in kms-
gs/sec). This rate needs to be greater than txrate.

For example, consider the following scenario:

D = 10 minutes
txrate = 10k messages / second
rxrate = 25k messages / second

Plugging these values into the formula gives an estimated recovery time in minutes:

R=10/ (1 - (10 / 25))

or 16.67 minutes. Note that this formula assumes the following:

» Retransmit rate(rxrate) is as linear as possible with use of option response_tcp_nodelay (context) to 1.

» Transmit rate (txrate) from all relevant sources is fairly constant and equal

274 Late Join Options

+ Retransmit rate (rxrate) from Late Join buffers is fairly constant and equal, and should be measured in a
live test, if possible. You can adjust the recovery rate with two Late Join configuration options: retransmit_«
request_outstanding_maximum (receiver) and retransmit_request_interval (receiver).

31.2 Reference

31.2.1 late_join (source)
Configure the source to enable both Late Join and Off-Transport Recovery operation for receivers.

See Using Late Join and Off-Transport Recovery (OTR).

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description
1 Enable source for Late Join and OTR. (Forced on for Persistence.)
0 Disable source for Late Join and OTR. Default for all.

31.2.2 late_join_info_request_interval (receiver)
The interval at which the receiver requests a Late Join Information Record (LJI) from the source.

Controlling these requests helps reduce receiver start-up traffic on your network.

See Late Join.

31.2 Reference

275

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

31.2.3 late_join_info_request_maximum (receiver)

The maximum number of requests the receiver issues for a Late Join Information Record (LJI) from the source.

If the receiver has not received an LJI after this number of requests, it stops requesting.

Scope: receiver

Type: Ibm_ulong_t

Default 60

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

31.2.4 retransmit_initial_sequence_number_request (receiver)

When a late-joining receiver detects (from the topic advertisement) that a source is enabled for Late Join but

has sent no messages, this flag option lets the receiver request an initial sequence number from a source.

Sources respond with a TSNI.

Scope: receiver

Type: int

Default 1

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4 2

276 Late Join Options

Value | Description

1 The receiver requests an initial sequence number from Late Join enabled sources that have not
sent any messages. Default for all.

0 The receiver does not request an initial sequence number.

31.2.5 retransmit_message_caching_proximity (receiver)

This option determines how a receiver handles new messages that are being published while the receiver is in
the process of recovering older messages through the retransmit request mechanism.

A receiver has the ability to cache new messages during the recovery process in order to facilitate a smooth
transition from recovery to live stream. This option value determines how close (proximate) a newly received
message sequence number must be to the latest retransmitted sequence number for the receiver to cache
it. New messages that arrive while the receiver is not within proximity will be discarded, and the receiver will
attempt to recover those messages later via OTR.

An option value between 0 and 0x7FFFFFFE (2,147,483,646) enables proximity caching, with larger values
allowing caching to begin earlier during recovery. Values Ox7FFFFFFF and above disable proximity caching.
This value has meaning for only receivers using ordered delivery of data.

See Configuring Late Join for Large Numbers of Messages for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: messages

Default 5000 (was OxFFFFFFFF = 4,294,967,295 in versions prior to 6.8)
value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.3.2/UME 2.0.

31.2 Reference

277

31.2.6

retransmit_request_interval (receiver)

The interval between retransmission request messages to the source.

See Configuring Late Join for Large Numbers of Messages for additional information.

31.2.7

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When fo | Can only be set during object initialization.
Set:

retransmit_request_maximum (receiver)

The maximum number of messages to request, counting backward from the current latest message, when

late-joining a topic.

Due to network timing factors, UM may transmit an additional message. For example, a value of 5 sends 5 or
possibly 6 retransmit messages to the new receiver. (Hence, you cannot request and be guaranteed to receive
only 1 last message—you may get 2.) A value of 0 indicates no maximum.

31.2.8

Scope: receiver

Type: Ibm_ulong_t

Units: messages

Default 0

value:

When to | Can only be set during object initialization.
Set:

retransmit_request_message_timeout (receiver)

The maximum time from when a receiver first sends a retransmission request to when the receiver gives up on
receiving the retransmitted message and reports loss.

278

Late Join Options

See Configuring Late Join for Large Numbers of Messages for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.0

31.2.9

retransmit_request_outstanding_maximum (receiver)

The maximum number of messages to request and to remain active (pending) at a single time.

Value must be greater than zero.

If this option is increased significantly, retransmit_request_interval (receiver) should also be increased.

See Configuring Late Join for Large Numbers of Messages for additional information.

Scope: receiver

Type: Ibm_ulong_t

Units: messages

Default 10

value:

When to | Can only be set during object initialization.
Set:

31.2.10 retransmit_retention_size_limit (source)

Sets a maximum limit on the size of the source's retransmit retention buffer when using a UME store.

With UME, stability and delivery confirmation events can delay the deletion of retained messages, which can
increase the size of the buffer above the retransmit_retention_size_threshold (source). Hence, this option

31.2 Reference 279

provides a hard size limit. UM sets a minimum value for this option of 8K for UDP and 64K for TCP, and issues
a log warning if you set a value less than the minimum.

With Smart Sources, this option is ignored. Retention buffers are preallocated.

Scope: source

Type: size_t

Units: bytes

Default 25165824 (24 MB)

value:

When to | Can only be set during object initialization.
Set:

31.2.11 retransmit_retention_size_ threshold (source)

Specifies the minimum size of the retained message buffer before UM can delete messages.

The buffer must reach this size before UM can delete any messages older than retransmit_retention_age_«
threshold (source).

For UMP, these options combined with retransmit_retention_size_limit (source) affect the retention buffer size.

A value of 0 sets the size threshold to be always triggered, in which case deletion is determined by other
threshold criteria.

With Smart Sources, this option is ignored. Retention buffers are preallocated and are never deleted.

Scope: source

Type: size t

Units: bytes

Default 0 (threshold always triggered)

value:

When to | Can only be set during object initialization.
Set:

280 Late Join Options

31.2.12 use_late join (receiver)
Flag indicating if the receiver should participate in a late join operation or not.

See Late Join for more information.

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description

The receiver will participate in using late join if requested to by the source. Default for all.
The receiver will not participate in using late join even if requested to by the source.

Chapter 32

Off-Transport Recovery Options

See also Off-Transport Recovery (OTR) for general information on OTR.

32.1 Reference

32.1.1 otr_message_caching_threshold (receiver)

Number of messages in the Delivery Controller's Order Map above which UM will trigger OTR to try to recover
the messages.

This option only applies for receivers that are enabled for Off-Transport Recovery (OTR). See Delivery Con-
troller for a description of the Order Map.

The purpose for this option is to speed up recovery in the presence of loss. The delivery controller normally
delays for otr_request_initial_delay (receiver) before initiating OTR. This is to give the transport layer time to
recover the lost datagram through its more efficient protocol. However, if the number of datagrams waiting for
recovery grows too large, it might indicate that the transport layer is unable to recover the datagrams. In this
case, it can be helpful to bypass the normal OTR initial delay and immediately initiate OTR.

For environments that are subject to severe loss events, and has expanded the source's transport transmission
windows to accommodate, this option should typically be increased above its default to prevent premature OTR.

Scope: receiver

Type: Ibm_ulong_t

Units: messages

Default 10000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.0

282

Off-Transport Recovery Options

32.1.2 otr_request_initial_delay (receiver)

The length of time a receiver waits before initiating OTR to recover lost datagrams.

Note that unlike transport-level NAKing, this setting is not specific to each lost datagram. Rather the Delivery
Controller is either "in" OTR mode or it is not. This delay time controls the entry into OTR mode. Once that
happens, the OTR feature will request individual datagrams according to its internal algorithms.

See Off-Transport Recovery (OTR).

There are other conditions that can initiate OTR, like the Delivery Controller's Order Map growing too large.
In these cases, OTR can begin prior to the configured initial delay time. See otr_message_caching_threshold

(receiver).

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 2000 (2 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 5.3

32.1.3 otr_request_log_alert_cooldown (receiver)

Each OTR request generates a log message. The first request's log message is a WARNING-level log mes-
sage, and subsequent requests that quickly follow generate INFO-level log messages. After a time interval
defined by this option, the next request leading a new burst of requests again generates a WARNING-level log

message.

See Off-Transport Recovery (OTR).

Scope: receiver
Type: Ibm_ulong_t
Units: seconds

32.1 Reference

283

Default
value:

300 (5 minutes)

When to
Set:

Can only be set during object initialization.

Version:

This option was implemented in UM 5.3

32.1.4 otr_request_maximum_interval (receiver)

The maximum time interval between a receiver's OTR lost-message requests.

After the receiver initiates OTR and is waiting to receive the retransmission, the initial interval (set by otr«
_request_minimum_interval (receiver)) doubles in length for each request until it reaches this option's value,
then continues at this interval (until timeout or UM recovers messages).

Note

When using TCP Request/Response, this value must be shorter than response_tcp_deletion_timeout (con-

text).

See Off-Transport Recovery (OTR).

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 5.3

32.1.5 otr_request_message_timeout (receiver)

The maximum time from when a receiver first sends an OTR lost-message request to when the receiver gives
up on receiving the retransmitted message and reports loss.

284

Off-Transport Recovery Options

See Off-Transport Recovery (OTR).

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 60000 (60 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.0

32.1.6 otr_request_minimum_interval (receiver)

The initial time interval between a receiver's OTR lost-message requests.

While the receiver is waiting to receive the retransmission, the interval doubles in length for each request until

it reaches the maximum interval set by otr_request_maximum_interval (receiver).

See Off-Transport Recovery (OTR).

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 5.2

32.1.7 otr_request_outstanding_maximum (receiver)

The maximum number of OTR lost-message requests outstanding at any given time. Each message specifies

an individual lost message. A value of 0 indicates no maximum.

See Off-Transport Recovery (OTR).

32.1 Reference 285

Scope: receiver

Type: Ibm_ulong_t

Units: messages

Default 200

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 5.2

32.1.8 use_otr (receiver)

Flag indicating if the receiver can use OTR or not.

See Off-Transport Recovery (OTR).

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 5.2

String value | Integer value | Description

"0" 0 The receiver is not enabled to use OTR to recover lost messages.

"1 1 The receiver is enabled to use OTR to recover lost messages.

"2" 2 If the receiver is a persistent receiver, the receiver is enabled to use OTR
to recover lost messages. Default for all.

286 Off-Transport Recovery Options

Chapter 33

Unicast Immediate Messaging Network
Options

In early versions of UM, the Unicast Immediate Messaging (UIM) feature was primarily used to support the
Request/Response feature. Therefore, the configuration options related to UIMs have names that start with "re-
quest" and "response". However, as UM has evolved, the UIM feature has come to be used by a great many UM
features, such as Late Join, Persistence, and Queuing.

To maintain backwards compatibility, the old names of the configuration options have been retained. The reader
must simply be aware that the "request_..." and "response_..." options affect more than just the request/response
feature.

See Unicast Immediate Messaging for general information on UIM. See also Unicast Immediate Messaging Op-
eration Options for operationally-oriented options.

33.1 Reference

33.1.1 request_tcp_bind_request_port (context)

Allows you to turn off UIM port binding (also known as "request port binding").

Setting this option to 0 prevents sockets from being bound to the UIM port. Turning off UIM port binding also
turns off several UM features such as: Request/Response Model, Using Late Join, Off-Transport Recovery
(OTR), the reception of Unicast Immediate Messages, persistence, brokered queuing, and ULB.

See Unicast Immediate Messaging for general information on UIM.

Scope: context
Type: int
Default 1
value:

288 Unicast Immediate Messaging Network Options

When to | Can only be set during object initialization.
Set:
‘ Version: ‘ This option was implemented in LBM 3.3.7/UME 2.0.5. ‘

Value | Description
1 Set UIM port binding. Default for all.
0 Turn off UIM port binding.

33.1.2 request_tcp_interface (context)

Specifies the network interface over which UM accepts TCP connections for reception of UIM messages.

You can specify a full IP address of interface, or just the network part (see Specifying Interfaces for details).
Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it

will not bind to a specific interface. You can also modify the default by setting the option to 0.0.0.0/0 which
produces the same result.

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

33.1.3 request_tcp_port (context)
Port number used for UIM port (also known as "request port").

A context binds to and listens on the UIM port to be able to accept TCP connections for reception of Unicast
Immediate Messages (UIMs). The port is either explicitly specified by request_tcp_port (context), or is selected
from the range: [request_tcp_port_low (context), request_tcp_port_high (context)].

33.1 Reference 289

If request_tcp_port (context) is 0, the context binds to the first open port within the range of [request_tcp_port«
_low (context), request_tcp_port_high (context)]. If nonzero, the specific port number is used instead.

See Unicast Immediate Messaging for general information on UIM. See Port Assignments for more informa-
tion about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 0 (use open port)

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

33.1.4 request_tcp_port_high (context)

High port number to use for UIM port (also known as "request port").

A context binds to and listens on the UIM port to be able to accept TCP connections for reception of Unicast
Immediate Messages (UIMs). The port is either explicitly specified by request_tcp_port (context), or is selected
from the range: [request_tcp_port_low (context), request_tcp_port_high (context)].

See Unicast Immediate Messaging for more information about UIM. See Port Assignments for more informa-
tion about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 14395

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

33.1.5 request_tcp_port_low (context)

Low port number to use for UIM port (also known as "request port").

290

Unicast Immediate Messaging Network Options

A context binds to and listens on the UIM port to be able to accept TCP connections for reception of Unicast
Immediate Messages (UIMs). The port is either explicitly specified by request_tcp_port (context), or is selected
from the range: [request_tcp_port_low (context), request_tcp_port_high (context)].

See Unicast Imnmediate Messaging for general information on UIM. See Port Assignments for more informa-

tion about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 14391

value:

Byte order: Host

When to | Can only be set during object initialization.
Set:

Chapter 34

Unicast Immediate Messaging Operation
Options

In early versions of UM, the Unicast Immediate Messaging (UIM) feature was primarily used to support the
Request/Response feature. Therefore, the configuration options related to UIMs have names that start with "re-
quest" and "response". However, as UM has evolved, the UIM feature has come to be used by a great many UM
features, such as Late Join, Persistence, and Queuing.

To maintain backwards compatibility, the old names of the configuration options have been retained. The reader
must simply be aware that the "request_..." and "response_..." options affect more than just the request/response
feature.

See Unicast Immediate Messaging for general information on UIM. See also Unicast Inmediate Messaging Net-
work Options for network-oriented options.

34.1 Reference

34.1.1 request_tcp_exclusiveaddr (context)

Controls whether the context sets SO_EXCLUSIVEADDRUSE before it binds to the UIM port (also known as
the "Request Port").

Applicable only to Windows.

The default setting in Windows allows multiple binds to the same port. By default, UM will set SO_EXCLUSI+
VEADDRUSE to minimize port sharing. Refer to Microsoft's web site for more information on SO_EXCLUSI«-
VEADDRUSE.

See Unicast Inmediate Messaging for general information on UIM.

292 Unicast Immediate Messaging Operation Options

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description

1 Set SO_EXCLUSIVEADDRUSE. Default for Windows.
0 Do not set SO_EXCLUSIVEADDRUSE.

34.1.2 request_tcp_listen_backlog (context)

The backlog used in the TCP listen() call to set the queue length for incoming UIM connections (also known as
"request connections” or "response connections").

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: int

Default 5

value:

When fo | Can only be set during object initialization.
Set:

34.1.3 request_tcp_reuseaddr (context)

Controls whether the context sets SO_REUSEADDR before it binds to the UIM port (also known as the "«
Request Port").

See Unicast Immediate Messaging for general information on UIM.

34.1 Reference

293

Warning

This option is not recommended for Microsoft Windows users because the SO_REUSEADDR socket option in

Windows allows a socket to forcibly bind to a port in use by another socket. Multiple sockets using the same
port results in indeterminate behavior.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description

1 Set SO_REUSEADDR.

0 Do not set SO_REUSEADDR. Default for all.

34.1.4 response_session_maximum_buffer (context)

Maximum number of bytes of application data which can be queued for a UIM connection.

When the application sends a UIM message via a UIM API function, UM may not be able to immediately send
the message. For example, if many messages are bring sent but the receiver is slow, TCP flow control may
prevent messages from being sent. UM will queue outgoing UIM messages that cannot be sent immediately. If
that queue fills, then the UIM send API will either block, or will return -1 with the error code LBM_EWOULD_ «

BLOCK.

This queue is shared across all APl methods of sending UIMs, including Ibm_unicast_immediate_message(),

Ibm_send_response(), etc.

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: Ibm_ulong_t

Units: bytes

Default 65536

value:

When to | Can only be set during object initialization.
Set:

294 Unicast Immediate Messaging Operation Options

34.1.5 response_session_sender_socket_buffer (context)

Value used to set the SO_SNDBUF value of the UIM connection.

In some cases the OS will not allow all of this value to be used. A value of 0 instructs UM to use the OS defaults.
See Socket Buffer Sizes for platform-dependent information.

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: Ibm_ulong_t

Units: bytes

Default 0 (use TCP autotuning)

value:

When to | Can only be set during object initialization.
Set:

34.1.6 response_tcp_deletion_timeout (context)

Time period that the context waits before deleting a UIM connection.

UIM connections are dynamic, being created when needed and deleted when no longer needed. The purpose
of this timer is to keep the TCP connection up for a time after it is no longer needed, just in case it becomes
needed again. The exact semantics of this timer are described in Unicast Immediate Messaging.

NOTE: When using Off-Transport Recovery (OTR), this value must be longer than otr_request_maximum_«
interval (receiver).

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 20,000 (20 seconds)

value:

When fo | Can only be set during object initialization.
Set:

34.1 Reference 295

34.1.7 response_tcp_interface (context)

Specifies the network interface over which UM initiates outgoing TCP connections for UIMs.

You can specify the full IP address of interface, or just the network part (see Specifying Interfaces for details).
Default is set to default_interface (context), if specified. Otherwise, it is set to INADDR_ANY, meaning that it

will not bind to a specific interface. You can also modify the default by setting the option to 0.0.0.0/0 which
produces the same result.

See Unicast Immediate Messaging for general information on UIM.

Scope: context

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

34.1.8 response_tcp_nodelay (context)

Controls whether the context sets TCP_NODELAY before it binds to the UIM port (also known as the "Request
Port").

Setting TCP_NODELAY disables Nagle's algorithm, which somewhat decreases the efficiency and throughput
of TCP, but decreases the latency of individual messages.

See Unicast Inmediate Messaging for general information on UIM.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

296

Unicast Immediate Messaging Operation Options

Value | Description
1 TCP response sockets should set TCP_NODELAY (disable Nagle).
0 TCP response sockets should not set TCP_NODELAY (leave Nagle enabled). Default for all.

Chapter 35

Implicit Batching Options

35.1 Reference

35.1.1 implicit_batching_interval (source)

The maximum timeout between when the first message of an implicit batch is queued until the batch is sent. A
message will not stay in the queue longer than this value before being sent in the worst case.

See Implicit Batching for details.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When to | May be set during operation.
Set:

35.1.2 implicit_batching_minimum_length (source)

The minimum length of an implicitly batched message. When the total length of the implicitly batched messages
reaches or exceeds this value, the batch is sent.

298

Implicit Batching Options

See Implicit Batching for details.

Scope: source

Type: size_t

Units: bytes

Default 2048 (8192 for Microsoft Windows)
value:

When to | May be set during operation.

Set:

Chapter 36

Delivery Control Options

A Delivery Controller is a receiver-side object created for each source identified by the receiver through topic reso-
lution. A delivery controller performs the following.

+ Delivers messages to multiple receivers subscribed to the same topic.

» Orders received topic messages if ordered_delivery (receiver) is set to 1 (default). This option applies to
LBT-RU and LBT-RM transports.

» Determines unrecoverable loss and burst loss events for the receiver's topic over LBT-RU and LBT-RM trans-
ports.

Unlike the loss depicted in LBT-RM, the image below illustrates how a receiver's Delivery Controller detects unre-
coverable tail loss on a topic.

transport topic sequence number info interval

4

o
-

Iy

L 4
-~

sre

Last Message

TSNI Message TSNI Message
v ¥

il \-.l-
/ Delivery Controller Sends

transport 1btrm nak generation interval LBM_MSG_UNRECOVER&BLE_LOSS
event to Application

Datagram Loss

L J
[

rev

In a non-tail-loss case, the TSNI messages shown above can also be application messages. The point being that the
delivery controller does not send NAKs, and instead waits for a transport_Ibtrm_nak_generation_interval (receiver)
period after the point where the gap is detected (either by an application message or by a TSNI). During that wait
interval, the transport may deliver retransmitted message. If not, it is the reception of another message or TSNI
after the NAK generation interval expires which triggers delivery of the unrecoverable loss event.

300 Delivery Control Options

Note

if the source disables TSNiIs, tail loss can go undetected unless and until another application is sent on that
topic.

36.1 Burst Loss

Normally, when the delivery controller detects a gap in topic sequence numbers of received message fragments,
it waits for a NAK generation interval (defaults to 10 seconds) before declaring the missing message fragments
unrecoverably lost. This wait time allows the underlying transport layer to attempt to retrieve the missing message
fragments.

The configuration options delivery_control_maximum_burst_loss (receiver) and delivery_control_maximum_burst«
_loss (hfx) specify a size for a contiguous gap in topic sequence numbers beyond which the gap is defined to be a
"burst loss". When this happens, the delivery controller immediately declares the entire gap to be unrecoverably lost
and resets its loss-handling structures. Thus, even if the underlying transport layer is subsequently able to retrieve
some or all of the missing message fragments, the delivery controller will discard them (since they are already
declared unrecoverably lost).

The purpose of this is to prevent long delays for large loss events for which the chances of successful recover are
very small.

The image below illustrates this.

Message Sequence Numbers
B 9 10 11 12 13 14 15 16 17 18 19

L
-~

Sre

‘; Message Loss

L J
-~

rcv
l delivery control maximum burst loss = 10

Delivery Controller Sends
LBM_MSG_BURST_LOSS
event to Application

LEM MSG DATA
Message Received

For burst loss, a single LBM_MSG_UNRECOVERABLE_LOSS_BURST event is delivered for the entire sequence
number gap. (Contrast this with simple (not burst) loss events, where a separate LBM_MSG_UNRECOVERABL «
E_LOSS event will be delivered to the receiver for each lost sequence number.)

Note

The burst loss control takes priority over all recovery methods. For example, if the receiver is reading a per-
sistent stream and OTR is enabled, a gap longer than delivery_control_maximum_burst_loss will immediately
declare the gap as unrecoverable without even trying to use OTR to recover. If gapless message delivery is a
high priority, delivery_control_maximum_burst_loss should be set to a very large value.

36.2 Reference 301

There is a possibility of successfully-received messages being discarded when a burst loss is detected.
Let's say a minor loss event is followed by several successful message fragments. The delivery of those
successfully-received message fragments will be delayed in hopes that the underlying transport layer can
retrieve the missing data. However, if a burst loss is detected while the delivery controller is still waiting for
recovery, the pending messages will be deleted as the loss-handling structures are cleaned up.

36.2 Reference

36.2.1 channel_map_tablesz (receiver)

The size of the hash table that the receiver uses to store channel subscriptions.

A larger table means more channels can be stored more efficiently, but takes up more memory. A smaller table
uses less memory, but costs more CPU time for large numbers of channel subscriptions.

See Spectrum for more information.

Scope: receiver

Type: size t

Default 10273

value:

When to | Can only be set during object initialization.
Set:

36.2.2 delivery_control_loss_check_interval (receiver)

This controls the interval between mandatory topic loss checks for a receiver.

A value of 0 turns this loss check off.

Scope: receiver
Type: Ibm_ulong_t
Units: milliseconds
Default 0 (disabled)
value:

302 Delivery Control Options

When to | Can only be set during object initialization.
Set:

36.2.3 delivery_control_maximum_burst_loss (receiver)
This controls the size of a topic sequence number gap past which the gap is declared a "burst loss".

See Burst Loss for a detailed explanation of burst loss and its semantics.

Note

the burst loss control takes priority over all recovery methods. For example, if the receiver is reading a per-
sistent stream and OTR is enabled, a gap longer than delivery_control_maximum_burst_loss will immediately
declare the gap as unrecoverable without even trying to use OTR to recover. If message integrity is a high
priority, delivery_control_maximum_burst_loss should be set to a very large value.

Scope: receiver

Type: Ibm_uint_t

Units: number of messages (fragments)

Default 1024

value:

When to | Can only be set during object initialization.
Set:

36.2.4 delivery_control_maximum_total_map_entries (context)

The maximum number of messages that can be buffered in the Delivery Controller's Order Map.

When the number of messages stored in a Delivery Controller's Order Map is exceeded, unrecoverable loss is

signaled for the oldest gaps and older data is delivered until the Order Map size is below delivery_control_«
maximum_total_map_entries.

A value of 0 implies no maximum value setting and allows unbounded growth of the Delivery Controller's Order
Map.

36.2 Reference 303

See Delivery Controller for a description of the Order Map. Also see otr_message_caching_threshold (re-
ceiver).

For a persistent receiver that has OTR enabled, this option is typically set to 0 (no limit). This is because the
option retransmit_message_caching_proximity (receiver) prevents unbounded growth of the Order Map.

Note

Although this option is context scoped, understand that there is a separate Order Map for each Delivery
Controller. Those Order Maps are sized independently.

Scope: context

Type: size_t

Units: map entries

Default 200000

value:

When to | Can only be set during object initialization.
Set:

36.2.5 delivery_control_message batching (context)

Controls whether or not to use receive-side batching, which can improve receiver throughput when using event
queues, but might add latency in other cases.

If you enable this option, and you use an event queue that is in polling mode, using lbm_event_dispatch(evq,
LBM_EVENT_QUEUE_POLL), then rather than dispatching exactly one event per call to lbm_event_dispatch,
you may get multiple events dispatched with a single call.

Scope: context

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description
1 Receive-side batching is enabled.

304

Delivery Control Options

Value | Description

0 Receive-side batching is disabled. Default for all.

36.2.6 mim_delivery_control_loss_check_interval (context)

This controls the interval between mandatory loss checks for MIM.

A value of 0 turns this loss check off.

See Multicast Inmediate Messaging for general information about MIM.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 0 (disabled)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.2

36.2.7 null_channel_behavior (receiver)

Behavior desired when a message without channel information (i.e. a standard UM message) is received by

UM.

See Spectrum for more information.

Scope: receiver
Type: int
When to | Can only be set during object initialization.

Set:

36.2 Reference

305

String value | Integer value Description
"deliver" LBM_RCV_TOPIC_ATTR_CHANNEL_ B« Messages sent without channel information
EHAVIOR_DELIVER_MSGS will be delivered to the callback specified
upon receiver creation. Default for all.
"discard" LBM_RCV_TOPIC_ATTR_CHANNEL B+ Messages sent without channel information
EHAVIOR_DISCARD_MSGS will be discarded.

36.2.8 source notification_function (receiver)

Callback functions (and associated client data pointer) that are called when a receiver creates or deletes a
delivery controller associated with a source.

For the creation function, the application has the ability to set the source client data pointer to be used in each
message received from the source.

Contrast this with resolver_source_notification_function (context).

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

36.2.9 unrecognized_channel_behavior (receiver)

Scope: receiver

Type: Ibm_rcv_src_notification_func_t

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.

Behavior desired when a message with channel information for a channel not in the receiver's set of subscribed
channels is received by UM.

See Spectrum for more information.

306

Delivery Control Options

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

String value

Integer value

Description

"deliver"

LBM_RCV_TOPIC_ATTR_CHANNEL_B«
EHAVIOR_DELIVER_MSGS

Messages sent with channel information for
a channel not in the receiver's set of sub-
scribed channels will be delivered to the call-
back specified upon receiver creation. De-
fault for all.

"discard"

LBM_RCV_TOPIC_ATTR_CHANNEL_B+«
EHAVIOR_DISCARD_MSGS

Messages sent with channel information for
a channel not in the receiver's set of sub-
scribed channels will be discarded.

Chapter 37

Wildcard Receiver Options

37.1 Reference

37.1.1 pattern_type (wildcard_receiver)

The type of expression UM uses to compare wildcard receiver patterns to new topics seen in topic advertise-
ments or responses to wildcard receiver queries.

As of UM Version 6.1, wildcard receivers must use PCRE expressions.

Scope: wildcard_receiver
Type: int
When to | Can only be set during object initialization.
Set:
String value Integer value Description
"pcre" LBM_WILDCARD_RCV_PATT« | The pattern is a regular expres-
ERN_TYPE_PCRE sion usable by PCRE (Perl Com-

patible Regular Expressions) li-
brary. Default for all.
"regex" Deprecated in UM Ver- | LBM_WILDCARD_RCV_PATT« | The pattern is a regular expres-
sion 6.1. ERN_TYPE_REGEX sion usable by POSIX Extended
Regular Expressions.

308

Wildcard Receiver Options

String value

Integer value

Description

sion 6.1.

"appcb" Deprecated in UM Ver-

LBM_WILDCARD_RCV_PATT«
ERN_TYPE_APP_CB

The wildcard receiver ignores the
pattern and calls an application
callback set by the pattern_«
callback (wildcard_receiver) op-
tion.

37.1.2 receiver_create_callback (wildcard_receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to be created for a
topic which matched a wildcard receiver pattern.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

The callback function should always return 0.

Scope: wildcard_receiver

Type: Ibm_wildcard_rcv_create_func_t

Default NULL

value:

When to | Can only be set during object initialization.

Set:

Config File: Cannot be set from an UM configuration file.
Version: This option was implemented in LBM 3.4/UME 2.1.

37.1.3 receiver_delete_callback (wildcard_receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to be deleted.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

The callback function should always return 0.

37.1 Reference

309

Scope: wildcard_receiver

Type: Ibm_wildcard_rcv_delete_func_t

Default NULL

value:

When to | Can only be set during object initialization.

Set:

Config File: Cannot be set from an UM configuration file.
Version: This option was implemented in LBM 3.4/UME 2.1.

37.1.4 resolver_no_source_linger_timeout (wildcard_receiver)

This sets the linger timeout value before a topic with no sources is removed and cleaned up.

Since wildcard receivers set the resolution_no_source_notification_threshold (receiver) to 10, the linger timer

starts after the wildcard receiver sends 10 queries and subsequently receives a no-source notification.

37.1.5

Scope: wildcard_receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

resolver_query_maximum_interval (wildcard_receiver)

The longest - and last - interval in wildcard receiver topic querying.

A value of 0 disables wildcard receiver topic querying.

See also Disabling Aspects of Topic Resolution.

Scope: wildcard_receiver
Type: Ibm_ulong_t
Units: milliseconds

310 Wildcard Receiver Options

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

37.1.6 resolver_query_minimum_duration (wildcard_receiver)

The duration of wildcard queries in wildcard receiver topic querying.

Only PCRE and regex pattern types can use wildcard queries. A value of 0 guarantees that wildcard receiver
topic querying never completes.

Scope: wildcard_receiver

Type: Ibm_ulong_t

Units: seconds

Default 60 (1 minute)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

37.1.7 resolver_query_minimum_interval (wildcard_receiver)

Interval between the first topic query sent upon creation of the wildcard receiver and the second query sent by
the receiver.

A value of 0 disables wildcard receiver topic querying. This option has an effective minimum of 30 ms. See
UDP-Based Resolver Operation Options.

See also Disabling Aspects of Topic Resolution.

Scope: wildcard_receiver
Type: Ibm_ulong_t
Units: milliseconds

37.1 Reference 311

Default 50 (0.05 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

37.1.8 resolver_wildcard_queries_per_second (context)

Maximum number of queries sent within a one second period during wildcard receiver topic querying.

A value of 0 means that queries for the wildcard topic are not limited to a maximum number of queries per
second.

Note that the topic's queries are still subject to being rate limited by resolver_wildcard_query_bps (context).

Refer to Rate Controls for additional information.

Scope: context

Type: Ibm_ulong_t

Units: advertisements

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

37.1.9 resolver_wildcard_query_bps (context)
Maximum query rate during wildcard receiver topic querying.

A value of 0 means that queries for the wildcard topic are not limited to a maximum number of bits per second.

Note that the topic's queries are still subject to being rate limited by resolver_wildcard_queries_per_second
(context).

Refer to Rate Controls for additional information.

312 Wildcard Receiver Options

Scope: context

Type: Ibm_uint64_t

Units: bits per second

Default 1000000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.0

37.1.10 resolver_wildcard_receiver_map_tablesz (context)

The size of the hash table used for storing wildcard receiver patterns.

A value of 0 disables caching wildcard receiver patterns. This value should be a prime number.

Scope: context

Type: size_t

Units: map entries

Default 10273

value:

When to | Can only be set during object initialization.
Set:

Chapter 38

Event Queue Options

38.1 Reference

38.1.1 event_queue_name (event_queue)

The name of an event queue, limited to 128 alphanumeric characters, hyphens or underscores.

This is only used for XML Configuration Files.

Scope: event_queue

Type: string

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.3/UME 3.3/UMQ 2.3.

38.1.2 queue_age_enabled (event_queue)

Controls whether the length of time each event spends on the event queue is measured.

Useful only if you are monitoring event queue statistics.

See Automatic Monitoring.

314 Event Queue Options

Scope: event_queue

Type: int

Default 0

value:

When to | May be set during operation.
Set:

Value | Description
1 Enables measuring of event queue entry ages.
0 Disables measuring of event queue entry ages. Default for all.

38.1.3 queue_cancellation_callbacks_enabled (event_queue)

Flag indicating whether the event queue is to do appropriate locking to provide cancellation callback support for
cancel/delete functions.

This must be enabled if you want to use the extended form of object deletion with a callback that indicates
completion of the deletion.

For example, see Ibm_src_delete_ex().

Scope: event_queue

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description

1 Provide support for cancellation callbacks.

0 Do not provide cancellation callback support. Default for all.

38.1 Reference

315

38.1.4 queue_count_enabled (event_queue)

Controls whether the numbers of each type of queue entry are counted.

Useful only if you are monitoring event queue statistics.

Scope: event_queue

Type: int

Default 0

value:

When to | May be set during operation.
Set:

Value | Description
1 Enables counting event queue entries.
0 Disables counting of event queue entries. Default for all.

38.1.5 queue_delay_warning (event_queue)

The event queue delay threshold (in microseconds) at which the monitor function for the event queue is called.

This delay is the time that an event has been queued before being dispatched. A value of 0 indicates the event
queue delay is not to be monitored and checked.

Set:

Scope: event_queue

Type: Ibm_ulong_t

Units: microseconds

Default 0 (not monitored)

value:

When to | May be set during operation.

316 Event Queue Options

38.1.6 queue_enqueue_notification (event_queue)

Flag indicating whether to call the monitor function when an event is enqueued into the given event queue.

The thread enqueuing the event is the one that calls this function. So, when this is called, the monitoring

function in use should only assume this is only notification of enqueuing. The monitor function should not
dispatch events directly.

Scope: event_queue

Type: int

When to | May be set during operation.
Set:

Value | Description

1 Enable notification.

0 Disable notification. Default for all.

38.1.7 queue_objects_purged_on_close (event_queue)

Flag indicating whether the event queue should be immediately purged of any pending events associated with a

recently closed object (e.g. source, receiver) during the close operation, or be left on the queue to be discarded
as the event queue drains normally.

In either case, UM does not deliver the defunct events to the application. The ITmmediate purge set-

ting reclaims memory immediately, while the Delay purge setting spreads the reclamation work over time,
reducing the CPU impact of closing objects associated with the queue.

Scope: event_queue

Type: int

When to | Can only be set during object initialization.
Set:

38.1 Reference 317

Value | Description
1 Immediate purge. Default for all.
0 Delay purge.

38.1.8 queue_service_time_enabled (event_queue)
Controls whether the amount of time required to service each event on the event queue is measured.
Useful only if you are monitoring event queue statistics.

See Automatic Monitoring.

Scope: event_queue

Type: int

Default 0

value:

When to | May be set during operation.
Set:

Value | Description
1 Enables measuring of event queue service times.
0 Disables measuring of event queue service times. Default for all.

38.1.9 queue_size_warning (event_queue)
The event queue size threshold (in number of events) at which the monitor function for the event queue is called.

A value of 0 indicates the event queue size is not to be monitored and checked.

318

Event Queue Options

Scope: event_queue

Type: Ibm_ulong_t

Units: number of events

Default 0 (not monitored)

value:

When to | May be set during operation.

Set:

Chapter 39

Ultra Messaging Persistence Options

The options described in this section are for persistence, and are invalid for users of the UMS (streaming-only)
product.

See the Guide for Persistence for more information.

39.1 Reference

39.1.1 ume_ack_batching_interval (context)

The interval between checks by UME of consumed, unacknowledged messages.
See also ume_use_ack_batching (receiver).

See Batching Acknowledgments for more information.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 100 (0.1 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in UMS 5.0, UME 5.0, UMQ 5.0.

320 Ultra Messaging Persistence Options

39.1.2 ume_activity_timeout (receiver)

Establishes the period of time from a receiver's last activity to the release of the receiver's Reg ID. Stores return
an error to any new request for the receiver's Reg ID during this period.

Overrides the receiver-activity-timeout setting configured for the receiver's topic on the store. The default
value of 0 (zero) disables this option.

See also Persistence Proxy Sources.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 0 (zero)

value:

When to | Can only be set during object initialization.
Set:

39.1.3 ume_activity_timeout (source)

Establishes the period of time from a source's last activity to the release of the source's Reg ID. Stores return
an error to any new source requesting the source's Reg ID during this period.

If proxy sources are enabled (ume_proxy_source (source)), the store does not release the source's Reg ID and
UME elects a proxy source. Overrides the source-activity-timeout setting configured for the source's topic on
the store. The default value of 0 (zero) disables this option.

If neither proxy sources nor ume_state_lifetime (source) are configured, the store also deletes the source's
state and cache.

See also Persistence Proxy Sources.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 0 (zero)

value:

When to | Can only be set during object initialization.
Set:

39.1 Reference 321

39.1.4 ume_allow_confirmed_delivery (receiver)

Specifies whether or not UME allows the sending of confirmed delivery notifications back to the source.

See also ume_confirmed_delivery_notification (source).

For more information, see Delivery Confirmation Concept.

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 5.0.

Value | Description
1 Indicates that UME can send confirmed delivery notifications. Default for all.
0 Indicates that UME can not send confirmed delivery notifications.

39.1.5 ume_application_outstanding_maximum (receiver)

This UMP receiver option enables the UMP Throttled Delivery feature and sets an upper threshold on the num-
ber of message fragments from a single source that are delivered or in an event queue, but not yet consumed.

When the number of message fragments exceeds this threshold, the receiver stops buffering all incoming
message fragments. Thus, messages from the source transport stream might be dropped and recovered via
OTR or UMP late-join mechanisms.

This feature effectively limits the recovery rate and live stream rate to the receiver message consumption rate. If
OTR is disabled for the receiver, this threshold applies only during initial Late Join recovery. Setting this option
to 0 (zero) disables the UMP Throttled Delivery feature.

322

Ultra Messaging Persistence Options

Scope: receiver

Type: Ibm_ulong_t

Units: message fragments

Default 0 (disabled)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.7

39.1.6 ume_confirmed_delivery_notification (source)

Flag indicating the application is interested in receiving notifications of consumption of messages by receivers
(confirmed delivery) via the source event mechanism.

Generates the source events LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION and/or LBM_SRC_E«
VENT_UME_DELIVERY_CONFIRMATION_EX. When turned off, receivers do not send delivery confirmation
notifications to the source unless the release policy dictates the need for them. For more information, see
Delivery Confirmation Concept.

Note

Smart Sources do not support delivery confirmation.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

String value | Integer value Description
"o" LBM_SRC_TOPIC_ATTR_UME_CDELV+« | The source does not wish to receive delivery
_EVENT_NONE confirmation notifications. Default for all.
" LBM_SRC_TOPIC_ATTR_UME_CDELV+ | The source wishes to receive delivery con-
_EVENT_PER_FRAGMENT firmation notifications for all messages and
message fragments.
"2" LBM_SRC_TOPIC_ATTR_UME_CDELV+« | The source wishes to receive only one de-
_EVENT_PER_MESSAGE livery confirmation for a message regardless
of how many fragments it comprised.

39.1 Reference

323

String value

Integer value

Description

ngn

LBM_SRC_TOPIC_ATTR_UME_CDELV«
_EVENT_FRAG_AND_MSG

The source wishes to receive delivery con-
firmation notifications for all messages and
message fragments. In addition, the notifi-
cation contains a WHOLE_MESSAGE_C+«
ONFIRMED flag when the last fragment of a
message has been delivered.

39.1.7 ume_consensus_sequence_nhumber_behavior (receiver)

The behavior that the receiver will follow when determining the consensus sequence number used as the
sequence number to begin reception at upon re-registration after a failure or suspension.

This setting is only used when quorum-consensus is also used on the source.

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

String value | Integer value Description
"lowest" LBM_RCV_TOPIC_ATTR_UME_QC_SQ+« | Consensus is determined as the lowest of
N_BEHAVIOR_LOWEST the latest sequence numbers seen from any
store.
"majority” LBM_RCV_TOPIC_ATTR_UME_QC_SQ+ | Consensus is determined as the latest se-
N_BEHAVIOR_MAJORITY quence number agreed upon by the majority
of stores within a group. Between groups,
the latest of all majority decisions is used.
Default for all.
"highest" LBM_RCV_TOPIC_ATTR_UME_QC_SQ+ | Consensus is determined as the highest of
N_BEHAVIOR_HIGHEST the latest sequence numbers seen from any
store.

324

Ultra Messaging Persistence Options

39.1.8 ume_consensus_sequence_number_behavior (source)

The behavior that the source follows when determining the consensus sequence number used as the first

message of a source upon re-registration after a failure or suspension.

This setting is only used when quorum-consensus is also used.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

String value | Integer value Description
"lowest" LBM_SRC _TOPIC_ATTR_UME_QC _SQ+«+ | Consensus is determined as the lowest of
N_BEHAVIOR_LOWEST the latest sequence numbers seen from any
store.
"majority” LBM_SRC_TOPIC_ATTR_UME_QC_SQ+ | Consensus is determined as the latest se-
N_BEHAVIOR_MAJORITY quence number agreed upon by the major-
ity of stores within a group. Between groups,
the latest of all majority decisions is used.
"highest" LBM_SRC_TOPIC_ATTR_UME_QC_SQ+« | Consensus is determined as the highest of
N_BEHAVIOR_HIGHEST the latest sequence numbers seen from any
store. Default for all.

39.1.9 ume_explicit_ack_only (receiver)

Flag indicating if the receiver should automatically send acknowledgements to any stores and to the source or

if the application desires to explicitly generate acknowledgements itself.

See also Explicit Acknowledgments.

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

39.1 Reference 325

Value | Description

1 The receiving application will generate acknowledgements explicitly and the UME receiver should
not automatically generate them.

0 The UME receiver will automatically generate and send acknowledgements based on message
consumption. Default for all.

39.1.10 ume_flight_size (source)

Specifies the number of messages allowed to be in flight (unstabilized at a store and without delivery confirma-
tion) before a new message send either blocks or triggers a notification (source event).

See ume_flight_size_behavior (source).

Note that the flight size is also limited by ume_flight_size_bytes (source). The blocking behavior is enforced if
either threshold is met.

Note: for very small flight sizes, it is recommended to configure the Store's UM config option response_tcp_«
nodelay (context) to 1.

Scope: source

Type: unsigned int

Units: messages

Default 1000

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1.1/UME 3.1.1

39.1.11 ume_flight_size behavior (source)

The behavior that UME follows when a message send exceeds the source's flight size.

See ume_flight_size (source).

326 Ultra Messaging Persistence Options

Scope: source
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 4.1.1/UME 3.1.1
String value | Integer value Description
"Block" LBM_FLIGHT_SIZE_BEHAVIOR_BLOCK | The send call blocks when a source sends

a message that exceeds its flight size. If
the source uses a non-blocking send, the
send returns an LBM_EWOULD_BLOCK.
Default for all.

"Notify" LBM_FLIGHT_SIZE_BEHAVIOR_NOTIFY | A message send that exceeds the config-
ured flight size does not block but triggers a
flight size notification (source event), indicat-
ing that the flight size has been surpassed.
UME also sends a source event notification
if the number of in-flight messages falls be-
low the configured flight size.

39.1.12 ume_flight_size_bytes (source)

Specifies the number of bytes of message payload allowed to be in flight (unstabilized at a store and without
delivery confirmation) before a new message send either blocks or triggers a notification source event.

See ume_flight_size_behavior (source).

Note that the flight size is also limited by ume_flight_size (source). The blocking behavior is enforced if either
threshold is met. If ume_flight_size_bytes is set to zero, then only ume_flight_size is used.

If using Receiver-paced Persistence, this option must be greater than 0 (zero) but less than or equal to the
repository's source-flight-size-bytes-maximum value, otherwise the source registration will fail. See Imple-
menting RPP for more information on the coordination between RPP source and store configuration options.

Note: for very small flight sizes, it is recommended to configure the Store's UM config option response_tcp_«
nodelay (context) to 1.

39.1 Reference 327

Scope: source

Type: lbm_uint64_t

Units: bytes

Default 0 (disabled)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 5.3

39.1.13 ume_force_reclaim_function (source)

Callback function (and associated client data pointer) that is called when a source is forced to release a retained
message due to size limitations specified.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

Scope: source

Type: Ibm_ume_src_force_reclaim_func_t
Default NULL

value:

When to | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.

39.1.14 ume_late_join (source)

Flag indicating the source should allow late join operation for receivers and persistent stores.

This option is retained for backwards compatibility. The late_join (source) setting should be used instead.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

328

Ultra Messaging Persistence Options

Value | Description
1 The source allows late join receivers and persistent stores.
0 The source does not allow late join receivers or persistent stores. Default for all.

39.1.15 ume_message_stability_lifetime (source)

The total time in milliseconds from the initial send of a message before a UMP source gives up entirely on
receiving a stability acknowledgement for the message.

The source then delivers a forced reclaim notice to the application. This option is part of the Proactive Retrans-

missions feature.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 1200000 (20 minutes)

value:

When fo | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 6.0

39.1.16 ume_message_stability_notification (source)

Flag indicating the source is interested in receiving notifications of message stability from persistent stores via

the source event mechanism.

Even when turned off, stores continue to send message stability notifications to the source for retention pur-
poses. However, no notification will be delivered to the application.

39.1 Reference

329

Note

Smart Sources only support "0" (none) or "2" (per-message).

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

String value | Integer value Description
"0" LBM_SRC_TOPIC_ATTR_UME_STABL« The source does not wish to receive mes-
E_EVENT_NONE sage stability notifications from the store.
" LBM_SRC_TOPIC_ATTR_UME_STABL« The source wishes to receive all message
E_EVENT_PER_FRAGMENT and message fragment stability notifications
from the store. Default for all.
"2" LBM_SRC_TOPIC_ATTR_UME_STABL+ The source wishes to receive only a sin-
E_EVENT_PER_MESSAGE gle message stability notifications from the
store when the entire message has been
stabilized. This notification contains the Se-
quence Number of the last fragment of the
whole message but does NOT contain store
information.
"3" LBM_SRC_TOPIC_ATTR_UME_STABL+ The source wishes to receive all message
E_EVENT_FRAG_AND_MSG and message fragment stability notifications
from the store. In addition, the notifica-
tion contains a WHOLE_MESSAGE_STA«
BLE flag when the last fragment of a mes-
sage has been stabilized.

39.1.17 ume_message_stability_timeout (source)

The time in milliseconds from initial send of a message until it is resent by the source because the source has
not received a stability acknowledgement for the store (or a quorum of stores).

Setting this option to 0 (zero) disables the Proactive Retransmissions feature.

Scope: source
Type: Ibm_ulong_t
Units: milliseconds

330 Ultra Messaging Persistence Options

Default 5000 (5 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 6.0

39.1.18 ume_proactive_keepalive_interval (context)

Maximum period of inactivity after which a persistent receiver proactively sends an acknowledgement to the
store.

A persistent receiver sends consumption acknowledgements to the store to update that receiver's state in
the store. In the absence of new consumption acknowledgments, a receiver will re-send the most-recent ac-
knowledgement periodically to maintain that state. The ume_proactive_keepalive_interval option specifies the
maximum interval between successive acknowledgements. This value should be set less than the ume_«
activity_timeout (receiver) and the state lifetime, ideally no more than 1/3 of the lesser of those two. Valid
settings are greater than or equal to 1500 (1.5 seconds, the effective minimum), or zero to disable proactive
keepalives and revert to pre-UM 6.9 keepalive behavior.

Note that disabling proactive keepalives is generally not recommended, and cannot be done for a persistent
receiver which is assigned to a Transport Services Provider (XSP).

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 3000 (3 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 6.9.1

39.1.19 ume_proxy_source (source)

Controls whether any stores with which the source registers should provide a proxy source in the event the
actual source terminates.

Proxy source support is only available for quorum/consensus store configurations. In addition, proxy source
support requires that the source register with an actual registration ID, and not request that the store assign it
a registration ID.

39.1 Reference

331

Scope: source
Type: int
Default 0
value:
When to | Can only be set during object initialization.
Set:
Value | Description
1 Enables proxy source support.
0 Disables proxy source support. Default for all.

39.1.20 ume_receiver_liveness_interval (context)

The maximum interval between delivery confirmations or keepalive messages send to the source.

Expiration of this interval triggers another keepalive and an interval reset.

Scope: context

Type: int

Units: milliseconds

Default 0 (disable; do not send keepalives)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 5.2.

39.1.21 ume_receiver_paced_persistence (receiver)

Enables Receiver-paced Persistence (RPP) for the receiver, and specifies the blocking behavior.

If the source and store agree that the topic is receiver-paced, a receiver that leaves this option at 0 will have
a store registration error. Similarly, if the source and store agree that the topic is source paced, a receiver

332 Ultra Messaging Persistence Options

setting this option to 1 or 2 will have a store registration error. See Receiver-paced Persistence Operations
for additional information. Also see repository-allow-receiver-paced-persistence.

Scope: receiver

Type: Ibm_uint8_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in UME 5.3. Value "2" was added in UME 6.9

String value | Integer value | Description

"0" 0 Indicates that the receiver is not a RPP receiver. Default for all.
"1 1 Indicates that the receiver is a blocking RPP receiver.

"2" 2 Indicates that the receiver is a non-blocking RPP receiver.

39.1.22 ume_receiver_paced_persistence (source)

Specifies that the source is a Receiver-paced Persistence (RPP) source and may change certain topic reposi-
tory options to values allowed by the repository.

If the repository has set repository-allow-receiver-paced-persistence to 0 (disable), setting this option to 1
creates a store registration error. See Receiver-paced Persistence Operations for additional information.

Scope: source

Type: Ibm_uint8_t

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 5.3

Value | Description
1 Indicates that source is a RPP source.

0 Indicates that source is not a RPP source. Default for all.

39.1 Reference 333

39.1.23 ume_recovery_sequence_number_info_function (receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to complete regis-
tration from the stores in use by the source and the low sequence number is to be determined.

The application has the ability to modify the sequence number to use if it desires.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

Scope: receiver

Type: Ibm_ume_rcv_recovery_info_ex_func_t
Default NULL

value:

When to | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.

39.1.24 ume_registration_extended_function (receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to attempt to
register with a persistent store.

The app must return the registration ID to request from the store or 0 if it will allow the store to allocate one.
This function passes additional extended information, such as the store being used and a source client data
pointer, etc.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

Scope: receiver

Type: Ibm_ume_rcv_regid_ex_func_t

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.

334 Ultra Messaging Persistence Options

39.1.25 ume_registration_function (receiver)

Callback function (and associated client data pointer) that is called when a receiver is about to attempt to
register with a persistent store.

The app must return the registration ID to request from the store or 0 if it will allow the store to allocate one.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

This option is retained for backwards compatibility. The ume_registration_extended_function (receiver) setting
should be used instead.

Scope: receiver

Type: Ibm_ume_rcv_regid_func_t

Default NULL

value:

When to | Can only be set during object initialization.
Set:

Config File: Cannot be set from an UM configuration file.

39.1.26 ume_registration_interval (receiver)

The interval between registration attempts by the receiver to a persistent store in use by the source.

For networks with large numbers of receivers connecting to a store, this value can be increased to reduce the
registration load on the store.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 3000 (3 seconds)

value:

When to | Can only be set during object initialization.
Set:

39.1 Reference

335

39.1.27 ume_registration_interval (source)

The interval between registration attempts by the source. Before declaring Registration Complete, sources wait
at least one full interval, unless all stores have registered.

When using the round-robin store behavior, this is the value between registration attempts with the various
stores. In other words, attempt to register with primary, wait interval, attempt to register with secondary, wait

interval, etc.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default 3000 (3 seconds)

value:

When to | Can only be set during object initialization.
Set:

39.1.28 ume_repository_ack_on_reception (source)

For Receiver-paced Persistence (RPP) sources with a repository-type of disk, specifies that the stability
acknowledgement should be sent upon message reception by the store instead of when the message has

been written to disk.

Note that this reduces the robustness of the persisted stream and makes it more susceptible to message loss

in the event of multiple failures.

This source option is ignored if RPP is not enabled. With non-RPP sources, the store's acknowledgement

behavior is controlled directly by the store's repository-allow-ack-on-reception configuration element.

When RPP is enabled, the store checks this option's value against the repository element repository-allow-
ack-on-reception. If repository-allow-ack-on-reception is false, then the store will reject the registration from
any source that enables ume_repository_ack_on_reception. See Implementing RPP for more information on
the coordination between RPP source and store configuration options.

336 Ultra Messaging Persistence Options

Scope: source
Type: Ibm_uint8_t
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UME 5.3
Value | Description
1 The repository sends a stability acknowledgement for a message as soon as it has received the
message.
0 The repository sends a stability acknowledgement for a message once it has been written to disk.
Default for all.

39.1.29 ume_repository_disk_file_size_limit (source)

For Receiver-paced Persistence (RPP) sources with a repository-type of disk, specifies the maximum
amount of disk space used to store retained messages.

This source option is ignored if RPP is not enabled. For non-RPP sources, the repository's file size limit is
controlled directly by the store's repository-disk-file-size-limit configuration element.

When RPP is enabled, the store range checks this option's value against the repository element repository-
disk-file-size-limit, and rejects the registration if the source requests more bytes than that store's limit. As long
as the source request is less than or equal to repository-disk-file-size-limit, the store will use the source's
value in its operation. The default value (zero) causes the store to use its repository-disk-file-size-limit value.
See Implementing RPP for more information on the coordination between RPP source and store configuration
options.

Scope: source

Type: Ibm_uint64_t

Units: bytes

Default 0 (disabled)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 5.3

39.1 Reference 337

39.1.30 ume_repository_size_limit (source)

For Receiver-paced Persistence (RPP) sources with a repository-type of memory or disk, specifies the
maximum number of message bytes retained by the store (includes payload only). For the disk repository
type, this value configures the size of the memory cache.

This source option is ignored if RPP is not enabled. For non-RPP sources, the repository size limit is controlled
directly by the store's repository-size-limit configuration element.

When RPP is enabled, the store range checks this option's value against the repository element repository-
size-threshold, and rejects the registration if the source requests more bytes than that store's limit. As long
as the source request is less than or equal to repository-size-threshold, the store will use the source's value
in its operation. The default value (zero) causes the store to use its repository-size-threshold value. See
Implementing RPP for more information on the coordination between RPP source and store configuration
options.

Scope: source

Type: size_t

Units: bytes

Default 0 (disabled)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 5.3

39.1.31 ume_repository_size_threshold (source)

For Receiver-paced Persistence (RPP) sources with a repository-type of memory or disk, specifies the
minimum number of message bytes retained by the store (includes payload only). For the disk repository
type, this value configures the size of the memory cache.

This source option is ignored if RPP is not enabled. For non-RPP sources, the repository size threshold is
controlled directly by the store's repository-size-threshold configuration element.

When RPP is enabled, the store range checks this option's value against the repository element repository-
size-threshold, and rejects the registration if the source requests more bytes than that store's threshold. As
long as the source request is less than or equal to repository-size-threshold, the store will use the source's
value in its operation. The default value (zero) causes the store to use its repository-size-threshold value.
See Implementing RPP for more information on the coordination between RPP source and store configuration
options.

338

Ultra Messaging Persistence Options

Scope: source

Type: size_t

Units: bytes

Default 0 (disabled)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 5.3

39.1.32 ume_retention_intergroup_stability_behavior (source)

The behavior that the source will follow when determining, across store groups, both message stability and
registration completion.

A source cannot release a message until the message is stable. To be stable, a message must first be stable
within the group and then stable between

Note

Multiple QC groups is deprecated and may be removed from a future version of UM. Users of multiple QC
groups are encouraged to migrate their source configurations to use a single group of Stores for QC. groups.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

String value Integer value

"any", "any-group" | LBM_SRC_TOPIC_ATTR_UME_STA«
BLE_BEHAVIOR_ANY

Description

Registration is complete when it is com-
plete in any group. Messages are stable
when they are stable in any group. De-
fault for all.

39.1 Reference

339

String value

Integer value

Description

"all-active"

LBM_SRC_TOPIC_ATTR_UME_STA«
BLE_BEHAVIOR_ALL_ACTIVE

A group is active if it has at least a quo-
rum of registered stores, or as deter-
mined by the ume_retention_intragroup«
_stability_behavior option. Registration is
complete when it is complete in all active
groups. At least one group must be ac-
tive. Messages are stable when they are
stable in all active groups.

"majority”

LBM_SRC_TOPIC_ATTR_UME_STA«
BLE_BEHAVIOR_MAJORITY

Registration is complete when it is com-
plete in a majority of groups. Messages
are stable when they are stable in a ma-
jority of groups.

"all", "all-groups"

LBM_SRC_TOPIC_ATTR_UME_STA«
BLE_BEHAVIOR_ALL

Registration is complete when it is com-
plete in all groups. Messages are stable
when they are stable in all groups.

39.1.33 ume_retention_intragroup_stability _behavior (source)

The behavior that the source will follow when determining, within a store group, both message stability and
group registration completion.

A source cannot release a message until the message is stable. To be stable, a message must first be stable
within the group and then stable between groups.

Note

Multiple QC groups is deprecated and may be removed from a future version of UM. Users of multiple QC
groups are encouraged to migrate their source configurations to use a single group of Stores for QC.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

340

Ultra Messaging Persistence Options

String value Integer value Description
"quorum” LBM_SRC_TOPIC_ATTR_UME_STAB+« | Registration is complete for the group
LE_BEHAVIOR_QUORUM when a majority of the stores in the group
are registered. A message is stable within
the group when a majority of the stores
have acknowledged the message as sta-
ble. Default for all.
"all-active" LBM_SRC _TOPIC_ATTR_UME_STAB+ Registration is complete for the group

LE_BEHAVIOR_ALL_ACTIVE

when a majority of the stores in the group
are registered. Stores registered with a
source are active stores. A message is
stable within the group when each active
store in that group has acknowledged the
message as stable.

"all", "all-stores"

LBM_SRC_TOPIC_ATTR_UME_STAB—
LE_BEHAVIOR_ALL

Registration is complete for the group
when all stores in the group are registered.
A message is stable within the group when
all stores in the group are registered and
have acknowledged the message as sta-
ble.

39.1.34 ume_retention_size_limit (source)

The release policy regarding aggregate size limit before messages are forced to be released.

With Smart Sources, this option is ignored. Retention buffers are preallocated. This option is retained for

backwards compatibility. The retransmit_retention_size_limit (source) setting should be used instead.

Scope: source

Type: size t

Units: bytes

Default 25165824 (24 MB)

value:

When to | Can only be set during object initialization.
Set:

39.1.35 ume_retention_size_threshold (source)

The release policy regarding aggregate size threshold before messages are released.

39.1 Reference 341

With Smart Sources, this option is ignored. Retention buffers are preallocated.

This option is retained for backwards compatibility. The retransmit_retention_size_threshold (source) setting
should be used instead.

Scope: source

Type: size_t

Units: bytes

Default 0 (no threshold)

value:

When to | Can only be set during object initialization.
Set:

39.1.36 ume_retention_unique_confirmations (source)

The release policy regarding the number of confirmations from different receivers required before the source
can release a message.

This option enhances, but does not supersede, message stability notification from the store(s). If the number of
unique confirmations for a message is less than this amount, the message will not be released. If the number
of unique confirmations for a message exceeds or equals this amount, then the message may be released
if no other release policy setting overrides the decision. A value of 0 indicates there is no unique number of
confirmations required for reclamation. For more information, see Delivery Confirmation Concept.

Note

Smart Sources do not support delivery confirmation.

Scope: source

Type: size_t

Units: number of confirmations

Default 0 (none required)

value:

When fo | Can only be set during object initialization.
Set:

342 Ultra Messaging Persistence Options

39.1.37 ume_session_id (context)

Specifies the default Session ID to use for sources and receivers within a context. A value of 0 (zero) indicates
no Session ID is to be set.

See also Managing ReglDs with Session IDs. Valid formats for session IDs are as follows: A hexadec-
imal string with a maximum value of FFFFFFFFFFFFFFFE, prefixed with 'Ox'. An octal string with a max-
imum value of 1777777777777777777776 prefixed with '0. A decimal string with a maximum value of
18446744073709551614. Prior to LBM 5.2.2, all UME session IDs were interpreted as hexadecimal, and
did not accept the '0x' prefix. If upgrading from an earlier version to LBM 5.2.2 or later, prepend '0x' to the
original setting to use the originally assigned session ID.

Scope: context

Type: Ibm_uint64_t

Default 0 (zero)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2/UME 3.2

39.1.38 ume_session_id (receiver)

Specifies the Session ID to use for a receiver. A value of 0 (zero) indicates the context ume_session_id will be
used.

See also Managing RegIDs with Session IDs.

Valid formats for session IDs are as follows: A hexadecimal string with a maximum value of FFFFFFFFFFFF«
FFFE, prefixed with '0x". An octal string with a maximum value of 1777777777777777777776 prefixed with '0'.
A decimal string with a maximum value of 18446744073709551614. Prior to LBM 5.2.2, all UME session IDs
were interpreted as hexadecimal, and did not accept the '0x' prefix. If upgrading from an earlier version to LBM
5.2.2 or later, prepend '0x' to the original setting to use the originally assigned session ID.

Scope: receiver

Type: Ibm_uint64_t

Default 0 (zero)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2/UME 3.2

39.1 Reference 343

39.1.39 ume_session_id (source)

Specifies the Session ID to use for a source. A value of 0 (zero) indicates the context ume_session_id will be
used.

See also Managing RegIDs with Session IDs.

Valid formats for session IDs are as follows: A hexadecimal string with a maximum value of FFFFFFFFFFFF«
FFFE, prefixed with '0x". An octal string with a maximum value of 1777777777777777777776 prefixed with '0'.
A decimal string with a maximum value of 18446744073709551614. Prior to LBM 5.2.2, all UME session IDs
were interpreted as hexadecimal, and did not accept the '0x' prefix. If upgrading from an earlier version to LBM
5.2.2 or later, prepend '0x' to the original setting to use the originally assigned session ID.

Scope: source

Type: Ibm_uint64_t

Default 0 (zero)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2/UME 3.2

39.1.40 ume_source_liveness_timeout (context)

The expected maximum interval between keepalive or delivery confirmation messages from a receiver.

If neither are received within the interval, the source declares the receiver "dead".

Scope: context

Type: int

Units: milliseconds

Default 0 (disable; do not track receivers)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 5.2.

344

Ultra Messaging Persistence Options

39.1.41

ume_sti_flush_sri_request_response (source)

This option determines if a source flushes the Implicit Batching buffer after it sends a Source Registration
Information (SRI) record in response to a SRI request from a receiver.

Flushing this buffer places the SRI record immediately on the transport, which speeds up the process of re-
ceivers registering, but also can impose a greater load on the overall network since it can reduce the amount of
transport batching.

See ume_sri_immediate_sri_request_response (source) for more information on SRl messages.

Note

Smart Sources do not support batching, so this option is ignored by a Smart Source.

Scope: source

Type: Ibm_ulong_t

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

Value | Description

1 The source places a SRI record in the Implicit Batching buffer and then flushes the buffer.

0 The source places a SRl record in the Implicit Batching buffer and lets normal batch scheduling
determine when to place the SRI on the transport. Default for all.

39.1.42 ume_sri_immediate_sri_request_response (source)

This option controls how quickly a source responds to a receiver's request for an SRI record.

A persistent source need to send information about its Stores so that the receivers can properly register with
those stores. The information messages sent by the sources, contained in a Source Registration Information

39.1 Reference 345

(SRI) record, is sent on the source's data transport session, and therefore have an effect on the transfer of
application data messages. This configuration option is provided to assist you in managing the impact of SRI
messages on the normal flow of data when a registering receiver requests the SRl record.

Note

Smart Sources do not support batching, so this option is ignored by a Smart Source.

Scope: source
Type: Ibm_ulong_t
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UMP 6.0
Value | Description
1 Indicates that the source sends an SRI record and also flushes the implicit batching buffer to

immediately put the SRI record on the transport. This maximizes the speed at which a receiver
completes its registration, but also can impose a greater load on the overall network since it can
reduce the amount of transport batching. Default for all.

0 Indicates that the source waits for the period of time defined by ume_sri_request_response_«-
latency (source) before sending an SRI record. This reduces overall system load, especially if
multiple receivers are registering, as it allows a single SRI record to satisfy the registration needs
of multiple receivers.

39.1.43 ume_sri_inter_sri_interval (source)

This option controls how frequently a source sends SRI records in reaction to a change in the source's regis-
tration with its stores.

Source Registration Information (SRI) records are sent by a source to its receivers for either of two reasons:

« areceiver has requested an SRI, usually because it is in the process of initializing and registering, or

« the source sees a change in its registration with its stores. For example, if a store becomes unresponsive
and the source loses registration with it. Or if a previously failed store returns to service, and the source
successfully registers with it.

346

Ultra Messaging Persistence Options

This configuration option is concerned with the latter case (change in a source's registration with its stores):
the source will send SRI records to receivers to inform them of the change. It sends multiple copies over time
to maximize the chances of successful reception. It uses this configuration option to determine the interval

between these SRI sends.

The default value results in the source sending 2 SRI packets every second. This value cannot be set to 0. See
also ume_sri_max_number_of_sri_per_update (source).

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

39.1.44 ume_sri_max_number_of_sri_per_update (source)

The maximum number of SRI packets sent by a source after a change in the source's registration with its stores.

For more information about these SRl messages, see ume_sri_inter_sri_interval (source).

Scope: source

Type: Ibm_uint16_t

Default 20

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

39.1.45 ume_sri_request_interval (receiver)

The interval at which a registering receiver requests information about the persistent Store(s) from the source.

The receiver cannot complete registration with the Store(s) until the source supplies the information, in the form

39.1 Reference

347

of a Store Information Record (SRI). If no SRl is received within this interval, the receiver will continue to send
requests until either the information is received, or until the ume_sri_request_maximum (receiver) is reached.

If that limit is reached without having received the SRI, the receiver registration fails.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

39.1.46 ume_sri_request_maximum (receiver)

The maximum number of requests the receiver issues for a Store Information Record (SRI) from the source.

If the receiver has not received an SRI after this number of requests, it stops requesting and fails its registration.
See ume_sri_request_interval (receiver).

Scope: receiver

Type: Ibm_ulong_t

Default 60

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

39.1.47 ume_sri_request_response_latency (source)

The interval a source waits before sending an SRI packet in response to a request from a receiver.

At the expiration of this interval, the SRI record may also be slightly delayed by normal batch scheduling unless
ume_sri_flush_sri_request_response (source) is set to 1.

See ume_sri_immediate_sri_request_response (source) for more information about how and why to use this.

348

Ultra Messaging Persistence Options

Note

Smart Sources do not support batching, so this option is ignored by a Smart Source.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 100 (0.1 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMP 6.0

39.1.48 ume_state_lifetime (receiver)

Establishes the period of time from a receiver's last activity to the deletion of the receiver's state and cache by

the store.

You can also configure a receiver-state-lifetime for the receiver's topic on the store. The store uses whichever

is shorter. The default value of 0 (zero) disables this option.

See also Persistence Proxy Sources.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 0 (zero)

value:

When to | Can only be set during object initialization.
Set:

39.1.49 ume_state_lifetime (source)

Establishes the period of time from a source's last activity to the deletion of the source's state and cache by the

store, regardless of whether a proxy source has been created or not.

39.1 Reference 349

You can also configure a source-state-lifetime for the source's topic on the store. The store uses whichever is
shorter. The default value of 0 (zero) disables this option.

See also Persistence Proxy Sources.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 0 (zero)

value:

When to | Can only be set during object initialization.
Set:

39.1.50 ume_store (source)

Enable persistence for this source and add a store specification to the list of stores specified for the source.
Unlike most other UME settings, every time this setting is called, it adds another store specification to the list
and does NOT overwrite previous specifications.

Each entry contains the IP address, TCP port, registration 1D, and group index for the store. For the configu-
ration file as well as API string setting functions, the string value for this option is formatted as "DomainID:IP+«
:port:RegID:GroupIDX" where DomainID is the store's UM domain ID, IP is the store's IP address, port is the
TCP port for the store, RegID is the registration ID that the source desires to use, and GrouplDX is the group
index that the store belongs to. The DomainID, RegID, and GroupIDX pieces may be left off the string if desired.
If so, UMP assumes the value of 0 for them.

Note

Multiple QC groups is deprecated and may be removed from a future version of UM. Users of multiple QC
groups are encouraged to migrate their source configurations to use a single group of Stores for QC.

With most configuration options, a previously-specified value can be overridden by simply specifying the option
again with a new value. However, because each occurrence of ume_store adds a new store specification,
use the IP address 0.0.0.0 and TCP port 0 to remove all previously specified stores. This allows subsequent
store specifications to, in effect, override the earlier stores.

One or more stores means the source will use persistence. If no stores are specified, then persistence will not
be provided for the source.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
Store specification can be supplied for each call to lbm_src_topic_attr_setopt(). However, when the binary

350 Ultra Messaging Persistence Options

form of option retrieval Ibm_src_topic_attr_getopt() is used, the list of Stores is returned as an array, and the
optlen parameter should be set as:

optlen = (max_num_stores x sizeof (lbm_ume_store_entry_t));

Scope: source

Type: Ibm_ume_store_entry_t

When to | Can only be set during object initialization.
Set:

39.1.51 ume_store_activity timeout (source)

The timeout value used to indicate when a store is unresponsive.

The store must not be active within this interval to be considered unresponsive. This value must be much larger
than the check interval.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 10,000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

39.1.52 ume_store_behavior (source)

The behavior that the source follows for handling store failures.

Only quorum-consensus is allowed. The option is retained for backwards compatibility purposes.

Scope: source

Type: int

When to | Can only be set during object initialization.
Set:

39.1 Reference 351
String value Integer value Description
"qc", "quorum-consensus" | LBM_SRC_TOPIC_ATTR_UME_S« | The source uses multiple stores at
TORE_BEHAVIOR_QC the same time based on store and

store group configuration. Default for
all.

39.1.53 ume_store_check_interval (source)

The interval between activity checks of the current store.

This interval also governs how often a source checks outstanding unstabilized messages to see if they have
reached the configured ume_message_ stability_timeout (source) value yet.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.
Set:

39.1.54 ume_store_group (source)

Add a store group specification to the list of store groups specified for the source.

Unlike other UME settings, every time this setting is called, it adds another store group specification to the list
and does NOT overwrite previous specifications. Each entry contains the group index and group size for the
group. For the configuration file as well as string versions of setting this option, the string value is formatted as
"GrouplDX:GroupSZ" where GrouplDX is the index of the group and GroupSZ is the size of the group. Because
each entry adds a new store specification and does not overwrite previous values, an entry or string with the
group index of 0 and group size of 0 will cause all previous store group specifications to be removed.

352 Ultra Messaging Persistence Options

Note

Multiple QC groups is deprecated and may be removed from a future version of UM. Users of multiple QC
groups are encouraged to migrate their source configurations to use a single group of Stores for QC.

Note: When setting this option multiple times, you must set this option in group-index order, from lowest to
highest. In other words, do not set this option for a group index lower in value than any previously set group
index value.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
group specification can be supplied for each call to lbm_src_topic_attr_setopt(). However, when the binary
form of option retrieval Ibm_src_topic_attr_getopt() is used, the list of groups is returned as an array, and the
optlen parameter should be set as:

optlen = (max_num_store_groups * sizeof (lbm_ume_store_group_entry_t));
Scope: source
Type: Ibm_ume_store_group_entry_t
When to | Can only be set during object initialization.
Set:

39.1.55 ume_store_name (source)

Add a named store specification to the list of stores specified for the source.

Unlike other UME settings, every time this setting is called, it adds another store specification to the list and
does NOT overwrite previous specifications. Each entry contains the store name, registration ID, and group
index for the store. For the configuration file as well as string versions of setting this option, the string value is
formatted as "name:RegID:GrouplDX" where name is the name of the store configured with the store attribute,
context-name in the umestored XML configuration file, RegID is the registration ID that the source desires
to use, and GroupIDX is the group index that the store belongs to. The RegID and GroupIDX pieces may be
left off the string if desired. If so, then the value of 0 is assumed for them. Store names are restricted to 128
characters in length, and may contain only alphanumeric characters, hyphens, and underscores.

Note

Multiple QC groups is deprecated and may be removed from a future version of UM. Users of multiple QC
groups are encouraged to migrate their source configurations to use a single group of Stores for QC.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
named store specification can be supplied for each call to Ibm_src_topic_attr_setopt(). However, when the
binary form of option retrieval Ibm_src_topic_attr_getopt() is used, the list of named stores is returned as an
array, and the opt 1en parameter should be set as:

39.1 Reference 353

optlen = (max_num_stores x sizeof (lbm_ume_store_name_entry_t));
Scope: source
Type: Ibm_ume_store_name_entry _t
When to | Can only be set during object initialization.
Set:

39.1.56 ume_use_ack_batching (receiver)
Specifies whether or not UME allows the batching of consumption acknowledgments sent to the store(s).

If enabled, UME checks for contiguous sequence numbered messages at the See also ume_ack_batching_«
interval (context).

See Batching Acknowledgments for more information.

Scope: receiver

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in UMS 5.0, UME 5.0, UMQ 5.0.

Value | Description

1 Indicates that UME can acknowledge the consumption of a batch of messages. Default for all.
0 Indicates that UME acknowledges the consumption of individual messages by the receiver.

39.1.57 ume_use_late_join (receiver)

Flag indicating if the receiver should participate in late join operation or not.

354

Ultra Messaging Persistence Options

This option is retained for backwards compatibility. The use_late_join (receiver) setting should be used instead.

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description

The receiver will participate in using late join if requested to by the source. Default for all.

The receiver will not participate in using late join even if requested to by the source.

39.1.58 ume_use_store (receiver)

Flag indicating if the receiver should participate in using a persistent store or not.

If "0" is supplied, the receiver will join as a streaming receiver.

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

Value

Description

The receiver will participate in using a persistent store if requested to by the source. Default for all.

The receiver will not participate in using a persistent store even if requested to by the source.

39.1 Reference 355

39.1.59 ume_user_receiver_registration_id (context)

32-bit value that is used as a user set identifier to be included as the receiver registration ID in acknowledge-
ments send by any receivers in the context to sources as confirmed delivery notifications.

The value is not interpreted by UME in any way and has no relation to registration IDs used by the receiver. A
value of 0 indicates no user set value is in use and should not be sent with acknowledgements

Scope: context

Type: Ibm_uint_t

Units: identifier

Default 0 (no user set value in use)

value:

When to | Can only be set during object initialization.
Set:

39.1.60 ume_write_delay (source)

For Receiver-paced Persistence (RPP) sources with a repository-type of di sk, specifies the delay in millisec-
onds the store should delay before persisting a message to disk.

This source option is ignored if RPP is not enabled. For non-RPP sources, the store's write delay is controlled
directly by the store's repository-disk-write-delay configuration element.

When RPP is enabled, the store range checks this option's value against the repository element repository-
disk-write-delay, and rejects the registration if the source requests a longer delay than that store's limit. As
long as the source request is less than or equal to repository-disk-write-delay, the store will use the source's
value in its operation. The default value (zero) causes the store to use its repository-disk-write-delay value.
See Implementing RPP for more information on the coordination between RPP source and store configuration
options.

Scope: source

Type: Ibm_uint32_t

Units: milliseconds

Default 0 (disabled)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UME 5.3

356 Ultra Messaging Persistence Options

Chapter 40

Ultra Messaging Queuing Options

The options described in this section are for queuing, and are invalid for users of the UMS (streaming-only) and
UMP (streaming and persistent) products.

See the Guide for Queuing for more information.

40.1 Reference

40.1.1 umgqg_command_interval (context)

The interval at which all currently outstanding UMQ commands (registrations, de-registrations, message list
commands, indexed queueing commands, etc.) are re-sent if they have not yet been acknowledged by the
queue.

See Queuing.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

358

Ultra Messaging Queuing Options

40.1.2 umgq_command_outstanding_maximum (context)

The maximum number of UMQ commands (registrations, de-registrations, message list commands, indexed
queueing commands, etc.) that may be outstanding at one time for each configured queue.

This option value must be greater than 0. Reducing this value may help alleviate some load on the UMQ queue
daemon, but may potentially cause registrations and other commands to take longer to complete.

Scope: context

Type: Ibm_uint32_t

Units: number of outstanding commands

Default 1000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UMQ 5.3.1.

40.1.3 umgq_delayed_consumption_report_interval (receiver)

The maximum interval to delay sending consumption reports on the receiver.

Delaying consumption reports allows them to be batched together for efficiency but at the expense of delaying
the consumption reports themselves individually. The value of 0 indicates the consumption reports should not

be delayed.
Scope: receiver
Type: lbm_ulong_t
Units: milliseconds
Default 0
value:
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1 Reference

359

40.1.4 umgq_hold_interval (receiver)

The maximum interval to hold control and data information within the UM queue delivery controller.

See Queuing.
Scope: receiver
Type: Ibm_ulong_t
Units: milliseconds
Default 10000 (10 seconds)
value:
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

40.1.5 umg_index_assignment_eligibility _default (receiver)

Controls whether new receivers are immediately eligible for index assignment upon registration with a queue
(the default) or whether they are ineligible upon registration and must be explicitly made eligible via a call to
Ibm_rcv_umg_index_start_assignment().

See Queuing.
Scope: receiver
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 4.2/UME 3.2/UMQ 1.2
String value | Integer value Description
"Eligible" LBM_RCV_TOPIC_ATTR_UMQ_INDEX« The receiver may be assigned indices as

_ASSIGN_ELIGIBILITY_ELIGIBLE

soon as it registers with a queue. Default
for all.

"Ineligible"

LBM_RCV_TOPIC_ATTR_UMQ_INDEX:-
_ASSIGN_ELIGIBILITY_INELIGIBLE

The receiver must first call lbm_rcv_umq«
_index_start_assignment() before it can
be assigned any indices.

360 Ultra Messaging Queuing Options

40.1.6 umgq_message_stability_notification (source)

Flag indicating the source is interested in receiving notifications of message stability from UMQ via the source
event mechanism.

Even when turned off, UMQ continues to send message stability notifications to the source for retention pur-
poses. However, UMQ delivers no notification to the application.

Scope: source

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Value | Description
1 The source wishes to receive message stability notification. Default for all.
0 The source does not wish to receive message stability notifications.

40.1.7 umgq_msg_total_lifetime (source)

Establishes the period of time from when a queue enqueues a message until the time the message cannot be
assigned or reassigned to a receiver. The queue deletes the message upon expiration of the lifetime.

The default value of 0 (zero) disables this option. See also Message Lifetime.

Scope: source

Type: Ibm_ulong_t

Units: milliseconds

Default 0 (zero)

value:

When to | Can only be set during object initialization.
Set:

40.1 Reference 361

Version: This option was implemented in LBM 4.2 / UME 3.2 / UMQ 2.1

40.1.8 umgq_queue_activity_timeout (context)

The timeout value used to indicate when a queue is marked inactive.

The queue must be active within this interval to be marked inactive. This value must be much larger than the
check interval.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 3000 (3.0 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

40.1.9 umgq_queue_participation (receiver)

Flag indicating if the receiver desires to participate in Queuing operations or not.

See Queuing.

Scope: receiver

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

362 Ultra Messaging Queuing Options

String value | Integer value | Description

" 1 The receiver desires to participate in Queuing operations. Default for all.

"o" 0 The receiver does not wish to participate in Queuing operations.

40.1.10 umg_queue_registration_id (context)

Add a broker/registration ID pair to the current list of broker/registration ID pairs.

Assigns a Registration ID when connected to the given broker name, using the format "BrokerName:RegID". If
a broker is not named or a broker does not support names, the broker will be given the name Default.

If a Registration ID is set for a given broker, that Registration ID is passed from the source through to the
receiver. This information can be used to identify the source from which the data originated.

Each time you set this option, it adds another BrokerName:RegID pair to a list and does not overwrite previous
specifications. If you supply an empty name, the list resets.

When the binary form of option setting is used, UM does NOT expect an array of structures. Instead, only one
broker/registration ID pair specification can be supplied for each call to Ibm_context_attr_setopt(). However,
when the binary form of option retrieval Ilbm_context_attr_getopt() is used, the list of broker/registration ID
pairs is returned as an array, and the opt 1en parameter should be set as:

optlen = (max_num_regid_broker_pairs * sizeof (lbm_umg _gqueue_entry_t));
Scope: context
Type: Ibm_umq_queue_entry_t
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

40.1.11 umq_receiver_type_id (receiver)

32-bit value that is used as an identifier to instruct the queue as to the type of receiver the receiver should be.

Used by the broker or ULB source to associate various settings with the connecting receiver.

40.1 Reference

363

For ULB receivers, see Application Sets and Receiver Type IDs for more information.

Scope: receiver

Type: Ibm_uint_t

Units: identifier

Default 0

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

40.1.12 umgq_retransmit_request_interval (receiver)

The interval between retransmission request messages to the queue.

See Queuing.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

40.1.13 umg_retransmit_request_outstanding_maximum (receiver)

The maximum number of messages to request at a single time from the queue.

A value of 0 indicates no maximum.

Scope: receiver
Type: Ibm_ulong_t
Units: messages

364

Ultra Messaging Queuing Options

Default
value:

100

When
Set:

to | Can only be set during object initialization.

Version:

This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

40.1.14 umg_session_id (context)

Specifies the Session ID to use for managing sources and receivers within a context.

A value of 0 (zero) indicates no Session ID is to be set. Valid formats for session IDs are as follows: A
hexadecimal string with a maximum value of FFFFFFFFFFFFFFFE, prefixed with '0x’. An octal string with a

maximum value of 1777777777777777777776 prefixed with '0". A decimal string with a maximum value of

18446744073709551614.
Scope: context
Type: lbm_uint64_t
Default 0 (zero)
value:
When fo | Can only be set during object initialization.
Set:
Version: This option was implemented in UMQ 5.3.

40.1.15 umgq_ulb_application_set (source)

Defines the application sets for a ULB source. Format: "Index1:I1D1,ID2,...;Index2:1D3,ID4,..."

"Index1" is the numeric index which defines an application set, and "ID1" is the numeric receiver type ID asso-
ciated with one or more receivers (see umq_receiver_type_id (receiver)).

At least one application set must be specified for the source to use ULB.

The application set indices in the string can be specified in any order. However, they must be numbered
contiguously starting with 0 when the topic is allocated.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from

Arrays of Binary Values.

40.1 Reference 365

For more information on application sets, see Application Sets and Receiver Type IDs.

Scope: source

Type: Ibm_umgq_ulb_receiver_type_entry_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1.16 umgq_ulb_application_set_assignment_function (source)

The assignment function for one or more application sets specified as a list of entries in the format, "Index1+«
:valuel;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the desired assignment function
associated that application set.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source
Type: Ibm_umgq_ulb_application_set_attr_t
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.
String value | Integer value Description
"default" LBM_SRC_TOPIC_ATTR_UMQ_ULB_A+« The default assignment function. Default
SSIGNMENT_DEFAULT for all.
"random" LBM_SRC _TOPIC_ATTR_UMQ_ULB_A+« Randomized assignment function.
SSIGNMENT_RANDOM

366 Ultra Messaging Queuing Options

40.1.17 umg_ulb_application_set_events (source)

The events mask of one or more application sets specified as a list of entries in the format, "Index1:valuel;«
Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the event mask to be set asso-
ciated that application set.

The values may follow the same format as described in umq_ulb_events (source).

Application sets not listed default to a mask of 0.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: Ibm_umgq_ulb_application_set_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1.18 umgq_ulb_application_set_load_factor_behavior (source)

The behavior for the load factor for one or more application sets specified as a list of entries in the format,
"Index1:valuet;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the load factor behavior associ-
ated that application set.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: Ibm_umgq_ulb_application_set_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1 Reference

367

String value | Integer value Description
"ignored" LBM_SRC_TOPIC_ATTR_UMQ_ULB_L+ Load Factor information not sent and not
F_BEHAVIOR_IGNORED processed or taken into assignment consid-
eration. Default for all.
"provisioned" | LBM_SRC_TOPIC_ATTR_UMQ_ULB_L«- Load Factor information on number of
F_BEHAVIOR_PROVISIONED sources sent and processed as well as
taken into consideration to reduce the active
portion size for each receiver.
"dynamic” LBM_SRC_TOPIC_ATTR_UMQ_ULB_L« Load Factor information sent and processed
F_BEHAVIOR_DYNAMIC as well as taken into consideration during
assignment to weight receiver choice.

40.1.19 umgq_ulb_application_set_message_lifetime (source)

The message lifetime in milliseconds of one or more application sets specified as a list of entries in the format,
"Index1:valuet;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the message lifetime to be set
associated that application set. A message lifetime of 0 means UMQ never discards the message.

Application sets not listed default to a timeout of 0.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: Ibm_umgq_ulb_application_set_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

368 Ultra Messaging Queuing Options

40.1.20 umg_ulb_application_set_message_max_reassignments (source)

The maximum number of message reassignments before UMQ discards a message for one or more application
sets specified as a list of entries in the format, "Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the maximum number of reas-
signments associated that application set.

UMQ applies the initial assignment to this maximum. Setting this option to 1 means that the message will never
be reassigned. The default value of 0 means UMQ never discards the message due to too many reassignments.

Application sets not listed default to a maximum of 0.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: Ibm_umgq_ulb_application_set_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1.21 umg_ulb_application_set_message_reassignment_timeout (source)

The message reassignment timeout (in milliseconds) of one or more application sets specified as a list of entries
in the format, "Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the message reassignment
timeout to be set associated that application set.

Application sets not listed default to a timeout of 10000 (10 seconds).

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: Ibm_umgq_ulb_application_set_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1 Reference 369

40.1.22 umgq_ulb_application_set_receiver_activity timeout (source)

The receiver activity timeout (in milliseconds) of one or more application sets specified as a list of entries in the
format, "Index1:valuel;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the receiver activity timeout
associated that application set.

Application sets not listed default to an activity timeout of 10000 (10 seconds).

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: Ibm_umgq_ulb_application_set_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1.23 umq_ulb_application_set_receiver_keepalive_interval (source)

The interval (in milliseconds) between keepalive messages to receivers for one or more application sets speci-
fied as a list of entries in the format, "Index1:value1;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the receiver keepalive interval
associated that application set.

Application sets not listed default to an activity timeout of 1000 (1 second).

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

370

Ultra Messaging Queuing Options

Scope: source

Type: Ibm_umgq_ulb_application_set_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1.24 umgq_ulb_application_set_round_robin_bias (source)

The bias assignment towards unassigned receivers for one or more application sets specified as a list of entries

in the format, "Index1:valuei;Index2:value2;..."

"Index1" is the numeric index which defines an application set, and "value1" is the round robin bias associated
that application set.

Large values increase the bias toward unassigned receivers. Zero (0) disables the bias.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

40.1.25 umgq_ulb_check_interval (source)

Scope: source

Type: Ibm_umgq_ulb_application_set_attr_t

Default 1

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

The interval upon which ULB sources check for message reassignment, message discards, and receiver live-

ness.

See Ultra Load Balancing (ULB).

40.1 Reference

371

Scope: source

Type: unsigned long int

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1.26 umgq_ulb_events (source)

A mask indicating what ULB events should be delivered to the source event callback. Applies to all application
sets and receiver types for the source.

For the configuration file as well as string APl method of setting this option, the string value may be formatted

as hexadecimal value or a list of enumerated values separated by a '

“or').

Scope: source

Type: Ibm_ulong_t

Units: mask

Default 0

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.
String value Integer value Description
"MSG_CONSUME", "Msg«~ | LBM_SRC_TOPIC_ATTR_UM« | Deliver message consumption
Consume" Q_ULB_EVENT_MSG_CONS« events.

UME (0x1)

"MSG_TIMEOUT", "MsgTimeout"

LBM_SRC_TOPIC_ATTR_UM«
Q_ULB_EVENT_MSG_TIMEO«
UT (0x2)

Deliver message timeout/discard
events.

"MSG_ASSIGNMENT",
Assignment”

"Msg+«

LBM_SRC_TOPIC_ATTR UM<
Q_ULB_EVENT MSG_ASSIG—
NMENT (0x4)

Deliver
events.

message assignment

"MSG_REASSIGNMENT", "«
MsgReassignment"

LBM_SRC_TOPIC_ATTR_UM<
Q_ULB_EVENT MSG_REASS
IGNMENT (0x8)

Deliver message reassignment
events.

Ultra Messaging Queuing Options

String value Integer value Description
"MSG_COMPLETE", "Msg«~ | LBM_SRC_TOPIC_ATTR_UM« Deliver message completion
Complete” Q_ULB_EVENT_MSG_COMP+« events. Messages are complete

LETE (0x10)

once they are consumed or
discarded from all application
sets.

"RCV_TIMEOUT", "RevTimeout"

LBM_SRC_TOPIC_ATTR UM«
Q_ULB_EVENT_RCV_TIMEO-
UT (0x20)

Deliver receiver timeout events.

"RCV_REGISTRATION", "Rcv+ | LBM_SRC_TOPIC_ATTR_UM« | Deliver receiver registration
Registration" Q_ULB_EVENT_RCV_REGIS« events.

TRATION (0x40)
"RCV_DEREGISTRATION", "~ | LBM_SRC_TOPIC_ATTR_UM« | Deliver receiver deregistration
RcvDeregistration” Q_ULB_EVENT_RCV_DEREG+« | events.

ISTRATION (0x80)

"RCV_READY", "RcvReady"

LBM_SRC_TOPIC_ATTR_UM<
Q_ULB_EVENT_RCV_READY
(0x100)

Deliver receiver ready events.

Specifies the number of messages allowed to be in flight (unconsumed) before a new message send either

40.1.27 umgq_ulb_flight_size (source)

blocks or triggers a notification (source event).

See Ultra Load Balancing (ULB).

Scope: source

Type: unsigned int

Units: messages

Default 1000

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1

40.1.28 umgq_ulb_flight_size_behavior (source)

The behavior that UMQ follows when a message send exceeds the source's flight size.

40.1 Reference

373

See umqg_ulb_flight_size (source).

Scope: source
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1
String value | Integer value Description
"Block" LBM_FLIGHT_SIZE_BEHAVIOR_BLOCK | The send call blocks when a message send
exceeds the source's flight size. If the
message send is a non-blocking send, the
send returns an LBM_EWOULD_BLOCK.
Default for all.
"Notify" LBM_FLIGHT_SIZE_BEHAVIOR_NOTIFY | A message send that exceeds the config-

ured flight size does not block but triggers a
flight size notification (source event), indicat-
ing that the flight size has been surpassed.
UMQ also sends a source event notification
if the number of in-flight messages falls be-
low the configured flight size.

40.1.29 umgq_ulb_receiver_events (source)

Set the events mask of one or more receiver types specified as a list of entries in the format, "ID1:value1;ID2«

wvalue2;..."

"ID1" is the numeric receiver type ID associated with one or more receivers (see umaq_receiver_type_id (re-
ceiver)), and "value1" is the evet mask to be associated with receivers of that type.

The values may follow the same format as described in umqg_ulb_events (source).

Receivers with types not listed default to a mask of 0.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

374

Ultra Messaging Queuing Options

40.1.30 umgq_ulb_receiver_portion (source)

Scope: source

Type: Ibm_umgq_ulb_receiver_type_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

The portion size of one or more receiver types specified as a list of entries in the format: "ID1:valuei;|D2«

wvalue2;..."

"ID1" is the numeric receiver type ID associated with one or more receivers (see umaq_receiver_type_id (re-
ceiver)), and "value1" is the portion size to be associated with receivers of that type.

Receivers with types not listed default to a portion size of 1.

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

40.1.31

Scope: source

Type: Ibm_umgq_ulb_receiver_type_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

umgq_ulb_receiver_priority (source)

The priority of one or more receiver types specified as a list of entries in the format, "ID1:value1;ID2:value2;..."

"ID1" is the numeric receiver type ID associated with one or more receivers (see umaq_receiver_type_id (re-
ceiver)), and "value1" is the priority to be associated with receivers of that type.

Receivers with types not listed default to a priority of 0.

40.1 Reference 375

When the binary form of option setting is used, UM expects an array of structures. See Setting an Option from
Arrays of Binary Values.

Scope: source

Type: Ibm_umgq_ulb_receiver_type_attr_t

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1.

40.1.32 umq_ulb_source_activity_timeout (receiver)

The timeout value used to indicate when a ULB source is unresponsive.

The ULB source must not be active within this interval to be considered unresponsive. This value must be much
larger than the source check interval.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2 / UME 3.2 / UMQ 2.1

40.1.33 umgq_ulb_source_check_interval (receiver)

The interval between activity checks of a ULB source.

Allow a ULB receiver to proactively attempt re-registration with a ULB source if the receiver has not seen any
activity (including keepalives) from that source in a specified amount of time, provided the source's transport
session is still alive and valid.

Scope: receiver
Type: Ibm_ulong_t

376

Ultra Messaging Queuing Options

Units: milliseconds

Default 1000 (1 second)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2 / UME 3.2 / UMQ 2.1

Chapter 41

Hot Failover Operation Options

Hot Failover (HF) allows your applications to build in sender redundancy. See Hot Failover in the Ultra Messaging
Concepts Guide for a discussion of using Hot Failover within a single receiver context or across multiple receiver
contexts.

41.1 Reference

41.1.1 delivery_control_loss_check_interval (hfx)

The interval between periodic forced loss checks.

This option defaults to 0, indicating that loss checks should only be made when a new message arrives.

Scope: hfx

Type: Ibm_ulong_t

Units: msec

Default 0 (no periodic loss checks)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.2

378

Hot Failover Operation Options

41.1.2 delivery_control_max_delay (hfx)

The minimum interval that must expire before the HFX Receiver declares a message unrecoverable and delivers

an unrecoverable loss message the application.

By default, the HFX Receiver only checks loss when it receives new messages. To enable periodic loss checks,

set the delivery_control_loss_check_interval (hfx) option.

Scope: hfx

Type: Ibm_ulong_t

Units: msec

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.2

41.1.3 delivery_control_maximum_burst_loss (hfx)

This controls the size of a topic sequence number gap past which the gap is declared a "burst loss".

Note that the default value for HFX is different than for non-HFX receivers.

See Burst Loss for a detailed explanation of burst loss and its semantics.

Note

the burst loss control takes priority over all recovery methods. For example, if the receiver is reading a per-
sistent stream and OTR is enabled, a gap longer than delivery_control_maximum_burst_loss will immediately
declare the gap as unrecoverable without even trying to use OTR to recover. If message integrity is a high
priority, delivery_control_maximum_burst_loss should be set to a very large value.

See Hot Failover Across Multiple Contexts.

Scope: hfx

Type: Ibm_uint_t

Units: number of messages (fragments)

Default 512

value:

When to | Can nnly be set dllring nhjprt initialization
Set:

Version: This option was implemented in LBM 4.2

41.1 Reference 379

41.1.4 delivery_control_maximum_total_map_entries (hfx)

The maximum number of map entries for the HFX order and loss maps.

This is a soft limit. When the sum of the number of loss records and the number of messages held for ordering
(messages that will be delivered once all prior messages have been delivered) is greater than this value,
the oldest consecutive sequence of loss records will be declared lost immediately to reduce the number of
outstanding map entries. A value of 0 indicates that the map should be allowed to grow without bound.

Scope: hfx

Type: size_t

Units: map entries

Default 200000

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.2

41.1.5 duplicate_delivery (hfx)

Flag indicating whether duplicate messages should be discarded or simply marked as duplicates.

Setting this to 1 overrides the hf_duplicate_delivery (receiver) setting on all underlying HFX Receivers.

Scope: hfx

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.2

Value | Description
1 The HFX delivers duplicate messages.

380

Hot Failover Operation Options

Value | Description

The HFX does not deliver duplicate messages. Default for all.

41.1.6 hf_duplicate_delivery (receiver)

Flag indicating if the Hot Failover receiver delivers duplicate messages or not.

In normal operation, Hot Failover only delivers the first copy received of a message.

See Hot Failover (HF) for more information.

Scope: receiver

Type: int

When to | Can only be set during object initialization.
Set:

Value | Description
1 The Hot Failover receiver delivers duplicate messages.
0 The Hot Failover receiver does not deliver duplicate messages. Default for all.

41.1.7 hf_optional_messages (receiver)

Indicates if a Hot Failover receiver can receive optional messages.

See also Hot Failover (HF).

Scope: receiver

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2.5/UME 3.2.5/UMQ 2.1.5

41.1 Reference 381

Value | Description

1 Hot Failover receivers can receive optional messages. Default for all.
0 Hot Failover receivers do not receive optional messages.

41.1.8 hf_receiver (wildcard_receiver)
Specifies whether to create hot failover receivers for each topic that maps to the wildcard receiver pattern.

See Hot Failover (HF) for more information.

Scope: wildcard_receiver
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UMS 5.2.2
Value | Description
1 Create hot failover receivers for each matched topic.
0 Normal wildcard receiver operation. Hot failover sequence numbers are ignored. Default for all.

41.1.9 ordered_delivery (hfx)
Flag indicating if the HFX Receiver orders messages before delivery.

See Hot Failover Across Multiple Contexts.

382

Hot Failover Operation Options

Scope: hfx

Type: int

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in LBM 4.2

String value

Integer value

Description

nqn

1

The HFX Receiver delivers messages in order. Default for all.

g

-1

The HFX Receiver delivers messages as soon as they are received. In
the case of fragmented messages, as soon as all fragments have been
received and reassembled.

Chapter 42

Automatic Monitoring Options

The Monitoring Options below apply to a given UM context. You can override the default values of these options
and apply monitoring option values to all UM contexts (transports and event queues) with the following environment
variables.

LBM_MONITOR_INTERVAL

LBM_MONITOR_TRANSPORT

LBM_MONITOR_TRANSPORT_OPTS

LBM_MONITOR_APPID

These variables will not override any Monitoring Options you explicitly set. The environment variables only override
Monitoring Options default values.

If you do not specify any monitoring options either in a UM configuration file or via Ibm_context_attr_setopt() calls,
no monitoring will occur. However, if you then set the LBM_MONITOR_INTERVAL environment variable to 5, you
will turn on automatic monitoring for every UM context your application creates at 5 second intervals. If you then
set monitor_interval to 10 for a particular context, all transport sessions in that context will be monitored every 10
seconds.

For XML configuration files, you can configure an automatic monitoring context by setting the <context> attribute
name=infa_statistics_context.

See also Automatic Monitoring in the Ultra Messaging Operations Guide for more information about this feature.

42.1 Reference

42.1.1 monitor_appid (context)

An application ID string used by automatic monitoring to identify the application generating the statistics.

See Automatic Monitoring.

384

Automatic Monitoring Options

Scope: context

Type: string

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4/UME 2.1.

42.1.2 monitor_appid (event_queue)

An application ID string used by automatic monitoring to identify the application generating the statistics.

See Automatic Monitoring.

Scope:

event_queue

Type:

string

When to
Set:

Can only be set during object initialization.

Version:

This option was implemented in LBM 3.4/UME 2.1.

42.1.3 monitor_interval (context)

Interval at which automatic monitoring retrieves the statistics for all transport sessions on a context.

Setting this option to zero (the default) disables the automatic monitoring of a context's transport sessions.

Scope: context

Type: Ibm_ulong_t

Units: seconds

Default 0

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4/UME 2.1.

42.1 Reference 385

42.1.4 monitor_interval (event_queue)

Interval at which automatic monitoring retrieves the statistics for an event queue.

Setting this option to zero (the default) disables the automatic monitoring of an event queue. When monitoring
Event Queue statistics you must enable the Event Queue UM Configuration Options, queue_age_enabled
(event_queue), queue_count_enabled (event_queue) and queue_service_time_enabled (event_queue). UM
disables these options by default, which produces no event queue statistics.

Scope: event_queue

Type: Ibm_ulong_t

Units: seconds

Default 0

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4/UME 2.1.

42.1.5 monitor_interval (receiver)

Interval at which automatic monitoring retrieves the topic interest information for all receivers using a UM con-
figuration file with this option set to a non-zero value.

Topic interest information contains source and topic information if the receiver has joined the source transport
session. If the topic interest information is blank, the receiver has not joined a source transport session. UM
System Monitoring uses this information to monitor the number of subscribed topics. Setting this option to zero
(the default) disables the automatic monitoring of receiver interest.

See Automatic Monitoring.

Scope: receiver

Type: Ibm_ulong_t

Units: seconds

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.5.

386 Automatic Monitoring Options

42.1.6 monitor_interval (wildcard_receiver)

Interval at which automatic monitoring retrieves the topic interest information for all receivers interested in topics
that match the wildcard receiver pattern.

Topic interest information contains source and topic information if the receiver has joined the source transport
session. If the topic interest information is blank, the receiver has not joined a source transport session. UM
System Monitoring uses this information to monitor the number of subscribed topics. Setting this option to zero
(the default) disables the automatic monitoring of a wildcard receiver interest.

See Automatic Monitoring.

Scope: wildcard_receiver

Type: lbm_ulong_t

Units: seconds

Default 0

value:

When to | Can only be set during object initialization.
Set:

Version: This option was implemented in UM 6.5.

42.1.7 monitor_transport (context)

The LBMMON transport module to be used for automatic monitoring.

See Automatic Monitoring.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4/UME 2.1.

42.1 Reference

387

BMSNMP

String value | Integer value Description

"lom" LBM_CTX_ATTR_MON_TRANSPORT_L+ | Use the LBMMON Ibm transport module.
BM Default for all.

"lbmsnmp" LBM_CTX_ATTR_MON_TRANSPORT_L« | Use the LBMMON Ibmsnmp transport mod-

ule. This value is required if you use the UM
SNMP Agent.

42.1.8 monitor_transport (event_queue)

The LBMMON transport module to be used for automatic monitoring.

See Automatic Monitoring.

Scope: event_queue

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4/UME 2.1.

BMSNMP

String value | Integer value Description

"lom" LBM_CTX_ATTR_MON_TRANSPORT_L« | Use the LBMMON Ibm transport module.
BM Default for all.

"lbmsnmp" LBM_CTX_ATTR_MON_TRANSPORT_L« | Use the LBMMON Ibmsnmp transport mod-

ule. This value is required if you use the UM
SNMP Agent.

42.1.9 monitor_transport_opts (context)

An option string to be passed to the LBMMON transport module for automatic monitoring. The format of the
option string is one or more instances of scope|optname=optval separated by semicolons.

For example:

388 Automatic Monitoring Options

context monitor_transport_opts context|resolver_multicast_interface="en0"; sourcel|trans

Note

Some UM options specify interfaces, which can be done by supplying the device name of the interface. Special
care must be taken when including this option in XML configuration files. See Interface Device Names and
XML for details.

See The LBM Transport Module for more information about Transport Options. (Options for the 1bm transport
module and the 1bmsnmp transport module are identical.)

Scope: context

Type: string

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4/UME 2.1.

42.1.10 monitor_transport_opts (event_queue)

An option string to be passed to the LBMMON transport module for automatic monitoring. The format of the
option string is one or more instances of scope|optname=optval separated by semicolons.

For example:

event_gqueue monitor_transport_opts context|resolver_multicast_interface="en(0";sourcelt

Note

Some UM options specify interfaces, which can be done by supplying the device name of the interface. Special
care must be taken when including this option in XML configuration files. See Interface Device Names and
XML for details.

See The LBM Transport Module for more information about Transport Options. (Options for the 1bm transport
module and the 1bmsnmp transport module are identical.)

42.1 Reference

389

Scope: event_queue

Type: string

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.4/UME 2.1.

390 Automatic Monitoring Options

Chapter 43

Deprecated Options

43.1 Reference

43.1.1 delivery_control_loss_tablesz (receiver)

This controls the size of the hash table index used for storing unrecoverable loss state on a per source per topic
basis.

For LBT-RM and other datagram-based transport sessions only. Larger values mean larger hash tables and
probably better CPU usage under loss scenarios at the cost of more memory per source per topic. Smaller
values mean smaller hash tables and probably worse CPU usage under loss scenarios but with less memory
usage. The value used should be a prime number for efficiency.

Scope: receiver

Type: size_t

Units: table entries

Default 131

value:

When to | Can only be set during object initialization.
Set:

Version: Deprecated

392

Deprecated Options

43.1.2 delivery_control_order_tablesz (receiver)

This controls the size of the hash table index used for storing buffered data on a per source per topic basis

when ordered delivery is used.

For LBT-RM and other datagram-based transport sessions only. Larger values mean larger hash tables and
probably better CPU usage under loss scenarios at the cost of more memory per source per topic. Smaller
values mean smaller hash tables and probably worse CPU usage under loss scenarios but with less memory
usage. The value used should be a prime number for efficiency.

Scope: receiver

Type: size_t

Units: table entries

Default 131

value:

When fo | Can only be set during object initialization.
Set:

Version: Deprecated

43.1.3 implicit_batching_type (source)

Determines the algorithm to use for implicit batching.

This option has been deprecated because the adaptive batching algorithm has the same worst case for latency
as the default algorithm and is not better for throughput. This is because, even with adaptive batching, UM
cannot predict when the application will stop sending, at which point (unless the application calls the flush API)
the implicit batching interval must expire before the batch will be sent. To minimize latency while batching, it is
most effective to call the flush APl whenever the application will not immediately send another message.

Scope: source

Type: int

When to | May be set during operation.

Set:

Version: This option was deprecated in UM 6.9.

43.1 Reference

393

TCH_TYPE_ADAPTIVE

String value | Integer value Description
"default" LBM_SRC_TOPIC_ATTR_IMPLICIT_BA« Implicit batching is controlled entirely by the
TCH_TYPE_DEFAULT implicit_batching_minimum_length (source)
and implicit_batching_interval (source) op-
tions. Refer to Message Batching for ad-
ditional information. Default for all.
"adaptive" LBM_SRC_TOPIC_ATTR_IMPLICIT_BA« | Source-paced batching method that at-

tempts to adjust the amount of mes-
sages sent in each batch automatically.
The options, implicit_batching_minimum«

_length (source) and implicit_batching_«

interval (source), limit batch sizes and inter-
vals but sizes and intervals will usually be
much smaller. Setting this option may have
a negative impact on maximum throughput.

43.1.4 network_compatibility _mode (context)

Enable compatibility mode which allows UM versions LBM-4.2/UME-3.2/UMQ-2.1 through UM 5.x to interop-
erate with UM versions prior to LBM-4.2/UME-3.2/UMQ-2.1 by blocking the sending of some header option

types.

This option has no effect on Ultra Messaging Versions 6.0 and later.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2/UME 3.2/UMQ 2.1.

Version: This option was deprecated in UM 6.0 (documentation was updated to reflect this depreca-
tion in UM 6.9).

43.1.5 otr_request_duration (receiver)

The length of time a receiver continues to send OTR lost-message requests before giving up. This option is
deprecated in favor of otr_request_message_timeout (receiver).

See Off-Transport Recovery (OTR).

394

Deprecated Options

Scope:

receiver

Type:

Ibm_ulong_t

Units:

milliseconds

Default
value:

20000 (20 seconds)

When to
Set:

Can only be set during object initialization.

Version:

This option was implemented in UM 5.2

Version:

This option was deprecated in UM 6.0

43.1.6 pattern_callback (wildcard_receiver)

Callback function (and associated client data pointer) that is called when a pattern match is desired for a topic
discovered for a wildcard receiver if the pattern type is set to "appcb”.

This callback is called by the context thread and can not use an event queue. Therefore the callback function
used should not block or it will delay reception of latency-sensitive messages.

A function return value of 0 indicates the given topic should be considered part of the wildcard. A value of 1 or
more indicates the topic should NOT be considered matching the wildcard.

Scope:

wildcard_receiver

Type:

Ibm_wildcard_rcv_compare_func_t

Default
value:

NULL

When to
Set:

Can only be set during object initialization.

Config File:

Cannot be set from an UM configuration file.

43.1.7

rcv_sync_cache (receiver)

UMCache only - a valid cache address (such as TCP:192.168.5.11:4567) in the standard form of TCP«
:address:port enables a UM receiver to use UMCache to receive a snapshot of larger, multiple-field

messages stored by UMCache.

Receiving applications can then become synchronized with the live stream of messages sent on the receiver's

43.1 Reference

395

topic. address is the IP address of the machine where the UMCache runs and port is the configured port

where the cache request handler listens.
Scope: receiver
Type: umcache_reqlib_request_info_t
Default NULL
value:
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UMS 5.0/UMP 5.0/UMQ 5.0
Version: This option was deprecated in UM 6.9

43.1.8 rcv_sync_cache_timeout (receiver)

The maximum time period that a UM receiver waits for a snapshot message from the UMCache.

UMCache only.
Scope: receiver
Type: Ibm_ulong_t
Units: milliseconds
Default 2000 (2 seconds)
value:
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UMS 5.0/UMP 5.0/UMQ 5.0
Version: This option was deprecated in UM 6.9

43.1.9 receive_thread_pool_size (context)

This option no longer functions.

It used to define the maximum number of threads available for transports (excluding the context thread). The

MTT feature is replaced in 6.11

and beyond by Transport Services Provider (XSP).

396 Deprecated Options

Scope: context

Type: int

Default 4

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1.
Version: This option was deprecated in UM 6.9

Version: This option was removed from UM 6.11

43.1.10 resolver_active_source_interval (context)

Interval between sending Topic Resolution advertisements for active sources.

A value of 0 indicates that periodic advertisements should not be sent (sources will still respond to queries).
When set to 0, the resolver_active_threshold should typically also be set to 0. See also Disabling
Aspects of Topic Resolution.

Note: Although this option is eligible to be set during operation, two considerations exist. If this option is
disabled at initialization (set to 0), you cannot re-set the option during operation.Disabling this option by setting
it to 0 (zero) during operation prevents you from re-setting the option a second time during operation.

Scope: context

Type: unsigned long int

Units: milliseconds

Default 1000 (1 second)

value:

When to | May be set during operation.

Set:

Version: This option was deprecated in LBM 4.0

43.1.11 resolver_active_threshold (context)

Number of seconds since the last application message was sent to a source that causes that source to be
marked inactive.

43.1 Reference

397

Inactive sources are not advertised periodically (but will continue to respond to queries). A value of 0 indicates
that sources will advertise periodically regardless of how often the application sends messages. Note that for

publishers with large numbers of sources, this can increase the topic resolution traffic load.

However, also note that this option SHOULD be set to 0 if periodic advertisements are disabled. See Disabling
Aspects of Topic Resolution and Interrelated Configuration Options.

43.1.12

Scope: context

Type: unsigned long int

Units: seconds

Default 60

value:

When to | May be set during operation.

Set:

Version: This option was deprecated in LBM 4.0

resolver_context_advertisement_interval (context)

Interval between context advertisements.

Setting this option to 0 disables context advertisements, though DRO and other functionality depends upon
context advertisements, so a value of 0 is not generally recommended.

43.1.13

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in UM 6.0

resolver_maximum_advertisements (context)

Maximum number of topics that will be advertised per active source interval.

398

Deprecated Options

A value of 0 means to advertise all topics.

Scope:

context

Type:

unsigned long int

Units:

Number of topics

Default
value:

0 (all topics)

When
Set:

to

May be set during operation.

Version:

This option was deprecated in LBM 4.0

43.1.14

resolver_maximum_queries (context)

Maximum number of topics that will be queried for per query interval.

A value of 0 means to query for all topics that do not have at least one source.

Scope:

context

Type:

unsigned long int

Units:

Number of topics

Default
value:

0 (all topics with no source)

When
Set:

to

May be set during operation.

Version:

This option was deprecated in LBM 4.0

43.1.15

resolver_query_interval (context)

Interval between query transmissions for receivers attempting Topic Resolution.

A value of 0 indicates queries should not be sent. See also Disabling Aspects of Topic Resolution.

Note: Although this option is eligible to be set during operation, two considerations exist. If this option is
disabled at initialization (set to 0), you cannot re-set the option during operation.Disabling this option by setting
it to 0 (zero) during operation prevents you from re-setting the option a second time during operation.

43.1 Reference

399

Scope: context

Type: unsigned long int

Units: milliseconds

Default 100 (0.1 seconds)

value:

When to | May be set during operation.

Set:

Version: This option was deprecated in LBM 4.0

43.1.16 resolver_query_max_interval (wildcard_receiver)

This sets the maximum interval between wildcard queries in topic resolution (when used).

Only PCRE and regex pattern types can use wildcard queries. A value of 0 indicates wildcard queries should

not be sent. UM currently queries a maximum of 250 unique wildcard patterns (receivers).

Note: Although this option is eligible to be set during operation, two considerations exist.

« If this option is disabled at initialization (set to 0), you cannot re-set the option during operation.

« Disabling this option by setting it to 0 (zero) during operation prevents you from re-setting the option a

second time during operation.

Scope:

wildcard_receiver

Type:

unsigned long int

Units:

milliseconds

Default
value:

0 (do not query)

When to
Set:

Can only be set during object initialization.

Version:

This option was deprecated in LBM 4.0

43.1.17 resolver_unicast_address (context)

The IP address (or domain name of the IP address) to send unicast topic resolution messages to.

400

Deprecated Options

This option was deprecated in UMS 5.0. Use resolver_unicast_daemon (context) instead.

If set to 0.0.0.0 (INADDR_ANY), then topic resolution uses multicast (the default). If set to anything else, then
topic resolution messages go to the IP address specified.

Scope:

context

Type:

struct in_addr

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

Version:

This option was deprecated in UMS 5.0.

43.1.18

resolver_unicast_destination_port (context)

The UDP port to send unicast topic resolution messages to. This is the UDP port used by the UM resolution

daemon (lbmrd).

This option was deprecated in UMS 5.0. Use resolver_unicast_daemon (context) instead.

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 15380

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in UMS 5.0.

43.1.19

resolver_unicast_port (context)

The local UDP port used for unicast topic resolution messages.

43.1 Reference

401

This option was deprecated in UMS 5.0. Use resolver_unicast_daemon (context) instead. The UM resolution
daemon (Ibmrd) will send unicast topic resolution messages to this UDP port. A value of 0 indicates that
UM should pick an open port in the range (resolver_unicast_port_low (context), resolver_unicast_port_high
(context)). See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 0 (pick open port)

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in UMS 5.0.

43.1.20 retransmit_message_map_tablesz (source)

The size of the hash table that the source uses to store messages for the retention policy in effect.

A larger table means more messages can be stored more efficiently, but takes up more memory. A smaller

table uses less memory, but costs more CPU time as more messages are retained. See Configuring Late
Join for Large Numbers of Messages for additional information.

Scope: source

Type: size_t

Default 131

value:

When to | Can only be set during object initialization.
Set:

Version: This option has been deprecated.

43.1.21 retransmit_request_generation_interval (receiver)

The maximum interval between when a receiver first sends a retransmission request and when the receiver
stops and reports loss on the remaining RXs not received.

See Configuring Late Join for Large Numbers of Messages for additional information.

402

Deprecated Options

This option is deprecated and has no effect. Use retransmit_request_message_timeout (receiver) instead.

Scope: receiver

Type: Ibm_ulong_t

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in UM 6.0

43.1.22

retransmit_retention_age_threshold (source)

Specifies the minimum age of messages in the retained message buffer before UM can delete them. UM cannot
delete any messages younger than this value.

For UMS Late Joins, this and retransmit_retention_size_threshold (source) are the only options that affect
the retention buffer size. For UME, these two options combined with retransmit_retention_size_limit (source)
affect the retention buffer size. UM deletes a message when it meets all configured threshold criteria, i.e., the
message is older than this option (if set), and the size of the retention buffer exceeds the retransmit_«
retention_size_threshold (if set). A value of 0 sets the age threshold to be always triggered, in which
case deletion is determined by other threshold criteria.

With Smart Sources, this option is ignored. Retention buffers are preallocated and are never deleted.

Scope: source

Type: Ibm_ulong_t

Units: seconds

Default 0 (threshold always triggered)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in LBM 6.10

43.1 Reference 403

43.1.23 source_cost_evaluation_function (context)

Callback function that you can use in the Ibm_src_cost_function_cb() to evaluate or determine the cost of a
message path.

The DRO evaluates the cost of any new topic it detects. The callback supplied with this option can affect the
cost of topics to bias the DRO toward certain message paths.

Scope: context

Type: Ibm_src_cost_func_t

Default NULL

value:

When to | Can only be set during object initialization.

Set:

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in UMS 5.0/UMP 5.0/UMQ 5.0
Version: This option was deprecated in UM 6.0

43.1.24 transport_datagram_max_size (context)

The maximum datagram size that can be generated by UM. The default value is 8192, the minimum is 400
bytes, and the maximum is 65535.

Do not use this configuration option.

This configuration option is replaced by the following transport-specific options: transport_tcp_datagram_max:—
_size (context), transport_Ibtrm_datagram_max_size (context), transport_Ibtru_datagram_max_size (context),
transport_lbtipc_datagram_max_size (context), transport_Ibtsmx_datagram_max_size (source).

Scope: context

Type: unsigned int

Units: bytes

Default 8192

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.3.5/UME 2.0.3.
Version: This option was deprecated in LBM 4.1

404

Deprecated Options

43.1.25 transport_Ibtipc_acknowledgement_interval (receiver)

Period of time between acknowledgement (keepalive) messages sent from the receiver to the IPC source.

See also transport_Ibtipc_client_activity _timeout (source).

Scope:

receiver

Type:

unsigned long int

Units:

milliseconds

Default
value:

500 (0.5 seconds)

When to
Set:

Can only be set during object initialization.

Version:

This option was deprecated in LBM 4.0

43.1.26 transport_Ibtipc_client_activity timeout (source)

The maximum period of inactivity (lack of acknowledgement keepalive messages) from a receiver before the
source deletes the receiver from its active receiver table.

The IPC source signals all receivers in its active receiver's table when it writes new data to the shared memory
area. See also transport_lIbtipc_acknowledgement_interval (receiver).

Scope: source

Type: unsigned long int

Units: milliseconds

Default 10,000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in LBM 4.0

43.1 Reference 405

43.1.27 transport_Ibtrdma_datagram_max_size (context)

The maximum datagram size that can be generated for a LBT-RDMA transport session. The default value is
4096, the minimum is 500 bytes, and the maximum is 4096.

See Message Fragmentation and Reassembly for more information.

Warning

When the DRO is in use, it is recommended that all UM applications and components (including the DRO and
Persistent Store) share the same maximum datagram size setting. See Protocol Conversion.

Scope: context

Type: Ibm_uint_t

Units: bytes

Default 4096

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1
Version: This option was deprecated in UM 6.9

43.1.28 transport_Ibtrdma_interface (source)

Specifies the network interface over which UM LBT-RDMA sources receive connection requests from topic
receivers.

You can specify the full IP address of the interface, or just the network part (see Specifying Interfaces for
details).

Be aware that the first source joining a transport session sets the interface with this option. Thus, setting a
different interface for a subsequent topic that maps onto the same transport session will have no effect. Default
is set to INADDR_ANY, meaning that it accepts incoming connection requests from any interface.

Scope: source

Type: Ibm_ipv4_address_mask_t

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

406

Deprecated Options

Version:

This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version:

This option was deprecated in UM 6.9

43.1.29 transport_Ibtrdma_maximum_ports (context)

Maximum number of LBT-RDMA sessions to allocate.

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Units: number of ports

Default 5

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1
Version: This option was deprecated in UM 6.9

43.1.30 transport_Ibtrdma_port (source)

Port number for a specific source's LBT-RDMA session.

Must be outside the transport_Ibtrdma_port_low (context) and transport_Ibtrdma_port_high (context) range.

See Port Assignments for more information about configuring ports.

Scope: source

Type: Ibm_uint16_t
Default 0 (zero)
value:

Byte order: Host

Set:

When to | Can only be set during object initialization.

43.1 Reference

407

Version:

This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

Version:

This option was deprecated in UM 6.9

43.1.31 transport_Ibtrdma_port_high (context)

Highest port number that can be assigned to a LBT-RDMA session.

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 20,020

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1
Version: This option was deprecated in UM 6.9

43.1.32 transport_Ibtrdma_port_low (context)

Lowest port number that can be assigned to a LBT-RDMA session.

See Port Assignments for more information about configuring ports.

Scope: context

Type: Ibm_uint16_t

Default 20,001

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1
Version: This option was deprecated in UM 6.9

408

Deprecated Options

43.1.33 transport_Ibtrdma_receiver_thread_behavior (context)

Receiver behavior for monitoring a LBT-RDMA source's shared memory area for new data.

LBT-RDMA is deprecated.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1
Version: This option was deprecated in UM 6.9

String value | Integer value Description
"pend" LBM_CTX_ATTR_RDMA RCV_THREA« Receiver waits (sleep) for notification from
D_PEND RDMA that the source has updated the
shared memory area with new data. Default.
Default for all.
"busy_wait" LBM_CTX_ATTR_RDMA RCV_THREA« UM polls the shared memory area for new
D_BUSY_WAIT data.

43.1.34 transport_Ibtrdma_transmission_window_size (source)

Size of an LBT-RDMA transport's shared memory area.

This value may vary across platforms. The actual size of the shared memory area equals the value you specify

for this option plus about 64 KB for header information. The minimum value for this option is 65,536.

Refer to Source Object for additional information.

43.1 Reference

409

Scope: source

Type: size_t

Units: bytes

Default 25165824 (24 MB)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1
Version: This option was deprecated in UM 6.9

43.1.35 ume_message_map_tablesz (source)

The size of the hash table that the source uses to store messages for the retention policy in effect.

A larger table means more messages can be stored more efficiently, but takes up more memory. A smaller
table uses less memory, but costs more CPU time as more messages are retained. This setting no longer has

any effect.

Scope: source

Type: size_t

Default 131

value:

When to | Can only be set during object initialization.
Set:

Version: This option has been deprecated.

43.1.36 ume_primary_store_address (source)

IPv4 address of the persistent store to be used as the primary store.

A value of 0.0.0.0 (or INADDR_ANY) indicates no store is set as the primary. In other words, persistence is not

enabled for the source.

This setting is deprecated. Its use is not recommended except by legacy systems. Please use the ume_store

(source) option instead.

410

Deprecated Options

Scope: source

Type: struct in_addr

Default 0.0.0.0 (INADDR_ANY)

value:

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in UME 2.0

43.1.37 ume_primary_store_port (source)

TCP port of the primary persistent store. This setting is deprecated. Its use is not recommended except by
legacy systems. Please use the ume_store option instead.

See Port Assignments for more information about configuring ports.

Scope: source

Type: Ibm_uint16_t

Default 14567

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in UME 2.0

43.1.38 ume_registration_id (source)

32-bit value that is used by a persistent store to identify a source.

If a source desires to identify itself as a previously known source (after a crash or shutdown), it should set the ID
to the value it was using before. A value of 0 indicates the source will allow the persistent store to assign an ID.
This setting is deprecated. Its use is not recommended except by legacy systems. Please use the ume_store

option instead.

Scope: source
Type: Ibm_uint_t
Units: identifier

43.1 Reference 411

Default 0 (allow persistent store to assign ID)
value:

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in UME 2.0

43.1.39 ume_retransmit_request_generation_interval (receiver)

The maximum interval between when a retransmission request is first sent and when it is given up on and loss
is reported.

This option is retained for backwards compatibility. The retransmit_request_generation_interval (receiver) set-
ting should be used instead.

Scope: receiver

Type: unsigned long int

Units: milliseconds

Default 10000 (10 seconds)

value:

When to | Can only be set during object initialization.
Set:

43.1.40 ume_retransmit_request_interval (receiver)

The interval between retransmission request messages to the persistent store or to the source.

This option is retained for backwards compatibility. The retransmit_request_interval (receiver) setting should be
used instead.

Scope: receiver

Type: unsigned long int

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.
Set:

412

Deprecated Options

43.1.41

ume_retransmit_request_maximum (receiver)

The maximum number of messages to request back from the current latest message when late joining a topic

or when registering with a UME store.

A value of 0 indicates no maximum.

This option is retained for backwards compatibility. The retransmit_request_maximum (receiver) setting should

be used instead.

43.1.42 ume_retransmit_request_outstanding_maximum (receiver)

The maximum number of messages to request at a single time from the store or source.

Scope: receiver

Type: unsigned long int

Units: messages

Default 0

value:

When to | Can only be set during object initialization.
Set:

A value of 0 indicates no maximum.

This option is retained for backwards compatibility. The retransmit_request_outstanding_maximum (receiver)
setting should be used instead.

Scope: receiver

Type: unsigned long int

Units: messages

Default 10

value:

When to | Can only be set during object initialization.

Set:

43.1 Reference

413

43.1.43 ume_secondary_store_address (source)

IPv4 address of the persistent store to be used as the secondary store.

A value of 0.0.0.0 (or INADDR_ANY) indicates no store is set as the secondary. This setting is deprecated. Its

use is not recommended except by legacy systems. Please use the ume_store (source) option instead.

Scope:

source

Type:

struct in_addr

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

Version:

This option was deprecated in UME 2.0

43.1.44 ume_secondary_store port (source)

TCP port of the secondary persistent store.

This setting is deprecated. Its use is not recommended except by legacy systems. Please use the ume_store

(source) option instead.

See Port Assignments for more information about configuring ports.

Scope: source

Type: Ibm_uint16_t

Default 14567

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in UME 2.0

414

Deprecated Options

43.1.45 ume_tertiary_store_address (source)

IPv4 address of the persistent store to

be used as the tertiary store.

A value of 0.0.0.0 (or INADDR_ANY) indicates no store is set as the tertiary.

This setting is deprecated. lts use is not recommended except by legacy systems. Please use the ume_store

(source) option instead.

Scope:

source

Type:

struct in_addr

Default
value:

0.0.0.0 (INADDR_ANY)

When to
Set:

Can only be set during object initialization.

Version:

This option was deprecated in UME 2.0

43.1.46 ume_tertiary_store_ port

TCP port of the tertiary persistent store.

(source)

This setting is deprecated. lts use is not recommended except by legacy systems. Please use the ume_store

(source) option instead.

See Port Assignments for more information about configuring ports.

Scope: source

Type: Ibm_uint16_t

Default 14567

value:

Byte order: Network

When to | Can only be set during object initialization.
Set:

Version: This option was deprecated in UME 2.0

43.1 Reference

415

43.1.47 umgq_flight_size (context)

Specifies the number of Multicast Immediate Messages allowed to be in flight (unstabilized at a queue) before

a new message send either blocks or triggers a notification (source event).

See Ultra Load Balancing (ULB).

Scope: context

Type: unsigned int

Units: messages

Default 1000

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1
Version: This option was deprecated in UMQ 6.8

43.1.48 umg_flight_size (source)

Specifies the number of messages allowed to be in flight (unstabilized at a queue) before a new message send

either blocks or triggers a notification (source event).

See Ultra Load Balancing (ULB).

Scope: source

Type: unsigned int

Units: messages

Default 1000

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1
Version: This option was deprecated in UM 6.8

416

Deprecated Options

43.1.49 umg_flight_size_behavior (context)

The behavior that UMQ follows when a MIM send exceeds the context's flight size.

See Multicast Inmediate Messaging for general information about MIM.

See umg_flight_size (source).

Scope: context
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1
Version: This option was deprecated in UMQ 6.8
String value | Integer value Description
"Block" LBM_FLIGHT_SIZE_BEHAVIOR_BLOCK | The send call blocks when a MIM send ex-
ceeds the context's flight size. If the MIM
send is a non-blocking send, the send re-
turns an LBM_EWOULD_ BLOCK. Default
for all.
"Notify" LBM_FLIGHT_SIZE_BEHAVIOR_NOTIFY | A message send that exceeds the config-

ured flight size does not block but triggers
a flight size notification (context event), in-
dicating that the flight size has been sur-
passed. UMQ also sends a context event
notification if the number of in-flight mes-
sages falls below the configured flight size.

43.1.50 umgq_flight_size_behavior (source)

The behavior that UMQ follows when a message send exceeds the source's flight size.

See umg_flight_size (source).

43.1 Reference

417

Scope: source

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1.1/UME 3.1.1/UMQ 1.1.1
Version: This option was deprecated in UM 6.8

String value | Integer value Description

"Block" LBM_FLIGHT_SIZE_BEHAVIOR_BLOCK | The send call blocks when a source sends
a message that exceeds its flight size. If
the source uses a non-blocking send, the
send returns an LBM_EWOULD_BLOCK.
Default for all.

"Notify" LBM_FLIGHT_SIZE_BEHAVIOR_NOTIFY | A message send that exceeds the config-
ured flight size does not block but triggers a
flight size notification (source event), indicat-
ing that the flight size has been surpassed.
UMQ also sends a source event notification
if the number of in-flight messages falls be-
low the configured flight size.

43.1.51 umgq_message_retransmission_interval (context)

The interval between retransmissions of data messages when submitting to a Queue.

See Queuing.
Scope: context
Type: Ibm_ulong_t
Units: milliseconds
Default 500 (0.5 seconds)
value:
When fo | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.
Version: This option was deprecated in UMQ 6.8

418 Deprecated Options

43.1.52 umgq_message_stability notification (context)

Flag indicating the context is interested in receiving notifications of message stability from Queues via the
context event mechanism.

Even when turned off, Queues will continue to send message stability notifications to the context for retention
purposes. However, no notification will be delivered to the application.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.
Version: This option was deprecated in UMQ 6.8

Value | Description
1 The context wishes to receive message stability notification. Default for all.

0 The context does not wish to receive message stability notifications.

43.1.53 umq_msg_total_lifetime (context)

Establishes the period of time from when a queue receives a message, or, for ULB, when a source sends a
message, until the time the message cannot be assigned or reassigned to a receiver. The queue deletes the
message upon expiration of the lifetime.

You can also set UMQ umestored option message-total-lifetime for the source's topic on the queue. However,
the message-total-lifetime option is overridden by any value assigned to umqg_msg_total_lifetime (source). The
default value of 0 (zero) disables this option.

Note: This option is overridden by any message lifetime value set using send call, Ibm_src_send_ex().

Scope: context
Type: Ibm_ulong_t

43.1 Reference

419

Units: milliseconds

Default 0 (zero)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.2 / UME 3.2 / UMQ 2.1
Version: This option was deprecated in UMQ 6.8

43.1.54 umq_queue_check_interval (context)

The interval between activity checks of the individual UMQ queues.

See Queuing.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 500 (0.5 seconds)

value:

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.
Version: This option was deprecated in UMQ 6.8

43.1.55 umgq_queue_nhame (source)

The queue to submit messages to when sending.

See Queuing.

Scope: source

Type: string

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.
Versior: This option was deprecated im UMQ 6-8

420

Deprecated Options

43.1.56 umgq_queue_participants_only (source)

Flag indicating the source only desires queue participants to listen to the topic.

See Queuing.

Scope: source

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.
Version: This option was deprecated in UMQ 6.8

Value | Description
1 The source desires that only queue participants listen to the topic.
0 The source desires anyone to listen to the topic without regard to queue participation. Default for all.

43.1.57 umgq_queue_query_interval (context)

The interval between queries sent for resolving Queues.

This option is no longer functional.

Scope: context

Type: Ibm_ulong_t

Units: milliseconds

Default 200 (0.2 seconds)

value:

When to | Can only be set during object initialization.
Set:

43.1 Reference 421

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.

Version: This option was deprecated in UMQ 6.8

43.1.58 umq_require_queue_authentication (context)

Indicates if an application requires a queue to authenticate itself before accepting the queue's responses to
Queue Browser commands.

See Queuing.

Scope: context
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in UMQ 5.2.2.
Version: This option was deprecated in UMQ 6.8
Value | Description
1 An application requires the queue to successfully authenticate before using browsing command
responses from the queue. Default for all.
0 An application does not require queue authentication.

43.1.59 umgq_retention_intergroup_stability behavior (context)

The behavior that the context will follow when determining the stability of a message from an inter-group per-
spective.

This has a direct impact on the release policy for the context in that a message must be stable before it may be
released. To be stable, a message must first be stable within the group and then stable between groups.

422

Deprecated Options

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.
Version: This option was deprecated in UMQ 6.8

String value

Integer value

Description

"any", "any-group"

LBM_SRC_TOPIC_ATTR_UMQ_STA«
BLE_BEHAVIOR_ANY

Message is considered stable once it is
stable in any group. Default for all.

"majority”

LBM_SRC_TOPIC_ATTR_UMQ_STA«
BLE_BEHAVIOR_MAJORITY

Message is considered stable once it is
stable in a majority of groups.

"all", "all-groups"

LBM_SRC_TOPIC_ATTR_UMQ_STA—
BLE_BEHAVIOR_ALL

Message is considered stable once it is
stable in all groups.

"all-active"

LBM_SRC_TOPIC_ATTR_UMQ_STA—
BLE_BEHAVIOR_ALL_ACTIVE

Message is considered stable once it is
stable in all active groups. A group is
considered active if it has at least a quo-
rum of active or registered queues. Inter-
group stability requires at least one stable

group.

43.

1.60 umgq_retention_intergroup_stability _behavior (source)

The behavior that the source will follow when determining the stability of a message from an inter-group per-

spective.

This has a direct impact on the release policy for the context in that a message must be stable before it may be
released. To be stable, a message must first be stable within the group and then stable between groups.

Scope: source

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.
Version: This option was deprecated in UMQ 6.8

43.1 Reference

423

BLE_BEHAVIOR_MAJORITY

String value Integer value Description
"any", "any-group” | LBM_SRC_TOPIC_ATTR_UMQ_STA« Message will be considered stable once
BLE_BEHAVIOR_ANY any group has reached intra-group stabil-
ity for the message. Default for all.
"majority" LBM_SRC _TOPIC_ATTR_UMQ_STA+ Message will be considered stable once

a majority of groups have reached intra-
group stability for the message.

"all", "all-groups”

LBM_SRC_TOPIC_ATTR_UMQ_STA«
BLE_BEHAVIOR_ALL

Message will be considered stable once
all groups have reached intra-group sta-
bility for the message.

"all-active" LBM_SRC_TOPIC_ATTR_UMQ_STA« Message will be considered stable once
BLE_BEHAVIOR_ALL_ACTIVE all active groups have reached intra-
group stability for the message.
43.1.61 umgq_retention_intragroup_stability _behavior (context)

The behavior that the context will follow when determining the stability of a message from an intra-group per-

spective.

This has a direct impact on the release policy for the context in that a message must be stable before it may be
released. To be stable, a message must first be stable within the group and then stable between groups.

Scope: context

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.
Version: This option was deprecated in UMQ 6.8

String value

Integer value

Description

"quorum”

LBM_SRC_TOPIC_ATTR_UMQ_STAB
LE_BEHAVIOR_QUORUM

Message is considered stable within the
group once a quorum (or majority) of the
queues have acknowledged the message
as stable. Default for all.

424 Deprecated Options
String value Integer value Description
"all", "all-stores" | LBM_SRC_TOPIC_ATTR_UMQ_STAB« | Message is considered stable with the
LE_BEHAVIOR_ALL group once all queues have acknowledged
the message as stable.
"all-active" LBM_SRC_TOPIC_ATTR_UMQ_STAB« | Message is considered stable with the

LE_BEHAVIOR_ALL_ACTIVE

group once all active queues have ac-
knowledged the message as stable.

43.1.62 umgq_retention_intragroup_stability_behavior (source)

The behavior that the source will follow when determining the stability of a message from an intra-group per-

spective.

This has a direct impact on the release policy for the context in that a message must be stable before it may be

released. To be stable, a message must first be stable within the group and then stable between groups.

LE_BEHAVIOR_QUORUM

Scope: source
Type: int
When to | Can only be set during object initialization.
Set:
Version: This option was implemented in LBM 3.6/UME 3.0/UMQ 1.0.
Version: This option was deprecated in UMQ 6.8
String value Integer value Description
"quorum” LBM_SRC_TOPIC_ATTR_UMQ_STAB« | Message will be considered stable within

the group once a quorum (or majority) of
the queues have acknowledged the mes-
sage as stable. Default for all.

"all", "all-stores” | LBM_SRC_TOPIC_ATTR_UMQ_STAB—
LE_BEHAVIOR_ALL

Message will be considered stable with the
group once all queues have acknowledged
the message as stable.

"all-active" LBM_SRC_TOPIC_ATTR_UMQ_STAB«-
LE_BEHAVIOR_ALL_ACTIVE

Message will be considered stable with
the group once all active queues have ac-
knowledged the message as stable.

43.1 Reference 425

43.1.63 use_transport_thread (receiver)

This option no longer functions.

It used to determine whether UM uses a thread from the receiver thread pool to process message data or if it
uses the context thread, which is the default. The MTT feature is replaced in 6.11 and beyond by Transport
Services Provider (XSP).

Scope: receiver

Type: int

When to | Can only be set during object initialization.

Set:

Version: This option was implemented in LBM 4.1/UME 3.1.
Version: This option was deprecated in UM 6.9

Version: This option was removed from UM in UM 6.11

String value | Integer value | Description
"1" 1 UM uses a thread from the receiver thread pool.

"Q" 0 UM uses the context thread to process message data. Default for all.

426 Deprecated Options

Chapter 44

Option Categories

441 UM UDP Port Values

Configuration Option Default Value
mim_destination_port (context) 14401
mim_incoming_destination_port (context) 14401
mim_outgoing_destination_port (context) 14401

resolver_multicast_incoming_port (context) | 12965

resolver_multicast_outgoing_port (context) 12965

resolver_multicast_port (context) 12965
resolver_unicast_destination_port (context) | 15380
resolver_unicast_port (context) 0 (pick open port)
resolver_unicast_port_high (context) 14406
resolver_unicast_port_low (context) 14402

transport_Ibtrm_destination_port (source) 14400

transport_Ibtrm_source_port_high (context) | 14399

transport_Ibtrm_source_port_low (context) 14390

transport_Ibtru_maximum_ports (context) 5
transport_Ibtru_port (source) 0 (pick open port)
transport_Ilbtru_port_high (context) 14389
transport_Ibtru_port_high (receiver) 14379
transport_lbtru_port_low (context) 14380
transport_lbtru_port_low (receiver) 14360

44.2 UM TCP Port Values

428 Option Categories

Configuration Option Default Value
request_tcp_port (context) 0 (use open port)
request_tcp_port_high (context) 14395
request_tcp_port_low (context) 14391
transport_tcp_maximum_ports (context) | 10
transport_tcp_port (source) 0 (pick open port)
transport_tcp_port_high (context) 14390
transport_tcp_port_low (context) 14371
ume_primary_store_port (source) 14567
ume_secondary_store_port (source) 14567
ume_tertiary_store_port (source) 14567

44.3 UM Multicast Group Values

Configuration Option Default Value
mim_address (context) 224.10.10.21
mim_incoming_address (context) 224.10.10.21
mim_outgoing_address (context) 224.10.10.21
resolver_multicast_address (context) 224.9.10.11
resolver_multicast_incoming_address (context) 224.9.10.11
resolver_multicast_outgoing_address (context) 224.9.10.11
transport_lbtrm_multicast_address (source) 0.0.0.0 (INADDRANY)
transport_lbtrm_multicast_address_high (context) | 224.10.10.14
transport_Ibtrm_multicast_address_low (context) 224.10.10.10

44.4 UM Timer Interval Values

Configuration Option Default Value
delivery_control_loss_check_interval (receiver) 0 (disabled)
implicit_batching_interval (source) 200 (0.2 sec)
mim_activity_timeout (context) 60000 (60 sec)
mim_delivery_control_loss_check_interval (context) 0 (disabled)
mim_ignore_interval (context) 500 (0.5 sec)
mim_implicit_batching_interval (context) 200 (0.2 sec)
mim_nak_backoff_interval (context) 200 (0.2 sec)
mim_nak_generation_interval (context) 10000 (10 sec)

44.4 UM Timer Interval Values

429

Configuration Option

Default Value

mim_nak_initial_backoff_interval (context)

50 (0.05 sec)

mim_nak_suppress_interval (context)

1000 (1 sec)

mim_sm_maximum_interval (context)

10000 (10 sec)

mim_sm_minimum_interval (context)

200 (0.2 sec)

mim_src_deletion_timeout (context)

30000 (30 sec)

rcv_sync_cache_timeout (receiver)

2000 (2 sec)

resolver_active_source_interval (context)

1000 (1 sec)

resolver_advertisement_maximum_initial_interval (source)

500 (0.5 sec)

resolver_advertisement_minimum_initial_duration (source)

5000 (5 sec)

resolver_advertisement_minimum_initial_interval (source)

10 (0.01 sec)

resolver_advertisement_minimum_sustain_duration (source)

60 (1 minute)

resolver_advertisement_sustain_interval (source)

1000 (1 sec)

resolver_context_advertisement_interval (context)

10000 (10 sec)

resolver_no_source_linger_timeout (wildcard_receiver)

1000 (1 sec)

resolver_query_interval (context)

100 (0.1 sec)

resolver_query_max_interval (wildcard_receiver)

0 (no query)

resolver_query_maximum_initial_interval (receiver)

200 (0.2 sec)

resolver_query_maximum_interval (wildcard_receiver)

1000 (1 sec)

resolver_query_minimum_duration (wildcard_receiver)

60 (1 minute)

resolver_query_minimum_initial_duration (receiver)

5000 (5 sec)

resolver_query_minimum_initial_interval (receiver)

20 (0.02 sec)

resolver_query_minimum_interval (wildcard_receiver)

50 (0.05 sec)

resolver_query_minimum_sustain_duration (receiver)

60 (1 minute)

resolver_query_sustain_interval (receiver)

1000 (1 sec)

response_tcp_deletion_timeout (context)

20000 (20 sec)

retransmit_request_generation_interval (receiver)

10000 (10 sec)

retransmit_request_interval (receiver)

500 (0.5 sec)

transport_Ibtipc_acknowledgement_interval (receiver)

500 (0.5 sec)

transport_Ibtipc_activity_timeout (receiver)

60,000 (60 sec)

transport_Ibtipc_client_activity _timeout (source)

10,000 (10 sec)

transport_Ibtipc_sm_interval (source)

10,000 (10 sec)

transport_Ibtrm_activity _timeout (receiver)

60000 (60 sec)

transport_Ibtrm_ignore_interval (source)

500 (0.5 sec)

transport_Ibtrm_nak_backoff_interval (receiver)

200 (0.2 sec)

transport_lbtrm_nak_generation_interval (receiver)

10000 (10 sec)

transport_lbtrm_nak_initial_backoff_interval (receiver)

50 (0.05 sec)

transport_lbtrm_nak_suppress_interval (receiver)

1000 (1 sec)

transport_lbtrm_preactivity_timeout (receiver)

0 (zero)

transport_lbtrm_rate_interval (context)

100 (0.1 sec)

transport_lbtrm_sm_maximum_interval (source)

10000 (10 sec)

transport_Ibtrm_sm_minimum_interval (source)

200 (0.2 sec)

transport_Ibtsmx_activity_timeout (receiver)

60,000 (60 sec)

transport_lbtsmx_sm_interval (source)

10,000 (10 sec)

transport_Ibtru_acknowledgement_interval (receiver)

500 (0.5 sec)

transport_Ibtru_activity_timeout (receiver)

60000 (60 sec)

transport_Ibtru_client_activity_timeout (source)

10000 (10 sec)

transport_lbtru_connect_interval (receiver)

100 (0.1 sec)

transport_lbtru_ignore_interval (source)

500 (0.5 sec)

430

Option Categories

Configuration Option

Default Value

transport_lbtru_nak_backoff_interval (receiver)

200 (0.2 sec)

transport_lbtru_nak_generation_interval (receiver)

10000 (10 sec)

transport_Ibtru_nak_suppress_interval (receiver)

1000 (1 sec)

transport_Ibtru_rate_interval (context)

100 (0.1 sec)

transport_Ibtru_sm_maximum_interval (source)

10000 (10 sec)

transport_Ibtru_sm_minimum_interval (source)

200 (0.2 sec)

transport_tcp_activity_timeout (receiver)

0

transport_topic_sequence_number_info_active_threshold (source) | 60

transport_topic_sequence_number_info_interval (source) 5000 (5 sec)

ume_ack_batching_interval (context)

100 (0.1 sec)

ume_activity_timeout (receiver)

0 (zero)

ume_activity_timeout (source)

0 (zero)

ume_message_stability_lifetime (source)

1200000 (20 min)

ume_message_stability_timeout (source)

20000 (20 sec)

ume_receiver_liveness_interval (context)

0 (disable)

ume_registration_interval (receiver)

500 (0.5 sec)

ume_registration_interval (source)

500 (0.5 sec)

ume_retransmit_request_generation_interval (receiver)

10000 (10 sec)

ume_retransmit_request_interval (receiver)

500 (0.5 sec)

ume_source_liveness_timeout (context) 0 (disable)
ume_state_lifetime (receiver) 0 (zero)
ume_state_lifetime (source) 0 (zero)

ume_store_activity _timeout (source)

10000 (10 sec)

ume_store_check_interval (source)

500 (0.5 sec)

umqg_command_interval (context)

500 (0.5 sec)

umq_delayed_consumption_report_interval (receiver)

0

umg_hold_interval (receiver)

10000 (10 sec)

umqg_message_retransmission_interval (context)

500 (0.5 sec)

umg_msg_total_lifetime (context)

0 (zero)

umg_msg_total_lifetime (source)

0 (zero)

umaq_queue_activity_timeout (context)

3000 (3.0 sec)

umaq_queue_check_interval (context)

500 (0.5 sec)

umaq_queue_query_interval (context)

200 (0.2 sec)

umaq_retransmit_request_interval (receiver)

500 (0.5 sec)

umgq_ulb_check_interval (source)

1000 (1 sec)

umgq_ulb_source_activity_timeout (receiver)

10000 (10 sec)

umgq_ulb_source_check_interval (receiver)

1000 (1 sec)

44.5 Options That May Be Set During Operation

Configuration Option

Default Value

implicit_batching_interval (source)

200 (0.2 seconds)

44.6 Options that Cannot Be Set Via Configuration Files

431

Configuration Option

Default Value

implicit_batching_minimum_length (source)

2048 (8192 for Microsoft Windows)

implicit_batching_type (source)

queue_age_enabled (event_queue)

0

queue_count_enabled (event_queue)

0

queue_delay warning (event_queue)

0 (not monitored)

queue_enqueue_notification (event_queue)

queue_service_time_enabled (event_queue)

0

queue_size_warning (event_queue)

0 (not monitored)

resolution_no_source_notification_threshold (receiver)

0 (do not notify)

resolution_number_of_sources_query_threshold (receiver)

10000000 (10 million)

resolver_active_source_interval (context)

1000 (1 second)

resolver_active_threshold (context)

60

resolver_maximum_advertisements (context)

0 (all topics)

resolver_maximum_queries (context)

0 (all topics with no source)

resolver_multicast_ttl (context)

16

resolver_query_interval (context)

100 (0.1 seconds)

resolver_query_max_interval (wildcard_receiver)

0 (do not query)

44.6 Options that Cannot Be Set Via Configuration Files

Configuration Option Default Value
immediate_message_receiver_function (context) NULL
immediate_message_topic_receiver_function (context) NULL
mim_unrecoverable_loss_function (context) NULL
pattern_callback (wildcard_receiver) NULL
receiver_create_callback (wildcard_receiver) NULL
receiver_delete_callback (wildcard_receiver) NULL
resolver_source_notification_function (context) NULL
resolver_string_hash_function_ex (context) NULL
source_cost_evaluation_function (context) NULL
source_event_function (context) NULL
source_notification_function (receiver) NULL
ume_force_reclaim_function (source) NULL
ume_recovery_sequence_number_info_function (receiver) | NULL
ume_registration_extended_function (receiver) NULL
ume_registration_function (receiver) NULL

	Introduction
	Configuration Overview
	Assignment Methods
	Assignment Flow
	Definitions
	Which Method Should I Use?
	Configuration Error Handling
	Host Name Resolution
	Configuration Files

	Plain Text Configuration Files
	Reading Plain Text Configuration Files

	Plain Text Configuration File Format

	XML Configuration Files
	XML Configuration Concepts
	XML Reference Names
	XML Object Names
	XML Application Names

	Order and Rule Specifications
	Constraining Configuration Values
	Restricting Topics
	Overlapping Topics

	UM Default Values
	Reading XML Configuration Files
	Using XML Configuration Files With a UM Application
	XML Configuration File Format
	Merging Multiple XML Configuration Files
	XML Configuration File Elements
	UM Element `¨<um-configuration>`¨
	UM Element `¨<applications>`¨
	UM Element `¨<application>`¨
	UM Element `¨<application-data>`¨
	UM Element `¨<hfxs>`¨
	UM Element `¨<topic>`¨
	UM Element `¨<options>`¨
	UM Element `¨<option>`¨
	UM Element `¨<deny>`¨
	UM Element `¨<allow>`¨
	UM Element `¨<event-queues>`¨
	UM Element `¨<event-queue>`¨
	UM Element `¨<contexts>`¨
	UM Element `¨<context>`¨
	UM Element `¨<wildcard-receivers>`¨
	UM Element `¨<wildcard-receiver>`¨
	UM Element `¨<receivers>`¨
	UM Element `¨<sources>`¨
	UM Element `¨<templates>`¨
	UM Element `¨<template>`¨
	UM Element `¨<license>`¨

	XML Configuration File DTD
	Sample XML Configuration File

	Attributes Objects
	Creating An Attributes Object
	Setting an Option from a Binary Value
	Setting an Option from Arrays of Binary Values

	Setting an Option from a String Value
	Getting an Option as a Binary Value
	Getting an Option as a String Value
	Deleting an Attributes Object

	Access to Current Operating Options
	Retrieving Current Option Values
	Getting Current Option as a Binary Value
	Getting Current Option as a String Value

	Modifying Current Option Values
	Setting Current Option from a Binary Value
	Setting Current Option from a String Value

	Example Configuration Scenarios
	Highest Throughput
	Lowest Latency
	Creating Multicast Sources
	Disabling Aspects of Topic Resolution
	Disabling Topic Advertisements
	Disabling Receiver Topic Queries
	Disabling Wildcard Topic Queries
	Disabling Store (Context) Name Queries
	All But the Minimum Topic Resolution Traffic

	Unicast Resolver
	Re-establish Pre-4.0 Topic Resolution
	Re-establish Pre-LBM 3.3 (Pre-UME 2.0) Port Defaults
	Configure New Port Defaults

	Interrelated Configuration Options
	Preventing NAK Storms with NAK Intervals
	Preventing Tail Loss With TSNI and NAK Interval Options
	Preventing IPC Receiver Deafness With Keepalive Options
	Preventing Erroneous LBT-RM/LBT-RU Session Timeouts
	Preventing Errors Due to Bad Multicast Address Ranges
	Preventing Store Timeouts
	Preventing ULB Timeouts
	Preventing Unicast Resolver Daemon Timeouts
	Preventing Undetected Late Join Loss
	Preventing Undetected Loss
	Preventing Store Registration Hangs

	General Configuration Guidelines
	Case Sensitivity
	Specifying Interfaces
	Interface Device Names and XML

	Socket Buffer Sizes
	Port Assignments
	Ephemeral Ports
	Network VS Host Order

	Reference Entry Format

	Special Notes
	Configuring Multi-Homed Hosts
	Traversing a Firewall

	Major Options
	Reference
	broker (context)
	compatibility_include_pre_um_6_0_behavior (context)
	context_event_function (context)
	context_name (context)
	datagram_acceleration_functions (context)
	default_interface (context)
	fd_management_type (context)
	file_descriptor_management_behavior (context)
	message_selector (receiver)
	multiple_receive_maximum_datagrams (context)
	operational_mode (context)
	operational_mode (xsp)
	ordered_delivery (receiver)
	receiver_callback_service_time_enabled (context)
	resolver_source_notification_function (context)
	source_event_function (context)
	source_includes_topic_index (context)
	transport (source)
	transport_demux_tablesz (receiver)
	transport_mapping_function (context)
	transport_session_multiple_sending_threads (context)
	transport_session_single_receiving_thread (context)
	transport_source_side_filtering_behavior (source)
	transport_topic_sequence_number_info_active_threshold (source)
	transport_topic_sequence_number_info_interval (source)
	transport_topic_sequence_number_info_request_interval (receiver)
	transport_topic_sequence_number_info_request_maximum (receiver)
	use_extended_reclaim_notifications (source)
	zero_transports_function (xsp)

	UDP-Based Resolver Operation Options
	Minimum Values for Advertisement and Query Intervals
	Reference
	disable_extended_topic_resolution_message_options (context)
	resolution_no_source_notification_threshold (receiver)
	resolution_number_of_sources_query_threshold (receiver)
	resolver_advertisement_maximum_initial_interval (source)
	resolver_advertisement_minimum_initial_duration (source)
	resolver_advertisement_minimum_initial_interval (source)
	resolver_advertisement_minimum_sustain_duration (source)
	resolver_advertisement_send_immediate_response (source)
	resolver_advertisement_sustain_interval (source)
	resolver_cache (context)
	resolver_context_name_activity_timeout (context)
	resolver_context_name_query_duration (context)
	resolver_context_name_query_maximum_interval (context)
	resolver_context_name_query_minimum_interval (context)
	resolver_datagram_max_size (context)
	resolver_domain_id_active_propagation_timeout (context)
	resolver_initial_advertisement_bps (context)
	resolver_initial_advertisements_per_second (context)
	resolver_initial_queries_per_second (context)
	resolver_initial_query_bps (context)
	resolver_query_maximum_initial_interval (receiver)
	resolver_query_minimum_initial_duration (receiver)
	resolver_query_minimum_initial_interval (receiver)
	resolver_query_minimum_sustain_duration (receiver)
	resolver_query_sustain_interval (receiver)
	resolver_receiver_map_tablesz (context)
	resolver_send_final_advertisements (source)
	resolver_send_initial_advertisement (source)
	resolver_source_map_tablesz (context)
	resolver_string_hash_function (context)
	resolver_string_hash_function_ex (context)
	resolver_sustain_advertisement_bps (context)
	resolver_sustain_advertisements_per_second (context)
	resolver_sustain_queries_per_second (context)
	resolver_sustain_query_bps (context)
	resolver_unicast_activity_timeout (context)
	resolver_unicast_change_interval (context)
	resolver_unicast_check_interval (context)
	resolver_unicast_force_alive (context)
	resolver_unicast_ignore_unknown_source (context)
	resolver_unicast_keepalive_interval (context)

	Multicast Resolver Network Options
	Reference
	resolver_multicast_address (context)
	resolver_multicast_incoming_address (context)
	resolver_multicast_incoming_port (context)
	resolver_multicast_interface (context)
	resolver_multicast_outgoing_address (context)
	resolver_multicast_outgoing_port (context)
	resolver_multicast_port (context)
	resolver_multicast_receiver_socket_buffer (context)
	resolver_multicast_ttl (context)

	Unicast Resolver Network Options
	Reference
	resolver_unicast_daemon (context)
	resolver_unicast_interface (context)
	resolver_unicast_port_high (context)
	resolver_unicast_port_low (context)
	resolver_unicast_receiver_socket_buffer (context)

	TCP-Based Resolver Operation Options
	Reference
	resolver_service (context)
	resolver_service_interest_mode (context)

	Transport TCP Network Options
	TCP Transport Session Management
	Reference
	transport_tcp_interface (receiver)
	transport_tcp_interface (source)
	transport_tcp_maximum_ports (context)
	transport_tcp_port (source)
	transport_tcp_port_high (context)
	transport_tcp_port_low (context)

	Transport TCP Operation Options
	Reference
	transport_session_maximum_buffer (source)
	transport_tcp_activity_method (receiver)
	transport_tcp_activity_timeout (receiver)
	transport_tcp_activity_timeout (source)
	transport_tcp_coalesce_threshold (source)
	transport_tcp_datagram_max_size (context)
	transport_tcp_dro_loss_recovery_timeout (receiver)
	transport_tcp_exclusiveaddr (source)
	transport_tcp_listen_backlog (source)
	transport_tcp_multiple_receiver_behavior (source)
	transport_tcp_multiple_receiver_send_order (source)
	transport_tcp_nodelay (source)
	transport_tcp_receiver_socket_buffer (context)
	transport_tcp_reuseaddr (source)
	transport_tcp_sender_socket_buffer (source)
	transport_tcp_use_session_id (source)

	Transport LBT-RM Network Options
	LBT-RM Transport Session Management
	Reference
	transport_lbtrm_destination_port (source)
	transport_lbtrm_multicast_address (source)
	transport_lbtrm_multicast_address_high (context)
	transport_lbtrm_multicast_address_low (context)
	transport_lbtrm_source_port_high (context)
	transport_lbtrm_source_port_low (context)

	Transport LBT-RM Reliability Options
	LBT-RM Datagram
	LBT-RM Source Ignoring NAKs for Efficiency
	LBT-RM Receiver Suppressing NAK Generation
	Reference
	transport_lbtrm_ignore_interval (source)
	transport_lbtrm_nak_backoff_interval (receiver)
	transport_lbtrm_nak_generation_interval (receiver)
	transport_lbtrm_nak_initial_backoff_interval (receiver)
	transport_lbtrm_nak_suppress_interval (receiver)
	transport_lbtrm_receiver_socket_buffer (context)
	transport_lbtrm_send_naks (receiver)
	transport_lbtrm_source_socket_buffer (context)
	transport_lbtrm_transmission_window_limit (source)
	transport_lbtrm_transmission_window_size (source)

	Transport LBT-RM Operation Options
	Reference
	transport_lbtrm_activity_timeout (receiver)
	transport_lbtrm_coalesce_threshold (source)
	transport_lbtrm_data_rate_limit (context)
	transport_lbtrm_datagram_max_size (context)
	transport_lbtrm_preactivity_timeout (receiver)
	transport_lbtrm_rate_interval (context)
	transport_lbtrm_receiver_timestamp (context)
	transport_lbtrm_recycle_receive_buffers (context)
	transport_lbtrm_retransmit_rate_limit (context)
	transport_lbtrm_sm_maximum_interval (source)
	transport_lbtrm_sm_minimum_interval (source)
	transport_lbtrm_source_timestamp (context)
	transport_lbtrm_tgsz (source)

	Transport LBT-RU Network Options
	LBT-RU Transport Session Management
	Reference
	transport_lbtru_interface (receiver)
	transport_lbtru_interface (source)
	transport_lbtru_maximum_ports (context)
	transport_lbtru_port (source)
	transport_lbtru_port_high (context)
	transport_lbtru_port_high (receiver)
	transport_lbtru_port_low (context)
	transport_lbtru_port_low (receiver)

	Transport LBT-RU Reliability Options
	Reference
	transport_lbtru_ignore_interval (source)
	transport_lbtru_nak_backoff_interval (receiver)
	transport_lbtru_nak_generation_interval (receiver)
	transport_lbtru_nak_initial_backoff_interval (receiver)
	transport_lbtru_nak_suppress_interval (receiver)
	transport_lbtru_receiver_socket_buffer (context)
	transport_lbtru_source_socket_buffer (context)
	transport_lbtru_transmission_window_limit (source)
	transport_lbtru_transmission_window_size (source)

	Transport LBT-RU Operation Options
	Reference
	transport_lbtru_acknowledgement_interval (receiver)
	transport_lbtru_activity_timeout (receiver)
	transport_lbtru_client_activity_timeout (source)
	transport_lbtru_client_map_size (source)
	transport_lbtru_coalesce_threshold (source)
	transport_lbtru_connect_interval (receiver)
	transport_lbtru_data_rate_limit (context)
	transport_lbtru_datagram_max_size (context)
	transport_lbtru_maximum_connect_attempts (receiver)
	transport_lbtru_rate_interval (context)
	transport_lbtru_recycle_receive_buffers (context)
	transport_lbtru_retransmit_rate_limit (context)
	transport_lbtru_sm_maximum_interval (source)
	transport_lbtru_sm_minimum_interval (source)
	transport_lbtru_use_session_id (source)

	Transport LBT-IPC Operation Options
	LBT-IPC Transport Session Management
	Reference
	transport_lbtipc_activity_timeout (receiver)
	transport_lbtipc_behavior (source)
	transport_lbtipc_datagram_max_size (context)
	transport_lbtipc_dro_loss_recovery_timeout (receiver)
	transport_lbtipc_id (source)
	transport_lbtipc_id_high (context)
	transport_lbtipc_id_low (context)
	transport_lbtipc_maximum_receivers_per_transport (source)
	transport_lbtipc_pend_behavior_linger_loop_count (context)
	transport_lbtipc_receiver_operational_mode (context)
	transport_lbtipc_receiver_thread_behavior (context)
	transport_lbtipc_recycle_receive_buffers (context)
	transport_lbtipc_sm_interval (source)
	transport_lbtipc_transmission_window_size (source)

	Transport LBT-SMX Operation Options
	LBT-SMX Transport Session Management
	Reference
	transport_lbtsmx_activity_timeout (receiver)
	transport_lbtsmx_datagram_max_size (source)
	transport_lbtsmx_id (source)
	transport_lbtsmx_id_high (context)
	transport_lbtsmx_id_low (context)
	transport_lbtsmx_maximum_receivers_per_transport (source)
	transport_lbtsmx_message_statistics_enabled (context)
	transport_lbtsmx_sm_interval (source)
	transport_lbtsmx_transmission_window_size (source)

	Transport Acceleration Options
	Myricom® Datagram Bypass Layer (DBL™)
	Reference
	dbl_lbtrm_acceleration (context)
	dbl_lbtru_acceleration (context)
	dbl_mim_acceleration (context)
	dbl_resolver_acceleration (context)

	Solarflare® Onload
	Reference
	onload_acceleration_stack_name (receiver)
	onload_acceleration_stack_name (source)

	UD Acceleration for Mellanox® Hardware Interfaces
	Reference
	resolver_ud_acceleration (context)
	ud_acceleration (context)

	Smart Source Options
	Reference
	mem_mgt_callbacks (source)
	smart_src_enable_spectrum_channel (source)
	smart_src_max_message_length (source)
	smart_src_message_property_int_count (source)
	smart_src_retention_buffer_count (source)
	smart_src_user_buffer_count (source)
	transport_lbtrm_smart_src_transmission_window_buffer_count (source)
	transport_lbtru_smart_src_transmission_window_buffer_count (source)

	Encrypted TCP Options
	Reference
	tls_certificate (context)
	tls_certificate_key (context)
	tls_certificate_key_password (context)
	tls_cipher_suites (context)
	tls_compression_negotiation_timeout (context)
	tls_trusted_certificates (context)
	use_tls (context)

	Compressed TCP Options
	Reference
	compression (context)

	Multicast Immediate Messaging Network Options
	Reference
	mim_address (context)
	mim_destination_port (context)
	mim_incoming_address (context)
	mim_incoming_destination_port (context)
	mim_outgoing_address (context)
	mim_outgoing_destination_port (context)

	Multicast Immediate Messaging Reliability Options
	Reference
	mim_ignore_interval (context)
	mim_nak_backoff_interval (context)
	mim_nak_generation_interval (context)
	mim_nak_initial_backoff_interval (context)
	mim_nak_suppress_interval (context)
	mim_send_naks (context)
	mim_transmission_window_limit (context)
	mim_transmission_window_size (context)

	Multicast Immediate Messaging Operation Options
	Reference
	immediate_message_receiver_function (context)
	immediate_message_topic_receiver_function (context)
	mim_activity_timeout (context)
	mim_delivery_control_activity_check_interval (context)
	mim_delivery_control_activity_timeout (context)
	mim_delivery_control_order_tablesz (context)
	mim_implicit_batching_interval (context)
	mim_implicit_batching_minimum_length (context)
	mim_ordered_delivery (context)
	mim_sm_maximum_interval (context)
	mim_sm_minimum_interval (context)
	mim_sqn_window_increment (context)
	mim_sqn_window_size (context)
	mim_src_deletion_timeout (context)
	mim_tgsz (context)
	mim_unrecoverable_loss_function (context)

	Late Join Options
	Estimating Recovery Time
	Reference
	late_join (source)
	late_join_info_request_interval (receiver)
	late_join_info_request_maximum (receiver)
	retransmit_initial_sequence_number_request (receiver)
	retransmit_message_caching_proximity (receiver)
	retransmit_request_interval (receiver)
	retransmit_request_maximum (receiver)
	retransmit_request_message_timeout (receiver)
	retransmit_request_outstanding_maximum (receiver)
	retransmit_retention_size_limit (source)
	retransmit_retention_size_threshold (source)
	use_late_join (receiver)

	Off-Transport Recovery Options
	Reference
	otr_message_caching_threshold (receiver)
	otr_request_initial_delay (receiver)
	otr_request_log_alert_cooldown (receiver)
	otr_request_maximum_interval (receiver)
	otr_request_message_timeout (receiver)
	otr_request_minimum_interval (receiver)
	otr_request_outstanding_maximum (receiver)
	use_otr (receiver)

	Unicast Immediate Messaging Network Options
	Reference
	request_tcp_bind_request_port (context)
	request_tcp_interface (context)
	request_tcp_port (context)
	request_tcp_port_high (context)
	request_tcp_port_low (context)

	Unicast Immediate Messaging Operation Options
	Reference
	request_tcp_exclusiveaddr (context)
	request_tcp_listen_backlog (context)
	request_tcp_reuseaddr (context)
	response_session_maximum_buffer (context)
	response_session_sender_socket_buffer (context)
	response_tcp_deletion_timeout (context)
	response_tcp_interface (context)
	response_tcp_nodelay (context)

	Implicit Batching Options
	Reference
	implicit_batching_interval (source)
	implicit_batching_minimum_length (source)

	Delivery Control Options
	Burst Loss
	Reference
	channel_map_tablesz (receiver)
	delivery_control_loss_check_interval (receiver)
	delivery_control_maximum_burst_loss (receiver)
	delivery_control_maximum_total_map_entries (context)
	delivery_control_message_batching (context)
	mim_delivery_control_loss_check_interval (context)
	null_channel_behavior (receiver)
	source_notification_function (receiver)
	unrecognized_channel_behavior (receiver)

	Wildcard Receiver Options
	Reference
	pattern_type (wildcard_receiver)
	receiver_create_callback (wildcard_receiver)
	receiver_delete_callback (wildcard_receiver)
	resolver_no_source_linger_timeout (wildcard_receiver)
	resolver_query_maximum_interval (wildcard_receiver)
	resolver_query_minimum_duration (wildcard_receiver)
	resolver_query_minimum_interval (wildcard_receiver)
	resolver_wildcard_queries_per_second (context)
	resolver_wildcard_query_bps (context)
	resolver_wildcard_receiver_map_tablesz (context)

	Event Queue Options
	Reference
	event_queue_name (event_queue)
	queue_age_enabled (event_queue)
	queue_cancellation_callbacks_enabled (event_queue)
	queue_count_enabled (event_queue)
	queue_delay_warning (event_queue)
	queue_enqueue_notification (event_queue)
	queue_objects_purged_on_close (event_queue)
	queue_service_time_enabled (event_queue)
	queue_size_warning (event_queue)

	Ultra Messaging Persistence Options
	Reference
	ume_ack_batching_interval (context)
	ume_activity_timeout (receiver)
	ume_activity_timeout (source)
	ume_allow_confirmed_delivery (receiver)
	ume_application_outstanding_maximum (receiver)
	ume_confirmed_delivery_notification (source)
	ume_consensus_sequence_number_behavior (receiver)
	ume_consensus_sequence_number_behavior (source)
	ume_explicit_ack_only (receiver)
	ume_flight_size (source)
	ume_flight_size_behavior (source)
	ume_flight_size_bytes (source)
	ume_force_reclaim_function (source)
	ume_late_join (source)
	ume_message_stability_lifetime (source)
	ume_message_stability_notification (source)
	ume_message_stability_timeout (source)
	ume_proactive_keepalive_interval (context)
	ume_proxy_source (source)
	ume_receiver_liveness_interval (context)
	ume_receiver_paced_persistence (receiver)
	ume_receiver_paced_persistence (source)
	ume_recovery_sequence_number_info_function (receiver)
	ume_registration_extended_function (receiver)
	ume_registration_function (receiver)
	ume_registration_interval (receiver)
	ume_registration_interval (source)
	ume_repository_ack_on_reception (source)
	ume_repository_disk_file_size_limit (source)
	ume_repository_size_limit (source)
	ume_repository_size_threshold (source)
	ume_retention_intergroup_stability_behavior (source)
	ume_retention_intragroup_stability_behavior (source)
	ume_retention_size_limit (source)
	ume_retention_size_threshold (source)
	ume_retention_unique_confirmations (source)
	ume_session_id (context)
	ume_session_id (receiver)
	ume_session_id (source)
	ume_source_liveness_timeout (context)
	ume_sri_flush_sri_request_response (source)
	ume_sri_immediate_sri_request_response (source)
	ume_sri_inter_sri_interval (source)
	ume_sri_max_number_of_sri_per_update (source)
	ume_sri_request_interval (receiver)
	ume_sri_request_maximum (receiver)
	ume_sri_request_response_latency (source)
	ume_state_lifetime (receiver)
	ume_state_lifetime (source)
	ume_store (source)
	ume_store_activity_timeout (source)
	ume_store_behavior (source)
	ume_store_check_interval (source)
	ume_store_group (source)
	ume_store_name (source)
	ume_use_ack_batching (receiver)
	ume_use_late_join (receiver)
	ume_use_store (receiver)
	ume_user_receiver_registration_id (context)
	ume_write_delay (source)

	Ultra Messaging Queuing Options
	Reference
	umq_command_interval (context)
	umq_command_outstanding_maximum (context)
	umq_delayed_consumption_report_interval (receiver)
	umq_hold_interval (receiver)
	umq_index_assignment_eligibility_default (receiver)
	umq_message_stability_notification (source)
	umq_msg_total_lifetime (source)
	umq_queue_activity_timeout (context)
	umq_queue_participation (receiver)
	umq_queue_registration_id (context)
	umq_receiver_type_id (receiver)
	umq_retransmit_request_interval (receiver)
	umq_retransmit_request_outstanding_maximum (receiver)
	umq_session_id (context)
	umq_ulb_application_set (source)
	umq_ulb_application_set_assignment_function (source)
	umq_ulb_application_set_events (source)
	umq_ulb_application_set_load_factor_behavior (source)
	umq_ulb_application_set_message_lifetime (source)
	umq_ulb_application_set_message_max_reassignments (source)
	umq_ulb_application_set_message_reassignment_timeout (source)
	umq_ulb_application_set_receiver_activity_timeout (source)
	umq_ulb_application_set_receiver_keepalive_interval (source)
	umq_ulb_application_set_round_robin_bias (source)
	umq_ulb_check_interval (source)
	umq_ulb_events (source)
	umq_ulb_flight_size (source)
	umq_ulb_flight_size_behavior (source)
	umq_ulb_receiver_events (source)
	umq_ulb_receiver_portion (source)
	umq_ulb_receiver_priority (source)
	umq_ulb_source_activity_timeout (receiver)
	umq_ulb_source_check_interval (receiver)

	Hot Failover Operation Options
	Reference
	delivery_control_loss_check_interval (hfx)
	delivery_control_max_delay (hfx)
	delivery_control_maximum_burst_loss (hfx)
	delivery_control_maximum_total_map_entries (hfx)
	duplicate_delivery (hfx)
	hf_duplicate_delivery (receiver)
	hf_optional_messages (receiver)
	hf_receiver (wildcard_receiver)
	ordered_delivery (hfx)

	Automatic Monitoring Options
	Reference
	monitor_appid (context)
	monitor_appid (event_queue)
	monitor_interval (context)
	monitor_interval (event_queue)
	monitor_interval (receiver)
	monitor_interval (wildcard_receiver)
	monitor_transport (context)
	monitor_transport (event_queue)
	monitor_transport_opts (context)
	monitor_transport_opts (event_queue)

	Deprecated Options
	Reference
	delivery_control_loss_tablesz (receiver)
	delivery_control_order_tablesz (receiver)
	implicit_batching_type (source)
	network_compatibility_mode (context)
	otr_request_duration (receiver)
	pattern_callback (wildcard_receiver)
	rcv_sync_cache (receiver)
	rcv_sync_cache_timeout (receiver)
	receive_thread_pool_size (context)
	resolver_active_source_interval (context)
	resolver_active_threshold (context)
	resolver_context_advertisement_interval (context)
	resolver_maximum_advertisements (context)
	resolver_maximum_queries (context)
	resolver_query_interval (context)
	resolver_query_max_interval (wildcard_receiver)
	resolver_unicast_address (context)
	resolver_unicast_destination_port (context)
	resolver_unicast_port (context)
	retransmit_message_map_tablesz (source)
	retransmit_request_generation_interval (receiver)
	retransmit_retention_age_threshold (source)
	source_cost_evaluation_function (context)
	transport_datagram_max_size (context)
	transport_lbtipc_acknowledgement_interval (receiver)
	transport_lbtipc_client_activity_timeout (source)
	transport_lbtrdma_datagram_max_size (context)
	transport_lbtrdma_interface (source)
	transport_lbtrdma_maximum_ports (context)
	transport_lbtrdma_port (source)
	transport_lbtrdma_port_high (context)
	transport_lbtrdma_port_low (context)
	transport_lbtrdma_receiver_thread_behavior (context)
	transport_lbtrdma_transmission_window_size (source)
	ume_message_map_tablesz (source)
	ume_primary_store_address (source)
	ume_primary_store_port (source)
	ume_registration_id (source)
	ume_retransmit_request_generation_interval (receiver)
	ume_retransmit_request_interval (receiver)
	ume_retransmit_request_maximum (receiver)
	ume_retransmit_request_outstanding_maximum (receiver)
	ume_secondary_store_address (source)
	ume_secondary_store_port (source)
	ume_tertiary_store_address (source)
	ume_tertiary_store_port (source)
	umq_flight_size (context)
	umq_flight_size (source)
	umq_flight_size_behavior (context)
	umq_flight_size_behavior (source)
	umq_message_retransmission_interval (context)
	umq_message_stability_notification (context)
	umq_msg_total_lifetime (context)
	umq_queue_check_interval (context)
	umq_queue_name (source)
	umq_queue_participants_only (source)
	umq_queue_query_interval (context)
	umq_require_queue_authentication (context)
	umq_retention_intergroup_stability_behavior (context)
	umq_retention_intergroup_stability_behavior (source)
	umq_retention_intragroup_stability_behavior (context)
	umq_retention_intragroup_stability_behavior (source)
	use_transport_thread (receiver)

	Option Categories
	UM UDP Port Values
	UM TCP Port Values
	UM Multicast Group Values
	UM Timer Interval Values
	Options That May Be Set During Operation
	Options that Cannot Be Set Via Configuration Files

