(‘» Informatica

Ultra Messaging (version 6.13)

Guide for Persistence

Contents

1

2

3

3.1
3.2
3.3
3.4
3.5
3.6

4
4.1

Introduction

Persistence Overview

Persistence Concepts
Persistent Store Concept
Registration Identifier Concept L
Delivery Confirmation Concept e
Release Policy e
Message Stability Concept

Quorum/Consensus Store Failover

Persistence Architecture

Persistent Store Architecture L
41.1 Store Processesand Instances
4.1.2 Source Repositories e e e
4.1.3 Repository Thresholds and Limits
4.1.4 Tolerance Persistent Store Fault Tolerance,
4.1.5 Identifying Persistent Stores L

5 Operational View

5.1

5.2

5.3

General Persistence Operation e e e e e e
5.1.1 Source Registration L
5.1.2 Source Registration Information (SRI) oL
Receiver Registration
5.2.1 Receiver Registration Process
5.2.2 Persistence Normal Operation
5.2.3 Persistence Flight Size
5.2.4 Receiver Recovery e e e e
5.2.5 Registration Limitations
Receiver-paced Persistence Operations
5.3.1 RPPRegistration e e

5.83.2 RPP Normal Operation e e

10
10
10
11
11

13
14
14
15
15
16
17

CONTENTS

RPP Message Recovery
RPP Deregistration
Implementing RPP
Example RPP Configuration Files
RPP Cross Feature Functionality
Persistence Events
Persistence Source Events

5.4.2 Persistence Receiver Events

5.4.3 Persistence Context Events

6 Store Repository Profiling (SRP)
Using the SRP API

umesnaprepo Man Page

7 Enabling Persistence

Starting Configuration
Adding the Store to a Source
Adding Fault Recovery with Registration IDs
Enabling Persistence Between the Source and Store
Enabling Persistence in the Source
Smart Sources and Persistence

Enabling Persistence in the Receiver

8 Demonstrating Persistence
Running Persistent Example Applications
Single Receiver Fails and Recovers
Single Source Fails and Recovers

Single Store Fails

9 Designing Persistence Applications
Registration Identifiers
Use Static RegIDs
9.1.2 Save Assigned RegIDs
9.1.3 Managing RegIDs with Session IDs
Designing Persistent Sources

New or Re-Registration
Sources Must Be Able to Resume Sending
Source Message Retention and Release
Forced Reclaims
Source Release Policy Options

Confirmed Delivery

CONTENTS

9.2.7 Source EventHandler e
9.2.8 Source Event Handler - Stability, Confirmationand Release
9.2.9 Mapping Your Message Numbers to Sequence Numbers

9.2.10 Receiver Liveness Detection

9.3 Designing Persistent Receivers
9.3.1 Receiver ReglD Management
9.3.2 Recovery Management e

9.3.3 Duplicate Message Delivery
9.3.4 Setting Callback Function to

Set Recovery Sequence Number

9.3.5 Persistence Message Consumption

9.3.6 Immediate Message Consumption

9.3.7 Delayed Message Processing

9.3.8 Batching Acknowledgments
9.3.9 ACKOrdering
9.3.10 Explicit Acknowledgments .

9.3.11 Object-free Explicit Acknowledgments

9.4 Designing Persistent Stores
9.4.1 StoreLogFile
9.4.2 Store RollingLogs

9.4.3 Quorum/Consensus StoreUsageo e

9.4.4 Sources Using Quorum/Consensus Store Configuration

9.5 Persistent Fault Recovery

9.5.1 Persistent Source Recovery

9.5.2 Persistent Receiver Recovery e

9.6 Callable Store
9.7 Store Thread Affinity

10 Persistence Fault Tolerance

10.1 Message Loss Recovery

10.2 Configuring for Persistence and Recovery

10.2.1 Source Considerations . .

10.2.2 Receiver Considerations .

10.2.3 Store Configuration Considerations e

10.3 Persistence Proxy Sources

10.3.1 How Proxy Sources Operate

10.3.2 Activity Timeout and State Lifetimes

10.3.3 Enabling the Proxy Sources
10.3.4 Proxy Source Elections . .

10.3.5 Proactive Retransmissions

11 Man Pages for Store

58
60
62
64
65
65
68
69
69
70
71
71
72
72
73
73
74
75
75
75
76
76
77
77
78
78

81
81
82
82
83
83
85
85
86
88
88
88

91

CONTENTS

11.1 Umestored ManPage

11.2 UmestoredsManPage

12 Configuration Reference for Umestored

12.1 Store XML Configuration File Elements
12.1.1 UMP Element "<ume-store>"
12.1.2 UMP Element "<stores>",
12.1.3 UMP Element "<store>"
12.1.4 UMP Element "<topics>".,
12.1.5 UMP Element "<topic>"
12.1.6 UMP Element "<ume-attributes>"
12.1.7 UMP Element "<option>"
12.1.8 UMP Element "<publishing-interval>"
12.1.9 UMP Element "<group>".
12.1.10 UMP Element "<daemon>"

12.1.11 UMP Element "<daemon-monitor>"

12.1.12 UMP Element "<remote-config-changes-request>"

12.1.13 UMP Element "<remote-snapshot-request>"
12.1.14 UMP Element "<lbm-config>"
12.1.15 UMP Element "<web-monitor>"
12.1.16 UMP Element "<lbm-license-file>"
12.1.17 UMP Element "<xml-config>"
12.1.18 UMP Element "<gid>"
12.1.19 UMP Element "<pidfile>",
12.1.20 UMP Element "<uid>"
12.1.21 UMP Element "<log>"
12.2 Options for a Store's ume-attributes Element
12.2.1 OptionsforUM
12.2.2 StoreOptions
12.3 Options for a Topic's ume-attributes Element
12.4 Option Types for ume-attributes Elements
12.5 umestored ConfigurationDTD
12.6 Store Configuration Exampleo

12.6.1 xml-configTag

13 Store Daemon Statistics

13.1 Store Daemon Statistics Structureso,
13.1.1 Store Daemon Statistics Byte Swapping
13.1.2 Store Daemon Statistics String Buffers
13.1.3 Store Daemon Statistics Retx Counts

13.2 Store Daemon Statistics Configuration

CONTENTS 7

13.3 Store Daemon Control Requests 124
13.3.1 Store Daemon Control Request Addressing oo 124
13.3.2 Store Daemon Control Request Types 124
13.3.3 Request: Mark Stored Message Invalid 126
13.3.4 Request: Deregister Receiver L e 126
13.4 umedecmdManPage 127
13.4.1 umedcmd PublishMode 128
13.4.2 umedemd Mark Mode L e 128
13.4.3 umedcmd Deregister Mode L e 130
14 Store Web Monitor 131
14.1 Store Web Monitor Index Page 131
14.2 Store Web Monitor Stores Page e 132
14.3 Store Web Monitor Store Page 132
14.4 Store Web Monitor Source Page e 134
14.5 Store Web Monitor Receiver Page L 138

Chapter 1

Introduction

This document describes the Persistence functionality of the UMP and UMQ products.
For policies and procedures related to Ultra Messaging Technical Support, see UM Support.
© Copyright (C) 2004-2020, Informatica LLC. All Rights Reserved.

This software and documentation are provided only under a separate license agreement containing restrictions
on use and disclosure. No part of this document may be reproduced or transmitted in any form, by any means
(electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

A current list of Informatica trademarks is available on the web at https://www.informatica.«
com/trademarks.html.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party
notices are included with the product.

This software is protected by patents as detailedat ht tps: //www.informatica.com/legal /patents.«
html.

The information in this documentation is subject to change without notice. If you find any problems in this documen-
tation, please report them to us in writing at Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are
provided.

INFORMATICA LLC PROVIDES THE INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FIT«
NESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

This document assumes familiarity with the UM Concepts Guide.

See UM Glossary for Ultra Messaging terminology, abbreviations, and acronyms.

https://ultramessaging.github.io/UM_Support.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/legal/patents.html
https://www.informatica.com/legal/patents.html

10

Introduction

Chapter 2

Persistence Overview

Ultra Messaging provides two different qualities of service (QOS) levels, related to likelihood of successful message
delivery: streaming and persistence.

Streaming is the basic QOS level for UM. With Streaming, a published message will be delivered to a receiver
reliably if the following requirements are met:

+ the publisher and subscriber are both running,

» the message was published after the subscriber has had enough time to discover and join the publisher's
data stream (note that UM's Late Join feature which somewhat relaxes this requirement), and

« the data link between the publisher and subscriber has a low-enough error rate that any lost data has time to
be recovered by the Transport protocol within the time allotted for that recovery.

With Streaming, if a subscriber exits mid-stream (either intentionally or by failure), when that subscriber restarts, it
typically cannot recover the messages that were sent during its absence.

The higher QOS available for UM is Persistence, by which messages can be delivered even in cases where one or
more of the above requirements cannot be met. For example, if a publisher sends a message and then exits, and
after that a subscriber starts, Persistence is required for that message to be delivered.

UM's Persistence functionality is implemented by components called "Stores" obtaining copies of published mes-
sages and keeping them for a period of time so that receivers can recover messages if necessary.

A "Store Process" contains one or more independent "Store Instances”, where an "Instance" is an independent,
addressable, and configurable component. See Store Processes and Instances for more detail.

Store Instances are used by persistent subscribers to recover messages that cannot be recovered from the source
by the transport protocol. For example, messages published prior to the subscriber joining the transport can be
recovered from a Store Instance. After a period of overload or network outage that leads to loss of live messages,
the subscriber uses a Store Instance to recover messages that could not be recovered by the transport protocol.

With Persistence, if a subscriber exits mid-stream (either intentionally or by failure), when that subscriber restarts, it
will automatically recover the messages sent during its absence.

A system using UM Persistence comprises any number of sources, receivers, and Persistent Stores. Ultra Messag-
ing's unique design provides Parallel Persistence, which refers to the ability of a Store Instances to run indepen-
dently of sources and receivers and in parallel with messaging. The Store does not interfere with message delivery
to receiving applications.

Note

The UMS product offers streaming QOS. The UMP and UMQ products offer both streaming and persistence
QOS.

12

Persistence Overview

Chapter 3

Persistence Concepts

In discussing Persistence, we refer to specific recovery from the failures of sources, receivers, and persistent stores.
Failed sources can restart and resume sending data from the point at which they stopped. Receivers can recover
from failure and begin receiving data from the point immediately prior to failure. This process is sometimes called
durable subscription. Persistent stores can also be restarted and continue providing persistence to the sources and
receivers that they serve. Persistence is not designed to address ongoing, corrupting agents. Rather, if one of its
components fails, the design of Persistence enables it to continue supporting its ongoing operations at some level.

UM offers persistence in the following two modes:

» Source-paced Persistence (SPP) - default mode - the rate of message consumption by receivers does not
constrain the rate a source can send. The Store Instance writes all messages to non-volatile storage, and
messages are retained until they are overwritten when the allocated storage is filled. See Persistence Normal
Operation.

» Receiver-paced Persistence (RPP) - optional mode - the rate of message consumption by receivers does
constrain the rate a source can send. The Store Instance only writes message to non-volatile storage if one
or more RPP receiver is slow in consuming the messages. Messages are deleted from the Store Instance
once all receivers have consumed the RPP message. See RPP Normal Operation.

3.1 Persistent Store Concept

UM uses a daemon program known as the Store to persist source and receiver state outside the actual sources
and receivers themselves. A Store Instance can persist state in memory as well as on disk. State is persisted on a
per-topic, per-source basis by the store. Persistent stores need not be a single entity.

For more information, see:

+ Adding the Store to a Source,

» Designing Persistent Stores,

« Store Configuration Considerations,
* Umestored Man Page,

» Configuration Reference for Umestored.

14 Persistence Concepts

3.2 Registration Identifier Concept

UM persistence identifies sources and receivers with Registration Identifiers, also called Registration IDs or Regl«
Ds. A ReglID is a 32-bit number that uniquely identifies a source or a receiver to a Store Instance. This means that
ReglDs are also specific to a Store Instance and can be reused between individual Store Instances, if needed. No
two active sources or receivers can share a RegID or use the same ReglID at the same time. This point is critical:
since UM enables your application to use and handle ReglDs very freely, you must use ReglDs carefully to avoid
destructive results.

For more information, see:

» Adding Fault Recovery with Registration IDs
» Registration Identifiers

» ReglDs can also be managed easily with the use of Session IDs. See Managing ReglDs with Session IDs.

3.3 Delivery Confirmation Concept

A persistent receiver provides confirmation (acknowledgement) to the Store Instance as it consumes (processes)
messages. This is fundamental to the design of UM persistence.

The receiver can optionally provide this confirmation (acknowledgment) to the persistent source. These confirma-
tions are turned off by default, but can be requested through either or both two configuration options:

« ume_confirmed_delivery_notification (source) - deliver a source event to the application indicating mes-
sage consumption.

+ ume_retention_unique_confirmations (source) - include receiver consumption as part of source flight size
calculation.

These two options are unrelated to each other, except that they both request the receiver to send delivery confir-
mations. Note that when either or both of the options are set, the persistent source requests that the persistent
receiver supply delivery confirmations. The persistent receiver has the option to decline the request by setting the
option ume_allow_confirmed_delivery (receiver) to 0.

Note

Smart Sources do not support either form of delivery confirmation.

The latter option, ume_retention_unique_confirmations (source), can provide a form of receiver-pacing; the
source will not be allowed to exceed Persistence Flight Size beyond receiving applications. For more information,
see: Confirmed Delivery

3.4 Release Policy

Sources and persistent stores retain data according to a release policy, which is a set of rules that specifies when
a message can be reclaimed. Each rule would allow any message that complies with the rule to be reclaimed.
However, a message must comply with all rules before it can be reclaimed. Conversely, any message not complying
with all rules will not be reclaimed. A source or Store Instance retains messages until its retention policy dictates
the message may be removed. Sources and stores use slightly different retention policies based on their individual
roles.

3.5 Message Stability Concept 15

For more information, see Source Message Retention and Release.

3.5 Message Stability Concept

Sources send messages to both receivers and to Store Instances. Messages become stable once the message has
been persisted at the store or a set of stores, and those stores acknowledge stability to the sources. Since it takes
time to write messages to disk and signal stability, the source is allowed to continue sending messages while waiting
for stability acknowledgements. Any messages sent but not yet acknowledged are said to be "<i>in flight</i>".
The number of in-flight messages is normally limited. For more information, see Persistence Flight Size.

In addition, UM informs the application when messages are stabilized. Until that stability acknowledgement is
received, the source can not assume the messages will be successfully delivered. The message stability acknow!-
edgement is vital to ensuring that messages will not be lost. For more information, see Source Message Retention
and Release.

3.6 Quorum/Consensus Store Failover

Typically, multiple Store Instances are deployed for simultaneous redundant operation. In this configuration, one or
more Stores (or the hosts they run on) can fail without impacting the message flow from sources to receivers, as
long as a quorum of the configured Stores is operational. UM defines a quorum as a majority of the configured
Stores. E.g. if 3 Store Instances are configured, messaging can continue as long as at least 2 are operational. If 5
Store Instances are configured, messaging can continue if at least 3 are operational. (Quorum/Consensus requires
an odd number of Store Instances.)

16

Persistence Concepts

Chapter 4

Persistence Architecture

As shown in the diagram, UM provides messaging functionality as well as persistent operation.

Soprcg Receiver
Application Application
Source = Delivery Confirmation Receiver
Transport Sessions,

Topic Resolution

UDP or TCP

Registration

'\
N\

Message Stability

Retransmissions /

Last Received Registration,

Consum ption,
Retransmission Requests

Persistent
H-...____ - _SHE_ - ____'__..-'

The highlights of this architecture are:

» Sources communicate with Store Instances
« Receivers communicate with Store Instances

» Sources communicate with receivers

Note that the Store is not supported on all platforms. For example, while Solaris supports persistent clients (source
and receiver), you cannot run a Store on an Solaris system. However, an Solaris-based client can interoperate with
a store running an any other supported platform.

18 Persistence Architecture

4.1 Persistent Store Architecture

The ume st ored daemon runs the persistent Store Process. You can configure multiple Store Instances per Store
Process using the UMP Element "<store>" in the Store's XML configuration file. See Configuration Reference for
Umestored. Individual Store Instances can use separate disk cache and disk state directories and be configured to
persist messages for multiple sources (topics), which are referred to as "source repositories". Each Store Process
has an optional Web Monitor for statistics monitoring. See Store Web Monitor.

Store Architecture

Store A
Repository 1 . Repository 3
{topic AAA) fiepositary 2 (tapic CCC)
(topic BEEB)
Store B)) = umestored
Repository 1 5 n 2 Repository 3
topic DDD Sl {topic FFF)
(top :I (topic EEE)
= | ’
Store C
FtEpo.silc:-w 1 Repository 2 Repnslltcnrv 3
(topic GGG) (topic HHH) (topic J11)

4.1.1 Store Processes and Instances

When the Store daemon is started on a host, the process is known as the "Store Process". That Store Process
contains one or more "Store Instances". A Store Instance is an independent, addressable, and configurable com-
ponent. Each Store Instance is implemented with a set of interacting program threads. The threads of one Instance
do not interact or contend with the threads of other Instances in the same Process.

There is very little difference between running one Store Process with two Store Instances compared to two Store
Processes with one Store Instance each. They function and perform mostly the same. The reasons for choosing
one over the other have mostly to do with operational convenience. For example, running fewer processes on a
host is sometimes easier to manage. So operational simplicity suggests combining multiple Store Instances into a
single Store Process.

On the other hand, there are times when it is desired to shut down a Store Instance. But Store Instances cannot be
shut down individually; an entire Store Process must be shut down. For example: as message rates increase, you
may find that the host's CPU consumption is getting too high. You might want to migrate half of the Store Instances

4.1 Persistent Store Architecture 19

to a different host. But if all your Store Instances are in one Store Process, it is more disruptive perform the migration
since it requires shutting down the entire process and re-configuring. So operational flexibility suggests assigning
each desired Store Instance to its own Store process.

One specific case where a single Store Process with multiple Store Instances is generally preferred: using the Store
Daemon as a Windows Service. There is no simple way to run multiple copies of the Store Windows Service.

4.1.2 Source Repositories

Within a Store Instance, you configure repositories for individual topics, and each can have their own set of <topic>
options that affect the repository's type, size, liveness behavior and much more. If you have multiple sources sending
on the same topic, the Store Instance creates a separate repository for each source. UM uses the repository options
configured for the topic to apply to each source's repository. If you specify 48MB for the size of the repository and
have 10 sources sending on the topic, the Store Instance requires 480MB of storage for that topic.

A repository can be configured as one of the following types:

* memory - the repository maintain both state and data only in memory

« disk - the repository maintains state and data on disk, but also uses a memory cache.

There are also repository types called "reduced-fd" and "no-cache", which are deprecated and will be removed in a
future UM version. The "reduced-fd" repository is similar to "disk" but uses fewer OS File Descriptors. However, it
is deprecated due low performance. The "no-cache" repository maintains state (last sequence numbers published
and consumed) but does not maintain message content. It is deprecated due to lack of compelling use cases.

Note that the Store Instances within a Store Process can have different repository types.

4.1.3 Repository Thresholds and Limits

Repositories are designed as circular buffers. When age or size thresholds are met for a topic, the repository
removes or overwrites messages in order to prevent reaching its configured limit, which keeps space available for
new messages. UM provides UM configuration options and store configuration options to control threshold and limit
behavior.

UM configuration options control source repositories for all the sources sending within the context. The default for
these options, listed below, are 0 (zero) which makes the like-name option for the repository in the umestored
XML configuration file active.

+ ume_repository_disk_file_size_limit (source)
* ume_repository_size_limit (source)

* ume_repository_size_threshold (source)

See Ultra Messaging Persistence Options.

Note: The above configuration options' default values can be altered for individual sources and receivers by calling
Ibm_src_topic_attr_setopt() before you allocate the topic.

The umestored configuration options for source/topic repositories explained below can also be used to control
threshold and limit behavior. See Options for a Topic's ume-attributes Element for complete information about the
following repository options.

20

Persistence Architecture

Note

Whether you use the UM configuration options mentioned above or the source repository options explained
below to control source repository threshold and limit behavior, remember the values you configure apply to
a single source sending to the Store Instance. If you use the default repository size limit of 48 MB and you
have 1,000 sources sending to the Store Instance, UM creates a store with 1,000 source repositories of 48
MB each, which requires a store with approximately 48 GB of memory. And if you use the default disk file
size limit of 100 MB and you have 1,000 sources sending to the store, UM creates a store with 1,000 source
repositories of 100 MB each, which requires a store with disk storage capacity of approximately 100 GB.

Memory Repository

A memory type source repository has three configuration options that manage its size relative to its capacity.

* repository-age-threshold - This value determines how long the repository retains messages. The repository
deletes any message older than this configured value.

* repository-size-threshold - The size in bytes that a repository can reach before it begins to delete the oldest
retained messages. If the repository size falls below the threshold, it stops deleting old messages.

* repository-size-limit - The maximum size in bytes for the repository. Once this limit is reached, the repository
stops accepting new messages. The age and size thresholds should be set at levels that guarantee the size
limit is never met. You should consider how fast the source sends messages, the size of the messages and
the reliability of the receivers. For example, more reliable receivers mean less recovery instances, which
could mean a younger age threshold.

Disk Repositories

A disk type source repository maintains a memory cache in addition to the actual disk storage. It continually
persists messages from the memory cache to the disk, and uses the memory cache for receiver recovery first
before performing disk reads to access needed messages. It has four configuration options that manage its size
relative to its capacity.

* repository-age-threshold - This value determines how long the disk repository retains messages in its memory
cache. The repository deletes any message from memory cache older than this configured value. These
messages could have been persisted to disk and may be available for recovery.

* repository-size-threshold - The size in bytes that a repository can reach before it begins to delete the oldest
retained messages. These messages could have been persisted to disk and may be available for recovery. If
the disk repository memory cache size falls below the threshold, it stops deleting old messages.

* repository-size-limit - The maximum size in bytes for the disk repository's memory cache. Once this limit is
reached, the repository stops accepting new messages. The age and size thresholds should be set at levels
that guarantee the size limit is never met. You should consider how fast the source sends messages, the size
of the messages and the reliability of the receivers. For example, more reliable receivers mean less recovery
instances, which could mean a younger age threshold.

* repository-disk-file-size-limit - The maximum disk space (in bytes) for the disk repository. Once this limit
is reached, the repository overwrites old messages with new messages. Overwriting old messages is not
necessarily a negative situation provided you disk file size is adequate. However, if messages needed for
recovery are not in either the memory cache or the disk file, you may need to increase the disk file size to
ensure that overwritten messages are no longer needed for receiver recovery.

4.1.4 Tolerance Persistent Store Fault Tolerance

Sources and receivers register with a Store Instance and use individual repositories within the Store. Sources can
use redundant repositories configured in multiple Stores Instances in Quorum/Consensus (Q/C) arrangement for

4.1 Persistent Store Architecture 21

fault tolerance. Be aware that the arrangement of Store Instances into Quorum/Consensus groups is a function
of the source. l.e. the individual stores of a Q/C group are not aware of each other and do not coordinate their
activities.

Informatica strongly recommends that the Store Instances of a Q/C group run on separate physical hosts.

4.1.5 Identifying Persistent Stores

You can identify Store Instances with either a domainlD:interface:port, interface:port or a name. Using only
interface:port is more feasible in smaller implementations where the smaller number of possible IP addresses is
easier to manage. Larger implementations, especially those that span topic resolution domains using DROs, are
better served with Stores identified by a name or domainID:interface:port.

UM automatically resolves and maintains a mapping between a store name and a single topic resolution domain,
IP address and port. UM also automatically resolves store names if the store is located across one or more DROs
in a different topic resolution domain.

The following lists other specifics of store identification.

 Store sends ads at startup and in response to queries from sources.

« If a store receives a context name advertisement that matches its own store name, umestored issues a
warning in the store's log.

» Sources using named stores issue an information message to the application every time a resolved context
name changes its DomainID:IPaddress:port.

Using a Single Interface and Port

Configure Store Instance for a single interface and port.

1. Identify the store with only the interface:port, specified with the UMP Element "<store>" in the Store's con-
figuration file.

<store name="newyork-1" port="14567" interface="10.29.3.16">

2. Add the interface:port to ume_store (source) so sources can find and register with the Store Instance.

source ume_store 10.29.3.16:14567

To run the Store Instance on a different machine for any reason, you must change both the umestored XML
configuration file and the UM configuration file.

Using a Range of Interfaces

Configure a store with a range of IP addresses.

1. Identify the store with a range of interfaces specified in the ume st ored configuration file.

<store name="newyork-1" port="14567" interface="10.29.3.0/24">"

2. Add the active interface to ume_store (source) so sources can find and register with the store. You can only
specify one interface in the configuration file.

source ume_store 10.29.3.16:14567

22 Persistence Architecture

To run the store on a different machine, you must only change the interface specified in the ume_store (source)
UM configuration option, provided you use one of the interfaces in the range specified in in the umestored
configuration file.

Using a Store (context) Name

Configure a store with a name instead of just IP:port. '0.0.0.0' (INADDR_ANY) or no value is the default for the
store's interface attribute.

1. Identify the store with a context-name option that resolves to the interface and port - or range of interfaces
and port - specified in the ume st ored configuration file:

<store name="newyork-1" port="14567" interface="0.0.0.0">
<ume-attributes>

<option name="context-name" type="store" value="NEWYORK-1"/>
</ume-attributes>

OR

<store name="newyork-1" port="14567" interface="10.29.3.16">
<ume-attributes>

<option name="context-name" type="store" value="NEWYORK-1"/>
</ume-attributes>

OR

<store name="newyork-1" port="14567" interface="10.29.3.0/24">
<ume-attributes>

<option name="context-name" type="store" value="NEWYORK-1"/>
</ume-attributes>

2. Add the store's context name to ume_store_name (source) so sources can find and register with the store.

source ume_store_name NEWYORK-1

You do not have to make any configuration changes to run NEWYORK-1 on another machine, provided the new
interface matches one of those specified in the umestored configuration file. This includes running the Store
Instance in a different topic resolution domain.

Chapter 5

Operational View

Sources, receivers, and Store Instances interact in very controlled ways. This section illustrates the flow of network
traffic between the components during three modes of operation and also provides a reference of persistence
events.

Note

If your application is running with the UM configuration option request_tcp_bind_request_port (context) set
to zero, UIM port binding (also known as "request port binding") is turned off, which also disables persistence.

5.1 General Persistence Operation

5.1.1 Source Registration

UM sources heavily influence the persistence registration process. Sources send out registration information to
enable receivers to register with Store Instances and also monitor store liveness. If stores become unresponsive,
or if communication among sources, stores and receivers becomes impaired, the source directs re-registration.

The following outlines the major events in the source registration process with the Store Instance:

1. Source advertises topic over topic resolution transport

n

(optional) Source queries for and resolves store name

w

. Source registers with store by unicast

4. Source sends SRI over configured transport

The following diagram illustrates network flow during the registration process.

24 Operational View

Source Registration

UM Transport

Registration (unicast) ==
Response (unicast) e

SRI (transport) «—

Sources can find the correct Store Instance(s) to register with from the values configured for it in ume_store
(source) or ume_store_name (source). The configuration option ume_store (source) contains the IP address,
TCP port, registration ID, and group index for the store(s) to be used by the source. The configuration option ume«
_store_name (source) contains the names of the stores to be used by the source. ume_store_name (source)
requires that the store name is configured with the context-name option in the store's XML configuration file. See
Identifying Persistent Stores and the UMP Element "<store>".

Sources unicast registrations to the Store Instance. The store unicasts responses back to the source. Registrations
are on a per topic per source basis. Stores use ReglIDs to identify sources and receivers. After registration sources
may send data.

After the source successfully registers with all the stores for which it is configured, the source issues a Registration
Complete event and sends a Source Registration Information (SRI) record over the configured UM transport session.

For multiple stores, the source determines when to issue a Registration Complete event based on the set-
tings for the ume_retention_intragroup_stability_behavior (source) and ume_retention_intergroup_stability«
_behavior (source) options.

The source sends the SRI at the rate set by ume_sri_inter_sri_interval (source) until it reaches the maximum
number of SRIs set by ume_sri_max_number_of_sri_per_update (source).

5.2 Receiver Registration 25

Note

Persistence users are advised to follow the recommendations in Preventing Store Registration Hangs.

5.1.2 Source Registration Information (SRI)

An SRl is a control message sent over the UM transport by a source that contains store information that a receiver
needs to register with the Store Instance(s).

An SRI contains the following store information.

* Domain ID

+ |P address

» TCP port

« store index for all the stores with which the source registered
 group index for all the stores with which the source registered
« the source's Registration ID

» SRl overall version number and a separate version number for each store

The SRI contains one overall version number and a separate version number for each Store Instance. If stores
become unresponsive and the source must re-register when the store returns, the source increases the SRI version
number and the version numbers for the stores it re-registered with. The highest SRI version number indicates
the most current registration information. If a receiver gets an SRI with a higher version number than the version
number it has, the receiver examines the individual store version numbers and re-registers with the those stores
that have higher individual version numbers.

5.2 Receiver Registration

Receivers register with Store Instance(s) after receiving a SRI packet from the source sending on the receiver's
topic.

Receiver must receive an SRI before they can register with the Store Instance(s). The following lists the major
events in the receiver registration process.

1. Receiver resolves topic over topic resolution transport.
2. If source is not sending SRls, receiver sends SRI request by unicast.
3. Receiver receives SRI over its transport.

4. Receiver registers with store(s) by unicast.

The following diagram illustrates network flow during the registration process.

26 Operational View

Receiver Registration

UM Transport

Registration (unicast) ===
Response (unicast) —

SRI Request (unicast) =i
SRI (transport) —

5.2.1 Receiver Registration Process

Any receivers who have resolved their topic and joined the transport session when the source sends out SRls can
register with the Store Instance. Any receivers joining the transport session when the source is not sending SRls
can request an SRI from the source if they find that the persistence flag is set in the source's TIR during topic
resolution. The source responds with a SRI record.

Receivers unicast registrations to the Store Instance. The store unicasts responses back to the receivers. Stores
use ReglIDs to identify sources and receivers. After registration, receivers may handle recovery and send acknowl-
edgements.

Note: If a persistent receiver's initial registration fails, it does not become an Ultra Messaging receiver.

5.2.2 Persistence Normal Operation

The following diagram illustrates the normal operation of data reception and acknowledgement and also shows how
UM attains Parallel Persistence. The source sends message data to receivers and stores in parallel.

5.2 Receiver Registration 27

Persistence Operation

Delivery Confirmation

X e UM Transport

__/

Message Stability Consumption

€

Acknowledgement (unicast)

=
Data (unicast or multicast)

During normal persistence operation:
1. Sources transmit data to receivers and stores at the same time over UM multicast or unicast transport proto-
cols.

2. As the Store Instance receives and persists messages, it unicasts acknowledgements (message stability
control messages) to the source letting it know of successful reception and storage.

3. As receivers process and consume messages they unicast acknowledgments to the store letting the store
know of successful consumption of data.

4. If the source desires delivery confirmation, the receiver unicasts acknowledgements directly to the source

letting the source know of message consumption as well.

Normal operation and recovery can proceed at the same time. In addition, as a receiver consumes retransmitted
messages, the receiver sends normal acknowledgements for consumption and confirmed delivery (if requested by
the source).

5.2.3 Persistence Flight Size

UM supports a flight size mechanism that tracks messages in flight from a persistent source and responds when a
send would exceed the configured flight size (ume_flight_size (source) and/or ume_flight_size_bytes (source)).
You can configure ume_flight_size_behavior (source) to either:

* block any sends that would exceed the flight size or,

28 Operational View

« allow the sends while notifying your application.

UM considers a sent message in flight until the following two conditions are met:

» The source receives the configured number of stability acknowledgements from the Store Instance(s).
» The source has received the configured number of delivery confirmation notifications. (See ume_retention~

_unique_confirmations (source).)

If configuring both ume_flight_size (source) and ume_flight_size_behavior (source), UM uses the smaller of the
two flight sizes on a per send basis.

ume_flight_size (source) | ume_flight_size_bytes (source) | Result

Exceeded Exceeded ume_flight_size_behavior (source) executes
Exceeded Not Exceeded ume_flight_size_behavior (source) executes
Not Exceeded Exceeded ume_flight_size_behavior (source) executes
Not Exceeded Not Exceeded No flight size sending restriction

When using stores in a Quorum/Consensus configuration, intragroup and intergroup stability settings affect whether
UM considers a messages in flight. Consider a case with three Store Instances in a single QC group, and two
receivers. Given the default configuration, until a source receives a stability notification from two of the three stores,
UM considers a given message in-flight. In addition, if you set ume_retention_unique_confirmations (source)
to 2, that same message would be considered in flight until the source receives two stability notifications AND two
delivery confirmation notifications. See also Sources Using Quorum/Consensus Store Configuration.

Blocking Message Sends That Exceed the Flight Size

By default, when a source sends a message that exceeds it's flight size, the call to send blocks. For example,
suppose the flight size is set to 1. The first send completes but before the source receives a stability notification or
delivery confirmation, it initiates a second call to send. If the source uses a blocking send, the send call blocks until
the first message stabilizes. If the source uses a non-blocking send, the send returns an LBM_EWOULD_BLOCK.

Notification of Message Sends That Exceed the Flight Size

Alternatively, ume_flight_size_behavior (source) can be set to notify your application when a message send
surpasses the flight size. A send that exceeds the configured flight size succeeds and also triggers a flight size
notification, indicating that the flight size has been surpassed. Once the number of in-flight messages falls below
the configured flight size, another flight size notification source event is triggered, this time, informing the application
that the number of in-flight messages is below the source's flight size.

5.2.4 Receiver Recovery

Normal loss retransmission over the UM transport operates identically in persistence as it does in streaming, ac-
cording to the transport protocol. Stores do not participate in this transport-level loss retransmissions.

Persistent stores become involved in message recovery in circumstances where the transport protocol is not able
to recover. For example, if an application exits (either intentionally or by failure) and then restarts some time
later, the transport is not able to recover messages that were sent during the application's down time. When the
receiver restarts and re-registers, the receiver discovers the lowest message sequence number it did not receive,
and subsequently requests retransmissions of all messages not received, starting from this low sequence number.

For more on this process see, Persistent Receiver Recovery.

Another circumstance in which the store becomes involved in message recovery is if the transport protocol tries but
is unable to recover lost messages. In this case, Off Transport Recovery (OTR) is used. Note that OTR is available
in streaming, and is serviced by the source's retention buffer. But for persistent sources, the store services OTR.

5.2 Receiver Registration 29

See Off-Transport Recovery (OTR) for more information.
For more reliable persistence operation, Informatica recommends enabling OTR, especially when using DROs.

The following diagram illustrates receiver recovery:

Receiver Recovery

Only If Not Available

At the Store

<€
Retransmission Request (unicast)

>
Retransmission (unicast)

Receivers unicast retransmission requests. [f the store has the message, it unicasts the retransmission to the
receiver. If it does not have the message and is configured to forward the request to the source, it unicasts the
retransmission request to the source. If the source has the message, it unicasts the retransmission directly to the
receiver. See also Message Loss Recovery.

UM store sends retransmissions from a thread separate from the main context thread so as not to impede live
message data processing. The '<store>' configuration option, retransmission-request-processing-rate, sets the
store's capacity to process retransmission requests. The retransmission thread processes requests off a retrans-
mission queue which is set at 4 times the size of retransmission-request-processing-rate. The following UM Web
Monitor statistics indicate retransmission activity (see Store Web Monitor):

» Retransmission requests received rate
» Retransmission requests served rate
» Retransmission requests dropped rate

« Total retransmission requests dropped since store startup

30 Operational View

5.2.5 Registration Limitations

An important use case for UM Persistence is the idea that an application registers, either with a ReglD or a Session«
ID, and can then exit (gracefully or not) and subsequently it can re-register with the same RegID or SessionID and
pick up where it left off.

This re-registration has some limitations regarding operational parameters changing between the registration and
the re-registration. In general, an application re-registering a source or receiver should use the same operational
parameters that it used when it originally registered.

In particular, except as noted below, the re-registering application should use the same values for any "ume._...
configuration options supplied.

There are some exceptions to this rule:

« It is permissible for an application bind to a different IP address and/or Port. This is important because a
failure might render the original host unusable, so the application must be allowed to migrate to a different
host.

« It is permissible for the application to use a different transport type (TCP, LBT-RM, LBT-RM, IPC, etc). This
is important because a migration to a different host might impose different networking restrictions (e.g. no
multicast).

» The values for /ref umestoresource can change (IP/Port/TRD). This is important because a store might fail
and need to be migrated to a different host.

5.3 Receiver-paced Persistence Operations

The Receiver-paced Persistence mode of operation is primarily intended to prevent message loss to critical re-
ceivers, even if loss prevention requires blocking sources from sending. To achieve this, message retention in the
store is different from Source-paced persistence:

* In Source-paced Persistence (SPP), messages are retained in the store until the space is needed for new
messages. l.e. the message repository is a circular buffer which will overwrite when it "wraps". If a slow
or stopped receiver falls behind the source by more than the size of the store's repository, that receiver will
experience unrecoverable loss.

In Receiver-paced Persistence (RPP), messages are retained only for as long as registered receivers need
them to be retained in order to ensure recoverability of unacknowledged messages. When all necessary
receivers have acknowledged a message, that message is removed from the store's repository. If critical
receivers are unable to acknowledge messages and the repository has reached its configured capacity, the
source is blocked from sending additional messages. Blocking the source prevents sending of messages that
would otherwise overwrite unacknowledged messages.

Source pacing is typically chosen for applications where outgoing messages are generated by external events or
processes that cannot be slowed down or stopped (e.g. market data). Receiver pacing is typically chosen for
applications which are able to slow down or even halt the generation of messages (e.g. a user interface which can
inhibit user entry).

RPP is enabled with UM configuration options. No special API calls are needed.

RPP differentiates between two types of receivers:

« Blocking: A blocking receiver will block the source if additional messages would overwrite retained messages
not yet acknowledged by that receiver.

5.3 Receiver-paced Persistence Operations 31

« Non-blocking: A non-blocking receiver will not block the source; the source will be allowed to overwrite re-
tained messages not yet acknowledged by the non-blocking receiver. Thus a non-blocking receiver will expe-
rience unrecoverable message loss if it falls behind the source by more than the configured size of the store's
repository. (Note that this is the same behavior of source-paced persistence.)

Each receiver indicates its desired blocking behavior with the ume_receiver_paced_persistence (receiver) con-
figuration option. Both blocking and non-blocking receivers may register with the same store and subscribe to the
same source.

Here are important points when using RPP:

» The repository must be configured to allow RPP, and sources and receivers must be configured to request
RPP behavior during registration. Assuming the store is configured to allow RPP, the source determines
the pacing behavior (receiver v.s. source) when it registers. If a receiver requests a different behavior, its
registration will fail.

» The store tracks the number of registered blocking and non-blocking receivers for each message sent by the
source. A message is normally retained in the store repository until that number of receivers have acknowl-
edged consumption. Once all receivers acknowledge consumption of a message, that message is removed
from the repository.

» Sources can modify specific repository configuration options that pertain to RPP.

» Due to RPP's message retention policies, late joining RPP receivers cannot recover previously sent mes-
sages.

» With RPP, sources are required to configure their flight size in bytes, in addition to message count. (With SPP,
only message count flight size is required.) The value set for the source's ume_flight_size_bytes (source)
configuration option is checked against a maximum allowed value specified in the store's XML configuration
file.

» With RPP, if the store's repository is full with unacknowledged messages by blocking receivers, the store will
block the source by withholding stability acknowledgements, resulting in flight size blockage. See Persistence
Flight Size. (With SPP, once the repository is full, it will simply start overwriting the oldest messages with new
messages from the source.)

In addition, a disk write delay interval for the repository, improves performance by preventing unnecessary disk
activity.

RPP introduces the capability of a source application to set the following operational options on the store:

* repository-size-threshold
* repository-size-limit
* repository-disk-file-size-limit
* repository-disk-write-delay
With SPP, those parameters are set only by the store's XML configuration file alone. With RPP, the source's con-

figuration can optionally request a different value for those operating parameters, with the store's configured value
being used as a maximum allowed threshold.

5.3.1 RPP Registration

A source configures its desired pacing behavior (source paced v.s. receiver paced) with ume_receiver_paced_«
persistence (source) and ume_receiver_paced_persistence (receiver). If set to 1, it becomes an RPP source.
Assuming the store is configured to allow RPP, when an RPP source registers with the store, the store's repository

32 Operational View

for that source becomes an RPP repository. The receiver configures its desired pacing behavior with ume_«
receiver_paced_persistence (receiver), where 0 is source-paced and 1 or 2 are receiver-paced. The receiver's
pacing must match that of the source and store, otherwise the receiver's registration will fail. In addition, the choice
of 1 or 2 determines the receiver's desired blocking behavior (1=blocking, 2=non-blocking).

Note that although the configured pacing behavior must match between source and receiver, that does not mean that
the numerical setting of the ume_receiver_paced_persistence (source) and ume_receiver_paced_persistence
(receiver) options must be equal. If the source is 0 (source paced), then the receiver must also be 0. However, if the
source is 1 (receiver paced), then the receiver must be either 1 or 2, depending on the receiver's desired blocking
behavior.

As with Source-paced Persistence, RPP sources send Source Registration Information (SRI) packets to RPP re-
ceivers over the configured UM transport. RPP Receivers must wait for this information before they can initiate
registration requests to the store. See Source Registration and Receiver Registration for more information.

A source registration request includes the following:

+ Designation of an RPP topic

» Reconfigured repository configuration option values. Possible options are the 3 repository size options«
: repository-allow-ack-on-reception, repository-disk-write-delay, and source-flight-size-bytes-maximum.

» Re-registration must request the same configuration options as were initially requested, or the store will reject
the request.

A receiver registration request includes its designation as a RPP receiver.
The repository's registration response to both a source and a receiver acknowledges RPP mode.
Late Registering Receiver

A late joining receiver that registers after the first RPP topic message has been sent cannot recover any messages
sent prior to its initial registration. It is the user's responsibility to synchronize a receiver's initial registration with
the start of message transmission. This restriction does not apply to an RPP receiver that initially registered at an
earlier time and is now re-registering, as after a failure and restart. In that case, messages that were sent after the
receiver's initial registration will be retained by the store for recovery by the receiver.

Early Exiting Receiver

Each registered receiver has associated with it an activity timeout and a state lifetime. During normal operation, the
store monitors the operation of a registered receiver. If the store hears nothing from a receiver for the duration of the
activity timeout, the store assumes that the receiver has halted operation. Messages will be retained by the store
according to the receiver's configured blocking behavior. This gives the receiver time to restart and re-register. If an
inactive receiver re-registers before the state lifetime expires, the receiver will be able to recover all messages that
it missed.

However, if a receiver remains halted for the duration of the state lifetime, the store will delete the receiver state
information. If the repository is retaining messages for this receiver, those messages will be implicitly acknowledged
on behalf of the expired receiver, making them eligible for deletion if no other receivers' acknowledgements are
pending. If the source is blocked waiting for this receiver, the store will unblock the source. Finally, if the halted
receiver re-register after its state lifetime has expired, the store will treat it as an initial registration, and the messages
it missed will not be available.

UM Version RPP Compatibility Matrix

The following table indicates the result of registration requests across UM versions:

Version/Object Pre-ver. 5.3 Store Ver. 5.3 RPP Store | Ver. 5.3 Non-RPP Store
Pre 5.3 Source Granted Rejected * Granted *
5.3 RPP Source Granted - Source Error Granted * Rejected *

5.3 Non-RPP Source Granted Rejected * Granted *

5.3 Receiver-paced Persistence Operations 33

Version/Object Pre-ver. 5.3 Store Ver. 5.3 RPP Store | Ver. 5.3 Non-RPP Store
Pre 5.3 Receiver Granted Rejected Granted
5.3 RPP Receiver Granted - Receiver Error | Granted Rejected
5.3 Non-RPP Receiver | Granted Rejected Granted
Where:

» Granted - Source Error indicates that the store granted the registration but the source detected that RPP
behavior was not acknowledged by the store.

» Granted - Receiver Error indicates that the store granted the registration but the receiver detected that RPP
behavior was not acknowledged by the store.

» x Refers only to the re-registration of a source with an existing source repository because the source deter-
mines the repository's behavior for new registrations.

5.3.2 RPP Normal Operation

At a high level, the normal sequence of operations for RPP is the same as it is for SPP:

1. Sources transmit messages to receivers and stores at the same time over UM transports. Sources also
track stability acknowledgements from the store. A source is allowed to send messages ahead of stability
acknowledgements up to the configured flight size. If the flight size of unstabilized messages is reached, the
source is blocked from sending more messages pending stability acknowledgements from the store.

2. Receivers acknowledge consumption of received messages back to stores, and optionally to the sources.

3. Stores retain messages as appropriate, send stability acknowledgements to the sources for messages, and
tracks receiver consumption acknowledgements.

One important way that RPP differs from SPP is in the sending of stability acknowledgements. With SPP, the store
normally waits to send a stability acknowledgement until a message is "stable" on the configured storage medium,
either disk or memory. With RPP, the sending of stability acknowledgements is affected by receiver consumption
acknowledgements in two ways:

« If a message is acknowledged by all registered receivers before the message is written to disk, then there is
no need to retain the message at all. The message is deleted and a stability acknowledgement is sent to the
source.

« If the repository reaches its capacity limit and there are blocking receivers which have not acknowledged the
messages, the store stops sending stability acknowledgements. It is the lack of stability acknowledgements,
combined with the configured flight size, which causes the source to block. (To be precise, the store stops
sending stability when there is exactly one flight size worth of room available in the repository.)

The following also affect stability acknowledgements:

» Acknowledge on Reception - If the source is configured for ume_repository_ack_on_reception (source)
and the store is configured for repository-allow-ack-on-reception, the store sends a stability acknowledgement
to the source immediately upon reception of a message, even before any receiver acknowledgements are
received, and before the message is written to disk. This setting can increase system throughput for some
use cases, but also increases the risk of message loss in the event of a store failure.

34 Operational View

Receiver-paced Persistence
Acknowledge on Reception

£
Acknowledgement (unicast)

=
Data (unicast or multicast)

» Write Delay - The repository option repository-disk-write-delay allows the repository to hold messages in
memory cache longer before persisting them to disk. This delay increases the probability that all RPP re-
ceivers acknowledge message consumption, eliminating the need to persist the message to disk.

For memory store repositories, the options ume_repository_ack _on_reception (source) and repository-disk-
write-delay have no effect.

5.3.3 RPP Message Recovery

The normal way that RPP receivers recover messages is when they re-register within the state lifetime after a failure.
However, just as with SPP, there is the possibility that the transport session of the source is unable to successfully
deliver all messages to the receiver. In the event of unrecoverable loss at the transport session, the Off Transport
Recovery (OTR) method is also active for RPP receivers. OTR does not require the receiver to restart to recover
messages from the store. See the Off-Transport Recovery (OTR) for more information.

5.3.4 RPP Deregistration

You can deregister either sources or receivers using deregistration APls, (lbm_src_ume_deregister(), lbm_«
rcv_ume_deregister(), and Ibm_wrcv_ume_deregister()). UM deletes the state of deregistered objects. If you
deregister an RPP receiver, UM automatically decrements the number of receiver acknowledgements required
to maintain RPP behavior. The store issues Deregistration Successful events for every source or receiver that

5.3 Receiver-paced Persistence Operations 35

deregisters. Note that after deregistering a source or receiver, the object will still exist, but is no longer participating
in persistence. An attempt to send to a deregistered source will return an error. A deregistered receiver will continue
to deliver messages on the topic, but since it is no longer participating in persistence, it will be unable to acknowledge
those messages. If the application wants to re-join persistence, it must delete the source or receiver and re-create
it, allowing it to re-register. See Persistence Events.

Users should be cautious using the deregistration APIs, especially for sources. Source deregistration will immedi-
ately delete from the store any messages from that source which might be retained due to lack of receiver acknowl-
edgement. This deletion will render the receivers unable to recover those messages.

5.3.5 Implementing RPP
Follow the procedure below to configure Receiver-paced Persistence:

1. Set ume_receiver_paced_persistence (source) and ume_receiver_paced_persistence (receiver) in the
UM configurations. If only certain sources or receivers in a context are RPP, use lbm_xsetopt() in the source
or receiver application or use UM XML configuration files.

2. Set repository-allow-receiver-paced-persistence = 1 for the repository in the ume st ored XML configuration
file.

3. Coordinate ume_flight_size_bytes (source) between the repository and the source. Set the maximum
allowable flight size with the repository option, source-flight-size-bytes-maximum. Sources can reconfigure
its flight size bytes to a value less than or equal to the maximum.

4. Optional: coordinate the ume_repository_ack_on_reception (source) between the repository and the
source. If the repository has repository-allow-ack-on-reception enabled (1), the source can choose to keep it
enabled or turn it off. If the repository has repository-allow-ack-on-reception disabled (0), the source cannot
turn it on.

5. Optional: if the repository is a disk repository (repository-type = "disk"), set the maximum write delay with the
repository option, repository-disk-write-delay. Sources can set ume_write_delay (source) to a value less
than or equal to repository-disk-write-delay.

6. Optional: coordinate repository size options between the source and repository. If you wish to use the repos-
itory's values, you do not need to configure source configuration values. The repository sets a maximum for
these three options. The source can reconfigure the repository's options with values less than or equal to the
maximum configured for the repository using the following UM configuration options:

* ume_repository_size_threshold (source)
* ume_repository_size_limit (source)
« ume_repository_disk_file_size_limit (source)

5.3.6 Example RPP Configuration Files

The sample configuration files shown below show how a store configuration file establishes certain RPP option
values and the source can reconfigure them via a UM configuration file. Although only two files appear below, this
configuration represents two, single-store quorum/consensus groups and one UM context. A second umestored
configuration file would be required for the store store1rpp containing options and values identical to storeOrpp.

UM Configuration File for RPP

The following example UM configuration file will work for applications which have sources and/or receivers that must
be persisted using RPP. This configuration file is written assuming that the store is configured as shown in the next
section.

36 Operational View

» The source configures ume_flight_size_bytes (source) to 1,000,000 bytes. For this to work, the repository
must set source-flight-size-bytes-maximum to a value greater than or equal to 1,000,000.

» The source uses ume_write_delay (source) to override the repository's repository-disk-write-delay setting
to 1000 ms (1 second). Note that for this to work, the repository must set repository-disk-write-delay to a
value greater than or equal to 1000 ms.

» To remove clutter from the example, the transport type is allowed to default to TCP. Many persistence users
prefer LBT-RM to more quickly and efficiently distribute messages to stores and receivers.

##Sample UM Configuration File

Default to TCP transport

Multicast Resolver Network Options

context resolver_multicast_address 225.8.17.29
context resolver_multicast_interface 10.29.3.0/24

Persistence Options
source ume_store_name storelOrpp
source ume_store_name storelrpp
source ume_store_name store2rpp
source ume_session_id 535353
source ume_store_behavior gc
source ume_flight_size 500

RPP-oriented configs.

If this app creates receivers, have them request RPP mode.
receiver ume_receiver_paced_persistence 1
If this app creates sources, have them request RPP mode.

source ume_receiver_paced_persistence 1

source ume_flight_size_bytes 1000000

The following parameters override store configurations.
source ume_repository_size_threshold 104857600

source ume_repository_size_limit 209715200

source ume_repository_disk_file_size_limit 1073741824
source ume_repository_ack_on_reception 1

source ume_write_delay 1000

umestored Configuration File

In the following example store configuration file, RPP options appear in the section for the topic pattern, ABCx. This
configuration file is written assuming client applications (sources and receivers) use UM configuration files similar
to that shown in the preceding section.

There are actually three stores configured in Q/C. The other two's configurations should differ appropriately. For
example, change each instance of "store0" to "store1" and "store2" respectively.

<?xml version="1.0"?>
<ume-store version="1.3">
<daemon>
<log>/configs/stores/umestorel/umestored.log</log>
<pidfile>/configs/stores/umestorel/umestored.pid</pidfile>
<lbm-config>/configs/lbm_store0.cfg</lbm-config>
<web-monitor>x:15404</web-monitor>
</daemon>
<stores>
<store name="rpp-ump-test-store0" port="14667">
<ume-attributes>
<option type="store" name="disk-cache-directory" value="/stores/storel/cache"/>
<option type="store" name="disk-state-directory" value="/stores/storel/state"/>
<option type="store" name="context-name" value="storeOrpp"/>
</ume-attributes>
<topics>
<topic pattern="ABC.x" type="PCRE">
<ume-attributes>
<option type="store" name="repository-allow-receiver-paced-persistence" value="1"/>
<option type="store" name="repository-type" value="disk"/>
<option type="store" name="repository-size-threshold" value="104857600"/>
<option type="store" name="repository-size-limit" value="209715200"/>
<option type="store" name="repository-disk-file-size-limit" value="1073741824"/>
<option type="store" name="source-flight-size-bytes-maximum" value="4194304"/>
<option type="store" name="repository-allow-ack-on-reception" value="1"/>

5.4 Persistence Events

37

<option type="store" name="repository-disk-write-delay" value="1000"/>

</ume-attributes>
</topic>
</topics>
</store>
</stores>
</ume-store>

5.3.7 RPP Cross Feature Functionality

UM Feature Supported | Notes

Store Proxy Sources Yes

DRO Yes

UM Transports Yes

Multi-Transport Threads No The Multi-Transport Threads does not support persis-
tence.

Off-Transport Recovery Yes

Late Join No A receiver cannot recover messages sent prior to that
receiver's initial registration.

HF Yes

HFX Yes

Wildcard Receivers Yes

Message Batching Yes

Ordered Delivery Yes

Request/Response Yes

Multicast Immediate Messaging (MIM) | No MIM messages are not persisted and have no impact on
RPP.

Source Side Filtering Yes

Self-Describing Messaging (SDM) Yes

Pre-Defined Messaging (PDM) Yes

UM Spectrum Yes

Monitoring/Statistics Yes

Acceleration - DBL Yes

Acceleration - UD Yes

Implicit/Explicit Acknowledgements Yes

Registration ID/Session Management | Yes

Fault Tolerance - Quorum Consensus | Yes

UM SNMP Agent Yes

Ultra Messaging Manager Yes

Ultra Messaging Cache Yes

Ultra Messaging Desktop Services No

5.4 Persistence Events

The Ultra Messaging API provides a number of events, callbacks, messages, functions, and settings. The API
reference (C API, Java APl or .NET API) can be used to see the true extent of the API. In order to design successful

38

Operational View

applications, though, a high level understanding of the events and callbacks is essential.

» Events - Source events occur on a per source basis.

« Callbacks - Source and receiver application callbacks called directly from UM internal operation and usually
demands a return value be filled in and/or are informational in nature. Typically, applications do very little

processing in callbacks.

* Messages - Messages to receivers can simply contain UM information or have impact on operation.

Some specific languages, such as C, Java, or C# may have specific nuances for the various events and callbacks.
But, by and large, an application should plan on having access to the items listed in the following sections. For
details for a particular language, consult the Ultra Messaging APl documentation (C API, Java API or .NET API).

5.4.1 Persistence Source Events

The following events and callbacks are available for source applications:

Event Name

Type

Description

Store Registration Success

Source Event

Delivered once a source has successfully registered
with a single store. Event contains flags to show if the
source is "old" (i.e. a re-registration) as well as the
sequence number that the source should use as its
initial sequence number when sending, and the store
information

Store Registration Complete

Source Event

Delivered once a source has completed registration
with the required store(s). This indicates the source
may send as it desires. Event contains the consensus
sequence number.

Store Registration Error

Source Event

Delivered once a source has received an error from
the store indicating the requested registration was not
granted. Event contains an error message to indicate
what happened.

Store Message Stable

Source Event

Delivered once a message is stable at a single store.
Event contains the message sequence number and in-
dicates if the message meets Intergroup and/or Intra-
group stability requirements. Also includes the store
information.

Store Message Not Stable

Source Event

Delivered once a message's ume_message_
stability_lifetime (source) has expired. The source
no longer retransmits the message to the store.

Delivery Confirmation

Source Event

Delivered once a message has been confirmed as
delivered and processed by a receiving application.
Event contains the message sequence number as
well as indications whether the message has met the
unique confirmations requirement. Also contains the
receiver's Registration ID or Session ID.

5.4 Persistence Events

39

Event Name Type

Description

Store Unresponsive Source Event

Delivered once a store is seen to be unresponsive due
to failure or network disconnect. Event contains a mes-
sage with more details suitable for logging. If a majority
of a source's configured stores are unresponsive, the
application will not be allowed to send messages.

Store Message Reclaimed Source Event

Delivered once a message has passed through reten-
tion and is about to be released from memory or disk.
Event contains the message sequence number. (Re-
claim refers to storage space reclamation.)

Store Forced Reclaim Callback

Indicates a message is being forcibly released be-
cause the memory size limit (retransmit_retention«
_size_limit (source)) has been exceeded or the mes-
sage's ume_message_stability_lifetime (source)
has expired. Event contains the message sequence
number.

Flight Size Notification Callback

Indicates that the number of in-flight messages for a
source has exceeded or fallen below the configured
flight size limit for a source. The event indicates if the
flight size has been exceeded (OVER) by a new mes-
sage send or that a message recently stabilized has
reduced the number of in flight messages to less than
the flight size limit (UNDER).

RPP Source Registration Success Source Event

Delivered once a source has successfully registered
with a single store as a RPP source. The event con-
tains either the ReglID or Session ID, the sequence
number of the last message stored for the source and
store information.

RPP Source Registration Failure Source Event

Delivered once a source has received an error from
the store indicating the requested registration was not
granted. Event contains an error message to indicate
what happened.

RPP Source Deregistration Success Source Event

Delivered once a source successfully deregisters from
an individual store. The event contains either the
ReglID or Session ID, the sequence number of the last
message stored for the source and store information.

RPP Source Deregistration Complete | Source Event

Delivered once UM receives a successful deregistra-
tion event from all stores.

5.4.2 Persistence Receiver Events

The following callbacks and messages are available for receiver applications:

40

Operational View

Event Name

Type

Description

Store Registration Success

Message

Delivered once a receiver has successfully reg-
istered with a single store. Message contains
flags to show if the receiver is "old" (i.e. Not a
new registration) as well as the sequence num-
ber that the receiver should use as its low se-
quence number, and the store information. In
addition, the event contains the source's Regis-
tration ID or Session ID and the receiver's Reg-
istration ID or Session ID.

Store Registration Complete

Message

Delivered once a receiver has completed regis-
tration with the store(s) required. This indicates
the receiver may now receive data. Message
contains the consensus sequence number.

RPP Receiver Registration Success

Message

Delivered once a receiver has successfully reg-
istered with a single store as a RPP receiver.
Message contains either the ReglD or Session
ID, the sequence number of the last message
stored for the source and store information.

RPP Receiver Registration Failure

Message

Delivered once a receiver has received an error
from the store indicating the requested registra-
tion was not granted. Event contains an error
message to indicate what happened.

RPP Receiver Deregistration Success

Message

Delivered once a receiver successfully deregis-
ters from an individual store. The message con-
tains either the ReglID or Session ID for the re-
ceiver and the source, the sequence number of
the last message stored for the source and store
information.

RPP Receiver Deregistration Complete

Message

Delivered once UM receives a successful dereg-
istration event from all stores.

Store Registration Error

Message

Delivered once a receiver has received an error
from the store indicating the requested registra-
tion was not granted. Message contains an error
message to indicate what happened.

Store Registration Change

Message

Delivered once a change in store information
is received from the source. The extent of the
change is included in a message suitable for log-

ging.

Store Retransmission

Message

Retransmissions from recovery come in as nor-
mal messages with a flag indicating their status
as a retransmission.

Store Registration Function

Callback

Called once a receiver receives store informa-
tion from a source and UM desires to know the
ReglID to use for the receiver. Callback passes
the source ReglID, the store information, and the
source transport name. The return value is the
ReglD that UM should request to use from the
store.

5.4 Persistence Events

41

Event Name

Type Description

Store Recovery Sequence Number Function | Callback | Called once registration is about to complete

and the low sequence number must be deter-
mined. Callback passes the highest sequence
number seen from the source and the consen-
sus sequence number from the stores.

5.4.3 Persistence Context Events

The following events are available for the context of source and receiver applications.

Event Name Type

Description

Flight Size Notification | Context Event

Indicates that the number of in-flight Multicast Immediate Messages
has exceeded or fallen below the configured flight size limit. The
event indicates if the flight size has been exceeded (OVER) by a new
message send or that a message recently stabilized has reduced the
number of in flight messages to less than the flight size limit (UND+«
ER).

42

Operational View

Chapter 6

Store Repository Profiling (SRP)

To aid the users in operating and maintaining their Persistent Store deployment, Informatica provides an API that
will read Store cache and state files and return useful information about them, including message content. This is
the Store Repository Profiling (SRP) API. (The APl is not in the normal "lbm" library; see Using the SRP API.)

Also supplied is the "umesnaprepo” example program, which uses the SRP API to read the information and print to
standard out. It can be used as-is (see umesnaprepo Man Page), orits source code can be used as a guide for
users to develop their own management tools.

This APl and example program are supported on the same platforms that support the Persistent Store: 64-bit Linux
and 64-bit Windows. The APl is C-only (no Java or .NET). Also be aware that the API is read-only. The API does
not provide a way to modify the cache or state files.

IMPORTANT: due to differences in certain Windows and Linux data sizes, a given set of state and cache files needs
to be read on the same platform where it was generated. For example it is NOT valid to copy a Linux store's files to
a Windows machine and use the windows-based SRP API or command-line tool to read them.

Note

The Store Instance should NOT be running while the API or example program is used to read the Store files.
There currently is no tool that performs the same function on an actively running Store.

6.1 Using the SRP API

Use the umesnaprepo . c source code as your guide.
The "umeprofile.h" header file contains the needed definitions.

The API code is not contained within the normal "lbm" library. On Linux, it is in libumestorelib.a, a static library. On
Windows, it is in "umestore.lib", also static. It is not offered as a dynamic library.

The main API functions are:

* Ibm_srp_create()
» Ibm_srp_delete()
+ Ibm_srp_get_repo_state()
» Ibm_srp_free_repo_state()

« Ibm_srp_get_repo_message()

44 Store Repository Profiling (SRP)

6.2 umesnaprepo Man Page

The "umesnaprepo” command is an example program that uses the Store Repository Profiling (SRP) API to read
Store state and cache files and print useful information, including message content. It can be used as-is, or its
source code can be used as a guide for users to develop their own management tools.

Note

The Store Instance should NOT be running while the API or example program is used to read the Store files.
There currently is no tool that performs the same function on an actively running Store.

Usage: umesnaprepo -s state_dir [options]
Available options:

-c, ——-cache-dir=PATH cache file search PATH

-h, —--help display this help and exit

-n, ——no—-checksum disable cache checksum checking

-p, ——parse enable LBM header parsing

-s, ——state-dir=NUM state file search PATH [required]

-t, —-—truncate=NUM limit cache message displays to NUM bytes

-T, ——-terse summarize cache and skip cache message displays
For example:

umesnaprepo -s /UM/store5/state -c /UM/store5/cache

This examines the state and cache files and prints information for every Store Instance represented there. Here's
some example output:

Examining repository at index: 0
state_filename: /UM/store5/state/2545027182-state
cache_filename: /UM/storeb5/cache/2545027182-cache

Repository cache:
number of messages: 26

Receiver 0
regid: 2545027183
sqgqn: 25

Message sqgn [0]:

tsp: 1584022054.898262

disk_len: 37

disk_offset: 0

flags: 0x01
Message body:
00 00 00 25 a4 ab 82 e6 00 00 00 00 6d 65 73 73 N mess
61 67 65 20 30 00 00 00O 00 00 OO OO 00 00 0O 0O age O...........
00 00 00 00 00

In this example output, notice that the actual beginning of the message (the first byte is the "m" of "message 0") is at
offset 12 from the beginning of the buffer. The 12 bytes in front of the message is the "LBMC" header. The example
application lets you supply the "-T" option, which parses the LBMC header and starts printing the message at the
actual start of data.

Chapter 7

Enabling Persistence

The following table lists all source files used in this section. The files can be found in the /doc/example directory.
You can also access these file via the Sample Source Code tab in the left panel, under C Example Source Code.

Filename Content
ume-example-src.c Source Application
ume-example-rcv.c Receiver Application
ume-example-src-2.c Source Application 2
ume-example-rcv-2.c Receiver Application 2
ume—-example—-src-3.c Source Application 3
ume—-example-rcv-3.c Receiver Application 3
ume-example—config.xml | Persistent Store Configuration File

7.1 Starting Configuration

We begin with the minimal source and receiver used by the QuickStart Guide. To more easily demonstrate the
persistence features we are interested in, we have modified the QuickStart source and receiver in the following
ways.

» Modified the source to send 20 messages with a one second pause between each message.

» Modified the receiver to anticipate 20 messages instead of just one.

+ Assigned the topic, "UME Example", to both the source and receiver.

» Modified the receiver to not exit on unexpected receiver events.

The last change allows us to better demonstrate basic operation and evolve our receiver slowly without having to
anticipate all the options that UM provides up front.

Example files for our exercise are:

Filename Content
ume—example-src.« | Source Application
C

ume-example-rcv.« Receiver Application
C

46 Enabling Persistence

7.2 Adding the Store to a Source

The fundamental component of a persistence solution is the persistent store. To use a store, a source needs to be
configured to use one by setting ume_store (source) for the source. We can do that with the following piece of
code.

err = lbm_src_topic_attr_str_setopt (&attr, "ume_store", "127.0.0.1:14567");

This sets the persistent store for the source to the store running at 127.0.0.1 on port 14567.

Example files for our exercise are:

Filename Content
ume—-example—-src-2.c Source Application 2
ume-example-rcv-2.c Receiver Application 2

ume-example—-config.xml | Persistent Store Configuration File

After adding the ume-store specification to the source, perform the following steps (assumes a Unix command
prompt):

1. Create the cache and state directories.
$ mkdir umestored-cache ; mkdir umestored-state

2. Start up the store.
$ umestored ume-example-config.xml

3. Start the Receiver.
$ ume-example-rcv

4. Start the Source.
$ ume-example-src

You should see a message on the source that says:

INFO: Source "UME Example" Late Join not set, but UME store specified. Setting Late
Join.

This is an informational message from UM and merely means Late Join was not set and that UM is going to set it.

Notice that the receiver was not configured with any store information. That is because setting it on the source is
all that is needed. The receiver learns UM store settings from the source through the normal UM topic resolution
process. Receivers don't need to do anything special to leverage the usage of a store by a source.

7.3 Adding Fault Recovery with Registration IDs

If the source or receiver crashes, how does the source and receiver tell the store that they have restarted and wish
to resume where they left off? We need to add in some sort of identifiers to the source and receiver so that the store
knows which sources and receivers they are.

In persistence, these identifiers are called Registration IDs or ReglDs. UM allows the application to control the use
of ReglIDs as it wishes. This allows applications to migrate sources and receivers not just between systems, but

7.4 Enabling Persistence Between the Source and Store 47

between locations with true, unprecedented freedom. However, UM requires an application to be careful of how it
uses ReglDs. Specifically, an application must not use the same RegID for multiple sources and/or receivers at the
same time.

Now let's look at how we can use ReglDs to provide complete fault recovery of sources and receivers. We'll first
handle ReglDs in the simplest manner by using static IDs for our source and receiver. For the source, the RegID of
1000 can be added to the existing store specification by changing the stringto 127.0.0.1:14567:1000

This yields the source code in ume-example-src-2.c

For the receiver, we accomplish this in two steps.

1. Set a callback function to be called when we desire to set the ReglID to 1100. This is done by declaring a
callback function which will return the RegID value 1100 to UM. The example names the callback app_«
rcv_regid_callback ().

2. Inform the UM configuration for the receiver to use this callback function. That is accomplished by setting the
ume_registration_extended_function() similar to example code below.

lbm_ume_rcv_regid_ex_func_t id; /% structure to hold registration function information */
d.func = app_rcv_regid_callback; /* the callback function to call x/

id.clientd = NULL; /* the value to pass in the clientd to the function x/
err = lbm_rcv_topic_attr_setopt (&attr, "ume_registration_extended_function", &id, sizeof (id));

Once this is done, the receiver has the ability to control what ReglID it will use. This yields the source code in
ume-example-rcv-2.c.

With these in place, you can experiment with killing the receiver and bringing it back (as long as you bring it back
before the source is finished), as well as killing the source and bringing it back.

The restriction to this initial approach to RegIDs is that the ReglDs 1000 and 1100 may not be used by any other
objects at the same time. If you run additional sources or receivers, they must be assigned new ReglIDs, not 1000
or 1100. Let's now take a more sophisticated approach to RegIDs that will allow much more flexibility.

7.4 Enabling Persistence Between the Source and Store

Let's refine our source to include some desired behavior following a crash. Upon restart, we want our source to
resume with the first unsent message. For example, if the source sent 10 messages and crashed, we want our
source to resume with the 11th message and continue until it has sent the 20th message.

Accomplishing this graceful resumption requires us to ensure that our source is the only source that uses the RegID
assigned to it. The same ReglID should be used as long as the source has not sent the 20th message regardless
of any crashes that may occur. The sources and receivers are primarily responsible for managing the RegIDs.

The following two sections explain the changes needed for the source and receiver, which become fairly easy due
to the events that UM delivers to the application during persistence operation.

7.5 Enabling Persistence in the Source

With the above mentioned behaviors in mind, let's turn to looking at how they may be implemented with persistence,
starting with the source. We can summarize the changes we need by the following list.

1. At source startup, use any saved RegID information found in the file by setting information in the ume_store
(source) configuration variable.

48 Enabling Persistence

2. After the store registration is successful, if a new ReglD was assigned to the source, save the RegID to the
file.

3. Set the message number to begin sending. Refer to the explanation below.
4. Send until message number 20 has been sent.

5. After message 20 has been sent, delete the saved RegID file.

For Step 3, if the source has just been initialized, the application starts with message number 1. If the source has
been restarted after a crash, the application looks to UM to establish the beginning message number because UM
will use the next sequence number. For this simple example, we can make the assumption that each message
is one sequence number for UM and that UM starts with sequence number 0. Thus the application can set the
message number it begins resending with the value of the UM sequence number + 1. These changes yield the
source code in ume-example-src—3.c

7.5.1 Smart Sources and Persistence
When using the Smart Sources feature to send persistent messages, there are a few restrictions:

» No support for source-side delivery confirmation. Neither of the forms described in Delivery Confirmation
Concept are allowed.

» No support for Receiver Liveness Detection.

+ Application stability notification is only supported per-message. See ume_message_stability_notification
(source).

+ The following configuration options have limited or no support with Smart Sources:

— ume_confirmed_delivery_notification (source)
— ume_retention_unique_confirmations (source)
— ume_sti_flush_sri_request_response (source)
— ume_sti_request_response_latency (source)
— ume_message_stability_notification (source)
— retransmit_retention_size_threshold (source)
— ume_retention_size_threshold (source)

— retransmit_retention_size_limit (source)

— ume_retention_size_limit (source)

— retransmit_retention_age_threshold (source)

7.6 Enabling Persistence in the Receiver

Let's also refine the receiver to resume where it left off after a crash. Just as with the source, the receiver can have
the store assign it a ReglID if the receiver is just beginning. Once the receiver receives the 20th message from the
source, it can get rid of the RegID and exit. Because the receiver can receive some messages, crash, and come
back, we should only need to look at a message and check if it is the 20th message based on the message contents
or sequence number. UM provides all the events to the application that we need to create these behaviors in the
receiver.

The receiver changes are summarized below:

7.6 Enabling Persistence in the Receiver 49

1. Atreceiver startup, use any saved RegID information found in the file for callback information when needed.

2. When ReglID callback is called: Check to see if the source RegID matches the saved source ReglD. If it does,
return the saved receiver RegID. ReglD matches the saved source ReglD if so, return the saved receiver
ReglID.

3. After store registration is successful: If not using a previously saved ReglD, then save the ReglID assigned by
the store to the source to a file, as well as the store information and the source RegID.

4. After the last message is received (message number 20 or UM sequence number 19), end the application
and delete the saved ReglD file.

ReglIDs in UM can be considered to be per source and per topic. Thus the receiver does not want to use the wrong
ReglID for a different source on the same topic. To avoid this, we save the source RegID and even store information
so thatthe app_rcv_regid_callback () can make sure to use the correct ReglD for the given source ReglD.
These changes yield the source code in ume—example-rcv-3.c

The above sources and receivers are simplified for illustration purposes and do have some limitations. The receiver
will only keep the information for one source at a time saved to the file. This is fine for illustration purposes, but
would be lacking in completeness for production applications unless it was assured that a single source for any
topic would be in use. To extend the receiver to include several sources is simply a matter of saving each to the file,
reading them in at startup, and being able to search for the correct one for each callback invoked.

50

Enabling Persistence

Chapter 8

Demonstrating Persistence

The following files are used in this section:

Filename Content
ume-example-src—-3.c Source Application 3
ume—example-rcv-3.c Receiver Application 3
ume—example-config.xml | Persistent Store Configuration File

Perform the following tasks first:

1. Build ume-example-rcv-3.c and ume-example-src-3.c. Instructions for building them are at the beginning of
the source files.

2. Create default directories, umestored-cache and umestored-state in the /doc/UME directory where the other
ume-example files are located. Our sample XML store configuration file, ume-example-config.xml, doesn't
specify directories for the store's cache and state files, so those will be placed in the default directories.

3. Start the store.
$ umestored ume-example—-config.xml

You should see no output if the store started successfully. However, you should find a new log file, ume-example-
stored.log, in the directory you ran the store in. The first couple lines should look similar to below.

Fri Feb 01 07:34:28 2009 [INFO]: Latency Busters Persistent Store version 2.0
Fri Feb 01 07:34:28 2009 [INFO]: LBM 3.3 [UME-2.0] Build: Jan 31 2009, 02:10:43
(DEBUG license LBT-RM LBT-RU) WC[PCRE 6.7 04-Jul-2006, appcb]

You'll also be able to view the store's web monitor. Open a web browser and go to: http://127.0.0.1«
:15304/

You should see the store's web monitor page, which is a diagnostic and monitoring tool for the UM store. See Store
Web Monitor.

8.1 Running Persistent Example Applications
With the store running, let's try our example source and receiver applications.

1. Start the Receiver.
$ ume-example-rcv-3.exe

http://127.0.0.1:15304/
http://127.0.0.1:15304/

52 Demonstrating Persistence

2. Start the Source.
$ ume-example-src-3.exe

You should see output for the source similar to the following:

saving RegID info to "UME-example-src-RegID" - 127.0.0.1:14567:2795623327

You should see output for the receiver similar to the following:

UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371]1[2795623327] Requesting
RegID: 0

saving RegID info to "UME-example-rcv-RegID" - 127.0.0.1:14567:2795623327:2795623328

Received 15 bytes on topic UME Example (sequence number 0) ’'UME Message 01’

Received 15 bytes on topic UME Example (sequence number 1) 'UME Message 027

Received 15 bytes on topic UME Example (sequence number 2) ’'UME Message 03

Received 15 bytes on topic UME Example (sequence number 3) ’'UME Message 04’

The example source sends 20 messages. After the 20th messages, both the source and receiver exit and print«
:
removing saved ReglD file...}
So what just happened? Let's walk through the output line by line.

Source

saving RegID info to "UME-example-src-RegID" - 127.0.0.1:14567:2795623327

The source successfully registered with the store using its pre-configured store address and port of 127.0.0.1«
:14567. It didn't ask for a specific RegID from the store, so the store automatically assigned one to it. In this case,
the store assigned the ID, 2795623327. Your source's ID will likely be different because stores assign random
ReglIDs.

If you run the test again, you'll notice the source application has written a file named 'UME-example-src—-Reg«
ID' that contains the same information the source printed on startup, namely the IP address and port of the store it
registered with, along with its ReglD assigned by the store.

Receiver

UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371]1[2795623327] Requesting
RegID: O
saving RegID info to "UME-example-rcv-RegID" - 127.0.0.1:14567:2795623327:2795623328

The receiver has been informed of how to connect to the store by the source, and it also successfully registered
with the store. The store's IP address and port are shown, followed by the source's unique identifier string (in this
case, it's a TCP source on port 14371), and the source's RegID. The receiver then requests RegID 0 from the store,
which is a special value that means pick an ID for me (Although not displayed, the source requested ID 0 when it
started up as well).

In parallel with the source application, the receiver application writes its ReglD with this store to the file, UM«
E-example—-rcv-ReglID.

After sending 20 messages under normal, stable conditions, the source and receiver applications exit and remove
their ReglD files.

8.2 Single Receiver Fails and Recovers
Perform the following procedure with the store running to see what happens when a receiver fails and recovers:

1. Start the Receiver.
$ ume-example-rcv-3.exe

8.3 Single Source Fails and Recovers

53

2. Start the source. Let it run for a few seconds so the receiver gets a few messages.

$ ume-example-src-3.exe

UME Store O0:

RegID:
saving RegID info to "UME-example-rcv-RegID" -

127.0.0.1:14567:3735579353:3735579354
Received 15 bytes on topic UME Example
Received 15 bytes on topic UME Example
Received 15 bytes on topic UME Example

127.0.0.1:14567

[TCP:169.254.97.160:

(sequence
(sequence
(sequence

14371][3735579353] Requesting

number 0)
number 1)
number 2)

"UME Message 01’
"UME Message 02’
"UME Message 03’

3. Stop the receiver (Ctrl/C) and leave the source running. Wait a few more seconds so that the source sends
some messages while the receiver was down.

4. Restart the Receiver and let it run to completion.

$ ume-example-rcv-3.exe
read in saved RegID info from "UME-example-rcv-RegID" - 127.0.0.1:14567
receiver 3735579354

source 3735579353,
UME Store O0:

127.0.0.1:14567

Requesting ReglID:

Received
Received
Received
Received
Received
Received
Received
Received

15
15
15
15
15
15
15
15

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

3735579354

on
on
on
on
on
on
on
on

topic
topic
topic
topic
topic
topic
topic
topic

UME
UME
UME
UME
UME
UME
UME
UME

Example
Example
Example
Example
Example
Example
Example
Example

(sequence
(sequence
(sequence
(sequence
(sequence
(sequence
(sequence
(sequence

number 3
number 4
number 5
number 6
number 7
number 8
number 9
number 10)

" UME
" UME
" UME
" UME
" UME
" UME
" UME

[TCP:169.254.97.160:14371][3735579353]

Message
Message
Message
Message
Message
Message
Message

RegIDs

04’
057
06’
07’
08’
09’
10"

"UME Message 11’

Notice that the receiver picked up the message stream right where it had left off - after message 3. The first few
messages (which the source had sent while the receiver was down) appear to come in much faster than the source's
normal rate of one per second. That's because they are being served to the receiver from the store. The remaining
messages continue to come in at the normal one-per-second rate because they're being received from the source's
live message stream. This is durable subscription at work.

8.3 Single Source Fails and Recovers

Perform the following procedure with the store running to see what happens when a source fails and recovers.

1. Start the Receiver.
$ ume-example-rcv-3.exe

2. Start the source.
$ ume-example-src-3.exe
Let it run for a few seconds so the receiver gets a few messages.

3. Stop the Source (Ctrl/C).

4. Restart the Source and let it run to completion.
$ ume-example-rcv-3.exe

Source

You should see output similar to the following on the second run of the source:

read in saved RegID info from "UME-example-src—RegID"

will start with message number 5
removing saved RegID file "UME-example-src-RegID"

- 127.0.0.1:14567:2118965523

54 Demonstrating Persistence

Receiver
The receiver's output looks like the following:

UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371]1[2118965523] Requesting
RegID: O

saving RegID info to "UME-example-rcv-RegID" - 127.0.0.1:14567:2118965523:2118965524

Received 15 bytes on topic UME Example (sequence number 0) 'UME Message 01’

Received 15 bytes on topic UME Example (sequence number 1) ’'UME Message 02

Received 15 bytes on topic UME Example (sequence number 2) ’'UME Message 03

Received 15 bytes on topic UME Example (sequence number 3) 'UME Message 04’

UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371]1[2118965523] Requesting
RegID: 2118965524

saving RegID info to "UME-example-rcv-RegID" - 127.0.0.1:14567:2118965523:2118965524

Received 15 bytes on topic UME Example (sequence number 4) ’'UME Message 05’

Received 15 bytes on topic UME Example (sequence number 5) ’'UME Message 06’

Received 15 bytes on topic UME Example (sequence number 6) 'UME Message 07’

Received 15 bytes on topic UME Example (sequence number 7) ’'UME Message 08

When the source was restarted, it read in its previously saved RegID and requested the same ID when registering
with the store. The store informed the source that it had left off at sequence number 3 (UME Message 04), and
the next sequence number it should send is 4 (UME Message 05). Bringing the source back up also caused the
receiver to re-register with the store. Receivers can only find out about stores from sources they are listening to.
Once the receiver re-registered with the store, it continued receiving messages from the source where it had left off.

8.4 Single Store Fails
Perform the following procedure with the store running to see what happens when the store itself fails.
1. Start the Receiver.

$ ume-example-rcv-3.exe

2. Start the source.
$ ume-example-src-3.exe
Let it run for a few seconds so the receiver gets a few messages.

3. Stop the Store (Ctrl/C).

Notice that with this simple example program, the source simply prints the following and exits.

saving RegID info to "UME-example-src—-RegID" - 127.0.0.1:14567:4095035673

Store unresponsive: store 0 [127.0.0.1:14567] unresponsive

Store unresponsive: store 0 [127.0.0.1:14567] unresponsive - no registration
response.

line 318: not currently registered with enough UMP stores

When a source application tries to send a message without being registered with a store, the send call returns an
error. Messages sent while not registered with a store cannot be persisted. See Designing Persistent Stores for
information about using multiple stores.

Your source application(s) should assume an unresponsive store is a temporary problem and wait before sending
the message again. See umesrc.c, umesrc. java, or umesrc.cs for examples of this behavior.

Chapter 9

Designing Persistence Applications

A persistent system is composed of sources, receivers, and stores managed by one or more applications. Sources
and receivers are the endpoints of communication and the store(s) provide fault recovery and persistence of state
information. Your application can leverage UM's flexible methods of persistence to add fault tolerance. With this
flexibility, your applications assume new responsibilities not normally required in other persistent messaging sys-
tems. This section identifies the important considerations for your messaging applications when implementing the
following persistence features:

+ Registration Identifiers
+ Designing Persistent Sources
 Designing Persistent Receivers

+ Designing Persistent Stores

9.1 Registration Identifiers

As mentioned in Registration |dentifier Concept and Adding Fault Recovery with Registration IDs, stores use RegIDs
to identify sources and receivers. UM offers three main methods for managing ReglDs:

+ Recommended: use Session IDs to enable the Store to both assign and manage ReglDs. See Managing
RegIDs with Session IDs. Note: while the use of Session IDs is recommended, an understanding of the
underlying registration IDs is often helpful to understanding persistence.

* Your applications assign static ReglDs and ensure that the same ReglID is not assigned to multiple sources
and/or receivers. See Use Static ReglIDs.

* You can allow Stores to assign ReglDs and then save the assigned ReglIDs for subsequent reuse. See Save
Assigned ReglDs.

Your applications can manage ReglDs for the lifetime of a source or receiver as long as multiple applications do
not reuse ReglDs simultaneously on the same store. ReglDs only need to be unique on the same store and may
be reused between stores as desired. You can use a static mapping of ReglIDs to applications or use some simple
service to assign them.

56 Designing Persistence Applications

9.1.1 Use Static RegIDs

For very small deployments, the simplest method uses static ReglDs for individual applications. This method re-
quires every persistent source connecting to a given store have a unique RegID from every other persistent source
attaching to the same store. This includes publishing applications that have multiple persistent topics; each topic's
source object must have a unique ReglD. (The use of session IDs greatly simplifies the management of these
ReglDs.)

The following source code examples assign a static ReglD to a source by adding the RegID, 1000, to the ume_store
(source) attribute. See also ume-example-src-2.c

C API

lbm_src_topic_attr_t «x sattr;

(lbm_src_topic_attr_create_from_xml (&sattr, "MyCtx", src_topic_name) == LBM_FAILURE) {
fprintf (stderr, "lbm_src_topic_attr_create_from xml: %s\n", lbm_errmsg());
exit (1);
}
(lbm_src_topic_attr_str_setopt (sattr, "ume_store", "127.0.0.1:14567:1000")
== LBM_FAILURE) {
fprintf (stderr, "lbm_src_topic_attr_str_setopt: %s\n", lbm_errmsg());
exit (1);
}
JAVA API

LBMSourceAttributes sattr = null;
{
sattr = new LBMSourceAttributes();
sattr.setValue ("ume_store", "127.0.0.1:14567:1000");
}
(LBMException ex) {
System.err.println("Error creating source attribute: " + ex.toString());
System.exit (1);
}

.NET API

LBMSourceAttributes sattr = null;
{
sattr = new LBMSourceAttributes();
sattr.setValue ("ume_store", "127.0.0.1:14567:1000");
}
(LBMException ex) {
System.Console.Error.WriteLine ("Error creating source attribute: " + ex.toString());
System.Environment .Exit (1);

}

9.1.2 Save Assigned RegIDs

When using RegIDs, your application can request that the store assign it a new and unique ReglD when it registers
for the first time. That RegID is made available to the application, which can then save it to local storage. Thus,
the next time the application starts (or restarts) and wants to use the same registration, it reads the value written
to local storage. This method of managing ReglIDs is not common. For example, what if the application needs to
be restarted on a different server due to hardware failure? If it cannot re-register with its earlier RegID, it will not be
able to recover only those messages it had not yet acknowledged. (The use of Session IDs simplifies this greatly
by essentially saving the registration IDs for you on the store itself.)

The following minimal source code example saves the ReglD assigned to a source to a file. See also
ume—-example—-src—-3.cC

C API

9.1 Registration Identifiers 57

/% Callback invoked by UM for source events. x*/
int app_src_callback (lbm_src_t xsrc, int event, void =xeventd, void xclientd)

{
(event) {
LBM_SRC_EVENT_UME_REGISTRATION_SUCCESS_EX:
/+ Get the registration information. */
lbm_src_event_ume_registration_ex_t xreginfo = (

lbm_src_event_ume_registration_ex_t =«)eventd;

/* Might want to do the following conditionally only if we are requesting a new RegID. x/

FILE »fp = fopen("UME-example-src-RegID", "w"); /x Error checking omitted for clarity. =/
fprintf (fp, "%s:%u", reginfo->store, reginfo->registration_id);
fclose (fp);

} /% switch %/

} /x app_src_callback =/

err = lbm_src_create(&src, ctx, topic, app_src_callback, ...); /* Error checking omitted. =/

9.1.3 Managing ReglDs with Session IDs

The ReglIDs used by stores to identify sources and receivers must be unique. Rather than maintaining RegIDs
(either statically or dynamically), applications can use a Session ID, which is simply a 64-bit value that uniquely
identifies any set of sources with unique topics and receivers with unique topics. A single Session ID allows UM
stores to correctly identify all the sources and receivers for a particular application.

In practice, a Session ID is often thought of as an application identifier, although it is more accurately thought of as
a context identifier. (For applications that only have a single context with persistent sources and/or receivers, the
two are effectively the same.) However, be aware that many application systems run multiple instances of a given
program, perhaps for horizontal scaling. Each instance needs its own Session ID.

It is also possible for a single context to host multiple Session IDs, although this is rarely done. The UM configura-
tion options ume_session_id (source) and ume_session_id (receiver) can be used to arrange individual source
and/or receiver objects into registration groupings. However, it is more common to use the option ume_session_id
(context) to group all sources and receivers created within a context into a single session ID. (If both a context and
a source or receiver option is specified, the source or receiver option will override the context option.)

How Stores Associate Session IDs and RegIDs

Session IDs do not replace the use of ReglDs by UM but rather simplify ReglD management. Using Session IDs
equates to your application specifying a 0 (zero) RegID for all sources and receivers. However, instead of your
application persisting the ReglID assigned by the store, the store maintains the RegID for you.

When a store receives a registration request from a source or receiver with a particular Session ID, it checks to
see if it already has a source or receiver for that topic/Session ID. If it does, then it responds with that source's or
receiver's ReglD.

If it does not find a source or receiver for that topic/Session ID pair, the store:

1. Assigns a new ReglD.
2. Associates the topic/Session ID with the new RegID.

3. Responds to the source or receiver with the new ReglID.

The source can then advertise with the ReglD supplied by the store. Receivers include the source's ReglID in their
registration request.

All of the above steps happen within UM itself without any intervention by the application. However, the application
does have access to the underlying registration ID, if it desires it.

58 Designing Persistence Applications

9.2 Designing Persistent Sources

The major concerns of sources revolve around RegID management and message retention.

9.2.1 New or Re-Registration

Any source needs to know at start-up if it is a new registration or a re-registration. The answer determines how
a source registers with the store. The UM library can not answer this question. Therefore, it is essential that the
developer consider what identifies the lifetime of a source and how a source determines the appropriate value to
use as the ReglID when it is ready to register. ReglDs are per source per topic per store, thus a single RegID per
store is needed.

The following source code examples look for an existing ReglD from a file and uses a new RegID assigned from the
store if it finds no existing RegID. See also ume-example-src-3.c

C API
err = lbm_context_create(&ctx, NULL, NULL, NULL);
(err) {printf("line %d: %s\n", __LINE_ , lbm_errmsg()); exit(1l);}

srcinfo.message_num = 1;
srcinfo.existing_regid = 0;

err = read_src_regid from_file (SRC_REGID_SAVE_FILENAME, store_info, sizeof (store_info));

(lerr) { srcinfo.existing_regid = 1; }

err = lbm_src_topic_attr_create_from_xml (&attr, "MyCtx", src_topic_name);
(err) {printf("line %d: %s\n", __LINE__, lbm _errmsg()); exit(1l);}

err = lbm_src_topic_attr_str_setopt (attr, "ume_store", store_info);
(err) {printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1l);}

The use of Session IDs allows UM, as opposed to your application, to accomplish the same RegID management.
See Managing ReglIDs with Session IDs Managing ReglIDs with Session IDs.

9.2.2 Sources Must Be Able to Resume Sending

A source sends messages unless UM prevents it, in which case, the send function returns an error. A source may
lose the ability to send messages temporarily if the store(s) in use become unresponsive, e.g. the store(s) die or
become disconnected from the source. Once the store(s) are responsive again, sending can continue. Thus source
applications need to take into account that sending may fail temporarily under specific failure cases and be able to
resume sending when the failure is removed.

The following source code examples demonstrate how a failed send function can sleep for a second and try again:

C API

(lbm_src_send(src, message, len, 0) == LBM_FAILURE) {
If (lbm_errnum() == LBM_EUMENOREG) {
printf ("Send unsuccessful. Waiting...\n");
sleep(1l);
i
}
fprintf (stderr, "lbm_src_send: %s\n", lbm_errmsg ()) ;

exit (1);

9.2 Designing Persistent Sources 59

Java API

Gi) o
{

src.send (message, len, 0);

(UMENoRegException ex) {
System.out.println("Send unsuccessful. Waiting...");
{
Thread.sleep(1000);

(InterruptedException e) { }
i

(LBMException ex) {
System.err.println("Error sending message: " + ex.toString());
System.exit (1);

.NET API

(i) o
{

src.send (message, len, 0);

(UMENoRegException ex) {
System.Console.Out.WriteLine ("Send unsuccessful. Waiting...");
System.Threading.Thread.Sleep (1000) ;

;

(LBMException ex) {
System.Console.Out.WriteLine ("Error sending message: " + ex.toString());
System.exit (1);

9.2.3 Source Message Retention and Release

UM allows streaming of messages from a source without regard to message stability at a store, which is one
reason for UM's performance advantage over other persistent messaging systems. Sources retain all messages
until notified by the active store(s) that they are stable. This provides a method for stores to be brought up to date
when restarted or started anew.

When messages are considered stable at the store, the source can release them which frees up source retention
memory for new messages. Generally, the source releases older stable messages first. To release the oldest
retained message, all the following conditions must be met:

+ Message must meet stability requirements of the source, which can range from a single stability notice from
the active store to stability notices from a group of stores (See Sources Using Quorum/Consensus Store
Configuration).

» Message must have been confirmed as delivered by a configured number of receivers (ume_retention_«
unique_confirmations (source)).

» The aggregate amount of buffered messages exceeds retransmit_retention_size_threshold (source) bytes
in payload and headers.

Some things to note:

« If retransmit_retention_size_threshold (source) is not met, no messages will be released regardless of
stability.

60 Designing Persistence Applications

« If the source turns off ume_message_stability_notification (source), ume_retention_unique_«
confirmations (source) is the only way to allow the source to release messages before retention size
options come into play.

» With a quorum/consensus store configuration, when a quorum of stores report stability for a message, re-
maining stores may or may not send additional stability acks for that message.

Note

Smart Sources simplify matters somewhat by pre-allocating retention buffers. They are not dynamically
allocated or deallocated during operation. See Smart Sources and Persistence for more information.

9.2.4 Forced Reclaims

If the aggregate amount of buffered messages exceeds retransmit_retention_size_limit (source) bytes in payload
and headers, then UM forcibly releases the oldest retained message even if it does not meet one or more of the
conditions stated in Source Message Retention and Release. This condition should be avoided and Informatica
suggests increasing the retransmit_retention_size_limit (source).

A second condition that produces a forced reclaim is when a message remains unstabilized when the ume_«
message_stability_lifetime (source) expires.

Whenever UM performs a Forced Reclaim, it notifies the application in the following ways:

» The source event callback's RECLAIMED_EX event (see Persistence Source Events) includes a "FORC«
ED" flag on the event. (UM uses the same RECLAIMED_EX event, without the FORCED flag, for normal
reclaims.)

« Through the separate forced reclaim callback, if registered. You set this separate forced reclaim callback with
the ume_force_reclaim_function (source) configuration option.

Note

UM retains the separate callback for backwards compatibility purposes and may be deprecated in future
releases. The source event FORCED flag is the recommended method of tracking forced reclaims.

The following sample code, from umesrc . ¢, implements the extended reclaim source event with the 'Forced' flag
set if the reclamation is a forced reclaim.

C API

LBM_SRC_EVENT_UME_MESSAGE_RECLAIMED_EX:

lbm_src_event_ume_ack_ex_info_t xackinfo = (lbm_src_event_ume_ack_ex_info_t =*)ed;
(opts—->verbose) {
printf ("UME message reclaimed (ex) - sequence number %x (cd %p). Flags 0x%x ",
ackinfo->sequence_number, (charx*) (ackinfo->msg_clientd) - 1, ackinfo->
flags);

(ackinfo->flags & LBM_SRC_EVENT_UME_MESSAGE_RECLAIMED_EX_FLAG_FORCED) {
printf ("FORCED") ;

}

printf ("\n");

Java API

9.2 Designing Persistent Sources 61

se LBM.SRC_EVENT_UME_MESSAGE_RECLAIMED_EX:

UMESourceEventAckInfo reclaiminfo = sourceEvent.ackInfol();
(_verbose > 0) {
1f (reclaiminfo.clientObject () != null) {
System.out.print ("UME message reclaimed (ex) - sequence number "
+ Long.toHexString(reclaiminfo.sequenceNumber ())
+ " (cd "
+ Long.toHexString (((Long)reclaiminfo.clientObject ()) .longValue ()
+ "). Flags Ox"
+ reclaiminfo.flags());
}oelse |
System.out.print ("UME message reclaimed (ex) - sequence number "

+ Long.toHexString(reclaiminfo.sequenceNumber ()
+ " Flags 0Ox"
+ reclaiminfo.flags());
}
if ((reclaiminfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_RECLAIMED_EX_FLAG_FORCED) != 0) {
System.out.print (" FORCED");
}
System.out.println();

break;

.NET API

] LBM.SRC_EVENT_UME_MESSAGE_RECLAIMED_EX:

UMESourceEventAckInfo reclaiminfo = sourceEvent.ackInfol();

(_verbose > 0) {

System.Console.Out.Write ("UME message reclaimed (ex) - sequence number "
+ reclaiminfo.sequenceNumber ()
+ " (cd "
+ ((uint)reclaiminfo.clientObject ()) .ToString("x"
+ "). Flags "
+ reclaiminfo.flags());

if ((reclaiminfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_RECLAIMED_EX_FLAG_FORCED) != 0) {

System.Console.Out.Write (" FORCED");
}

System.Console.Out.WriteLine () ;

break;

9.2.5 Source Release Policy Options

Sources use a set of configuration options to release messages that, in effect, specify the source's release policy.
The following configuration options directly impact when the source may release retained messages:

+ ume_message_stability_notification (source)
+ ume_retention_unique_confirmations (source)
» retransmit_retention_size_threshold (source)

» retransmit_retention_size_limit (source)

9.2.6 Confirmed Delivery

The configuration option ume_retention_unique_confirmations (source) requires a message to have a mini-
mum number of unique confirmations from different receivers before the message may be released. This retains
messages that have not been confirmed as being received and processed and keeps them available to fulfill any re-
transmission requests. This provides a form of receiver-pacing; the source will not be allowed to exceed Persistence
Flight Size beyond receiving applications.

62 Designing Persistence Applications

For example, a topic might have 2 receivers which are considered essential to keep up, and which should therefore
contribute to flight size calculation. There might be any number of less-essential receivers which can be allowed to
lag behind. In this case, ume_retention_unique_confirmations (source) would be set to 2, and the non-essential
receivers would set ume_allow_confirmed_delivery (receiver) to 0.

Note

Smart Sources do not support delivery confirmation.

The following code samples show how to require a message to have 10 unique receiver confirmations
C API

lbm_src_topic_attr_t = sattr;

(lbm_src_topic_attr_create_from_ xml (&sattr, "MyCtx", src_topic_name) == LBM_FAILURE) {
fprintf (stderr, "lbm_src_topic_attr_create_from_xml: %s\n", lbm_errmsg());
exit (1);

(lbm_src_topic_attr_str_setopt (sattr, "ume_retention_unique_confirmations",

"10") == LBM_FAILURE) {
fprintf (stderr, "lbm_src_topic_attr_str_setopt: %s\n", lbm_errmsg());
exit (1);
}
JAVA API

LBMSourceAttributes sattr = null;
v oA
sattr = new LBMSourceAttributes();
sattr.setValue ("ume_retention_unique_confirmations", "10");

a (LBMException ex) {
System.err.println("Error creating source attribute: " + ex.toString());
System.exit (1);

.NET API

LBMSourceAttributes sattr = null;
{
sattr = new LBMSourceAttributes();
sattr.setValue ("ume_retention_unique_confirmations", "10");

‘atch (LBMException ex) {
System.Console.Error.WriteLine ("Error creating source attribute: " + ex.toString());
System.Environment.Exit (1) ;

9.2.7 Source Event Handler

The Source Event Handler is a function callback initialized at source creation to provide source events to your
application related to the operation of the source. The following source code examples illustrate the use of a source
event handler for registration events. To accept other source events, additional case statements would be required,
one for each additional source event. See also Persistence Events.

C API

int handle_src_event (lbm_src_t x*src, int event, void =*ed, void =xcd)

{
~h (event) {
LBM_SRC_EVENT_UME_REGISTRATION_ERROR:

const char xerrstr = (const char x)ed;
printf ("Error registering source with UME store: %s\n", errstr);

break;

9.2 Designing Persistent Sources

case LBM_SRC_EVENT_UME_REGISTRATION_SUCCESS_EX:
{
lbm_src_event_ume_registration_ex_t xreg =
(lbm_src_event_ume_registration_ex_t «)ed;

printf ("UME store %u: $s registration success. RegID %u. Flags %$x ",
reg->store_index, reg->store, reg->registration_id, reg->flags);
if (reg->flags & LBM_SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_ FLAG_OLD)
printf ("OLD[SQN %x] ", reg->sequence_number);
if (reg->flags & LBM_SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_FLAG_NOACKS)
printf ("NOACKS ");
printf ("\n");

break;

case LBM_SRC_EVENT_UME_REGISTRATION_COMPLETE_EX:
{

lbm_src_event_ume_registration_complete_ex_t xreg =
(lbm_src_event_ume__complete_ex_t x)ed;
printf ("UME registration complete. SQON %x. Flags %x ",
reg->sequence_number, reg->flags);
if (reg->flags & LBM_SRC_EVENT_UME_REGISTRATION_COMPLETE_EX_ FLAG_QUORUM)
printf ("QUORUM ") ;
printf ("\n");

e LBM_SRC_EVENT_UME_STORE_UNRESPONSIVE:

const char xinfostr = (const char x)ed;
printf ("UME store: %s\n", infostr);

break;

default:
printf ("Unknown source event %d\n", event) ;
break;
}
r

eturn 0;

JAVA API

public int onSourceEvent (Object arg, LBMSourceEvent sourceEvent)

tch (sourceEvent.type()) {

LBM.SRC_EVENT_UME_REGISTRATION_ERROR:

System.out.println ("Error registering source with UME store: "
+ sourceEvent.dataString());

ak;

br

case LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX:
UMESourceEventRegistrationSuccessInfo reg =
sourceEvent.registrationSuccessInfo();

System.out.print ("UME store " + reg.storeIndex() + ": " + reg.store(
+ " registration success. RegID " + reg.registrationId() + ". Flags "
+ reg.flags() + " ");

if (((reg.flags() & LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_FLAG_OLD)) != 0) {
System.out.print ("OLD[SQON " + reg.sequenceNumber () + "] ");

}

1f (((reg.flags() & LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_ FLAG_NOACKS)) != 0) {

System.out.print ("NOACKS ") ;
}
System.out.println();
break;

case LBM.SRC_EVENT_UME_REGISTRATION_COMPLETE_EX:

UMESourceEventRegistrationCompleteInfo regcomp =
sourceEvent.registrationCompleteInfo () ;

System.out.print ("UME registration complete. SQON " + regcomp.sequenceNumber ()
+ ". Flags " + regcomp.flags() + " ");

if ((regcomp.flags() & LBM.SRC_EVENT_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM) != 0)
System.out.print ("QUORUM ") ;

}

System.out.println();

break;

e LBM.SRC_EVENT_UME_STORE_UNRESPONSIVE:
System.out.println ("UME store: " + sourceEvent.dataString());

1t:

System.out.println ("Unknown source event " + sourceEvent.type());

break;

64 Designing Persistence Applications

}

return 0;

.NET API

public int onSourceEvent (Object arg, LBMSourceEvent sourceEvent)
{
switch (sourceEvent.type()) {
1se LBM.SRC_EVENT_UME_REGISTRATION_ERROR:
System.Console.Out.WritelLine ("Error registering source with UME store: "
+ sourceEvent.dataString());

break;

ase LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX:

UMESourceEventRegistrationSuccessInfo reg = sourceEvent.registrationSuccessInfol();
System.Console.Out.Write ("UME store " + reg.storelIndex() + ": " + reg.store()
+ " registration success. RegID " + reg.registrationId() + ". Flags "
+ reg.flags() + " ");
if (((reg.flags() & LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_FLAG_OLD)) != 0) {
System.Console.Out.Write ("OLD[SQN " + reg.sequenceNumber () + "] ");
}
if (((reg.flags() & LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_ FLAG_NOACKS)) != 0) {

System.Console.Out.Write ("NOACKS ");
}
System.Console.Out.WriteLine () ;

break;

se LBM.SRC_EVENT_UME_REGISTRATION_COMPLETE_EX:

UMESourceEventRegistrationCompleteInfo regcomp =
sourceEvent.registrationCompleteInfo();

System.Console.Out.Write ("UME registration complete. SQN " +
regcomp.sequenceNumber () + ". Flags " + regcomp.flags() + " ");

if ((regcomp.flags() & LBM.SRC_EVENT_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM) != 0) {
System.Console.Out.Write ("QUORUM ") ;

}

System.Console.Out.WriteLine () ;

7

case LBM.SRC_EVENT_UME_STORE_UNRESPONSIVE:

System.Console.Out.WriteLine ("UME store: " + sourceEvent.dataString());
break;
fault:
System.Console.Out.WriteLine ("Unknown source event " + sourceEvent.type());
break;
}
return 0;

9.2.8 Source Event Handler - Stability, Confirmation and Release

As shown in Source Event Handler above, the Source Event Handler can be expanded to handle more source
events by adding additional case statements. The following source code examples show case statements to handle
message stability events, delivery confirmation events and message release (reclaim) events. See also Persistence
Events.

C API

case LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX:
/* requires that source ume_message_stability_notification attribute is enabled =/
{

lbm_src_event_ume_ack_ex_info_t xinfo = (lbm_src_event_ume_ack_ex_info_t «)ed;

printf ("UME store %u: %s message stable. SQON %$x (msgno %d). Flags %$x ",
info->store_index, info->store, info->sequence_number,
(int)info->msg_clientd - 1, info->flags);
(info->flags & LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_INTRAGROUP_STABLE)
printf ("IA "); /» Stable within store group =/
(info->flags & LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX FLAG_INTERGROUP_STABLE)
printf ("IR "); /% Stable amongst all stores =/

if (info->flags & LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_STABLE)
printf ("STABLE "); /% Just plain stable x/
(info->flags & LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_STORE)

9.2 Designing Persistent Sources

printf ("STORE ") ; /% Stability reported by UME Store «*/
printf("\n");

case LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX:
/% requires that source ume_confirmed_delivery_notification attribute is enabled =/
{

lbm_src_event_ume_ack_ex_info_t *info = (lbm_src_event_ume_ack_ex_info_t =)ed;

printf ("UME delivery confirmation. SQN %x, Receiver RegID %u (msgno %d). Flags %x ",
info->sequence_number, info->rcv_registration_id,
(int)info->msg_clientd - 1, info->flags);

1f (info->flags & LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_ FLAG_UNIQUEACKS)
printf ("UNIQUEACKS "); /* Satisfied number of unique ACKs requirement =/

if (info->flags & LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_UREGID)

printf ("UREGID "); /«+ Confirmation contains receiver application registration ID */
if (info->flags & LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_ FLAG_OOD)

printf ("OOD "); /% Confirmation received from arrival order receiver x/
if (info->flags & LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_EXACK)

printf ("EXACK "); /x Confirmation explicitly sent by receiver x/

printf("\n");

eak;

case LBM_SRC_EVENT_UME_MESSAGE_RECLAIMED:

/* requires that source ume_confirmed_delivery_notification or ume_message_stability_notification
attributes are enabled =/

{

lbm_src_event_ume_ack_info_t xackinfo = (lbm_src_event_ume_ack_info_t =«)ed;

printf ("UME message released - sequence number $%x (msgno %d)\n",
ackinfo->sequence_number, (int)ackinfo->msg_clientd - 1);

break;

JAVA API

case LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX:
// requires that source ume_message_stability_notification attribute is enabled

UMESourceEventAckInfo staInfo = sourceEvent.ackInfo();
System.out.print ("UME store " + staInfo.storeIndex() + ": "
+ staInfo.store() + " message stable. SON " + staInfo.sequenceNumber ()
+ " (msgno " + staInfo.clientObject() + "). Flags "
+ staInfo.flags() + " ");
1f ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_ FLAG_INTRAGROUP_STABLE) != 0) {
System.out.print ("IA "); // Stable within store group
}
if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_ FLAG_INTERGROUP_STABLE) != 0) {

System.out.print ("IR "); // Stable amongst all stores

if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX FLAG_STABLE) != 0) {
System.out.print ("STABLE "); // Just plain stable

}

if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX FLAG_STORE) != 0) {

System.out.print ("STORE ") ; // Stability reported by UME Store
}
System.out.println();
break;

e LBM.SRC_EVENT_UME_DELIVERY_ CONFIRMATION_EX:
// requires that source ume_confirmed_delivery_notification attribute is enabled
UMESourceEventAckInfo cdelvinfo = sourceEvent.ackInfo();
System.out.print ("UME delivery confirmation. SQN " + cdelvinfo.sequenceNumber ()
+ ", RcvRegID " + cdelvinfo.receiverRegistrationId() + " (msgno "
+ cdelvinfo.clientObject () + "). Flags " + cdelvinfo.flags() + " ");
if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_ FLAG_UNIQUEACKS) != 0) {
System.out.print ("UNIQUEACKS "); // Satisfied number of unique ACKs requirement
}

1f ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_ FLAG_UREGID) != 0) {
System.out.print ("UREGID "); // Confirmation contains receiver application reg ID

}

if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_OOD) != 0) {
System.out.print ("OOD ") ; // Confirmation received from arrival order receiver

}

if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX FLAG_EXACK) != 0) {
System.out.print ("EXACK ") ; // Confirmation explicitly sent by receiver

}
System.out.println();
ki

> LBM.SRC_EVENT_UME_MESSAGE_RECLAIMED:

// requires that source ume_confirmed_delivery_notification or
// ume_message_stability_notification attributes are enabled
System.out.println ("UME message released - sequence number "

66 Designing Persistence Applications

+ Long.toHexString (sourceEvent.sequenceNumber ())
+ " (msgno "
+ Long.toHexString (((Integer)sourceEvent.clientObject ()) .longValue())
+ M
ki
.NET API

LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX:
// requires that source ume_message_stability_notification attribute is enabled

UMESourceEventAckInfo stalInfo = sourceEvent.ackInfo();
System.Console.Out.Write ("UME store " + staInfo.storeIndex() + ": "
+ staInfo.store() + " message stable. SON " + stalInfo.sequenceNumber ()
+ " (msgno " + ((int)staInfo.clientObject()).ToString("x") + ").
Flags " + staInfo.flags() + " ");
((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_ FLAG_INTRAGROUP_STABLE) != 0) {

System.Console.Out.Write ("IA "); // Stable within store group

((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_INTERGROUP_STABLE) != 0) {
System.Console.Out.Write("IR "); // Stable amongst all stores

}

if ((staInfo.flags() & LBM.SRC_EVENT UME_MESSAGE_STABLE_EX_ FLAG_STABLE) != 0) {
System.Console.Out.Write ("STABLE "); // Just plain stable

}
((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_STORE) != 0) {
System.Console.Out.Write ("STORE "); // Stability reported by UME Store

}

System.Console.Out.WriteLine () ;

break;

case LBM.SRC_EVENT_UME_DELIVERY_ CONFIRMATION_EX:
// requires that source ume_confirmed_delivery_notification attribute is enabled

UMESourceEventAckInfo cdelvinfo = sourceEvent.ackInfol();

System.Console.Out.Write ("UME delivery confirmation. SQON " +
cdelvinfo.sequenceNumber ()
+ ", RcvRegID " + cdelvinfo.receiverRegistrationId() + " (msgno "
+ ((int)cdelvinfo.clientObject()) .ToString("x") + "). Flags " +
cdelvinfo.flags() + " ");
if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_ FLAG_UNIQUEACKS) != 0) {
System.Console.Out.Write ("UNIQUEACKS ") ; // Satisfied number of unique ACKs requirement
}
((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_ FLAG_UREGID) != 0) {
System.Console.Out.Write ("UREGID "); // Confirmation contains receiver application reg ID

((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_OOD) != 0) {
System.Console.Out.Write ("OOD "); // Confirmation received from arrival order receiver

((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_EXACK) != 0) {
System.Console.Out.Write ("EXACK "); // Confirmation explicitly sent by receiver

}

System.Console.Out.WriteLine () ;

break;

case LBM.SRC_EVENT_UME_MESSAGE_RECLAIMED:
// requires that source ume_confirmed_delivery_notification or
// ume_message_stability_notification attributes are enabled

System.Console.Out.WritelLine ("UME message released - sequence number "
+ sourceEvent.sequenceNumber () .ToString ("x")
+ " (msgno "
+ ((int)sourceEvent.clientObject ()).ToString("x"
+omymy;

9.2.9 Mapping Your Message Numbers to Sequence Numbers

The C API function Ibm_src_sendv_ex() allows you to create a pointer to an object or structure. This pointer will
be returned to your application along with all source events. You can then update the object or structure with source
event information. For example, if your messages exceed 8K - which requires fragmentation your application's
message into more than one UM message - receiving sequence number events with this pointer allows you to
determine all the UM sequence numbers for the message and, therefore, how many release (reclaim) events to
expect. The following two source code examples show how to:

9.2 Designing Persistent Sources 67

+ Enable message sequence number information.

» Handle sequence number source events to determine the application message number in the Source Event
Handler.

C API - Enable Message Information

lbm_src_send_ex_info_t exinfo;

/% Enable message sequence number info to be returned =/
exinfo.flags = LBM_SRC_SEND_EX_FLAG_UME_CLIENTD |
LBM_SRC_SEND_EX_FLAG_SEQUENCE_NUMBER_INFO;

exinfo.ume_msg_clientd = (void %) (msgno + 1);
/+ msgno set to application message number (can’t evaluate to NULL) =/
(lbm_src_send_ex (src, message, msglen, 0, &exinfo) == LBM_FAILURE) ({
(lbm_errnum() == LBM_EUMENOREG) {
printf ("Send unsuccessful. Waiting...\n");
SLEEP_MSEC (1000) ; /+ Sleep for 1 second */
}
els {
fprintf (stderr, "lbm_src_send: %s\n", lbm_errmsg());

break;

C API - Sequence Number Event Handler

int handle_src_event (lbm_src_t *src, int event, void =xed, void =xcd)
{

ch (event) {

LBM_SRC_EVENT_SEQUENCE_NUMBER_INFO:

{

lbm_src_event_sequence_number_info_t xinfo =
(lbm_src_event_sequence_number_info_t =x)ed;

(info->first_sequence_number != info->last_sequence_number) {
printf ("SON [%$x,%x] (msgno %d)\n", info->first_sequence_number,

info->last_sequence_number, (int)info->msg_clientd - 1);

else {
printf ("SQON %$x (msgno %d)\n", info->last_sequence_number,
(int)info->msg_clientd - 1);

return 0;

JAVA API - Enable Message Information

LBMSourceSendExInfo exinfo = new LBMSourceSendExInfo();
exinfo.setClientObject (new Integer (msgno)); // msgno set to application message number
exinfo.setFlags (LBM.SRC_SEND_EX_ FLAG_SEQUENCE_NUMBER_INFO) ;
// Enable message sequence number info to be returned
for (;7)
{
try {
src.send (message, msglen, 0, exinfo);
}
catch (UMENoRegException ex) {
try {
Thread.sleep(1000);

atch (InterruptedException e) { }

7

atch (LBMException ex) {
System.err.println("Error sending message: " + ex.toString());

break;

JAVA API - Sequence Number Event Handler

public int onSourceEvent (Object arg, LBMSourceEvent sourceEvent)

68 Designing Persistence Applications

witch (sourceEvent.type())

LBM.SRC_EVENT_SEQUENCE_NUMBER_INFO:

LBMSourceEventSequenceNumberInfo info = sourceEvent.sequenceNumberInfo();
if (info.firstSequenceNumber () != info.lastSequenceNumber ()) {
System.out.println("SQON [" + info.firstSequenceNumber (
+ "," + info.lastSequenceNumber () + "] (msgno "

+ info.clientObject () + ")");

else {
System.out.println("SQON " + info.lastSequenceNumber ()
+ " (msgno " + info.clientObject () + ")");

.NET API - Enable Message Information

LBMSourceSendExInfo exinfo = new LBMSourceSendExInfo();
exinfo.setClientObject (msgno); // msgno set to application message number
exinfo.setFlags (LBM.SRC_SEND_EX_ FLAG_SEQUENCE_NUMBER_INFO) ;
// Enable message sequence number info to be returned
£ (i)
{

try {

src.send (message, msglen, 0, exinfo);

(UMENoRegException ex) {
System.Threading.Thread.Sleep (100);

(LBMException ex) {
System.Console.Out.WriteLine ("Error sending message: " + ex.Message());

.NET API - Sequence Number Event Handler

public void onSourceEvent (Object arg, LBMSourceEvent sourceEvent)
{

vitch (sourceEvent.type())

> LBM.SRC_EVENT_SEQUENCE_NUMBER_INFO:
LBMSourceEventSequenceNumberInfo info = sourceEvent.sequenceNumberInfo();
1f (info.firstSequenceNumber () != info.lastSequenceNumber ()) {
System.Console.Out.WriteLine ("SQON [" + info.firstSequenceNumber (
+ "," + info.lastSequenceNumber () + "] (cd "
+ ((int)info.clientObject ()) .ToString("x") + ")");

{
System.Console.Out.WriteLine ("SQON " + info.lastSequenceNumber ()
+ " (msgno " + ((int)info.clientObject()).ToString("x") + ")");

9.2.10 Receiver Liveness Detection

As an extension to Confirmed Delivery, you can set receivers to send a keepalive to a source during a measured
absence of delivery confirmations (due to traffic lapse). In the event that neither message reaches the source within
a designated interval, or if the delivery confirmation TCP connection breaks down, the receiver is assumed to have
"died". UM then notifies the publishing application via context event callback. This lets the publisher assign a new
subscriber.

To use this feature, set these five configuration options:

9.3 Designing Persistent Receivers 69

« ume_source_liveness_timeout (context)

* ume_receiver_liveness_interval (context)

+ ume_confirmed_delivery_notification (source)
* ume_user_receiver_registration_id (context)

* ume_session_id (context), ume_session_id (source), ume_session_id (receiver)

Note

Smart Sources do not support liveness detection.

This specialized feature is not recommended for general use. If you are considering it, please note the following
caveats:

* Do not use in conjunction with a DRO.

« There is a variety of potential network occurrences that can break or reset the TCP connection and falsely
indicate the death of a receiver.

* In cases where a receiver object is deleted while its context is not, the publisher may still falsely assume the
receiver to be alive.

Other false receiver-alive assumptions could be caused by the following:

« TCP connections can enter a half-open or otherwise corrupted state.
« Failed TCP connections sometimes do not fully close, or experience objectionable delays before fully closing.

+ A switch or router failure along the path does not affect the TCP connection state.

9.3 Designing Persistent Receivers

Receivers are predominantly interested in ReglD management and recovery management.

9.3.1 Receiver ReglD Management

ReglDs are slightly more involved for receivers than for sources. Since ReglDs are per source per topic per store
and a topic may have several sources, a receiver may have to manage several ReglDs per store in use. Fortunately,
receivers in UM can leverage the ReglD of the source with the use of a callback as discussed in Adding Fault
Recovery with Registration IDs and shown in ume-example-rcv-2.c. Your application can determine the correct
RegID to use and return it to UM. You can also use Session IDs to enable UM to manage receiver RegIDs. See
Managing ReglDs with Session IDs.

Much like sources, receivers typically have a lifetime based on an amount of work, perhaps an infinite amount. And
just like sources, it may be helpful to consider that a RegID is "assigned" at the start of that work and is out of use at
the end. In between, the RegID is in use by the instance of the receiver application. However, the nature of ReglDs
being per source means that the expected lifetime of a source should play a role in how ReglDs on the receiver
are managed. Thus, it may be helpful for the application developer to consider the source application lifetime when
deciding how best to handle ReglDs on the receiver.

70 Designing Persistence Applications

Receiver Message and Event Handler

The Receiver Message and Event Handler is an application callback, defined at receiver initialization, to deliver
received messages to your application. The following source code examples illustrate the use of a receiver message
and event handler for registration messages. To accept other receiver events, additional case statements would be
required, one for each additional event. See also Persistence Events

C API

int rcv_handle_msg(lbm_rcv_t xrcv, lbm msg_t *msg, void *clientd)

{

h (msg->type) {

> LBM_MSG_UME_REGISTRATION_ERROR:

printf ("[%s][%s] UME registration error: %s\n", msg->topic_name,
msg->source, msg—>data);

exit (0);

break;

LBM_MSG_UME_REGISTRATION_SUCCESS:
{
lbm_msg_ume_registration_t xreg =
(lbm_msg_ume_registration_t =) (msg->data);
printf ("[%$s] [%s] UME registration successful. "
"SrcRegID %u RcvRegID %u\n",
msg->topic_name, msg->source,
reg->src_registration_id, reg->rcv_registration_id);

I sak:
ore ;

ase LBM_MSG_UME_REGISTRATION_SUCCESS_EX:
{
lbm_msg_ume_registration_ex_t xreg =
(lbm_msg_ume_registration_ex_t «) (msg->data);

printf (" [%$s] [$s] store %u: %$s UME registration successful. "

"SrcRegID %u RcvRegID %u. Flags %x ",
msg->topic_name, msg->source, reg->store_index, reg->store,
reg->src_registration_id, reg->rcv_registration_id, reg->flags);
if (reg->flags & LBM_MSG_UME_REGISTRATION_SUCCESS_EX_FLAG_OLD)
printf ("OLD[SQON %x] ", reg->sequence_number) ;
printf ("\n");
}

break:
break;

> LBM_MSG_UME_REGISTRATION_COMPLETE_EX:
{
lbm_msg_ume_registration_complete_ex_t *reg =
(lbm_msg_ume_registration_complete_ex_t x) (msg->data);

printf ("[%$s] [$s] UME registration complete. SON %$x. Flags %x ",
msg->topic_name, msg->source, reg->sequence_number, reg->flags);
(reg->flags & LBM_MSG_UME_REGISTRATION_COMPLETE_EX_ FLAG_QUORUM)
printf ("QUORUM ") ;

if (reg->flags & LBM_MSG_UME_REGISTRATION_COMPLETE_EX_FLAG_RXREQMAX)
printf ("RXREQMAX ") ;

printf ("\n");

}

break:
DT € ;

> LBM_MSG_UME_REGISTRATION_CHANGE:
printf ("[%s] [%s] UME registration change: %s\n", msg->topic_name,
msg->source, msg->data);

break:
D€ ;

lt:
printf ("Unknown lbm _msg_t type %$x [%s][%s]\n", msg->type,
msg->topic_name, msg->source);

break;

return 0;

JAVA API

public int onReceive (Object cbArg, LBMMessage msg)
{
1se LBM.MSG_UME_REGISTRATION_ERROR:
System.out.println("[" + msg.topicName() + "][" + msg.source (
+ "] UME registration error: " + msg.dataString());

break;

9.3 Designing Persistent Receivers

71

case LBM.MSG_UME_REGISTRATION_SUCCESS_EX:
UMERegistrationSuccessInfo reg = msg.registrationSuccessInfo();
System.out.print ("[" + msg.topicName() + "][" + msg.source()
+ "] store " + reg.storelIndex() + ": "
+ reg.store() + " UME registration successful. SrcRegID "
+ reg.sourceRegistrationId() + " RcvRegID "
+ reg.receiverRegistrationId()
+ ". Flags " + reg.flags() + " ");
if ((reg.flags() & LBM.MSG_UME_REGISTRATION_SUCCESS_EX FLAG_OLD) != 0) {
System.out.print ("OLD[SQON " + reg.sequenceNumber () + "] ");
}
System.out.println();
break;

e LBM.MSG_UME_REGISTRATION_COMPLETE_EX:
UMERegistrationCompleteInfo regcomplete = msg.registrationCompleteInfo();

System.out.print ("[" + msg.topicName() + "][" + msg.source()
+ "] UME registration complete. SQON " + regcomplete.sequenceNumber ()
+ ". Flags " + regcomplete.flags() + " ");
if ((regcomplete.flags() & LBM.MSG_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM) != 0) {

System.out.print ("QUORUM ") ;

}

if ((regcomplete.flags() & LBM.MSG_UME_REGISTRATION_COMPLETE_EX_ FLAG_RXREQMAX) != 0)
System.out.print ("RXREQMAX ") ;

}

System.out.println();

break;

ase LBM.MSG_UME_REGISTRATION_CHANGE:
System.out.println("[" + msg.topicName() + "] [" + msg.source()
+ "] UME registration change: " + msg.dataString());

ak;

default:

System.err.println("Unknown lbm_msg_t type " + msg.type() + " ["
+ msg.topicName () + "][" + msg.source() + "1");

ak;

return 0;

.NET API

public int onReceive (Object cbArg, LBMMessage msg)
{
1se LBM.MSG_UME_REGISTRATION_ERROR:
System. Console.Out.WriteLine("[" + msg.topicName() + "] ["
+ msg.source() + "] UME registration error: " + msg.dataString());

ak;

br

e LBM.MSG_UME_REGISTRATION_SUCCESS_EX:
UMERegistrationSuccessInfo reg = msg.registrationSuccessInfo();
System.Console.Out.Write ("[" + msg.topicName() + "] [" + msg.source/()
+ "] store " + reg.storelIndex() + ": "
+ reg.store() + " UME registration successful. SrcRegID "
+ reg.sourceRegistrationId() + " RcvRegID "
+ reg.receiverRegistrationId()
+ ". Flags " + reg.flags() + " ");
if ((reg.flags() & LBM.MSG_UME_REGISTRATION_SUCCESS_EX_ FLAG_OLD) != 0) {
System.Console.Out.Write ("OLD[SQON " + reg.sequenceNumber() + "] ");
}
System.Console.Out.WriteLine () ;
break;

e LBM.MSG_UME_REGISTRATION_COMPLETE_EX:
UMERegistrationCompleteInfo regcomplete = msg.registrationCompleteInfo();

System.Console.Out.Write ("[" + msg.topicName() + "] [" + msg.source/()
+ "] UME registration complete. SQN "
+ regcomplete.sequenceNumber ()
+ ". Flags " + regcomplete.flags() + " ");
if ((regcomplete.flags() & LBM.MSG_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM) != 0) {

System.Console.Out.Write ("QUORUM ") ;

if ((regcomplete.flags() & LBM.MSG_UME_REGISTRATION_COMPLETE_EX_ FLAG_RXREQMAX) != 0)
System.Console.Out.Write ("RXREQMAX ") ;

}

System.Console.Out.WriteLine () ;

break;

e LBM.MSG_UME_REGISTRATION_CHANGE:
System.Console.Out.WriteLine (" [" + msg.topicName() + "][" + msg.source ()
+ "] UME registration change: " + msg.dataString());
br

ak;

72 Designing Persistence Applications

System.Console.Out.WriteLine ("Unknown lbm _msg_t type " + msg.type (
+ " [" + msg.topicName () + "][" + msg.source() + "1");

7

0;

9.3.2 Recovery Management

Recovery management for failed and restarted receivers is fairly simple. UM requests any missed messages from
the store(s) and delivers them to the restarted receiver. However, your application can override that default behavior
either by configuring a retransmit_request_maximum (receiver) value, or by configuring a ume_recovery_«
sequence_number_info_function (receiver) application callback, or both.

For example, let's say a source sends 7 messages with sequence numbers 0-6 which are stabilized at the store. A
C-based receiver, configured with retransmit_request_maximum (receiver) set to 2, and an application callback
ume_recovery_sequence_number_info_function (receiver), consumes (and acknowledges) message 0, goes
down, then restarts right after message 6.

During receiver registration, the lbm_ume_rcv_recovery_info_ex_func_t application callback is called with the
following values in the passed-in structure Ilbm_ume_rcv_recovery_info_ex_func_info_t xinfo:

info->high_sequence_number ==

info->low_rxreq max_sequence_number == 4
info->low_sequence_number == 1
Where:

« Ibm_ume_rcv_recovery_info_ex_func_info_t::high_sequence_number - the most recent message sent
by the source,

« Ibm_ume_rcv_recovery_info_ex_func_info_t::low_rxreq_max_sequence_number - high_sequence_«
number (above) minus the number configured for retransmit_request_maximum (receiver) (2 in this exam-
ple), and

* Ibm_ume_rcv_recovery_info_ex_func_info_t::low_sequence_number - the first sequence number
missed by the receiver after it went down.

Normally, UM would start delivering messages at 1, but retransmit_request_maximum (receiver) is set to 2, which
overrides UM's normal behavior. So in this example, the first message delivered will be number 4.

Finally, the application can, at run-time, further override the starting sequence number. The callback function can
modify the contents of the passed-in structure Ibm_ume_rcv_recovery_info_ex_func_info_t xinfo; specifically it
can update the Ibm_ume_rcv_recovery_info_ex_func_info_t::low_sequence_number field. When the callback
returns, UM examines that field to see if it was modified by the callback. If so, UM overrides the effect of retransmit«—
_request_maximum (receiver) and starts at the requested sequence number.

Notice that this design does not allow the callback to override the effect of retransmit_request_maximum (re-
ceiver) by setting the Ibom_ume_rcv_recovery_info_ex_func_info_t::low_sequence_number field to its original
value, 1 in this example. Upon return, UM will see the value unchanged, and will allow retransmit_request_«
maximum (receiver) to override the starting sequence number. This is only an issue if both retransmit_request«
_maximum (receiver) and ume_recovery_sequence_number_info_function (receiver) are used. If the applica-
tion wants to use the sequence number remembered by the store, it should not configure retransmit_request_«
maximum (receiver).

9.3 Designing Persistent Receivers 73

9.3.3 Duplicate Message Delivery

In a distributed system, it is not possible to guarantee "once-and-only-once" delivery of messages in the face of
unpredictable system or component failure. Regardless of the algorithms and handshaking, there is always the
possibility of messages sent that are never received, as well as messages received and then received again if the
receiving application fails and restarts.

UM's persistence design is based on the principle of being close to once-and-only-once, but when that is not
possible, UM prefers to fail on the side of duplicate message delivery. Due to other design goals (low latency and
high throughput), the possibility of receiving duplicate messages is significant after an application failure and restart.

It is therefore important for persistent applications to be designed to tolerate duplicate message reception, either by
making message processing idempotent, or by including logic in the receiving application to detect duplicates and
only process the messages which have not been previously processed.

To assist the application in implementing "de-duplication”, all messages retransmitted to a receiver are marked as
retransmissions via a flag in the message structure. Thus it is easy for an application to determine if a message
is a new "live" message from the source, or a retransmission, which may or may not have been processed before
the failure. The presence or absence of the retransmit flag gives the application a hint of how best to handle the
message with regard to it being processed previously or not.

Informatica recommends that you always check the data or other message properties of messages with the retrans-
mit flag set to be sure the message has not been already processed. Relying on UM sequence numbers is not a
100% reliable method for detecting duplicate messages.

9.3.4 Setting Callback Function to Set Recovery Sequence Number

Whereas the UM persistence design attempts to choose the correct starting sequence number for a recovering
receiver, there are cases where the application wishes to override UM's choice.

The sample code below demonstrates how to use the recovery sequence number info function to determine the
stored message with which to restart a receiver. This example retrieves the low sequence number from the recovery
sequence number structure and adds an offset to determine the beginning sequence number. The offset is a value
completely under the control of your application. For example, if a receiver was down for a "long" period and you
only want the receiver to receive the last 10 messages, use an offset to start the receiver with the 10th most recent
message. If you wish not to receive any messages, set the lbm_ume_rcv_recovery_info_ex_func_info_t::low«
_sequence_number to the Ibm_ume_rcv_recovery_info_ex_func_info_t::high_sequence_number plus one.

C API

lbm_ume_rcv_recovery_info_ex_func_t cb;

cb.func = ume_rcv_segnum_ex; /+ declared below */
cb.clientd = NULL;
(lbm_rcv_topic_attr_setopt (&rcv_attr,
"ume_recovery_sequence_number_info_function",
&cb, sizeof(cb)) == LBM_FAILURE) {
fprintf (stderr,
"lbm_rcv_topic_attr_setopt:ume_recovery_sequence_number_info_function: %s\n“,
lbm_errmsg());
exit (1);
}

printf ("Will use segnum info with low offset %u.\n", seqnum_offset);

int ume_rcv_segnum_ex (lbm_ume_rcv_recovery_info_ex_func_info_t *info, void xclientd)
{

lbm_uint_t new_lo = info->low_sequence_number + seqnum_offset;

printf (" [%$s] SONs Low %$x (will set to %x), Low rxregmax %x, High %$x (CD %p)\n",
info->source, info->low_sequence_number,
new_lo, info->low_rxreq max_sequence_number,
info->high_sequence_number, info->source_clientd);
info->low_sequence_number = new_lo;
0;

74 Designing Persistence Applications

JAVA API

UMERcvRecInfo umerecinfocb = new UMERcvRecInfo (seqnum_offset);
rcv_attr.setRecoverySequenceNumberCallback (umerecinfocb, null);
System.out.println("Will use segnum info with low offset " + seqnum_offset);

class UMERcvRecInfo implements UMERecoverySequenceNumberCallback {
private long _seqnum_offset = 0;

public UMERcvRecInfo (long seqnum_offset) {
_seqnum_offset = seqnum_offset;

}

public int setRecoverySequenceNumberInfo (Object cbArg,
UMERecoverySequenceNumberCallbackInfo cbInfo)
{

long new_low = cbInfo.lowSequenceNumber () + _segnum_offset;

System.out.println("SQNs Low " + cbInfo.lowSequenceNumber () + " (will set to "
+ new_low + "), Low rxregmax " + cbInfo.lowRxRegMaxSequenceNumber ()
+ ", High " + cbInfo.highSequenceNumber ());

{

cbInfo.setLowSequenceNumber (new_low) ;

atch (LBMEInvalException e) {
System.err.println(e.getMessage());
}

return 0;

.NET API

UMERcvRecInfo umerecinfocb = new UMERcvRecInfo (seqnum_offset);
rcv_attr.setRecoverySequenceNumberCallback (umerecinfocb, null);
System.Console.Out.WriteLine ("Will use seqgnum info with low offset " + segnum_offset);

class UMERcvRecInfo implements UMERecoverySequenceNumberCallback {
private long _seqnum_offset = 0;

public UMERcvRecInfo (long segnum_offset) ({
_seqnum_offset = seqnum_offset;

}

public int setRecoverySequenceNumberInfo (Object cbArg,
UMERecoverySequenceNumberCallbackInfo cbInfo)
{

long new_low = cbInfo.lowSequenceNumber () + _segnum_offset;

System.Console.Out.WriteLine ("SQNs Low " + cbInfo.lowSequenceNumber () + " (will set to "
+ new_low + "), Low rxregmax " + cbInfo.lowRxRegMaxSequenceNumber ()
+ ", High " + cbInfo.highSequenceNumber ());

ry A
cbInfo.setLowSequenceNumber (new_low) ;

(LBMEInvalException e) {
System.Console.Out.WriteLine (e.getMessage());

retu 0;

9.3.5 Persistence Message Consumption

Receivers use message consumption, defined as message deletion, to indicate that UM should notify the store(s)
that the application consumed the message. This notification takes the form of an acknowledgement, or ACK, to
the store(s) in use, and optionally to the source if you configure the source for delivery confirmation.

In many applications, the message receiver application callback will fully process the received message. When the
application callback returns, the message should be deleted and acknowledged.

However, there are other application designs where a received message cannot be fully processed inside the
receiver application callback. For example, the message might need to be passed to a worker thread for longer-
term processing. Or the acknowledgement must be delayed until some other event happens, like a handshake with

9.3 Designing Persistent Receivers 75

another application. In these cases, the message deletion and/or message acknowledgement must not be done
when the receiver callback returns.

Finally, for high-throughput applications, an application can completely suppress the acknowledgement of each
individual message in favor of acknowledgement batching (acknowledging multiple messages in one operation).
This is done to reduce the per-message overhead. Note that acknowledgement batching increases the chances
that a restarted application will receive duplicate messages (messages that had been previously process but not
yet acknowledged). See Duplicate Message Delivery for more information.

9.3.6 Immediate Message Consumption

In many applications, the message receiver application callback will fully process the received message. When the
receive callback returns, the message should be deleted and acknowledged. This is handled differently between
the C APl vs. the Java and .NET APIs.

C API

The default behavior for a C receiver application callback is for the message to be deleted and acknowledged when
the receiver callback returns. No special coding is needed for this use case.

Java and .NET

With Java and .NET, the UM library is not able to differentiate between a message that is passed to a different
part of the application vs. a message which is simply dereferenced for eventual garbage collection. So the default
behavior of the UM library is different — it is assumed that the message should not be deleted and acknowledged
when the receiver application callback returns. Instead, the application is expected to explicitly dispose of received
messages when processing is complete.

In the case where message processing is completed in the receiver callback, the application must call the "dispose()"
method of the message object before returning. This triggers acknowledgement as well as cleanup of the message's
resources.

9.3.7 Delayed Message Processing

There are application designs where a received message cannot be fully processed inside the receiver application
callback. For example, the message might need to be passed to a worker thread for longer-term processing. Or the
acknowledgement must be delayed until some other event happens, like a handshake with another application.

This is handled differently between the C API vs. the Java and .NET APIs.
C API

In the C API, the application's receiver callback function must call the Ilbm_msg_retain() function for the received
message. This suppresses the automatic deletion of the received message when the receiver callback returns, and
allows the message buffer to be handed to some other part of the application for processing and deletion at a later
time.

When the application subsequently completes all processing of the message and is ready for the message to be
deleted and acknowledged, it calls Ibm_msg_delete().

Java and .NET

With Java and .NET, the UM library assumes that the message should not be deleted and acknowledged when
the receiver application callback returns. The callback can simply pass the message to some other part of the
application for subsequent processing.

When the application has completed all processing on the message, the message's "dispose()" method should be
called. This releases resources held by the object and also triggers the acknowledgement.

76 Designing Persistence Applications

9.3.8 Batching Acknowledgments

For high-throughput applications, it is often desired to reduce the per-message overhead. Sending acknowledge-
ments to the Store and optionally to the source normally involves multiple socket operations, which can limit the
maximum sustainable throughput of a persistent receiver.

A significant reduction in per-message overhead can be achieved by batching acknowledgements. In this use case,
the sending of acknowledgements is delayed until multiple messages have been received and processed. Then an
acknowledgement is sent which covers all messages processed so far.

Warning

While ACK batching provides significant improvements in receiver throughput, it also increases the probability
that a failed and restarted receiver will be sent duplicate messages (i.e. messages that the application has
already received and processed).

ACK Batching can be done implicitly or explicitly. For implicit ACK batching, use the configuration options ume«
_use_ack_batching (receiver) and ume_ack_batching_interval (context). Note that implicit ACK batching also
supports out-of-order acknowledgements. See ACK Ordering.

Explicit ACK batching gives the application precise control over when acknowledgements are sent via API calls.
This mode of operation is enabled with the ume_explicit_ack_only (receiver) configuration option. If enabled,
acknowledgements are only sent as a result of the application explicitly calling an API. This allows the application
to use application-level knowledge to optimize when to send acknowledgements, potentially minimizing the time
that processed messages are left unacknowledged (and therefore minimizing the number of potential duplicate
messages).

See Ibm_ume_ack_send_explicit_ack() and Ibm_msg_ume_send_explicit_ack() for the C API. See com«
::latencybusters::Ibm::LBMMessage::sendExplicitAck() for Java and .NET. See Explicit Acknowledgments for
details on explicit ACKs.

9.3.9 ACK Ordering

The Persistent Store does not support "out of order" acknowledgement of messages. If the Store receives an
acknowledgement of sequence number N, that implicitly acknowledges all sequence numbers less than N. If a re-
ceiving application has the ability to complete processing of messages out of order, it must ensure that an acknowl-
edgement is sent for a given message until all previously-received messages have been completely processed.

Normally, the only way that a receiving application can process messages out of order is to retain those messages
and complete processing of them outside of the receiver application callback function. This normally requires "re-
taining" the messages so that they aren't deleted (and therefore acknowledged) automatically when the receiver
callback returns. In this usage, when a message is completely processed, that message is deleted by the applica-
tion, triggering the acknowledgement of that message. However, if the application design allows those messages to
be processed out of order, then the risk exists that the acknowledgement of a given message will implicitly acknowl-
edge previous message which have not been completely processed. This will prevent those incompletely processed
messages from being recovered if the receiving application fails and restarts.

ACK Batching can provide a solution, implicitly or explicitly.

The implicit form of ACK batching provides, as a convenience, the ability to postpone the sending of a message
ACK until all previous received messages have also been processed. When the UM context wakes up every ume«
_ack_batching_interval (context) milliseconds, it checks for unacknowledged messages that have been deleted,
either implicitly from the receiver callback returning, or explicitly by API calls to retain and then delete the message.
UM will only acknowledge up to the highest continuous sequence number.

9.3 Designing Persistent Receivers 77

For example, let's say the application deletes messages with sequence numbers 0, 1, 5, 2, 4. Messages 3 and 6 are
still being processed. If the context wakes up at this point, it will send an acknowledgement for sequence 2. If the
application fails at this point and restarts, the Store will re-send messages 3, 4, 5, and 6. The receiving application
must handle the fact that 3 and 6 were incompletely processed, whereas 4 and 5 were completely processed (see
Duplicate Message Delivery).

Instead of using implicit batching for this, the application can be coded to use Explicit Acknowledgments. How-
ever, in this case, the application has the responsibility to implement a similar algorithm as the implicit ACK batcher
described above. l.e. even though the messages 4 and 5 were fully processed, the application would need to post-
pone sending an acknowledgement until message 3 is also completed, at which point a single acknowledgement
for sequence 5 can be sent.

9.3.10 Explicit Acknowledgments

UM supports Explicit acknowledgement which suppresses UM's default acknowledgement behavior, allowing your
application complete control of message consumption notification.

There are two common use cases for Explicit Acknowledgements:

 Deferred Acknowledgement.

+ Application-level ACK batching.

Deferred Acknowledgement means that the receiving application is not able to fully process a message within the
message receiver application callback. For example, the message may require processing in a separate thread. By
default, UM will acknowledge a persisted message when the receiver callback returns.

Application-level ACK batching means that the application chooses not to acknowledge every received message.
Instead, it implements its own logic to decide which messages to acknowledge. Note that acknowledging a given
message implicitly acknowledges all earlier messages. For example, acknowledging messages 5, 10, and 15 tells
the Store that all messages 0-15 are acknowledged.

Also note that this imposes the restriction that messages be acknowledged in ascending order. See ACK Ordering
for more information.

Explicit acknowledgement is enabled using the configuration option ume_explicit_ack_only (receiver).

9.3.11 Object-free Explicit Acknowledgments

When using explicit ACKs, you can extract ACK information from messages. This allows the received message
buffer to be deleted when the receiver callback is done, while still allowing the application to save the ACK structure
for persistent acknowledgement to the Store at a future time. This can improve receiver performance when used
with the Receive Buffer Recycling feature to reduce the per-message use of dynamic memory (malloc/free) with
a persistent receiver. Extracting ACKs can also additionally improve performance of Java and .NET applications by
allowing the use of Zero Object Delivery.

The following source code examples show how to extract ACK information and send an explicit ACK.

C API

int rcv_handle_msg(lbm_rcv_t xrcv, lbm msg_t xmsg, void *clientd)
{

lbm_ume_rcv_ack_t xack = NULL;

ack = lbm_msg_extract_ume_ack (msg);
defer_ack (ack); /* Pass the "ack" to another thread or work queue. */

78 Designing Persistence Applications

0;
}

int worker ()
{

lbm_ume_rcv_ack_t xack = NULL;
ack = get_deferred_ack(); /* Get "ack" that was saved above. */

/+ Some applications improve throughput by not ACKing every message. */
(ack_this_message) {
1bm_ume_ack_send_explicit_ack (ack, msg->sequence_number) ;

}

lbm_ume_ack_delete (ack) ; /* Extracted ack smustx be deleted. */

JAVA APl or .NET API

public int onReceive (Object cbArg, LBMMessage msg)
{
UMEMessageAck ack;

ack = msg.extractUMEAck () ;
defer_ack (ack); /* Pass the "ack" to another thread or work queue. */

0;
}

int worker ()
{
UMEMessageAck ack;

ack = get_deferred_ack(); /* Get "ack" that was saved above. */

/* Some applications improve throughput by not ACKing every message. =%/
(ack_this_message) {
ack.sendExplicitAck (msg.sequenceNumber ()) ;
}
ack.dispose(); /* Extracted ack xmustx be deleted. */

9.4 Designing Persistent Stores

As mentioned in Persistent Store Concept, the persistent stores, also just called stores, actually persist the source
and receiver state and use ReglIDs to identify sources and receivers. Each source to which a store provides
persistence may have zero or more receivers. The store maintains each receiver's state along with the source's
state and the messages the source has sent.

The store can be configured with its own set of options to persist this state information on disk or simply in memory.
The term disk store is used to signify a store that persists state to disk, and the term memory store is used to signify
a store that persists state only in memory.

A source does not send data to the store and then have the store forward it to the receivers. In UM, the source
sends to receivers and the stores in parallel. See Persistence Normal Operation. Thus, UM can provide extremely
low latency to receiving applications.

The store(s) that a source uses are part of the source's configuration settings. Sources must be configured to use
specific store(s) in a Quorum/Consensus arrangement.

Receivers, on the other hand, do not need to be configured with store information a priori. The source provides
store information to receivers via a Source Registration Information (SRI) message after the source registers with a
store. Thus the receivers learn about stores from the source, without needing to be configured themselves. Because
receivers learn about the store or stores with which they must register via a SRI record, the source must be available
to receivers. However, the source does not have to be actively sending data to do this.

9.4 Designing Persistent Stores 79

9.4.1 Store Log File

The store daemon generates log messages that are used to monitor its health and operation. You can configure
these to be directed to "console" (standard output) or a specified log "file", via the UMP Element "<log>". Normally
"console" is only used during testing, as a persistent log file is preferred for production use. The store does not
over-write log files on startup, but instead appends them.

9.4.2 Store Rolling Logs

To prevent unbounded disk file growth, the store supports rolling log files. When the log file rolls, the file is renamed
according to the model:

CONFIGUREDNAME_PID . DATE . SEQNUM

where:

CONFIGUREDNAME - Root name of log file, as configured by user.

PID - Process ID of the store daemon process.

DATE - Date that the log file was rolled, in YYYY-MM-DD format.

SEQNUM - Sequence number, starting at 1 when the process starts, and incrementing each time the log file
rolls.

For example: umestorelog_9867.2017-08-20.2

The user can configure when the log file is eligible to roll over by either or both of two criteria: size and frequency.
The size criterion is in millions of bytes. The frequency criterion can be daily or hourly. Once one or both criteria are
met, the next message written to the log will trigger a roll operation. These criteria are supplied as attributes to the
UMP Element "<log>".

If both criteria are supplied, then the first one to be reached will trigger a roll. For example, consider the setting:

<log type="file" size="23" frequency="daily">store.log</log>

Let say that the log file grows at 1 million bytes per hour. At 11:00 pm, the log file will reach 23 million bytes, and
will roll. Then, at 12:00 midnight, the log file will roll again, even though it is only 1 million bytes in size.

Note

The rolling logs cannot be configured to automatically overwrite old logs. Thus, the amount of disk space
consumed by log files will grow without bound. The user must implement a desired process of archiving or
deleting older log files according to the user's preference.

9.4.3 Quorum/Consensus Store Usage

To provide the highest degree of resiliency in the face of failures, UM provides the Quorum/Consensus failover
strategy which allows a source to provide UM with a number of stores to be used at the same time. Multiple stores
can fail and messaging can continue operation unhindered as long as a majority of configured stores are operational.

80 Designing Persistence Applications

Quorum/Consensus, also called QC, allows a source and the associated receivers to have their persisted state
maintained at several stores at the same time. Central to QC is the concept of a group of stores, which is a logical
grouping of stores that are intended to signify a single entity of resilience. Within the group, individual stores may
fail but for the group as a whole to be viable and provide resiliency, a quorum must be available. In UM, a quorum
is a simple majority. For example, in a group of five stores, three stores are required to maintain a quorum. One or
two stores may fail and the group continues to provide resiliency. UM requires a source to have a quorum of stores
available in the group in order to send messages. A group can consist of a single store.

QC also provides the ability to use multiple groups. However, multiple QC groups is deprecated and may be removed
from a future version of UM. Users of multiple QC groups are encouraged to migrate their source configurations to
use a single group of Stores for QC.

9.4.4 Sources Using Quorum/Consensus Store Configuration

In the case of Quorum/Consensus store behavior, a message is considered stable after it has been successfully
stored within a group of stores or among groups of stores according to the two settings, intergroup behavior and
intragroup behavior, described below.

» The intragroup behavior specifies the requirements needed to stabilize a message among the stores within a
group. A message is stable for the group once it is successfully stored at a quorum (majority) of the group's
stores or successfully stored in all the stores in the group.

» The intergroup behavior specifies the requirements needed to stabilize a message among groups of stores. A
message is stable among the groups if it is successfully stored at any group, a majority of groups, all groups,
or all active groups.

Notice that a message needs to meet intragroup stability requirements before it can meet intergroup stability re-
quirements. These options provide a number of possibilities for retention of messages for the source.

Note

Multiple QC groups is deprecated and may be removed from a future version of UM. Users of multiple QC
groups are encouraged to migrate their source configurations to use a single group of Stores for QC.

9.5 Persistent Fault Recovery

Recovery from source and receiver failure is the real heart of persistent operation. For a source, this means
continuing operation from where it stopped. For a receiver, this means essentially the same thing, but with the
retransmission of missed messages. Application developers can easily leverage the information in UM to make
their applications recover from failure in graceful ways.

Late Join is the mechanism of persistent recovery as well as an UM streaming feature. If Late Join is turned off on
a source (late_join (source)) or receiver (use_late_join (receiver)), it also turns off persistent recovery. In order
to control Late Join behavior, UM provides a mechanism for a receiver to control the low sequence number. See
Recovery Management.

Not all failures are recoverable. For application developers it usually pays in the long run to identify what types of
errors are non-recoverable and how best to handle them when possible. Such an exercise establishes the precise
boundaries of expected versus abnormal operating conditions.

9.5 Persistent Fault Recovery 81

9.5.1 Persistent Source Recovery

The following shows the basic steps of source recovery:

1. Re-register with the store.
2. Determine the highest sequence number that the store has from the source.

3. Resume sending with the next sequence number.

Because UM allows you to stream messages and not wait until a message is stable at the persistent store before
sending the next message, the main task of source recovery is to determine what messages the persistent store(s)
have and what they don't. Therefore, when a source re-registers with a store during recovery, the store tells the
source what sequence number it has as the most recent from the source. The registration event informs the
application of this sequence number. See Source Event Handler.

In addition, a mechanism exists (LBM_SRC_EVENT_SEQUENCE_NUMBER_INFO) that allows the application to
know the sequence number assigned to every piece of data it sends. The combination of registration and sequence
number information allows an application to know exactly what a store does have and what it does not and where
it should pick up sending. An application designed to stream data in this way should consider how best to maintain
this information.

When QC is in use, UM uses the consensus of the group(s) to determine what sequence number to use in the
first message it will send. This is necessary as not all stores can be expected to be in total agreement about what
was sent in a distributed system. The application can configure the source with the ume_consensus_sequence«
_nhumber_behavior (source) to use the lowest sequence number of the latest group of sequence numbers seen
from any store, the highest, or the majority. In most cases, the majority, which is the default, makes the most
sense as the consensus. The lowest is a very conservative setting. And the highest is somewhat optimistic. Your
application has the flexibility to handle this in any way needed.

If streaming is not what an application desires due to complexity, then it is very simple to use the Persistence Events
delivered to the application to mimic the behavior of restricting a source to having only one unstable message at a
time.

9.5.2 Persistent Receiver Recovery

The following shows the basic steps of receiver recovery:

1. Re-register with the store.
2. Determine the low sequence number.

3. Request retransmission of messages starting with the low sequence number.

UM provides extensive options for controlling how receivers handle recovery. By default, receivers want to restart
after the last piece of data that was consumed prior to failure or graceful suspension. Since UM persists receiver
state at the store, receivers request this state from the store as part of re-registration and recovery. Receiving
applications experiencing unrecoverable loss can potentially retrieve missed messages from the stores by deleting
and recreating the receiver object.

The actual sequence number that a receiver uses as the first topic level message to resume reception with is called
the "low sequence number". UM provides a means of modifying this sequence number if desired. An application can
decide to use the sequence number as is, to use an even older sequence number, to use a more recent sequence
number, or to simply use the most recent sequence number from the source. See Recovery Management and
Setting Callback Function to Set Recovery Sequence Number. This allows receivers great flexibility on a per source
basis when recovering. New receivers, receivers with no pre-existing registration, also have the same flexibility in
determining the sequence number to begin data reception.

82 Designing Persistence Applications

Like sources, when QC is in use, UM uses the consensus of the group(s) to determine the low sequence number.
And as with sources, this is necessary as not all stores can be expected to be in total agreement about what was
acknowledged. The application can configure the receiver with ume_consensus_sequence_number_behavior
(receiver) to use the lowest sequence number of the latest group of sequence numbers seen from any store, the
highest, or the majority. In most cases, the majority, which is the default, makes the most sense as the consensus.
The lowest is a very conservative setting. And the highest is somewhat optimistic. In addition, this sequence number
may be modified by the application after the consensus is determined.

For QC, UM load balances receiver retransmission requests among the available stores. In addition, if requests are
unanswered, retransmissions of the actual requests will use different stores. This means that as long as a single
store has a message, then it is possible for that message to be retransmitted to a requesting receiver.

9.6 Callable Store

It is possible for an application to start an instance of the store to run as an independent set of threads within the
application process. However, there are several restrictions:

1. The application may not make use of messaging. l.e. an application which intends to start a store instance
must not create contexts, sources, or receivers, or make any use of UM except starting (and optionally
stopping) the store. For applications that need to use messaging, it is suggested that the application create
a child process from which to invoke the store. The parent process can then use messaging freely. See the
example program umestored_example . c for an example of how this can be done.

2. Only a C APl is provided at this time. Two API functions are available: umestored_main() to start the store
threads running, and umestored_main_shutdown() to request the store threads to stop gracefully.

3. The umestored_main() API will not return until the store exits, either by processing a signal, or by the
application calling umestored_main_shutdown(). When umestored_main() does return, the store is in a
safe state for the application to exit.

4. Only a single instance of the store may be started. This means that an application may not have two stores
running concurrently, and it also means that an application may not start a store, shut it down, and then start
it again. The store APl is "single use".

5. The application may not set signal handlers for SIGPIPE, SIGUSR1, SIGINT, or SIGTERM. The store uses
those signals. For applications that need to handle those signals, it is suggested that the application create a
child process, as mentioned above (#1).

For an example of how to use the umestored_main() API, see the example program umestored_example.c.
Note that while the callable store APIs are usable on all supported platforms, this example program is restricted to
Linux due to its use of prct1 (), a Linux-only function.

9.7 Store Thread Affinity

A significant performance improvement of the Store can be obtained by "pinning" threads to CPU cores. Normally,
the operating system will migrate a process's threads to different CPU cores, depending on what else is going on
in the host. This can degrade the process's performance in a number of ways, mostly related to memory access
(cache, NUMA zones). By setting the CPU affinity for the performance-sensitive threads, you avoid this degradation.

For high-throughput applications, you will gain significant performance improvement by constraining the operating
system to run the Store's threads on specific CPU cores. All of a store's threads should run on cores in the same
physical CPU chip.

9.7 Store Thread Affinity 83

For maximum benefit, you should "isolate" the cores running the message reception threads. This prevents the
operating system from scheduling other processes/threads on those cores.

Setting Affinity

When the Store daemon process is executed, the user can optionally use the "-a" option to set CPU affinity to the
various threads. See Umestored Man Page.

Note that for the Windows Service, you don't supply the option when the service is run. Instead you save the thread
affinity into the Windows registry for subsequent use by the Store Windows Service. See Umestoreds Man Page
and Configure the Windows Service.

The "-a" option takes a comma-separate list of CPU (core) numbers. For example, "-a 1,3,1,..." refers to CPU 1,
CPU 3, CPU 1 again, etc.

The sequence of numbers are assigned to threads as follows:

The first number is the "process" CPU number, which is used for all miscellaneous threads that aren't otherwise
assigned.

The next 4 numbers are assigned to a Store's operational threads in the following sequence:

1. Message reception thread.
2. Proxy source thread.
3. Receiver recovery thread.

4. Auxiliary thread.

If the store process has multiple stores configured, additional groups of 4 numbers should be supplied.

Of these threads, the most critical is the message reception thread. For best performance, each store's message
reception thread should be given exclusive access to its own CPU core.

The receiver recovery thread is also important, since it can affect the speed at which receivers can recover missed
messages. However, since CPU cores are scarce resources on hosts, it may not be practical to give each receiver
recovery thread its own core.

The proxy source and auxiliary threads are not critical to general Store throughput, and are therefore generally
assigned to the "process" core as miscellaneous.

Affinity Example

For example, suppose you have a Store process configured for two stores. Further, let's say that on your host, even-
numbered CPUs belong to one physical CPU chip, and odd-numbered CPUs belong to a different physical CPU
chip. The following would optimize both message reception and message recovery, at the expense of consuming 5
cores:

umestored -a 3,5,3,7,3,9,3,11,3
This assigns:

« the process's miscellaneous threads to CPU 3,

« the first store's message reception thread to CPU 5,

« the first store's proxy source thread to CPU 3,

« the first store's receiver recovery thread to CPU 7,

« the first store's auxiliary thread to CPU 3,

« the second store's message reception thread to CPU 9,
+ the second store's proxy source thread to CPU 3,

« the second store's receiver recovery thread to CPU 11,

84 Designing Persistence Applications

« the second store's auxiliary thread to CPU 3.

If assigning this many cores to the Store process is not practical, the following conserves cores at the expense of
potentially degrading message recovery speed:

umestored -a 3,5,3,3,3,7,3,3,3

This assigns a CPU core to each of the two message reception threads (5 and 7), and groups all other threads onto
the miscellaneous CPU core (3).

Chapter 10

Persistence Fault Tolerance

10.1

Message Loss Recovery

Persistence offers the following message recovery mechanisms:

Method

Product

Transports

Description

Negative Acknowledgments (N«
AKs)

UMS, UMP, UMQ

LBT-RM, LBT-RU

Recovers lost transport data-
grams from the source which may
contain many small topic mes-
sages or fragments of a large
message. Receivers send unicast
NAKs to the source for missed
transport datagrams. Source re-
transmits datagrams over the con-
figured UM transport.

Late Join

UMS, UMP, UMQ

All

Retransmits messages via uni-
cast to receivers joining the
stream after the messages were
originally sent. See Using Late
Join.

Durable Receiver Recovery

UMP, UMQ

All

Recovers messages persisted
while a durable receiver was
off line. UM initiates recovery
when a durable receiver joins a
persistent stream. The receiver
then requests retransmission
from the store starting with the
low sequence number, defined as
the last message it acknowledged
to the store plus one. The store
unicasts retransmissions. See
Persistent Receiver Recovery.

86 Persistence Fault Tolerance

Method Product Transports Description

Off Transport Recovery UMS, UMP, UMQ | All Recovers lost topic messages.
Receiver detects lost sequence
number and requests retransmis-
sion from the source or persis-
tent stores (if applicable). UM uni-
casts retransmissions. See Off-«—
Transport Recovery (OTR).

Proactive Retransmissions UMP, UMQ All Recovers lost messages never re-
ceived by the store or never ac-
knowledged by the store. Op-
erates independently of any re-
ceivers. Source unicasts retrans-
missions. See Proactive Retrans-
missions.

10.2 Configuring for Persistence and Recovery

Deployment decisions play a huge role in the success of any persistent system. Configuration in UM has a number
of options that aid in performance, fault recovery, and overall system stability. It is not possible, or at least not wise,
to totally divorce configuration from application development for high performance systems. This is true not only for
persistent systems, but for practically all distributed systems. When designing systems, deployment considerations
need to be taken into account for the following:

» Source Considerations

* Receiver Considerations

+ Store Configuration Considerations

10.2.1 Source Considerations

Performance of sources is heavily impacted by:

+ the release policy that the source uses
+ streaming methods of the source

« the throughput and latency requirements of the data

Source release settings have a direct impact on memory usage. As messages are retained, they consume memory.
You reclaim memory when you release messages. Message stability, delivery confirmation and retention size
all interact to create your release policies. UM provides a hard limit on the memory usage. When exceeded,
UM delivers a Forced Reclamation event. Thus applications that anticipate forced reclamations can handle them
appropriately. See also Source Message Retention and Release.

How the source streams data has a direct impact on latency and throughput. One streaming method sets a maxi-
mum, outstanding count of messages. Once reached, the source does not send any more until message stability

10.2 Configuring for Persistence and Recovery 87

notifications come in to reduce the number of outstanding messages. The umesrc example program uses this mech-
anism to limit the speed of a source to something a store can handle comfortably. This also provides a maximum
bound on recovery that can simplify handling of streaming source recovery.

The throughput and latency requirements of the data are normal UM concerns.

10.2.2 Receiver Considerations

In addition to the following, receiver performance shares the same considerations as receivers during normal oper-
ation.

Acknowledgement Generation

Persistent receivers send a message consumption acknowledgement to stores and the message source. Some
applications may want to control this acknowledgement explicitly themselves. In this case, ume_explicit_ack_only
(receiver) can be used.

Controlling Retransmission

Persistent receivers during fault recovery are another matter entirely. Receivers send retransmission requests and
receive and process retransmissions. Control over this process is crucial when handling very long recoveries, such
as hundreds of thousands or millions of messages. A receiver only sends a certain number of retransmission
requests at a time.

This means that a receiver will not, unless configured to with retransmit_request_outstanding_maximum (re-
ceiver), request everything at once. The value of the low sequence number (Persistent Receiver Recovery) has
a direct impact on how many requests need to be handled. A receiving application can decide to only handle
the last X number of messages instead of recovering them all using the option, retransmit_request_maximum
(receiver). The timeout used between requests, if the retransmission does not arrive, is totally controllable with
retransmit_request_interval (receiver). And the total time given to recover all messages is also controllable.

Recovery Process

Theoretically, receivers can handle up to roughly 2 billion messages during recovery. This limit is implied from the
sequence number arithmetic and not from any other limitation. For recovery, the crucial limiting factor is how a
receiver processes and handles retransmissions which come in as fast as UM can request them and a store can
retransmit them. This is perhaps much faster than an application can handle them. In this case, it is crucial to
realize that as recovery progresses, the source may still be transmitting new data. This data will be buffered until
recovery is complete and then handed to the application. It is prudent to understand application processing load
when planning on how much recovery is going to be needed and how it may need to be configured within UM.

10.2.3 Store Configuration Considerations

UM stores have numerous configuration options. See Configuration Reference for Umestored for details.
Configuring Store Usage per Source

A store handles persisted state on a per topic per source basis. Based on the load of topics and sources, it may
be prudent to spread the topic space, or just source space, across stores as a way to handle large loads. As
configuration of store usage is per source, this is extremely easy to do. It is easy to spread CPU load via multi-
threading as well as hard disk usage across stores. A single store process can have a set of virtual stores within it,
each with their own thread.

Disk vs. Memory

As mentioned previously in Persistent Store Concept, stores can be memory based or disk based. Disk stores also
have the ability to spread hard disk usage across multiple physical disks by using multiple virtual stores within a
single store process. This gives great flexibility on a per source basis for spreading data reception and persistent

88 Persistence Fault Tolerance

data load.

UM stores provide settings for controlling memory usage and for caching messages for retransmission in memory
as well as on disk. All messages in a store, whether in memory or on disk, have some small memory state. This is
roughly about 72 bytes per message. For very large caches of messages, this can become non-trivial in size.

Activity Timeouts

UM stores are NOT archives and are not designed for archival. Stores persist source and receiver state with the aim
of providing fault recovery. Central to this is the concept that a source or receiver has an activity timeout attached to
it. Once a source or receiver suspends operation or has a failure, it has a set time before the store will forget about it.
This activity timeout needs to be long enough to handle the recovery demands of sources and receivers. However, it
can not and should not be infinite. Each source takes up memory and disk space, therefore an appropriate timeout
should be chosen that meets the requirements of recovery, but is not excessively long so that the limited resources
of the store are exhausted.

Recommendations for Store Configuration

The following conditions allow sources to continue to send messages:

» Quorum - Completed registration of a quorum of stores within at least one group. This is affected by group
definitions, plus intragroup and intergroup stability settings. See also Persistent Store Concept.

* Flight Size - Maximum number of messages sent but not stable which is determined by store group definitions,
intragroup and intergroup stability settings and delivery confirmation setting. See also Persistence Flight Size.

Configure your stores to address the failure cases you believe are more probable and from which you want to
recover. For example, if a particular store group persists topics of higher importance, you may want to increase the
number of stores in that group to maintain quorum in the face of a store failure. Or if a particular location has a
higher incidence of failures than other locations, you may want to add additional stores in other locations.

Although many different conditions and requirements can apply to the configuration of persistent stores, Informatica
recommends the following best practices:

1. Minimum of 3 stores - Requiring a minimum of 3 stores needed for quorum in a single store group is optimal.
Using 5 stores, for example, in a group allows sources to keep sending in the face of the loss of up to 2 stores.

2. Multiple store groups - When using multiple store groups, Informatica recommends using at least 3 stores in
each group.

3. Set Intergroup Stability to all-active. This setting for ume_retention_intergroup_stability_behavior
(source) provides a more immediate evaluation of your store configuration. Active groups must have at
least a quorum of active stores, registered with the source and sending stability acknowledgements for
persisted messages. By default, if a store becomes unresponsive, a store group could lose quorum and
therefore messages in-flight cannot be stabilized by the unresponsive store's group until the store's ume_«
store_activity_timeout (source) expires and the store restarts. However, with all-active, the source does
not wait for the unresponsive store's ume_store_activity_timeout (source) to expire. The source removes
the unresponsive store's group from the list of stores from which the source uses to determine that messages
in-flight are stable. An inactive store with a running activity timeout does not impede message stabilization.

Store Configuration Practices to Avoid

Informatica does not support the following store configuration practices:

» Do not use multiple store groups, especially not of one store each. Recovery does not work well in this
configuration because it allows sources to resume sending as soon as it has registered with a single store,
and if that store is not fully up-to-date, this can lead to message loss for receivers.

10.3 Persistence Proxy Sources 89

Note

Multiple QC groups is deprecated and may be removed from a future version of UM. Users of multiple
QC groups are encouraged to migrate their source configurations to use a single group of Stores for
QC.

» Do not use backup stores. The configuration option, ume_store_group (source) allows you to identify a store
group and its size in number of stores. Setting the group size in this option to a number of stores less than the
number of stores configured with the ume_store (source) option can lead to messages that were reported
stable to the source being unavailable for receivers to recover, in the event that multiple stores became
unresponsive and were replaced by backup stores. For example, setting ume_store_group (source) with a
size of 3 stores, but configuring ume_store with 5 stores is not supported.

10.3 Persistence Proxy Sources

By default, UM expects persistent sources to be running concurrently with persistent receivers. If a source exits,
any persistent receivers will disconnect from that source's transport and will wait for the source to come back. More
significantly, if a new receiver starts while the source is absent, the receiver will be unable to discover the stores
where the old source's previous messages are stored. So that late-joining receiver will not recover messages until
the source finally restarts.

The Proxy Source feature allows you to configure stores to automatically continue sending the source's topic ad-
vertisements which allow new receivers to join the source's transport session and request Source Registration
Information (SRI) to register with the store and request retransmissions. After the source returns, the store auto-
matically stops acting as a proxy source. Stores can be located across a DRO or within the same LAN as the failed
source.

Some other features of Proxy Sources include:

* Requires a Quorum/Consensus store configuration.

» Normal store failover operation also initiates a new proxy source.

« A store can be running more than one proxy source if more than one source has failed.

» A store can be running multiple proxy sources for the same topic, each one corresponding to a previous

instance of a real source.

Note that proxy sources do introduce extra network and CPU loading, so proxy sources should only be enabled if
their functionality is needed.

10.3.1 How Proxy Sources Operate

The following sequence illustrates the life of a proxy source:

1. A source configured for Proxy Source sends to receivers and a group of Quorum/Consensus stores.
2. The source fails.

3. The source's ume_activity timeout (source) or the store's source-activity-timeout expires.

4. The Quorum/Consensus stores elect a single store to run the proxy source.

5. The elected store creates a proxy source and sends topic advertisements.

90 Persistence Fault Tolerance

6. The failed source reappears.

7. The store deletes the proxy source and the original source resumes activity.

If the store running the proxy source fails, the other stores in the Quorum/Consensus group detect a source failure
again and elect a new store to initiate a proxy source.

If a loss of quorum occurs, the proxy source can continue to send advertisements, but cannot send messages until
a quorum is re-established.

10.3.2 Activity Timeout and State Lifetimes

UM provides activity and state lifetime timers for sources and receivers that operate in conjunction with the proxy
source option or independently. This section explains how these timers work together and how they work with proxy
sources.

The ume_activity_timeout (source) and ume_activity_timeout (receiver) options determine how long a source
or receiver must be inactive before a store allows another source or receiver to register using that RegID. This
prevents a second source or receiver from stealing a RegID from an existing source or receiver. An activity timeout
can be configured for the source/receiver with the UM Configuration Option cited above or with a topic's UMP
Element "<ume-attributes>" in the umestored XML configuration file. The following diagram illustrates the default
activity timeout behavior, which uses source-state-lifetime in the ume st ored XML configuration file.

Source Activity Timeout - Default

source source:
last Reg ID released
activity state deleted
sre Te > >t

source—activity-timeout
30 seconds
{umestored)

In addition to the activity timeout, you can also configure sources and receivers with a state lifetime timer using the
following options.

+ ume_state_lifetime (source)

+ ume_state_lifetime (receiver)

» The topic's ume-attributes options, source-state-lifetime and receiver-state-lifetime.
The ume_state_lifetime (source) and ume_state_lifetime (receiver) options, when used in conjunction with the
ume_activity_timeout (source) and ume_activity_timeout (receiver) options, determines at what point UM re-

moves the source or receiver state files. UM does not check the state lifetime until the activity timeout expires. The
following diagram illustrates this behavior:

10.3 Persistence Proxy Sources 91

Source State Lifetime
source state and cache deleted
source ume state lifetime
last (UME Configuration)
activity or
gource—-state—-lifetime
(umestored)

N ;

A

Src

ume activity timeout source Fteg ID released
(UME Configuration)

or
gource—-activity-timecut
{(umestored)

If you have enabled the Proxy Source option, the ume_activity_timeout (source) triggers the creation of the proxy
source. The following diagram illustrates this behavior:

Source Activity and State Timers with Proxy Source

source ume state lifetime Source Returns
last (UME Configuration) PI‘OK}' Source Deleted
activity or
source—-state-lifetime
{umestored)

N ,L.

: .F'I o
src T i
il L
“1
ume actiwvity timecut PI‘OK}' Source created
(UME Configuration)
or

Fource—activity-timecout
{umestored)

92 Persistence Fault Tolerance

10.3.3 Enabling the Proxy Sources
You must configure both the source and the stores to enable the Proxy Source option.

» Configure the source in a UM Configuration File with the source configuration option, ume_proxy_source
(source).

+ Configure the stores in the umestored XML configuration file with the Store Element Option, allow-proxy-
source.

10.3.4 Proxy Source Elections

When multiple stores in a Quorum/Consensus configuration notice the loss of a registered source (expiration of the
source's ume_activity_timeout (source)) configured for proxy sources, only one of the stores needs to create a
proxy source to continue sending topic advertisements.

The proxy source election process determines which store creates the proxy source. Each store starts by waiting a
randomized amount of time based on its proxy-election-interval option setting. The store creates a proxy source if it
has not received a persistent registration request (PREG) from a proxy on a different store. The proxy source then
sends a PREG containing a unique random value to the other stores. This value determines which store deletes
it's proxy source in the case that any two stores independently determine they should create a proxy source. The
nature of the random values ensures that only one store within the Q/C group or configuration of groups keeps its
proxy source.

10.3.5 Proactive Retransmissions
Proactive Retransmissions, which is enabled by default, address two types of loss:

* loss of message data between the source and a store

* loss of stability acknowledgments (ACK) between the store and the source

The store sends message stability acknowledgments to the source after the store persists the message data.

With Proactive Retransmissions, the source maintains an unstable message queue for those messages sent but
not acknowledged by the store. The source checks this queue at the ume_message_stability_timeout (source).
If a message in this queue exceeds its ume_message_stability_timeout (source), the source retransmits the
message and puts it back on the unstabilized message queue, restarting the message's ume_message_stability«
_timeout (source).

The source continues to retransmit and check the message's stability timeout until the ume_message_stability
lifetime (source) expires or it receives a stability acknowledgment from the store. If the source has not received a
stability acknowledgment when the ume_message_stability_lifetime (source) expires, the source sends a Store
Message Not Stable source event notification to the application. When the store discards the message because it
has not met stability requirements, the store sends a Store Forced Reclaim source event notification to the applica-
tion.

To disable Proactive Retransmissions, set ume_message_stability_timeout (source) to 0 (zero). As a result,
sources do not create an unstable message queue.

The following applies whether you enable or disable Proactive Retransmissions.

» The store does not discard duplicate messages, but rather always responds to duplicate, retransmitted mes-
sages by sending stability acknowledgments even if the message is already stable.

10.3 Persistence Proxy Sources 93

« If the store has marked the message unrecoverably lost and receives a duplicate message from the source,
the store sends the source a negative stability acknowledgment (NAK), which induces the source to remove
the message from its unstabilized message queue. A stability NAK is identical to a stability ACKs except that
it has a NAK flag set.

94

Persistence Fault Tolerance

Chapter 11

Man Pages for Store

Persistent Store services are provided by Store daemon.

There are two executables for the Store, each with it's own man page:

» Umestored Man Page - Unix and Windows command-line interface.

» Umestoreds Man Page - Windows Service interface.

11.1 Umestored Man Page

Unix and Windows command-line interface.

UMP Store daemon
Usage: umestored [options] configfile
Available options:

-h, —--help display this help and exit

-d, ——dump-dtd dump DTD to stdout

-f, —-—-detach detach from terminal (not supported on Windows)
-v, ——-validate validate config, but do not run

-a, ——affinitize=PCPU[,RRLIST] assign CPU process affinity to PCPU. If optional
RRLIST is given
assigns CPU affinity in a round-robin sequence as
key processing

threads are created, example: -a 1,3,5 assigns CPU
1 to the process
and CPUs 3, 5, 3, ... to created threads in a

repeating sequence

Description

The umestored command runs the Store Process. It can be run interactively from a shell or command
prompt, or from a script or batch file. (For use as a Windows Service, see Umestoreds Man Page.)

The "configfile" parameter is required and specifies the file path for the Store's XML configuration file. See
Configuration Reference for Umestored for configuration details.

The "-f" option directs a Unix-based umestored to fork a child process which detaches from the controlling
terminal. The umestored command normally remains attached to the controlling terminal and runs until

96 Man Pages for Store

interrupted. With "-f", the umestored command exits back to the shell, and the forked child continues
running in the background.

The "-a" option provides the CPU core affinity for store threads. This "pins" the threads to one or more desired
CPU cores, which can provide a significant improvement in throughput. See Store Thread Affinity for details.

The "-d" option dumps (prints) the Store's XML DTD to standard output. After dumping the DTD, umestored
exits.

The "-v" option validates the XML structure of the given configuration file against the Store's XML DTD. After
validating the configuration file's XML structure, umestored exits with status O for no errors, or non-zero if
errors were found. For example:

umestored -v /um/storel_cfg.xml

Note that valid XML structure does not guarantee that the configuration file is completely correct. It must be
tested on a running store.

The "-h" option prints the man page and exits.

Exit Status

The exit status from umestored is 0 for success and some non-zero value for failure.

Usage Notes

When shutting down a Unix-based UM Persistent Store daemon, use a SIGINT to trigger a clean shutdown,
which attempts to cleanly finish outstanding 10 requests before shutting down. Two successive SIGINTs force
an immediate shutdown (not recommended unless absolutely necessary).

11.2 Umestoreds Man Page

Windows Service interface. See UM Daemons as Windows Services for general information about UM daemons
as Windows Services.

UMP Store service
Usage: umestoreds [options] [configfile]
Available options:

-E, —-—env_var_file update/set environment variable file

-U, —--unset_env_var_file unset the environment variable file

-h, —--help display this help and exit

-d, ——dump-dtd dump DTD to stdout

-s, ——-service=install install the service passing configfile

-s, ——service=remove delete/remove the service

-s, ——-service=config update configfile info to use configfile passed
-v, —-validate validate config, but do not run

-e, ——event-log-level update/set service logging level. This is the

minimum logging
level to send to the Windows event log. Valid
values are:
NONE - Send no events

11.2 Umestoreds Man Page 97

INFO
WARN - default
ERROR
-a, ——affinitize=PCPU[,RRLIST] assign CPU process affinity to PCPU. If optional
RRLIST is given
assigns CPU affinity in a round-robin sequence as
key processing
threads are created, example: -a 1,3,5 assigns CPU
1 to the process
and CPUs 3, 5, 3, ... to created threads in a
repeating sequence
configfile XML config file (if not present, looks in registry)

Description

The umestoreds command has two functions:

« First, it lets the user supply Windows Service operating parameters, which the command saves into
the Windows registry. Those operating parameters are subsequently used by the Store Service. See
Configure the Windows Service.

» Second, it provides Windows with the Store Daemon executable to run as a Service.

The "configfile”" parameter provides the file path for the Store's XML configuration file. It is supplied in con-
junction with the "-v" option or the "-s config" option (see below). See Configuration Reference for Umestored
for configuration details.

For "-s install" see Install the Windows Service.

For "-s remove" see Remove the Windows Service.

For "-s config"”, "-e", "-E", and "-U", see Configure the Windows Service.

The "-a" option specifies the CPU core affinity for store threads, which is saved in the Windows registry and
subsequently by the Windows Service. This "pins" the threads to one or more desired CPU cores, which can
provide a significant improvement in throughput. See Store Thread Affinity for details.

The "-d" option dumps (prints) the Store's XML DTD to standard output. After dumping the DTD, umestoreds
exits.

The "-v" option validates the XML structure of the given configuration file against the Store's XML DTD. After
validating the configuration file's XML structure, umestoreds exits with status 0 for no errors, or non-zero if
errors were found. For example:

umestoreds -v c:\um\storel_cfg.xml

Note that valid XML structure does not guarantee that the configuration file is completely correct. It must be
tested on a running store.

The "-h" option prints the man page and exits.

Exit Status

The exit status from umestored is 0 for success and some non-zero value for failure.

98 Man Pages for Store

Usage Notes

When installing the UM Persistent Store as a Microsoft Windows service, use only local disk devices and fully
qualified path names for all filenames. This is because Windows services run by default under a Local System
account, which has reduced privileges and is not allowed access to network devices.

Stopping the UM Persistent Store service triggers a clean shutdown, which attempts to cleanly finish outstand-
ing 10 requests before shutting down.

Chapter 12

Configuration Reference for Umestored

The operating parameters for umestored come from an XML configuration file that must be supplied on the
command line (see Man Pages for Store). Umestored contains a UM context and receivers that may be configured
with default values through a UM configuration file referenced in the XML configuration file. Default UM options my
be overridden for each configured store using the XML configuration file.

An overview of the file format can be seen in the umestored Configuration DTD.

You configure ume st ored to instantiate stores with the ume st ored XML configuration file, which Ultra Messag-
ing reads at start up.

The umestored XML configuration file for persistence has the following sections:

» Daemon section - holds administrative parameters for such things as the location of log files, the UM Config-
uration File, etc.

« Stores section - holds parameters for any persistent stores and also the topics to be persisted.

High Level Store Configuration File:

<ume-store version="1.3">
<daemon>
Daemon configuration options
</daemon>
<stores>
<store attributes>
<topics>
<topic attributes>
<ume-attributes>
<option attributes/>
</ume-attributes>
</topic>
</topics>
</store>
</stores>
</ume-store>

12.1 Store XML Configuration File Elements

100 Configuration Reference for Umestored

12.1.1 UMP Element "<ume-store>"

Container element that holds the configuration for the Persistent Store process. Also defines the version of the
configuration format used by the file.

* Children: <daemon>, <stores>

XML Attributes:
Attribute | Description Valid Values | Default Value
version Version number of UME store XML DTD that the | string (no default; must be specified)

configuration file corresponds to. See umestored
Configuration DTD for a description of the differ-
ent versions. Users are encouraged to update
their Store configuration files to correspond to the
latest version supported by the Store software in
use.

Example:

<?xml version="1.0"?>
<ume-store version="1.3">

</ume-store>

12.1.2 UMP Element "<stores>"

Container element for one or more <store> elements. A store process can run multiple independent store in-
stances. Some users prefer to run multiple store instances in a single process to reduce their process management
complexity. Other users prefer to run multiple store processes, each with a single store instance, to reduce the
impact of a store process failing.

There should be little or no performance difference between multiple store instances running in the same process
vs. multiple store processes on the same host. However, for maximum store performance, it is generally easier to
pin store threads to cores when each process is running a single store instance.

It is NOT recommended for multiple stores within a Q/C group to run in the same process, or even the same host,
as this defeats the goal of reliability through redundancy.

+ Cardinality: 0 .. 1

» Parent: <ume-store>

« Children: <store>

Example:

<?xml version="1.0"?>
<ume-store version="1.3">
<stores>
</stores>

</ume-store>

12.1 Store XML Configuration File Elements

101

12.1.3 UMP Element "<store>"

Configuration for a Store instance.

+ Cardinality: O .. unbounded

* Parent: <stores>

» Children: <publishing-interval>, <ume-attributes>, <topics>

XML Attributes:
Attribute | Description Valid Values | Default Value
name Identifies log messages for this store instance in | attr_name (no default; must be specified)
the umestored log file.
interface | Specifies the IP address over which umestored | string "0.0.0.0" (INADDR_ANY)
accepts connection requests for this store. You
can specify a single IP address, such as 10.«
29.3.16, or a range of addresses, 10.29.3.16/25.
See also Identifying Persistent Stores.
port TCP port where umestored should listen for | string (no default; must be specified)
connection requests to this store.
Example:

<?xml version="1.0"?>
<ume-store version="1.3">

<stores>

<store name="MyStorel"

</store>
</stores>

</ume-store>

interface="10.1.2.3" port="12000">

12.1.4 UMP Element "<topics>"

Container for <topic> elements. Defines the topics that this store instance will persist.

» Parent: <store>

+ Children: <topic>

Example:

<?xml version="1.0"?>
<ume-store version="1.3">

<stores>

<store name="MyStorel"

<topics>

</topics>

</store>
</stores>

</ume-store>

interface="10.1.2.3" port="12000">

102 Configuration Reference for Umestored

12.1.5 UMP Element "<topic>"

Defines a topic pattern which the Store will use to find sources to persist. Also contains configuration information
about those topics.

» Parent: <topics>

* Children: <ume-attributes>

XML Attributes:
Attribute | Description Valid Values Default Value
pattern A string that is used to discover | string (no default; must be specified)

sources to be persisted. The
string can be a simple topic
name (type="direct"), or
it can be a regular expression
(type="pcre") which can
match more than one topic.

type How the pattern attribute | "direct" - Topic name (ex- | direct
should be interpreted. act string match)
"PCRE" - Perl regular expres-
sion.

"regexp" - Posix regular ex-
pression. Deprecated; do not
use.

Example:

In this example, the topic "NYSE.xyz" and all topics that start with "alert." are persisted in the "MyStore1" store
instance.

<?xml version="1.0"?>
<ume-store version="1.3">
<stores>
<store name="MyStorel" interface="10.1.2.3" port="12000">
<topics>
<topic pattern="NYSE.xyz" type="direct">
</topic>
<topic pattern=""alert\..x" type="pcre">
</topic>
</topics>
</store>
</stores>

</ume-store>

12.1.6 UMP Element "<ume-attributes>"

Container for a set of <option> elements.

 Cardinality: 0 .. unbounded

» Parent: <store>, <topic>

12.1 Store XML Configuration File Elements 103

 Children: <option>

Example:

In this example, some options are at the "store" level and apply to all topics. Other options are specific to the topic
"NYSE.xyz".

<?xml version="1.0"?2>
<ume-store version="1.3">
<stores>
<store name="MyStorel" interface="10.1.2.3" port="12000">
<ume-attributes>
</ume-attributes>
<topics>
<topic pattern="NYSE.xyz" type="direct">
<ume-attributes>
</ume-attributes>
</topic>
</topics>
</store>
</stores>

</ume-store>

12.1.7 UMP Element "<option>"

Set a configuration option of a particular type. See Options for a Store's ume-attributes Element for more information
on the available options.

« Parent: <ume-attributes>

XML Attributes:
Attribute | Description Valid Values Default Value
type Type of configuration option. | "lbm-receiver" - UM | (no default; must be specified)
configuration option of scope
"receiver".
"lbm—-context" - UM
configuration option of scope
"context".
"lbm-source" - UM con-
figuration option of scope
"source".
"store" - Store configura-
tion option.
name Name of option. attr_name (no default; must be specified)
value Value for option. string (no default; must be specified)
Example:

In this example, some options are at the "store" level and apply to all topics. Other options are specific to the topic
"NYSE.xyz".

<?xml version="1.0"?>
<ume-store version="1.3">

104 Configuration Reference for Umestored

<stores>
<store name="MyStorel" interface="10.1.2.3" port="12000">
<ume-attributes>
<option type="lbm-context" name="fd_management_type" value="epoll"/>
</ume-attributes>
<topics>
<topic pattern="NYSE.xyz" type="direct">
<ume-attributes>
<option type="..." name="..." value="..."/>
</ume-attributes>
</topic>
</topics>
</store>
</stores>

</ume-store>

12.1.8 UMP Element "<publishing-interval>"

Set how often the store publishes its Daemon Stats. See Daemon Statistics for general information on Daemon
Statistics.

» Parent: <store>, <daemon-monitor>

+ Children: <group>

Example:

Daemon Statistics are configured at both the daemon level and at the store level.

<?xml version="1.0"?2>
<ume-store version="1.3">
<daemon>
<daemon-monitor topic="bozo">
<publishing-interval>

</publishing-interval>
</daemon-monitor>
</daemon>
<stores>
<store name="MyStorel" interface="10.1.2.3" port="12000">
<publishing-interval>
</publishing-interval>
</store>
</stores>

</ume-store>

12.1.9 UMP Element "<group>"

Configures the rate at which one particular grouping of Daemon Statistics messages are published. See Daemon
Statistics for general information on Daemon Statistics.

» Parent: <publishing-interval>

XML Attributes:

12.1 Store XML Configuration File Elements 105
Attribute | Description Valid Values Default Value
name Name of statistics group being | "default" - Sets a default | (no default; must be specified)
configured. interval for all message types.
"store" - Sets the inter-
val for messages of type
umestore_store_dmon_«
stat_msg_t.
"source" - Sets the in-
terval for messages of type
umestore_repo_dmon_«
stat_msg_t.
"receiver" - Sets the
interval for messages of type
umestore_rcv_dmon_stat_«~
msg_t.
"disk" - Sets the interval for
messages of type umestore«
_disk_dmon_stat_msg_t.
"config" - Sets the in-
terval for messages of types
umestore_x_dmon_config_«
msg_t.
"memory" - Sets the in-
terval for messages of type
umestore_smart_heap_«
dmon_stat_msg_t.
ivl Time, in seconds, between | string (no default; must be specified)
publishing the statistics group
being configured.

Example:

Daemon Statistics are configured at both the daemon level and at the store level.

<?xml version="1.0"7?>
<ume-store version="1.3">
<daemon>
<daemon-monitor topic="bozo">
<publishing-interval>
<group name="default" ivl="10"/>
<group name="store" ivl="20"/>

</publishing-interval>
</daemon-monitor>
</daemon>
<stores>
<store name="MyStorel" interface="10.1.2.3" port="12000">
<publishing-interval>
<group name="default" ivl="10"/>
<group name="store" iv1="20"/>

</publishing-interval>
</store>
</stores>

</ume-store>

12.1.10 UMP Element "<daemon>"

Container element for configuration elements that apply to the entire Store process.

106 Configuration Reference for Umestored

« Parent: <ume-store>

* Children: <log>, <uid>, <pidfile>, <gid>, <lbm-config>, <xml-config>, <lbm-license-file>, <web-
monitor>, <daemon-monitor>

Example:

<?xml version="1.0"?>
<ume-store version="1.3">
<daemon>
</daemon>

</ume-store>

12.1.11 UMP Element "<daemon-monitor>"

The daemon-monitor element configures the store daemon for Daemon Statistics.

* Parent: <daemon>

» Children: <Ibm-config>, <publishing-interval>, <remote-snapshot-request>, <remote-config-changes-

request>
XML Attributes:
Attribute | Description Valid Values | Default Value
topic Topic name for used to publish daemon statistics. | string "umestore.monitor"
Example:

Daemon Statistics are configured at both the daemon level and at the store level.

<?xml version="1.0"?>
<ume-store version="1.3">
<daemon>
<daemon-monitor topic="bozo">
<publishing-interval>

</publishing-interval>
</daemon-monitor>

</daemon>

</ume-store>

12.1.12 UMP Element "<remote-config-changes-request>"

Controls if the daemon will respond to requests from monitoring applications. See Daemon Control Requests for
general information, Store Daemon Control Requests for Store-specific requests.

Warning

If misused, the Daemon Control Requests feature allows a user to interfere with the messaging infrastructure
in potentially disruptive ways. By default, this feature is disabled. However, especially if you have enabled the
UMP Element "<remote-config-changes-request>", Informatica recommends Securing Daemon Control
Requests.

12.1 Store XML Configuration File Elements

107

« Parent: <daemon-monitor>

XML Attributes:
Attribute | Description Valid Values Default Value
allow Enables handling requests. | "0" - Disable request handling. | "0"
"1" - Enable request handling.
Example:

Daemon Statistics are configured at both the daemon level and at the store level.

<?xml version="1.0"?2>
<ume-store version="1.3">
<daemon>
<daemon-monitor topic="bozo">
<remote-config-changes-request allow="1"/>

</publishing-interval>
</daemon-monitor>

</daemon>

</ume-store>

12.1.13 UMP Element "<remote-shapshot-request>"

Controls if the daemon will respond to requests from monitoring applications. See Daemon Control Requests.

« Parent: <daemon-monitor>

XML Attributes:
Attribute | Description Valid Values Default Value
allow Enables handling requests. | "0" - Disable request handling. "o"
"1" - Enable request handling.
Example:

Daemon Statistics are configured at both the daemon level and at the store level.

<?xml version="1.0"?>
<ume-store version="1.3">
<daemon>
<daemon-monitor topic="bozo">
<remote-snapshot-request allow="1"/>

</publishing-interval>
</daemon-monitor>

</daemon>

</ume-store>

12.1.14 UMP Element "<lIbm-config>"

Pathname for UM configuration file which is used to configure UM for either the store or for daemon statistics,

depending on the parent element.

108

Configuration Reference for Umestored

Note that as of UM version 6.13, if one or more errors are discovered in the UM configuration file, the errors are
written to the log file and the Store continues running. l.e. errors in the UM configuration file are treated as warnings.

See Configuration Error Handling for an explanation.

* Parent: <daemon>, <daemon-monitor>

XML Attributes:
Attribute Description Valid Values Default Value
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default

spaces, linefeeds) are handled in the
element content. See xml:space
Attribute.

"preserve" - Retain whitespace
exactly as entered.

Example:

<?xml version="1.0"?>
<ume-store version="1.3">
<daemon>
<lbm-config>/etc/ump/storel.cfg</lbm-config>

<daemon-monitor topic="bozo">

<lbm-config>/etc/ump/store0_dmon.cfg</lbm-config>

</daemon-monitor>
</daemon>

</ume-store>

12.1.15 UMP Element "<web-monitor>"

Address and port for the Store web-based monitor. Format is "Address:Port", where "Address" is either an IP
address of one of the host's interfaces, or is "x" which allows the use of any interface. See Store Web Monitor for

more information.

If omitted, the web monitor is disabled.

» Parent: <daemon>

XML Attributes:
Attribute Description Valid Values Default Value
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default

spaces, linefeeds) are handled in the
element content. See xml:space
Attribute.

"preserve" - Retain whitespace
exactly as entered.

Example:

<?xml version="1.0"?>
<ume-store version="1.3">
<daemon>
<web-monitor>x:8080</web-monitor>
</daemon>

</ume-store>

12.1 Store XML Configuration File Elements 109

12.1.16 UMP Element "<lbm-license-file>"

Pathname for UM license file. NOTE: a license key is no longer required for Store operation. This element is
retained for backwards compatibility.

« Parent: <daemon>

XML Attributes:
Attribute Description Valid Values Default Value
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default
spaces, linefeeds) are handled in the | "preserve" - Retain whitespace
element content. See xml:space | exactly as entered.
Attribute.

12.1.17 UMP Element "<xml-config>"

Pathname for UM XML configuration file. See also <lbm-config>.

« Parent: <daemon>

XML Attributes:
Attribute Description Valid Values Default Value
xml:space Specifies how whitespace (tabs, | "default" - Trim whitespace. | default

spaces, linefeeds) are handled in | "preserve" - Retain whites-
the element content. See xml« | pace exactly as entered.
:space Attribute.

application-name | Specifies the "application name" | string "umestored"
of the store process, for use
within the UM XML configura-
tion file. See XML Application
Names for more information on
application names.

Example:

<?xml version="1.0"?2>
<ume-store version="1.3">
<daemon>
<xml-config>/etc/ump/store0l_um.xml</xml-config>
</daemon>

</ume-store>

110

Configuration Reference for Umestored

12.1.18 UMP Element "<gid>"

Specifies a Group ID (GID) for daemon process (if run as root).

* Parent: <daemon>

XML Attributes:
Attribute Description Valid Values Default Value
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default
spaces, linefeeds) are handled in the | "preserve" - Retain whitespace

element content.
Attribute.

See xml:space

exactly as entered.

Example:

<?xml version="1.0"?2>
<ume-store version="1.3">
<daemon>
<gid>1234</gid>
</daemon>

</ume-store>

12.1.19 UMP Element "<pidfile>"

Contains the pathname for daemon process ID (PID) file.

» Parent: <daemon>

XML Attributes:
Attribute Description Valid Values Default Value
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default

spaces, linefeeds) are handled in the
element content. See xml:space
Attribute.

"preserve" - Retain whitespace
exactly as entered.

Example:

<?xml version="1.0"?2>
<ume-store version="1.3">
<daemon>
<pidfile>/var/run/store0l.pid</pidfile>
</daemon>

</ume-store>

12.1.20 UMP Element "<uid>"

Specifies a User ID (UID) for daemon process (if run as root).

12.1 Store XML Configuration File Elements

111

« Parent: <daemon>

XML Attributes:
Attribute Description Valid Values Default Value
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default
spaces, linefeeds) are handled in the | "preserve" - Retain whitespace

element content.
Attribute.

See xml:space

exactly as entered.

Example:

<?xml version="1.0"?>
<ume-store version="1.3">

<daemon>

<uid>1234</uid>

</daemon>

</ume-store>

12.1.21

UMP Element "<log>"

Contains the path name of the store log file. See Store Rolling Logs for more information.

If omitted, log messages are written to standard output.

» Parent: <daemon>

XML Attributes:
Attribute Description Valid Values Default Value
type Where to write log messages. "file" - Write log messages to a | "console"
file.
"console" - Write log messages to
standard output.
frequency | Time-frame by which to roll the log file. | "disable" - Do not roll the log file | "disable"
based on time.
"daily" - Roll the log file at mid-
night.
"hourly" - Roll log file after approx-
imately an hour, but is not exact and
can drift significantly over a period of
time.
"test" - For internal Informatica use
only. Do not use.
size Size (in MB, i.e. 2x%20, or 1,048,576) | string "io"
of current log file at which it is rolled.
Specify 0 to disable rolling by log file
size.
xml:space | Specifies how whitespace (tabs, | "default" - Trim whitespace. default
spaces, linefeeds) are handled in the | "preserve" - Retain whitespace
element content. See xml:space | exactly as entered.
Attribute.

112 Configuration Reference for Umestored

Example:

<?xml version="1.0"?>
<ume-store version="1.3">
<daemon>
<log type="file" size="23" frequency="daily">/var/log/store0l.log</log>
</daemon>

</ume-store>

12.2 Options for a Store's ume-attributes Element

Inside a '<ume—-attributes>' section, options are set with one or more '<option ...>'elements. Each
'<option ...>'element contains a'type"' attribute, a 'name’ attribute, and a 'value' attribute. The 'type'
attribute identifies the scope of the option (context, receiver, source, or store), the 'name' attribute identifies the
individual option being set, and the 'value' attribute supplies the value.

12.2.1 Options for UM

Options with a type of "lbm-source", "lbm-receiver", or "lbm-context" are UM configuration options, which the store
passes to the UM library.

For example, the option element:

<option type="lbm-context" name="transport_lbtrm_ receiver_socket_buffer"
value="1048576"/>

sets the UM configuration option transport_lbtrm_receiver_socket_buffer (context) (receiver socket buffer size
for LBT-RM) to 1 megabyte.

Seethe UM Configuration Guide forthe full list of UM configuration options.

Note

Some UM options specify interfaces, which can be done by supplying the device name of the interface. Special
care must be taken when supplying device names. See Interface Device Names and XML for details.

12.2.2 Store Options

Store options without a type attribute or those explicitly given a type attribute of 'st ore' simply configure the store
itself.

For example, the option element:
<option type="store" name="disk-cache-directory" value="cache"/>
sets the store's disk cache directory.

The following table gives options allowed for a store element. Use the 'st ore' option type for these options.

Option Description Default Value

disk-cache-directory Pathname for disk store message | umestored-cache
cache directory. Must be between
1 and 230 characters long.

12.3 Options for a Topic's ume-attributes Element

113

disk-state-directory

Pathname for disk store state direc-
tory. Must be between 1 and 230
characters long.

umestored-state

allow-proxy-source

Allows the store to act as a proxy
source in case a registered source
terminates.

0 (Disable)

context-name

Name of the store that can be used
by sources to refer to the store
instead of the address:port. Re-
stricted to 128 characters in length,
and may contain only alphanumeric
characters, hyphens, and under-
scores. A store runs in its own con-
text, so the store's context name
can be used to identify the store.
UM automatically resolves store
names, which can facilitate per-
sistent operation across the DRO.
A context name must be unique
across the entire network and not
be the same as any context names
used in a UMM XML configura-
tion. See also Identifying Persistent
Stores

None.

retransmission-request-
processing-rate

Specifies the number of retrans-
mission requests processed by a
store per second across all topics.
The store drops all retransmission
requests that exceed this value.

262144

12.3 Options for a Topic's ume-attributes Element

As with Options for a Store's ume-attributes Element, options for a topic's ume-attributes element can set both UM
configuration options as well as store configuration.

The following table gives options allowed for a topic element. Use the store Option Type for these options.

Option

Description

Default Value

retransmission-request-forwarding

If enabled (value = 1), the store for-
wards retransmission requests to
sources if and only if the store
does not have the data. If dis-
abled (value = 0), the store ser-
vices retransmission requests for
data it has, and does not forward
requests to sources for data it does
not have. (This option should not
be enabled if you anticipate using
the Request: Mark Stored Mes-
sage Invalid feature.)

0 (store services retransmission re-
quests and does not forward re-
quests)

114 Configuration Reference for Umestored

Option Description Default Value
repository-type Specifies how messages should be | "memory"
retained by the store. Possible
values:

* "memory" retains mes-
sages only in the (presum-
ably volatile) main memory
of the store.

* "disk" retains messages
to disk storage. In addi-
tion, messages are cached
in main memory for a time as
well.

* "no-cache" depre-
cated type does not retain
messages, only state infor-
mation. This type should
not be used, as it will be
removed in a future UM
version. Contact Informatica
Support to devise a plan to
migrate away from its use.

* "reduced-£f4d" depre-
cated type which retains
messages to disk storage
in a lower-performing way
(compared to "disk") that
uses fewer OS File Descrip-
tors. This type should not be
used, as it will be removed
in a future UM version.
Contact Informatica Support
to devise a plan to migrate
away from its use.

repository-size-threshold For topics with a repository-type of | 25165824 (24 MB)
memory or disk, specifies the min-
imum number of message bytes
(includes payload, headers, and
store structure overhead) retained
for a topic before the reposi-
tory starts to delete old mes-
sages. Pertains to a memory
store or the memory cache of a
disk repository. For RPP repos-
itories, this value only includes
message payload. Also for RPP,
the source may optionally override
this value with a value less than
or equal with the source config-
uration option ume_repository_«
size_threshold (source). (units—
: bytes)

12.3 Options for a Topic's ume-attributes Element

115

Option

Description

Default Value

repository-size-limit

For topics with a repository-type of
memory, disk, specifies the maxi-
mum number of message bytes (in-
cludes payload, headers, and store
structure overhead) retained for
each source. Pertains to a mem-
ory store or the memory cache of
a disk repository. For RPP repos-
itories, this value only includes
message payload. Also for RPP,
the source may optionally override
this value with a value less than
or equal with the source config-
uration option ume_repository_«
size_limit (source) (units: bytes)

50331648 (48 MB)

repository-age-threshold

For topics with a repository-type of
memory or disk, specifies how long
the repository keeps a message
available. Pertains to a memory
store or the memory cache of a disk
repository. The repository reclaims
space used to store messages that
exceed this threshold. A value of 0
means message age is not consid-
ered in retention decisions. (units:
seconds)

repository-disk-max-async-cbs

For topics with a repository-type of
disk, specifies the maximum num-
ber of outstanding async /O call-
backs for reading messages from
disk. (units: async callbacks)

16 callbacks

repository-disk-max-write-async-
cbs

For topics with a repository-type
of "disk", specifies the maximum
number of outstanding async 1/O
callbacks for writing messages to
disk. (units: async callbacks) This
option is deprecated, and if sup-
plied, must be set equal to 1.

1 callback

repository-disk-max-read-async-
cbs

For topics with a repository-type
of "disk", specifies the maximum
number of outstanding async 1/O
callbacks for reading messages
from disk. A low value can lead to
severely slower message recovery
rates by receivers. (units: async
callbacks)

10,000 callbacks

116

Configuration Reference for Umestored

Option

Description

Default Value

repository-disk-file-size-limit

For topics with a repository-type
of "disk", specifies the maximum
amount of disk space that will be
used to store retained messages.
A minimum value of 196992 is
enforced. For RPP, the source
may optionally override this value
with a value less than or equal
with the source configuration op-
tion ume_repository_disk_file_«
size_limit (source). (units: bytes)

104857600 (100 MB)

repository-disk-file-preallocate

For topics with a repository-type of
"disk", if set to 1, UM pre-allocates
a store's cache files to match their
maximum size on disk (as con-
figured by repository-disk-file-size-
limit) upon creation, as opposed to
growing to that size as the store re-
ceives new messages. For ext3/4
and NTFS file systems, this op-
tions creates a sparse file, which
does not allocate all of the un-
derlying data blocks. Advantages
of pre-allocation include better per-
formance on rotating disks due to
less file fragmentation, and know-
ing that enough disk space exists
for any new source that registers.
Disadvantage is the time to create
the cache files, especially if many
sources register at once.

0 (zero) - do not pre-allocate

repository-disk-async-buffer-length

For topics with a repository-type
of "disk", specifies the size of the
buffers that will be used in async
I/O operations for reading and writ-
ing messages to disk. A minimum
value of 65664 is enforced. (units:
bytes)

1024000

repository-disk-message-
checksum

For topics with a repository-type of
"disk", specifies whether the mes-
sages saved to disk should include
a checksum field or not for valida-
tion if the store is restarted. (units:

flag)

0 (disabled)

12.3 Options for a Topic's ume-attributes Element

117

Option

Description

Default Value

source-activity-timeout

Establishes the period of time from
a source's last activity to the re-
lease of the source's ReglID. Stores
return an error to any new source
requesting the source's RegID dur-
ing this period. If proxy sources
are enabled (ume_proxy_source
(source)) the store does not re-
lease the source's RegIlD and UM
elects a proxy source. If neither
proxy sources nor ume_state_«
lifetime (source) are configured,
the store also deletes the source's
state and cache. Can be over-
ridden by ume_activity_timeout
(source). See also Persistence
Proxy Sources. (units: millisec-
onds)

30000 (30 seconds)

source-state-lifetime

Establishes the period of time from
a source's last activity to the dele-
tion of the source's state and cache
by the store, regardless of whether
a proxy source has been created or
not. You can also configure ume«
_state_lifetime (source) for the
source. The store uses whichever
is shorter. See also Persistence
Proxy Sources. (units: millisec-
onds)

0 (zero)

receiver-activity-timeout

Establishes the period of time from
a receiver's last activity to the
release of the receiver's ReglD.
Stores return an error to any new
request for the receiver's ReglD
during this period. Can be over-
ridden by ume_activity_timeout
(receiver). See also Persistence
Proxy Sources. (units: millisec-
onds)

30000 (30 seconds)

receiver-state-lifetime

Establishes the period of time from
a receiver's last activity to the dele-
tion of the receiver's state and
cache by the store. You can also
configure ume_state_lifetime (re-
ceiver) for the receiver. The store
uses whichever is shorter. See
also Persistence Proxy Sources.
(units: milliseconds)

0 (zero)

source-check-interval

Specifies how often a store will
check for activity of sources and re-
ceivers. (units: milliseconds)

750 (750 milliseconds)

118

Configuration Reference for Umestored

Option

Description

Default Value

keepalive-interval

Specifies how often a store will
generate keepalive traffic to
sources and receivers if there
has been no traffic required in
the normal course of operation.
(units: milliseconds)

3000 (3 seconds)

receiver-new-registration-rollback

Specifies the number of stabilized
messages that a newly registered
receiver should consume. For
example, setting this to 10 "rolls
back" the new receiver's start-
ing message to the 10th most
recent message. This value
must be positive and less than
2147483648. The recommended
value of 2147483647 indicates that
the rollback should begin at the
start of the stream. A value of 0 in-
dicates the store should instruct the
receivers to start with the next new
message from the source known by
the store. (units: messages)

2147483647 (rollback starts at be-
ginning of stream)

proxy-election-interval

Specifies the interval, in millisec-
onds, used when electing a proxy
source. When a source, which
requested that a proxy source be
provided for it, has been detected
as no longer active, each store el-
igible to provide a proxy source
for it waits for an amount of time
which is randomized in the range
[0.5xproxy-election-interval .. 1.«
5xproxy-election-interval]l. If no
other store has been elected to
serve as the proxy source, the
store declares itself as the proxy
source. (units: milliseconds)

60,000 (60 seconds)

stability-ack-interval

Specifies the maximum amount
of time that stability acknowledg-
ments will be batched before being
sent to a source. Batching stability
ACKs can increase throughput of
stores (especially memory stores)
significantly, but introduces a delay
between when a message is actu-
ally stable in the store and when
the source is notified of message
stability. (units: milliseconds)

200 (200 milliseconds)

12.3 Options for a Topic's ume-attributes Element

119

Option

Description

Default Value

stability-ack-minimum-number

Specifies the minimum number
of message stability acknowledg-
ments that must accumulate before
a stability ACK is sent to a source.
With the default value of 1, sta-
bility ACKs are sent immediately
as soon as messages are stable.
Increasing this value causes sta-
bility ACKs to be batched, which
can increase throughput of stores
(especially memory stores) signif-
icantly, but introduces a delay be-
tween when a message is actually
stable in the store and when the
source is notified of message sta-
bility. If using a stability ACK-based
flight size on a persistent source
in combination with this option, it
is advisable to make sure stability-
ack-minimum-number is set less
than or equal to the source's flight
size. Otherwise, stability ACKs
will only be sent upon expiration of
the stability-ack-interval timer, re-
sulting in bursty stop-and-go send-
ing. (units: number of message
fragments)

1 (1 fragment)

repository-allow-receiver-paced-
persistence

Specifies if the repository allows
receiver-paced persistence (1). If
allowed, the source may optionally
request RPP with ume_receiver«
_paced_persistence (source).
Both must be done for RPP to be
in effect.

0 (store does not allow the source
to specify RPP)

repository-allow-ack-on-reception

For RPP, specifies if the reposi-
tory allows the repository to per-
form "ack on reception” (1). If
allowed, the source may option-
ally request "ack on reception”
with ume_repository_ack_on_«
reception (source). Both must
be done for "ack on reception" to
be in effect. For SPP and mem-
ory stores, this option has no ef-
fect. See RPP Normal Operation
for more information.

0 (store does not allow the source
to specify ack-on-reception behav-
ior)

repository-disk-write-delay

For topics with a repository-type of
disk, specifies the maximum delay
in milliseconds after message re-
ception before the repository per-
sists a message to disk. For RPP,
the source may optionally override
this value with a value less than or
equal with the source configuration
option ume_write_delay (source).
(units: milliseconds)

0 milliseconds

120 Configuration Reference for Umestored

Option Description Default Value

source-flight-size-bytes-maximum With RPP, specifies the maximum | 4194304 bytes (4MB)
number of in-flight payload bytes
that the source is allowed to
configure with ume_flight_size_«
bytes (source). If the source at-
tempts to configure ume_flight_«
size_bytes (source) greater than
the store's source-flight-size-bytes-
maximum, the source registration
is rejected. For SPP stores, this op-
tion has no effect (i.e. the source
is not restricted in its configura-
tion). See Persistence Flight Size
for more information. (units: bytes)

12.4 Option Types for ume-attributes Elements

As mentioned in Options for a Store's ume-attributes Element, all options configured for '<ume—-attributes>
require an '<opt ion>'type, which specifies the scope of the option.

For example, here is a store configuration which illustrates several options being set of varying types:

<?xml version="1.0"?>
<stores>
<store name="test-store" port="14567">
<ume-attributes>
<option type="store" name="disk-cache-directory" value="cache"/>
<option type="lbm-context" name="transport_lbtrm_rate_interval" value="100"/>
</ume-attributes>
<topics>
<topic pattern="test.x" type="PCRE">
<ume-attributes>
<option type="lbm-receiver" name="transport_lbtrm_send_naks" value="0"/>
<option type="lbm-source" name="transport" value="lbtru"/>
<option type="store" name="repository-size-limit" value="209715200"/>
</ume-attributes>
</topic>
</topics>
</store>
</stores>

The following table describes the Option Types:

12.4 Option Types for ume-attributes Elements

121

ured for the store element and its topic ele-
ment.

Option Type | Description Default Value
Iom-receiver | Allows you to configure receiver-scope op- | None - this is a required attribute.
tions that you usually specify in an Ultra
Messaging configuration file or set using
lbm_x_attr_setopt(). For example, you could
turn off delivery of NAKs for a particular topic
by including the following within the topic's
'<ume-attributes>'element:
<option type="lbm-receiver"
name="transport_lbtrm_ send_«
naks" value="0"/>
'<option>' is a child of
'<ume-attributes>"', but you can
use option type Ibm-receiver within only a
'<topic>' element, not a '<store>'
element.
Ibm-context Allows you to configure context-scope options | None - this is a required attribute.
that you usually specify in an Ultra Messaging
configuration file or set using Ibm_x*_attr«
_setopt(). For example, you could increase
the receiver socket buffer by including the
following within the '<ume-attributes>'
element:
<option type="lbm-context"
name="transport_lbtrm_ «
receiver_socket_buffer"
value="1048576"/>
'<option>' is a child of
'Qume—-attributes>', but you can
use option type lbm-receiver within only a
'<store>' element, not a '<topic>'
element.
Ibm-source Allows you to configure source-scope options | None - this is a required attribute.
that you usually specify in an Ultra Messaging
configuration file or set using Ibm_x_attr_«
setopt(). For example, you could change the
transport by including the following within the
'<ume-attributes>'element:
<option type="lbm-source"
name="transport"
value="1lbtru"/>
'<option>' is a child of
'<ume—-attributes>', but you can
use option type Ibm-source within only a
'<topic>' element, not a '<store>'
element.
store Option type used for all ume-attributes config- | None - this is a required attribute.

122

Configuration Reference for Umestored

12.5 umestored Configuration DTD

The DTD for UM Store configuration has evolved over time:

DTD Version | Release Date Product Version Supported Features

1.0 Feb. 2007 UME 1.0 Persistent Stores

1.1 April 2010 UME 3.0.1 / UMQ | Persistent Stores, Queues and Ultra Load Balanc-

1.0 ing (ULB)

1.2 March 2011 UME 3.2/ UMQ 2.1 Persistent Stores, Queues, Ultra Load Balancing
(ULB), Dead Letter Queue, Indexed Queuing and
Indexed ULB

1.3 November 2016 | UM 6.10 Addition of '<xml-config>' element (under
'<daemon>").

Here is the current version:

<!ELEMENT ume-store (daemon, stores?)>

<!ATTLIST ume-store version CDATA #REQUIRED>

<!ELEMENT daemon (log | uid | pidfile | gid |
daemon-monitor) x>

<!ELEMENT log (#PCDATA)>

lbm-config

xml-config | lbm-license-file | web-monitor

<!ATTLIST log type (file | console) "console">

<!ATTLIST log frequency (disable | daily | hourly | test) "disable">
<!ATTLIST log size CDATA #IMPLIED>

<!ATTLIST log xml:space (1t | preserve) "default">
<!ELEMENT pidfile (#PCDATA)>

<!ATTLIST pidfile xml:space (default | preserve) "default">
<!ELEMENT uid (#PCDATA)>

<!ATTLIST uid xml:space (defaul | preserve) "default">
<!ELEMENT gid (#PCDATA)>

<!ATTLIST gid xml:space (default | preserve) "default">
<!ELEMENT lbm-config (#PCDATA)>

<!ATTLIST lbm-config xml:space (default | preserve) "default">
<!ELEMENT xml-config (#PCDATA)>

<!ATTLIST xml-config xml:space (de t | preserve) "default">

<!ATTLIST xml-config application-name CDATA #IMPLIED>
<!ELEMENT lbm-license-file (#PCDATA)>

<!ATTLIST lbm-license-file xml:space (default | preserve) "default">
<!ELEMENT web-monitor (#PCDATA)>
<!ATTLIST web-monitor xml:space (default | preserve) "default">

<!ELEMENT stores (storex)>
<!ELEMENT store (publishing-interval |
<!ATTLIST store name CDATA #REQUIRED>
<!ATTLIST store interface CDATA #IMPLIED>
<!ATTLIST store port CDATA #REQUIRED>
<!ELEMENT topics (topic+)>
<!ELEMENT topic (ume-attributesx)>
<!ATTLIST topic pattern CDATA #REQUIRED>
<!ATTLIST topic type (direct | PCRE | regexp)
<!ELEMENT ume-attributes (option+)>
<!ELEMENT option EMPTY>
<!ATTLIST option type (lbm-receiver |
<!ATTLIST option name CDATA #REQUIRED>
<!ATTLIST option value CDATA #REQUIRED>
<!ELEMENT daemon-monitor (lbm-config |
changes-request) x>
<!ATTLIST daemon-monitor topic CDATA "umestore.monitor">
<!ELEMENT publishing-interval (group+)>
<!ELEMENT group EMPTY>
<!ATTLIST group name (de | store |
<!ATTLIST group ivl CDATA #REQUIRED>
<!ELEMENT remote-snapshot-request EMPTY>
<!ATTLIST remote-snapshot-request allow (0 | 1)
<!ELEMENT remote-config-changes-request EMPTY>
<!ATTLIST remote-config-changes-request allow (0 | 1)

ume—-attributes |

#IMPLIED>

lbm-context |

source |

o>

12.6 Store Configuration Example

Store daemon with one store.

lbm-source |

publishing-interval

receiver

LILES

topics) +>

store) #IMPLIED>

| remote-snapshot-request | remote-config-

disk | config | memory) #REQUIRED>

12.6 Store Configuration Example 123

<?xml version="1.0"?>
<ume-store version="1.3">
<daemon>
<log>stored.log</log>
<pidfile>stored.pid</pidfile>
<web-monitor>x:15304</web-monitor>
</daemon>

<stores>
<store name="test-store" port="14567">
<ume-attributes>
<option type="store" name="disk-cache-directory" value="cache"/>
<option type="store" name="disk-state-directory" value="state"/>
<option type="store" name="context-name" value="remote-store"/>
</ume-attributes>
<topics>
<topic pattern="test.x" type="PCRE">
<ume-attributes>
<option type="store" name="repository-type" value="disk"/>
<option type="store" name="repository-size-threshold" value="104857600"/>
<option type="store" name="repository-size-limit" value="209715200"/>
<option type="store" name="repository-disk-file-size-limit" value="1073741824"/>
<option type="store" name="source-activity-timeout" value="120000"/>
<option type="store" name="receiver-activity-timeout" value="120000"/>
<option type="store" name="retransmission-request-forwarding" value="0"/>
</ume-attributes>
</topic>
</topics>
</store>
</stores>
</ume-store>

12.6.1 xml-config Tag

The '<xml-config>'tag is used to load a UM configuration file which is used by the store as it creates UM
objects (contexts, receivers, etc.). This example applies the configuration specified in the "tnwgd" application tag of
the file "lom_cfg.xml":

<ume-store version="1.3">
<daemon>

<xml-config application-name="tnwgd">1lbm_cfg.xml</lbm-xmlconfig>
</daemon>

Ifan'application—name' attribute is not supplied, "umestored” is assumed. If it is desired to load the unnamed
configuration, use an empty application name as follows:

<ume-store version="1.3">
<daemon>

<xml-config application-name="">1lbm_cfg.xml</lbm-xmlconfig>
</daemon>

124 Configuration Reference for Umestored

Chapter 13

Store Daemon Statistics

This section contains details on the Store's Daemon Statistics feature. You should already be familiar with the
general information contained in Daemon Statistics.

13.1 Store Daemon Statistics Structures
The different message types are:

- LBM_UMESTORE_DMON_MPG_SMART_HEAP_STATS
- LBM_UMESTORE_DMON_MPG_STORE_STATS

- LBM_UMESTORE_DMON_MPG_REPO_STATS

- LBM_UMESTORE_DMON_MPG_DISK_STATS

- LBM_UMESTORE_DMON_MPG_RCV_STATS

- LBM_UMESTORE_DMON_MPG_STORE_CONFIG

- LBM_UMESTORE_DMON_MPG_STORE_PATTERN_CONFIG
- LBM_UMESTORE_DMON_MPG_STORE_TOPIC_CONFIG

- LBM_UMESTORE_DMON_MPG_REPO_CONFIG

+ LBM_UMESTORE_DMON_MPG_RCV_CONFIG

Each one has a specific structure associated with it, as detailed in umedmonmsgs.h.

Note that message types ending with "_CONFIG" are in the config category, while message types ending with "«
_STATS" are in the stats category. See Daemon Statistics Structures for information on how the two categories
are handled differently.

13.1.1 Store Daemon Statistics Byte Swapping

A monitoring application receiving these messages must detect if there is an endian mismatch (see Daemon Statis-
tics Binary Data). The header structure umestore_dmon_msg_hdr_t contains a 16-bit field named magi c which

126 Store Daemon Statistics

is set equal to LBM_UMESTORE_DMON_MAGIC. The receiving application should compare it to LBM_UME:-
STORE_DMON_MAGIC and LBM_UMESTORE_DMON_ANTIMAGIC. Anything else would represent a serious
problem.

If the receiving app sees:

magic == LBM_UMESTORE_DMON_MAGIC

then it can simply access the binary fields directly. However, if it sees:

magic == LBM_UMESTORE_DMON_ANTIMAGIC

then most (but not all) binary fields need to be byte-swapped. See umedmon . c for an example, paying special
attention to the macros COND__SWAPxx (which conditionally swaps based on the magic test) and the functions
byte_swapXX () (which performs the byte swapping).

However, there are some binary fields which must never be swapped, regardless of the endian. This is indicated
in the documentation. For example, umestore_store_dmon_config_msg_t_stct::store_iface says "NOTE: This
field should NOT be byte-swapped." Here's how that field might be accessed:

in.s_addr = msg->store_iface;
printf ("Store IP address / port: %s / %d\n",
inet_ntoa(in), COND_SWAP16 (msg_swap, msg->store_port));

As you can see, store_iface is not byte swapped, but store_port (conditionally) is swapped.

13.1.2 Store Daemon Statistics String Buffers

There are some messages which contain string buffers at the ends of the messages. Strings in these data structures
are always null-terminated. Be aware that these messages are not sent as fixed-length equal to the size of the data
structure, but rather are sent with only the bytes required by the string (including the final null). For example, the
structure umestore_store_pattern_dmon_config_msg_t contains the field umestore_store_pattern_dmon_«
config_msg_t_stct::pattern_buffer which is char array of size LBM_UMESTORE_DMON_TOPIC_PATTERN«
_STRLEN. If pattern_buffer is set to ".x", then only 3 bytes (including the null string terminator) are sent for
that field.

(Contrast this with DRO Daemon Statistics String Buffers.)

This becomes more complicated when there are multiple strings in one message. For example, consider
umestore_store_dmon_config_msg_t. This message contains three strings: store name, cache directory name,
and state directory name. But a single char array is declared:

char string_buffer [LBM_UMESTORE_DMON_STORE_NAME_STRLEN + (2 % LBM_UMESTORE_DMON_FILENAME_MAX_STRLEN)

The three strings are packed into that buffer, only taking up as much space as is necessary. l.e. if the three strings
are "a", "b", and "c¢", only 6 bytes of the buffer will be consumed (each string has a null).

To make it easier for the code to find the three strings, the structure has three offset variables: store_name«
_offset,disk_cache_dir_offset,and disk_state_dir_offset. These are byte offsets from the
start of the entire structure. So, to access the store name, the monitoring application might use:

umestore_store_dmon_config_msg_t *store_config msg = ... /% ptr to incoming msg =/
char *state_dir_name = (char x)store_config msg +
store_config_msg->store_name_offset;

(The practice of using offsets from the start of the structure allows for greater flexibility in ensuring inter-version
compatibility.)

13.2 Store Daemon Statistics Configuration 127

13.1.3 Store Daemon Statistics Retx Counts

There is a set of fields in umestore_store_dmon_stat_msg_t which give statistics on recovery operations initiated
by receivers:

+ umestore_store_dmon_stat_msg_t_stct::ume_retx_req_rcv_count
+ umestore_store_dmon_stat_msg_t_stct::ume_retx_req_serviced_count

+ umestore_store_dmon_stat_msg_t_stct::ume_retx_req_drop_count

The web monitor's Store Web Monitor Store Page has a manual function labeled Reset Rate Stats which clears
those "ume_retx_..._count" fields. This is a useful function for users who use the web monitor as their
primary monitoring tool, but for users who depend on the published Daemon Statistics, it can be disruptive for the
counts to be cleared on-demand.

The field umestore_store_dmon_stat_msg_t_stct::ume_retx_stat_interval contains the seconds since the last
Reset Rate Stats operation. If the user has not used Reset Rate Stats, then ume_retx_stat_interval
contains the seconds since the store's startup.

13.2 Store Daemon Statistics Configuration

There are two places in the Store configuration file that Daemon Statistics are configured:

» The UMP Element "<daemon-monitor>" inside the UMP Element "<daemon>" configures all aspects of the
Store Daemon Statistics feature, including publishing intervals, for all Store Instances in a Store Process.

» The UMP Element "<publishing-interval>" inside a UMP Element "<store>" configures only the publishing
intervals of a Store Instance.

Here is an example of configuring daemon statistics.

<ume-store version="1.3">
<daemon>
<daemon-monitor topic="bozo">

<publishing-interval>
<group name="default" ivl="3"/>
<group name="config" ivl="120"/>
</publishing-interval>
<remote-snapshot-request allow="1"/>
<remote-config-changes-request allow="1"/>
</daemon-monitor>
<daemon>
<stores>
<store name="store(0" port="12000">
<publishing-interval>
<group name="default" ivl="6"/>
<group name="config" ivl="120"/>
</publishing-interval>
</store>
<store name="storel" port="12001">
</store>
</stores>

In this example, all stats-type messages are (conditionally) published on a 3-second interval, except those of store0,
which are published (conditionally) on a 6-second interval. All config-type messages are published (unconditionally)
on a 120-second interval.

128 Store Daemon Statistics

13.3 Store Daemon Control Requests

The Store Daemon supports a monitoring application to send a specific set of requests to control the operation
of Daemon Statistics, and other operations of the store. The <remote-snapshot-request> and <remote-config-
changes-request> elements control whether the Store enables the Daemon Controller operation (both default to
disabled).

Warning

If misused, the Daemon Control Requests feature allows a user to interfere with the messaging infrastructure
in potentially disruptive ways. By default, this feature is disabled. However, especially if you have enabled
UMP Element "<remote-config-changes-request>", Informatica recommends Securing Daemon Control
Requests.

If enabled, the monitoring application can send a request message to the store in the form of a topicless unicast
immediate "request” message (see Ibm_unicast_immediate_request() with NULL for topic). The format of the
message is a simple ascii string, with or without null termination. Due to the simple format of the message, no data
structure is defined for it.

When the Store receives and validates the request, it sends a UM response message back to the requesting
application containing a status message (which is not null-terminated). If the status was OK, the Store also performs
the requested action.

13.3.1 Store Daemon Control Request Addressing

Since Daemon Control Requests are sent as UIM messages, you must use a target string to address the request
to the desired Store Process. The general form of a UIM target address is described in UIM Addressing, but is
illustrated by this example:

TCP:10.29.3.46:12009

where 10.29.3.46:12009 is the IP and Port of the Daemon Control context UIM port. These are typically configured
using the request_tcp_interface (context) and request_tcp_port (context) options in the UM configuration file
specified by the UMP Element "<Ilbm-config>" contained within the UMP Element "<daemon-monitor>".

13.3.2 Store Daemon Control Request Types
The example program umedcmd. c demonstrates the correct way to send the messages and receive the re-
sponses. See umedcmd Man Page for usage details.

REQUEST TYPES ENABLED BY <remote-shapshot-request>:

version

The Store returns in its response the value of LBM_UMESTORE_DMON_VERSION. No daemon statistics
messages are published.

snap memory

The Store immediately publishes the memory usage message LBM_UMESTORE_DMON_MPG_SMART_H:-
EAP_STATS.

shap src

The Store immediately publishes the source repository statistics message(s) LBM_UMESTORE_DMON_M:-
PG_REPO_STATS.

13.3 Store Daemon Control Requests 129

shap rcv

The Store immediately publishes the receiver statistics message(s) LBM_UMESTORE_DMON_MPG_RCV_«
STATS.

snap disk

The Store immediately publishes the disk statistics message(s) LBM_UMESTORE_DMON_MPG_DISK_ST«
ATS.

snap store

The Store immediately publishes the store statistics message(s) LBM_UMESTORE_DMON_MPG_STORE_ -
STATS.

snap config

The Store immediately publishes the store config category messages LBM_UMESTORE_DMON_MPG_ST«
ORE_CONFIG, LBM_UMESTORE_DMON_MPG_STORE_PATTERN_CONFIG, LBM_UMESTORE_DMO:-
N_MPG_STORE_TOPIC_CONFIG, LBM_UMESTORE_DMON_MPG_REPO_CONFIG, and LBM_UMEST«
ORE_DMON_MPG_RCV_CONFIG

REQUEST TYPES ENABLED BY <remote-config-changes-request>:

A Store Process can have multiple Store Instances. But the UIM message is sent to the Daemon Control context
within the Store Process.

Except as noted, the following requests can either be applied to all Store Instances in the Store Process, or to just
one Store Instance. To apply the request to one Store Instance, the store name (as specified in the UMP Element
"<store>" attribute "name") should be specified in double quotes.

memory N

Set the publishing interval for memory usage. This is only available on a Store Process basis. A Store Instance
may not be supplied.
For example: memory 5

src N

Set the publishing interval for source repository statistics messages. This request can be preceded by a Store
Instance name in double quote marks to only set the publishing interval for that store.
For example: "storel" src 5

rcv N

Set the publishing interval for receiver statistics messages. This request can be preceded by a Store Instance
name in double quote marks to only set the publishing interval for that store.
For example: "storel" rcv 5

disk N

Set the publishing interval for disk statistics messages. This request can be preceded by a Store Instance name
in double quote marks to only set the publishing interval for that store.
For example: "storel" disk 5

store N

Set the publishing interval for store statistics messages. This request can be preceded by a Store Instance
name in double quote marks to only set the publishing interval for that store.
For example: "storel" store 5

config N

Set the publishing interval for config category messages. This request can be preceded by a Store Instance
name in double quote marks to only set the publishing interval for that store.
For example: "storel" config 5

130 Store Daemon Statistics

For the following requests, a Store Instance must be supplied as part of the request. It is supplied as an IP and Port,
as specified in the UMP Element "<store>" attributes "interface" and "port". Note that the following requests are
not related to the Daemon Statistics feature, but are nonetheless enabled by <remote-config-changes-request>.

mark INTFC PORT SRC_REGID SQN

Mark as invalid the message with sequence number SQN from the source with registration ID SRC_REGID on
the Store Instance at INTFC:PORT.

For example: mark 10.29.3.16 12000 127025183 500

Note that only one sequence number can be specified. See Request: Mark Stored Message Invalid for more
information.

deregister INTFC PORT SRC_REGID RCV_REGID

Deregister the receiver with registration ID RCV_REGID associated with the source with registration ID SRC«~
_REGID on the Store Instance at INTFC:PORT.

For example: deregister 10.29.3.16 12000 127025183 127025184

Note that only one receiver registration ID can be specified. See Request: Deregister Receiver for more
information.

13.3.3 Request: Mark Stored Message Invalid

There are occasions when a user might want to mark one or more messages in a Store's repository as invalid, to
prevent them from being delivered to a recovering receiver. This can be useful if a misbehaving publisher sends
a "poison" message that causes receivers to crash; having that message in the Store's repository means that
restarting the failed receiver will just cause it to crash again when the message is recovered.

This message marking feature is provided by the daemon command-and-control feature Store Daemon Control
Requests. Note that if there is more than one Store Instance in this Q/C group, the request needs to be sent
multiple times, once for each Store Instance IP/Port.

Warning

If misused, the Daemon Control Requests feature allows a user to interfere with the messaging infrastructure
in potentially disruptive ways. By default, this feature is disabled. However, especially if you have enabled
UMP Element "<remote-config-changes-request>", Informatica recommends Securing Daemon Control
Requests.

When a message is marked invalid with this feature, that mark is NOT saved onto disk. If the marked message
resides on disk and the store is restarted, it loses its invalid mark and becomes subject to delivery to recovering
receivers. Invalid messages may need to be re-marked as invalid after a store restart.

The message marking feature is incompatible with the retransmission-request-forwarding Store option. If you
have configured the Store Instance to enable the retransmission-request-forwarding option, and a recovering
receiver requests a message that has been marked as invalid, the Store Instance will forward the recovery
request to the source. If the source still has the message in its retention buffer, the store will supply it to the
receiver.

Daemon Control requests can be sent by the example program umedcmd . c. Alternatively, that program's source

code can be used as a guide for writing your own Store management program. See umedcmd Mark Mode for full
details.

13.3.4 Request: Deregister Receiver

There are occasions when a user might want to deregister a failed receiver from a Store. This will delete the Store's
state information for that receiver.

13.4 umedcmd Man Page 131

This receiver deregistration feature is provided by the Daemon command-and-control feature Store Daemon Control
Requests.

Warning

If misused, the Daemon Control Requests feature allows a user to interfere with the messaging infrastructure
in potentially disruptive ways. By default, this feature is disabled. However, especially if you have enabled
UMP Element "<remote-config-changes-request>", Informatica recommends Securing Daemon Control
Requests.

A receiver's state information is stored per-source. For example, if an application creates a persistent receiver for
topic X, and there are two sources for topic X, the store will save two sets of state information for that receiver, one
for each source for X. To fully clean up a failed receiving application, you need to deregister every pairing of receiver
registration ID (RegID) associated with that receiver with every source RegID. And that must be repeated for each
Store instance that the receiver was registered with. (Session IDs may not be used.)

Once deregistered, the state and cache files are deleted and cannot be restored.

Note that if there is more than one Store Instance in this Q/C group, the request needs to be sent multiple times,
once for each Store Instance IP/Port.

Note

If you use this feature to deregister a receiver that is still running, that receiving application is not informed of
the deregistration, and it will continue to receive messages from the source and will attempt to acknowledge
them to the Store. However, the store will discard these acknowledgements as invalid and will log warnings to
its log file. The receiving application will not be aware of the acknowledgement discards.

Daemon Control Requests can be sent by the example program umedcmd . c. Alternatively, that program's source
code can be used as a guide for writing your own Store management program. See umedcmd Deregister Mode for
full details.

13.4 umedcmd Man Page

The umedcmd example program sends Daemon Control Requests to a Store Process. Source code for umedcmd
can be found with the other example programs; see umedcmd. c.

Note

UM version 6.13 has a known issue running umedcmd on Windows. See Known Issue 10897.

The umedcmd command has 3 modes of operation:

* publish

— used to control the publishing of Daemon Statistics by the Persistent Store.
* mark

— used to mark messages in a Store Instance as invalid.
* deregister

— used to deregister and delete state information for a receiver that is currently registered with a Store
Instance.

Each mode has a different usage pattern, which is determined by the value passed to the "-m" command-line option.

132 Store Daemon Statistics

13.4.1 umedcmd Publish Mode

This form of the umedecmd command is used to control the publishing of Daemon Statistics by the Persistent Store.

Ak khkhkhkkhkhhk kb hkhkhkhkhhkhhhkhrhkhkhhkhkhhk bk bk h bk bk hk bk bk kb hk bk bk kb bk kb r bk hkhhk kb hkhkhkhkhkhrhkhkrhk bk bk hkhkrkhkxkhxkk
Usage: umedcmd -c config file -T target_string [-L linger] [-m mode]
[command_string]
Available options:
-c, ——config=FILE Use LBM configuration file FILE.
Multiple config files are allowed.
Example: ’'—-c filel.cfg -c file2.cfg’

-h, --help display this help and exit

-L, —--linger=NUM linger for NUM seconds before closing context

-m, —-—mode=TYPE set the command mode to TYPE publish (default)

-T, —-—-target=TARGET TARGET string for unicast immediate messages [required]

KK AR R A AR A A R AR AR A AR A A AR A A A A A A AR A I A A I A A I A A I A AR A A AR A AR A AR K,k

The "-m mode" command-line option is optional in this usage. If supplied, it must be supplied as "-m publish".
Omitting it defaults to publish mode.

The "-T target_string" contains the unicast immediate message destination address of the Daemon Control context
UIM port (see Store Daemon Control Request Addressing).

The parameter "command_string" is optional. If supplied, it should be enclosed in single quotes. If omitted, the
program enters an interactive mode in which the user can enter any number of commands (when used interactively,
do not enclose the command string in single quotes). In interactive mode, use "h" for a brief help screen, and "q" to
quit.

Valid command strings are:

KA AR AR A A A A A A AR AR AR A AR AR A A A A A A A A A A A A A A A A A A AR AR A A A A AR A A A AR AR A A A A A AR AR A A A A A Ak hhk kK%

* Publish Mode

*

* help (print this message): h *
* quit (exit application): g *
* report store dmon version: version *
* set publishing interval: memory O0-N *
* ["store name"] src 0-N *
* ["store name"] rcv 0-N *
* ["store name"] disk 0-N *
* ["store name"] store 0-N *
* ["store name"] config 0-N *
* snapshot all groups: ["store name"] snap memory|srcl|rcv|disk]|store|config *

Kk kA hkhkhkhhkhhkhhhkhhkhhhkhhkrh bk hhrhhkhkhkrhhkhh Ak hk bk hdkhhk bk hkhkhhk bk h bk hkhkhkhkhkhhkrkhhkhhkrkhhkrkrhhkrkhxhkrxkhkxkhk*x

Note that most of the commands can optionally be preceded by a Store Instance name in double quotes. Supplying
it causes the command to apply only to the named Store Instance. Omitting this causes the command to apply to
all Store Instances in the target Store Program.

For example:
umedcmd -c dstats.cfg -m publish -T TCP:10.29.3.16:12009 ’"storel" src 5’
In this example, the Store Process's Daemon Control context has its UIM port configured as 12009 (see Store

Daemon Control Request Addressing), and the Store Instance is configured for the name "store1". (with the UMP
Element "<store>" attribute "name"). The source repository statistics are set to a publishing interval of 5 seconds.

13.4.2 umedcmd Mark Mode

This form of the umedcmd command is used to mark persisted messages as invalid. This prevents their delivery to
recovering receivers. See Request: Mark Stored Message Invalid.

13.4 umedcmd Man Page 133

khkkhkhkhkhkkhkhkhkhkkhhkhhkhkhAhhhhhkhhhkhbhhhhhhdhhbhhhhAhhhhkhbhhkhAhbhhdhhhhkhAhhhhbhhkhhbkhrhhdhhhhkhrhkhkhkhdhkhkdhhkhhkkhkhhkhkkhhhhkhkhxkkhkkks
Usage: umedcmd -c config_file -i store_interface -m mark -p store_port -s src_regid
-T target_string [-L linger] [-S sgn_string]
Available options:
-c, —-—-config=FILE Use LBM configuration file FILE.
Multiple config files are allowed.
Example: ’'—-c filel.cfg -c file2.cfg’

-h, --help display this help and exit
-i, —-—-store_interface store interface IPv4 address
-p, ——store_port store port
-L, --linger=NUM linger for NUM seconds before closing context
-m, —-mode=TYPE set the command mode to TYPE ’'mark’
-s, —-—-src_regid=ID source registration ID associated with the store
repository
-S, ——-sqgn_string=LIST LIST of one or more message sequence number (s) or ranges
to drop, e.g.,:
’—-S 54’ drop a single message
’-S 312-315" drops a range of messages
'-S 2,5,9-11" drops two single and a range of messages
-T, ——-target=TARGET TARGET string for unicast immediate messages [required]

AR A AR AR A A A AR A A AR A A A AR A AR A AR A A A A AR A AT AR A AR A A A AR A AR A AR A AR Ak h kKK K

The "-m mark" command-line option must be supplied.

The "-T target_string" contains the unicast immediate message destination address of the Daemon Control context
UIM port (see Store Daemon Control Request Addressing).

The "-i store_interface" and "-p store_port" are required parameters which identify the desired Store Instance within
the Store Process, as specified in the UMP Element "<store>" attributes "interface" and "port".

The "-s src_regid" parameter is required to identify the specific source that sent the invalid message.

The command-line option "-S sqn_string" specifies the sequence number(s) of the messages that should be marked
invalid. If omitted, the program enters an interactive mode in which the user can enter any number of sequence
number strings.

A sequence number string can specify multiple sequence numbers and/or ranges of sequence numbers. A range is
two sequence numbers separated by a dash. The string can consist of one or more sequence numbers or ranges,
separated by commas. The string should be enclosed in quotes. For example:

-5 "100,110-112,220"
This specifies sequence numbers 100, 110, 111, 112, 220. Note that the umedcmd command parses the sequence
number string and issues a separate request to the Store Instance for each sequence number.

If "-S sqn_string" is omitted from the command line, the program enters an interactive mode in which the user can
enter any number of sequence number strings. In interactive mode, use "h" for a brief help screen, and "g" to quit.

For example:
umedcmd -c dstats.cfg -m mark -T TCP:10.29.3.16:12009 -i 10.29.3.16 -p 12000 -s
127025183 -5 "500"

In this example, the Store Process's Daemon Control context has its UIM port configured as 12009 (see Store
Daemon Control Request Addressing), and the Store Instance is configured for port 12000 (with the "port" attribute
of the UMP Element "<store>"). The source registration ID is 127025183. The message with sequence number
500 is marked invalid.

Note

If there is more than one Store Instance in this Q/C group, the command needs to be executed multiple times,
once for each Store Instance IP/Port.

134 Store Daemon Statistics

13.4.3 umedcmd Deregister Mode

This form of the umedcmd command is used to deregister a failed receiver. This deletes the state information for
that receiver. See Request: Deregister Receiver.

KK AR R A AR A A R A A A A AR A A A A A A A A A A A R A A A A A A A A A A A A AR A AR A A A A A A A AR A AR A I KA A A KA A A A A AR AR A AR A A A A I A A AR AR AR AR KR XK K K

Usage: umedcmd -c config_file —-i store_interface -m deregister -p store_port -s

src_regid -T target_string [-r rcvr_regid] [-L linger]
Available options:
-c, —--—config=FILE Use LBM configuration file FILE.

Multiple config files are allowed.
Example: ’'—-c filel.cfg -c file2.cfg’

-h, --help display this help and exit
-i, —--store_interface store interface IPv4 address
-p, ——store_port store port
-L, --linger=NUM linger for NUM seconds before closing context
-m, ——mode=TYPE set the command mode to TYPE ’'deregister’
-r, —--rcvr_regid=LIST LIST of one ore more receiver registration IDs associated
with store repository, e.g.,:
f—r 127025171’ deregister a single receiver
'—-r 127025171, 127025162’ deregister two receivers
-s, —-—-src_regid=ID source registration ID associated with the store
repository
-T, —--target=TARGET TARGET string for unicast immediate messages [required]

LR R R R b S I S A S S S S S S S I S S S kb b b b I S S S S S S S S S S S S I S R Rk e b I b A S I b S S S S S S S S I S S R

The "-m deregister" command-line option must be supplied.

The "-T target_string" contains the unicast immediate message destination address of the Daemon Control context
UIM port (see Store Daemon Control Request Addressing).

The "-i store_interface" and "-p store_port" are required parameters which identify the desired Store Instance within
the Store Process, as specified in the UMP Element "<store>" attributes "interface" and "port".

The "-s src_regid" and "-r rcv_regid" parameters combine to identify the specific receiver state that will be deleted.
Receiver state is stored according to a pair of registration IDs: source, receiver. (Session IDs may not be used.) For
example, lets say there are two persisted sources for the same topic with registration IDs 100 and 200. A receiver
with registration ID 300 will have two sets of state: state for the pair 100, 300 and state for the pair 200, 300.

Note that the "-r rcv_regid" parameter can have a comma-separated list of receiver registration IDs. This is handy
if you need to de-register all receivers for a particular source. The rcv_regid should be enclosed in quotes. Note
that umedcmd command parses the receiver registration IDs and issues separate request to the Store Instance for
each rcv_regid.

Also note that if "-r rcv_regid" is omitted from the command line, the program enters an interactive mode in which
the user can enter any number of receiver registration IDs. In interactive mode, use "h" for a brief help screen, and
"q" to quit.

For example:

umedcmd -c dstats.cfg -m deregister -T TCP:10.29.3.16:12009 -i 10.29.3.16 -p 12000
-s 127025183 —-r "127025184"

In this example, the Store Process's Daemon Control context has its request port configured as 12009 (see Store
Daemon Control Request Addressing), and the Store Instance is configured for port 12000 (with the "port" at-
tribute of the UMP Element "<store>"). The source registration ID is 127025183 and the receiver registration ID is
127025184. This pair of registration IDs is used by the Store Instance to delete the receiver state.

Note

If there is more than one Store Instance in this Q/C group, the command needs to be executed multiple times,
once for each Store Instance IP/Port. Also, if there is more than one source for the same topic that the receiver
is registered for, the command needs to be executed multiple times, once for each source registration ID.

Chapter 14

Store Web Monitor

The built-in web monitor (configured in the ume st ored XML configuration file) is a rich source of information about
the health of a UM stores. This section contains a page-by-page guide to reading and interpreting the output of a
UM web monitor, with just a couple example sources and one receiver using a single store.

Warning

The store's web monitor is not designed to be a highly-secure feature. Anybody with access to the network
can access the web monitor pages.

Users are expected to prevent unauthorized access to the web monitor through normal firewalling methods. Users
who are unable to limit access to a level consistent with their overall security needs should disable the store web
monitor (using <web-monitor>). See Webmon Security for more information.

Note

the UM daemon designs are evolving away from simple web-based monitoring and towards a publish/sub-
scribe model of distributing monitoring events and statistics.

14.1 Store Web Monitor Index Page

Here is an image of the Web Monitor's Index (main) page:

136 Store Web Monitor

UltraMessaging™ Persistent Store v2.0.2

Build: May 6 2008,11:43:59

LBM 3.3.4 [UME-2.0.2] Build: May & 2008, 11:40:13
(DEBUG license LBT-RM LBT-RU) WC[PCRE 7.5 2008-
01-10, regex, appch]

Time: Mon May 12 09:18:29 2008

Stores

29West UltraMessaging™ Support

The web monitor's index page tells what build of UM is running.

The "Stores" link displays the Store Web Monitor Stores Page.

14.2 Store Web Monitor Stores Page

Here is an image of the Web Monitor's Stores page:

UltraMessaging™ Persistent Stores

Store D:ume=test=store

29West UltraMessaging'™ Support

This page shows all the stores configured under the umestored process. If you had 5 stores configured, they
would be numbered Store 0 through Store 4. Our example has only one store configured, "ume-test-store".

Each store name is a clickable link, which displays the Store Web Monitor Store Page for that store.

14.3 Store Web Monitor Store Page

Here is an image of the Web Monitor's Store page:

14.3 Store Web Monitor Store Page

137

Store 0: UME_Store_sr7lprod-tk_1a

Interface: 0.0.0.0:38401

Total seconds used for
Eetransmission EReqguest
Eetransmission Reguest
Eetransmission Reqguest
Eetransmission Reguest
Patterns: 1

« " " PCEE
Topics: 1

« "Cescl"”

Cache Dir: /tmp/umestore/cache 1

State Dir: /tmp/umestore/state 1

Configured Retransmission Reguest Processing Rate:
rate calculations:
Eeceived Rate:
Service Rate:
Drop Rate:
Total Dropped: O

262144
456
5.000000
2.000000
0.000000

— 2504558780 (393077EE)

Ee=set ERate Stats

This page shows the following information about the store.

ltem Description

Interface This store is listening on all interfaces (0.0.0.0) on port
38401.

Cache Dir Pathname for disk store message cache directory.
This would be configured as a store attribute in the
store's XML configuration file. For example:
<option type="store" name="disk-cache-directory"
value="cache/" />

State Dir Pathname for disk store state directory. This would

be configured as a store attribute in the store's XML
configuration file. For example:

<option type="store" name="disk-state-directory"
value="state/" />

Configured Retransmission Request Processing Rate

Current value for the store's retransmission-request-
processing-rate option setting.

Total Seconds Used for Rate Calculations

Accumulating counter that displays the number of sec-
onds since the last rate reset. The Web Monitor di-
vides the Retransmission Request Received, Retrans-
mission Request Service and Retransmission Request
Drop totals by the Total Seconds to calculate the rates
displayed. If you click the Reset Rate Stats, the Web
Monitor resets this value to zero.

Retransmission Request Received Rate

Number of retransmission requests received per sec-
ond.

Retransmission Request Service Rate

Number of retransmission requests serviced per sec-
ond.

Retransmission Request Drop Rate

Number of retransmission requests dropped per sec-
ond. Requests are dropped if the rate of retransmis-
sion requests exceeds the configured retransmission
request rate.

138

Store Web Monitor

Item

Description

Retransmission Request Total Dropped

The number of retransmission requests since the time
the store was started.

Patterns

Specifies the wildcard pattern used to select topics
for which a store will provide persistence services.
This would be configured as a topic attribute in the
store’'s XML configuration file. For example: <topic
pattern="test.x" type="PCRE">

Topics

Displays the topic names and Registration ID (Ses-
sion ID) for any sources publishing on the topic.
The screen examples display one topic, testl -
2504558780(39307788). Each Registration ID (Ses-
sion ID) is a clickable link, which displays the Store
Web Monitor Source Page for that source.

Reset Rate Stats

Click the Reset Rate Stats link to reset the retrans-
mission rates. After clicking the link, The Web Mon-
itor rests Total Seconds Used for Rate Calculations
to zero and displays a page with the store num-
ber and the message, 'Rate Statistics have
been reset'.

14.4 Store Web Monitor Source Page

Here is an image of the Web Monitor's Source page:

2504558780: Source [0 10.29.3.42.14392 3958260924.1161732811]

Topic: "testl"

Session ID: 383077E&8

Last Actiwvity: 09:07:56.510005
Repository: disk

Receiver Paced Persistence:
Message Map: 3120

Window: [0, 9d5, c2f]
Memory: 55986 / 65000 / 50331648
Age Threshold: O

a

Sync: [e2f, c2f, c2f]
In Progress: 0 / 0
Offsets: O / 190320 / 4294967296
Active ULBs: 0 high 0
Loss: 0 ULBs O
Drops: 0 / O

LBM Stats:

0-0-0-0, unrec 0/0
Receivers: 2504558781 (39307788)

[LBTRM:10.29.3.42:14390:12246c8c:239.212.1.45:14400], received 609/35182,

dups 0, loss 0, naks 0/0, ncfs

The first line in the page contains is interpreted as follows:

2504558780 The source's registration ID.

10.29.3.42.14392

The IP address and port of the source's UM configuration option, request_tcp_port (con-

text).
3958260924 The source's transport session index.
1161732811 The source's topic index within the transport session, 3958260924.

14.4 Store Web Monitor Source Page

139

The remaining fields are described in the following table:

Source Page Item

Description

Topic test is the source's topic string.

Session ID 39307788 is the source's Session ID.

Last Activity 09:19:39.501350 is the timestamp when the store last heard from the
source, including keepalives sent by UM

Repository disk is the type of repository. Possible values are "memory" or "disk".

Receiver Paced Persistence

Setting for Receiver-paced Persistence (RPP), which is a repository op-
tion both the repository and source must enable. A value of 0 means
RPP is not enabled and the repository is using the default Source-paced
persistence. A value of 1 means RPP is enabled.

Message Map: 3120

The total number of message fragments the store has for this source,
both on disk and in memory. These are UM-level fragments, not IP-level
fragments. UM messages are fragmented into roughly 8 kilobyte chunks
for UDP-based protocols (LBT-RM and LBT-RU) and into roughly 64 kilo-
byte chunks for LBT-TCP. The majority of application messages tend to
be well under the fragment boundaries, so the value after "Message Map"
could be used as a rough estimate of the number of messages in the
store from this particular source. It's at least a strict upper bound.

Window: [0, 9d5, c2f]

Window format is: trail_sqn, mem_trail_sqn, lead_sqn

« trail_sqgn, 0, is the trailing sequence number, which is the oldest
sequence number in the store for this source. In most cases,
this starts at 0 and stays there for a while. The trailing sequence
number changes if the store reaches a disk file size limit and then
deletes the oldest messages.

* mem_trail_sqn, 9d5, is the trailing sequence number for mes-
sages in memory. It is the oldest sequence number still in memory.
Typically, you might have more sequence numbers on disk than
you do in memory, or possibly the same number.

» lead_sqgn, c2f, is the leading sequence number, which is the
newest sequence number in the store.

Note: For a memory store, the first and second values would
always be the same. The oldest sequence number in memory
is the oldest in the store, so only two values are displayed. The
trailing sequence number and the leading sequence number.

140

Store Web Monitor

Source Page Item

Description

Memory: 55986 / 65000 / 50331648

Memory format is: repository memory size / repository size threshold /
repository size limit

* repository memory size, 55986, is the number of bytes of mes-
sages in memory, which includes headers and store overhead.

repository size threshold, 65000, is the repository-size-threshold
topic option found in the store's XML configuration file.

repository size limit, 50331648, is the store's repository-size-limit
topic option found in the store's XML configuration file.

You would expect the number of bytes in memory to be un-
der the threshold most of the time, but it could spike above it
before going back down if the store is really busy momentarily. It
should never go above the limit.

Age Threshold: 0

Age Threshold, 0, is the store's repository-age-threshold topic option
found in the store's XML configuration file.

Sync: [c2f, c2f, c2f]

Pertains to disk repositories only. Sync format is: sync_complete_sqn,
sync_sqn, contig_sqgn

» sync_complete_sqn, c2f, Most recent sequence number that the
Operating System has confirmed persisting to disk.

+ sync_sqn, c2f, Most recent sequence number for which the store
has initiated persisting to disk, but the Operating System has not
confirmed completion of persistence.

+ contig_sqn, c2f, Most recent sequence number that along with the
trail_sqgn, creates a range of sequence numbers with no sequence
number gaps. For example, if trail_sqn = 0 and the store has per-
sisted all eleven messages with sequence numbers 0 through 10,
contig_sqgn would equal 10. contig_sqgn would also be 10 if a re-
ceiver declared message sequence number 7 unrecoverably lost.
contig_sqgn would be 6 if message sequence number 7 was not
persisted, but not declared lost.

14.4 Store Web Monitor Source Page

141

Source Page Item

Description

In progress: 0/0

Pertains to disk repositories only. In progress format is: num_ios_«
pending / num_read_ios_pending

* num_ios_pending, 0, Number of disk writes the store has sub-
mitted to the Operation System. A disk write refers to the store
persisting a message to disk.

* num_read_ios_pending, 0, Number of disk reads that the store
has submitted to the Operating System. A disk read, for example,
results from an application retransmission request.

Offsets: 0 /190320 / 4294967296

Pertains to disk repositories only. Offsets format is: start_offset, offset,
max_offset

« start_offset, 0, The relative location of the first message, trail_san,
in the disk.

 offset, 190320, The relative location of where the message,
contig_sqn plus one will be written.

+ max_offset, 4294967296, The maximum size of the cache file.

Active ULBs: 0 high 0

ULB stands for Unrecoverable Loss Burst. A little extra work is required
to keep cache files consistent when the store gets an unrecoverable loss
burst, because unrecoverable loss bursts are delivered all at once for
lots of messages, rather than one at a time like normal unrecoverable
loss messages.

Active ULB is the number of unrecoverable loss burst events the
store is dealing with at the moment. It'll go to zero after the ULB has
been resolved.

The high number (0) is the highest sequence number reported
among any unrecoverable loss burst event, and is not reset after the
ULB is handled; it increments throughout the process life of the store.

WARNING: If you see any number other than 0 here, the store is
losing large numbers of messages, and they are likely not being
persisted.

142

Store Web Monitor

Source Page Item

Description

Loss: 0 ULBs 0

These values are counters for number of unrecoverable loss messages
(Loss) and for number of unrecoverable burst loss messages (ULB).
These start at 0 when the store starts up and aren't reset until the store
exits. They don't include any loss events that were persisted to disk from
a previous run, only new loss events since the store started. There are
cases with UME 2.0 where one individual store could legitimately re-
port some unrecoverable loss, or maybe even unrecoverable loss bursts.

WARNING: If you see any number other than O for either of these
counters, you should investigate.

Drops: 0/0

If the store is nearing the repository-size-limit and gets another message,
the store will intentionally drop a message. A drop requires a bit of work
on the store's part.

The first 0 is the number of active drops, which are drops that are
currently being worked on.

The second 0 is the total number of drops that have happened for
this store since it was started. Some people want a low repository-size-
limit and therefore lots of intentional drops can occur. Some don't want
to drop any message the whole day - so the interpretation of the values
is up to you.

LBM Stats

These represent transport-level statistics for the underlying receivers in
the store for the source. The example shown is for a TCP source, so not
too many stats are available (stats for a TCP source are less important
from a monitoring perspective).

Statistics for an LBT-RM or LBT-RU source, however, show number
of NAKs sent, which is important. Ideally, the number of NAKs sent
should be 0. A few NAKs from a store throughout the day is not an
emergency. It can be, however, an early warning sign of more severe
problems, and should be taken seriously.

If you see a non-zero number of NAKs here, take a look at the
overall network load the store's machine is attempting to handle,
particularly in very busy periods and spikes; it may be too much.

Receivers

Registration IDs and accompanying Session ID for the receivers listening
on the source's topic. Click on the receiver Registration ID (Session ID)
to display the Store Web Monitor Receiver Page to review information
about the receivers for that persisted topic.

14.5 Store Web Monitor Receiver Page

Here is an image of the Web Monitor's Receiver page:

14.5 Store Web Monitor Receiver Page 143

2504558781: Receiver [0 10.25.3.42.14353 1510613353.1161732811]

Topic: "testl"™

La=zt Beotivity: 09:09:35.981110
Source ReglID: Z250455E87E0
Source Ses=sion ID: 393077EE
LCE: c893

The first line in the page contains is interpreted as follows:

2504558781 The receiver's registration ID.

10.29.3.42.14393 | The IP address and port of the source's UM configuration option, request_tcp_port (con-
text).

1510613393 The receiver's transport session index.

1161732811 The source's topic index within the transport session, 1510613393.

The remaining fields are described in the following table:

Receiver Page Item | Description

Topic The topic that the receiver is listening on.

Last Activity 09:09:35.981110 is the timestamp of when the store last heard from the receiver, includ-
ing keepalives sent by UM.

Source RegID Registration ID of the source publishing on the topic. Click on the Registration ID link to
display the Store Web Monitor Source Page.

Source Session ID The Session ID of the Source sending messages on the topic.

ACK c93 is the last message sequence number the receiver acknowledged.

	Introduction
	Persistence Overview
	Persistence Concepts
	Persistent Store Concept
	Registration Identifier Concept
	Delivery Confirmation Concept
	Release Policy
	Message Stability Concept
	Quorum/Consensus Store Failover

	Persistence Architecture
	Persistent Store Architecture
	Store Processes and Instances
	Source Repositories
	Repository Thresholds and Limits
	Tolerance Persistent Store Fault Tolerance
	Identifying Persistent Stores

	Operational View
	General Persistence Operation
	Source Registration
	Source Registration Information (SRI)

	Receiver Registration
	Receiver Registration Process
	Persistence Normal Operation
	Persistence Flight Size
	Receiver Recovery
	Registration Limitations

	Receiver-paced Persistence Operations
	RPP Registration
	RPP Normal Operation
	RPP Message Recovery
	RPP Deregistration
	Implementing RPP
	Example RPP Configuration Files
	RPP Cross Feature Functionality

	Persistence Events
	Persistence Source Events
	Persistence Receiver Events
	Persistence Context Events

	Store Repository Profiling (SRP)
	Using the SRP API
	umesnaprepo Man Page

	Enabling Persistence
	Starting Configuration
	Adding the Store to a Source
	Adding Fault Recovery with Registration IDs
	Enabling Persistence Between the Source and Store
	Enabling Persistence in the Source
	Smart Sources and Persistence

	Enabling Persistence in the Receiver

	Demonstrating Persistence
	Running Persistent Example Applications
	Single Receiver Fails and Recovers
	Single Source Fails and Recovers
	Single Store Fails

	Designing Persistence Applications
	Registration Identifiers
	Use Static RegIDs
	Save Assigned RegIDs
	Managing RegIDs with Session IDs

	Designing Persistent Sources
	New or Re-Registration
	Sources Must Be Able to Resume Sending
	Source Message Retention and Release
	Forced Reclaims
	Source Release Policy Options
	Confirmed Delivery
	Source Event Handler
	Source Event Handler - Stability, Confirmation and Release
	Mapping Your Message Numbers to Sequence Numbers
	Receiver Liveness Detection

	Designing Persistent Receivers
	Receiver RegID Management
	Recovery Management
	Duplicate Message Delivery
	Setting Callback Function to Set Recovery Sequence Number
	Persistence Message Consumption
	Immediate Message Consumption
	Delayed Message Processing
	Batching Acknowledgments
	ACK Ordering
	Explicit Acknowledgments
	Object-free Explicit Acknowledgments

	Designing Persistent Stores
	Store Log File
	Store Rolling Logs
	Quorum/Consensus Store Usage
	Sources Using Quorum/Consensus Store Configuration

	Persistent Fault Recovery
	Persistent Source Recovery
	Persistent Receiver Recovery

	Callable Store
	Store Thread Affinity

	Persistence Fault Tolerance
	Message Loss Recovery
	Configuring for Persistence and Recovery
	Source Considerations
	Receiver Considerations
	Store Configuration Considerations

	Persistence Proxy Sources
	How Proxy Sources Operate
	Activity Timeout and State Lifetimes
	Enabling the Proxy Sources
	Proxy Source Elections
	Proactive Retransmissions

	Man Pages for Store
	Umestored Man Page
	Umestoreds Man Page

	Configuration Reference for Umestored
	Store XML Configuration File Elements
	UMP Element `¨<ume-store>`¨
	UMP Element `¨<stores>`¨
	UMP Element `¨<store>`¨
	UMP Element `¨<topics>`¨
	UMP Element `¨<topic>`¨
	UMP Element `¨<ume-attributes>`¨
	UMP Element `¨<option>`¨
	UMP Element `¨<publishing-interval>`¨
	UMP Element `¨<group>`¨
	UMP Element `¨<daemon>`¨
	UMP Element `¨<daemon-monitor>`¨
	UMP Element `¨<remote-config-changes-request>`¨
	UMP Element `¨<remote-snapshot-request>`¨
	UMP Element `¨<lbm-config>`¨
	UMP Element `¨<web-monitor>`¨
	UMP Element `¨<lbm-license-file>`¨
	UMP Element `¨<xml-config>`¨
	UMP Element `¨<gid>`¨
	UMP Element `¨<pidfile>`¨
	UMP Element `¨<uid>`¨
	UMP Element `¨<log>`¨

	Options for a Store's ume-attributes Element
	Options for UM
	Store Options

	Options for a Topic's ume-attributes Element
	Option Types for ume-attributes Elements
	umestored Configuration DTD
	Store Configuration Example
	xml-config Tag

	Store Daemon Statistics
	Store Daemon Statistics Structures
	Store Daemon Statistics Byte Swapping
	Store Daemon Statistics String Buffers
	Store Daemon Statistics Retx Counts

	Store Daemon Statistics Configuration
	Store Daemon Control Requests
	Store Daemon Control Request Addressing
	Store Daemon Control Request Types
	Request: Mark Stored Message Invalid
	Request: Deregister Receiver

	umedcmd Man Page
	umedcmd Publish Mode
	umedcmd Mark Mode
	umedcmd Deregister Mode

	Store Web Monitor
	Store Web Monitor Index Page
	Store Web Monitor Stores Page
	Store Web Monitor Store Page
	Store Web Monitor Source Page
	Store Web Monitor Receiver Page

