
Ultra Messaging JMS Guide
Copyright © 2010 - 2014 Informatica Corporation

March 2014

Informatica Ultra Messaging
Version 5.3
March 2014
Copyright (c) 1998-2014 Informatica Corporation. All rights reserved.
This software and documentation contain proprietary information of Informatica Corporation and are
provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright law. Reverse engineering of the software is prohibited. No part of this
document may be reproduced or transmitted in any form, by any means (electronic, photocopying,
recording or otherwise) without prior consent of Informatica Corporation. This Software may be
protected by U.S. and/or international Patents and other Patents Pending.
Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions
set forth in the applicable software license agreement and as provided in DFARS 227.7202-1(a) and
227.7702-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or
FAR 52.227-14 (ALT III), as applicable.
The information in this product or documentation is subject to change without notice. If you find any
problems in this product or documentation, please report them to us in writing.
Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT,
PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange, PowerMart, Metadata Manager,
Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica
B2B Data Exchange Informatica On Demand, Informatica Identity Resolution, Informatica Application
Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging and
Informatica Master Data Management are trademarks or registered trademarks of Informatica
Corporation in the United States and in jurisdictions throughout the world. All other company and
product names may be trade names or trademarks of their respective owners.
Portions of this software and/or documentation are subject to copyright held by third parties, including
without limitation: Copyright DataDirect Technologies. All rights reserved. Copyright (c) Sun
Microsystems. All rights reserved. Copyright (c) RSA Security Inc. All Rights Reserved. Copyright (c)
Ordinal Technology Corp. All rights reserved.Copyright (c) Aandacht c.v. All rights reserved. Copyright
Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright (c)
Meta Integration Technology, Inc. All rights reserved. Copyright (c) Intalio. All rights reserved.
Copyright (c) Oracle. All rights reserved. Copyright (c) Adobe Systems Incorporated. All rights
reserved. Copyright (c) DataArt, Inc. All rights reserved. Copyright (c) ComponentSource. All rights
reserved. Copyright (c) Microsoft Corporation. All rights reserved. Copyright (c) Rogue Wave Software,
Inc. All rights reserved. Copyright (c) Teradata Corporation. All rights reserved. Copyright (c) Yahoo!
Inc. All rights reserved. Copyright (c) Glyph & Cog, LLC. All rights reserved. Copyright (c) Thinkmap,
Inc. All rights reserved. Copyright (c) Clearpace Software Limited. All rights reserved. Copyright (c)
Information Builders, Inc. All rights reserved. Copyright (c) OSS Nokalva, Inc. All rights reserved.
Copyright Edifecs, Inc. All rights reserved. Copyright Cleo Communications, Inc. All rights reserved.
Copyright (c) International Organization for Standardization 1986. All rights reserved. Copyright (c)
ej-technologies GmbH. All rights reserved. Copyright (c) Jaspersoft Corporation. All rights reserved.
Copyright (c) is International Business Machines Corporation. All rights reserved. Copyright (c)
yWorks GmbH. All rights reserved. Copyright (c) Lucent Technologies. All rights reserved. Copyright
(c) University of Toronto. All rights reserved. Copyright (c) Daniel Veillard. All rights reserved.
Copyright (c) Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright (c) MicroQuill Software
Publishing, Inc. All rights reserved. Copyright (c) PassMark Software Pty Ltd. All rights reserved.
Copyright (c) LogiXML, Inc. All rights reserved. Copyright (c) 2003-2010 Lorenzi Davide, All rights
reserved. Copyright (c) Red Hat, Inc. All rights reserved. Copyright (c) The Board of Trustees of the
Leland Stanford Junior University. All rights reserved. Copyright (c) EMC Corporation. All rights
reserved. Copyright (c) Flexera Software. All rights reserved. Copyright (c) Jinfonet Software. All rights
reserved. Copyright (c) Apple Inc. All rights reserved. Copyright (c) Telerik Inc. All rights reserved.
This product includes software developed by the Apache Software Foundation
(http://www.apache.org/), and/or other software which is licensed under various versions of the
Apache License (the "License"). You may obtain a copy of these Licenses at

1

Ultra Messaging JMS Guide

http://www.apache.org/licenses/. Unless required by applicable law or agreed to in writing, software
distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the Licenses for the specific language
governing permissions and limitations under the Licenses.
This product includes software which was developed by Mozilla (http://www.mozilla.org/), software
copyright The JBoss Group, LLC, all rights reserved; software copyright (c) 1999-2006 by Bruno
Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU
Lesser General Public License Agreement, which may be found at http://
www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is",
without warranty of any kind, either express or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.
The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his
research group at Washington University, University of California, Irvine, and Vanderbilt University,
Copyright (c) 1993-2006, all rights reserved.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(copyright The OpenSSL Project. All Rights Reserved) and redistribution of this software is subject to
terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.
This product includes Curl software which is Copyright 1996-2007, Daniel Stenberg,
<daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this software are
subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
The product includes software copyright 2001-2005 (c) MetaStuff, Ltd. All Rights Reserved.
Permissions and limitations regarding this software are subject to terms available at
http://www.dom4j.org/ license.html.
The product includes software copyright (c) 2004-2007, The Dojo Foundation. All Rights Reserved.
Permissions and limitations regarding this software are subject to terms available at
http://dojotoolkit.org/license.
This product includes ICU software which is copyright International Business Machines Corporation
and others. All rights reserved. Permissions and limitations regarding this software are subject to
terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.
This product includes software copyright (c) 1996-2006 Per Bothner. All rights reserved. Your right to
use such materials is set forth in the license which may be found at http:// www.gnu.org/software/
kawa/Software-License.html.
This product includes OSSP UUID software which is Copyright (c) 2002 Ralf S. Engelschall, Copyright
(c) 2002 The OSSP Project Copyright (c) 2002 Cable & Wireless Deutschland. Permissions and
limitations regarding this software are subject to terms available at
http://www.opensource.org/licenses/mit-license.php.
This product includes software developed by Boost (http://www.boost.org/) or under the Boost
software license. Permissions and limitations regarding this software are subject to terms available at
http:/ /www.boost.org/LICENSE_1_0.txt.
This product includes software copyright (c) 1997-2007 University of Cambridge. Permissions and
limitations regarding this software are subject to terms available at http:// www.pcre.org/license.txt.
This product includes software copyright (c) 2007 The Eclipse Foundation. All Rights Reserved.
Permissions and limitations regarding this software are subject to terms available at http://
www.eclipse.org/org/documents/epl-v10.php.
This product includes software licensed under the terms at
http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License,
http://www.stlport.org/doc/ license.html, http:// asm.ow2.org/license.html,
http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html,
http://httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt ,
http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/release/license.html,
http://www.libssh2.org, http://slf4j.org/license.html,
http://www.sente.ch/software/OpenSourceLicense.html,
http://fusesource.com/downloads/license-agreements/fuse-message-broker-v-5-3- license-agreement;
http://antlr.org/license.html; http://aopalliance.sourceforge.net/;
http://www.bouncycastle.org/licence.html; http://www.jgraph.com/jgraphdownload.html;
http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; .
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231;
http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html;

2

Ultra Messaging JMS Guide

http://www.json.org/license.html; http://forge.ow2.org/projects/javaservice/,
http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html,
http://www.tcl.tk/software/tcltk/license.html, http://www.jaxen.org/faq.html,
http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html;
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/License;
http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html;
http://www.edankert.com/bounce/index.html; http://www.net-snmp.org/about/license.html;
http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; and
http://benalman.com/about/license/;
https://github.com/CreateJS/EaselJS/blob/master/src/easeljs/display/Bitmap.js;
http://www.h2database.com/html/license.html#summary; and http://jsoncpp.sourceforge.net/LICENSE.
This product includes software licensed under the Academic Free License
http://www.opensource.org/licenses/afl-3.0.php), the Common Development and Distribution License
(http://www.opensource.org/licenses/cddl1.php) the Common Public License
(http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary Code License Agreement
Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php)
the MIT License (http://www.opensource.org/licenses/mit-license.php) and the Artistic License
(http://www.opensource.org/licenses/artistic-license-1.0).
This product includes software copyright (c) 2003-2006 Joe WaInes, 2006-2007 XStream Committers.
All rights reserved. Permissions and limitations regarding this software are subject to terms available
at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana
University Extreme! Lab. For further information please visit http://www.extreme.indiana.edu/.
This Software is protected by U.S. Patent Numbers 5,794,246; 6,014,670; 6,016,501; 6,029,178;
6,032,158; 6,035,307; 6,044,374; 6,092,086; 6,208,990; 6,339,775; 6,640,226; 6,789,096; 6,820,077;
6,823,373; 6,850,947; 6,895,471; 7,117,215; 7,162,643; 7,243,110, 7,254,590; 7,281,001; 7,421,458;
7,496,588; 7,523,121; 7,584,422; 7676516; 7,720,842; 7,721,270; and 7,774,791, international Patents and
other Patents Pending.
DISCLAIMER: Informatica Corporation provides this documentation "as is" without warranty of any
kind, either express or implied, including, but not limited to, the implied warranties of noninfringement,
merchantability, or use for a particular purpose. Informatica Corporation does not warrant that this
software or documentation is error free. The information provided in this software or documentation
may include technical inaccuracies or typographical errors. The information in this software and
documentation is subject to change at any time without notice.
NOTICES
This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from
DataDirect Technologies, an operating company of Progress Software Corporation ("DataDirect")
which are subject to the following terms and conditions:
1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER
CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL OR OTHER
DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF
THE POSSIBILITIES OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF
ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH OF WARRANTY,
NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

3

Ultra Messaging JMS Guide

Table of Contents
1. Introduction...4
2. Ultra Messaging JMS Overview ..5
3. Life Cycle of an Ultra Messaging JMS Application ..15
4. JNDI Administered Objects...18
5. Ultra Messaging JMS Configuration ..18
6. Asynchronous Message Delivery ...25
7. Message Selectors..26
8. Session IDs ...28
9. Request/Reply Sample Applications ...29

1. Introduction
The Ultra Messaging® JMS API lets you develop or port Java messaging applications written per the JMS (Java
Message Servicea) specification and still utilize much of the flexibility and performance benefits of Ultra
Messaging. Ultra Messaging JMS is included with the Ultra Messaging UMQ edition.

This document describes how Ultra Messaging JMS integrates JMS applications with Ultra Messaging, and requires
that you have a background in JMS and Ultra Messaging concepts. Please refer to the following:

• Ultra Messaging Concepts (../Design/index.html)

• Java Message Service (JMS) API Specification, version 1.0.2b
(http://download.oracle.com/otn-pub/jcp/7543-jms-1.0.2b-spec-oth-JSpec/jms-1_0_2b-spec.pdf)

• Java Message Service (JMS) API Specification, version 1.1
(http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf)

• Java Message Service Tutorial (http://download.oracle.com/javaee/1.3/jms/tutorial/)

The following specific issues regarding JMS compliance are not fully supported in the 5.3.6 (or earlier) release of
Ultra Messaging JMS.

• The recover() method (for session recovery) is not implemented.

• Though Ultra Messaging JMS with UMQ uses a push model, not a pull model, for delivering messages from a
queue to a receiver, Ultra Messaging JMS is designed to emulate the pull model. This behavior is transparent in
most, but not all, applications.

• Current UM message property names do not follow the requirement for provider-supplied property naming.

• The TopicSubscriber NoLocal attribute is not implemented.

• JMSMessageID is not passed over the wire from sender to receiver. This is replaced with a UM JMSMessageID

and it does not occur as a message property in the message itself. This impacts applications that rely upon this
message property to select or process a message.

4

Ultra Messaging JMS Guide

The following UM features are currently not fully supported in the 5.3.6 (or earlier) release of Ultra Messaging JMS.
For information on UM feature support, see Interoperability.

• Using wildcard and non-wildcard receivers simultaneously

• Ultra Messaging JMS across the UM Gateway

• UMQ Ultra Load Balancing

Informatica is aware of the following issues:

• You cannot have duplicate (same topic) subscribers on the same connection (or queue session ID).

• You cannot unsubscribe durable subscribers (Unsubscribe() API) during receiver creation.

• Advisory messages such as beginning or end of transport are not implemented.

• Fault tolerance for process-level transaction handling

• Zero length messages between Ultra Messaging JMS and Ultra Messaging Desktop Services

• Ultra Messaging JMS JAR installation not compatible with Microsoft® Windows® due to a new dependency on
libeay32.dll. As a workaround, set use_native_loader=false and load the dependencies from the PATH.

• UM native clients interoperating with JMS clients require significant effort to decode MapMessages.

• Transactions are not resilient to application or messaging component failures that occur during a transaction.

• Durable topic subscribers may receive duplicate messages when publishers go down, due to UMP Proxy Source
behavior.

• Publishers cannot send to a queue and a topic with the same name using the same JMS connection.

• Messages are not ordered across publishers on the same topic (not required per spec, but often expected).

2. Ultra Messaging JMS Overview
This section discusses the following topics.

• The JMS Specification

• Publish/Subscribe Model

• Point-To-Point Model

• Quality of Service

• JMS Messages

• JMS Implementation

• Ultra Messaging JMS Programming Architecture

• Interoperability

• Unsupported JMS Specifications

5

Ultra Messaging JMS Guide

2.1. The JMS Specification
The Oracle JMS Specification 1.0.2b
(http://download.oracle.com/otn-pub/jcp/7543-jms-1.0.2b-spec-oth-JSpec/jms-1_0_2b-spec.pdf) provides
requirements and guidelines for developing JMS-based Java messaging applications. The specification provides for
two models: Publish/Subscribe, and Point-To-Point. Both models are supported by Ultra Messaging JMS.

Ultra Messaging JMS also supports Oracle JMS Specification 1.1
(http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf), which unifies the
class hierarchies of the Point-To-Point and Pub/Sub domains, but is fully backward compatible.

2.2. Publish/Subscribe Model
With the JMS publish/subscribe model, a JMS user (or client) publishes messages to a topic. Other clients then
subscribe to the topic and are thus able to receive the published messages. The JMS model supports the concept of
topic being an unadministered object (defined simply by its name), which directly correlates to the Ultra Messaging
model. You can configure Ultra Messaging JMS to use either the streaming or persistence features.

Figure 1. JMS Publish/Subscribe

Note: The maximum topic length is 246 bytes.

2.3. Point-To-Point Model
The Point-To-Point model differs from the Publish/Subscribe model mainly in that it employs a message queue and
that the sending and receiving clients are aware of each other. Receiving clients extract messages from the queue and
notifies it that the messages have been consumed. The queue retains messages until they are consumed or time out.
Ultra Messaging JMS employs UM’s queue provided by UMQ.

Figure 2. JMS Point To Point

6

Ultra Messaging JMS Guide

Note: Ultra Messaging JMS supports a pull-based (or polling-based) implementation of this model, where the
receiving application requests messages from the queue (as opposed to the queue automatically pushing
messages). However, the underlying queue, as provided by UMQ, uses a push model.

2.4. JMS Messages
The JMS message generally consists of a header and body (data payload). You can set a JMS body type
programatically and optionally identify the body type in a header field. JMS Messages can be of the types shown
below. (Numeric values are used in the UM message property LBMMessageType.)

• TextMessage (0)

• BytesMessage (1)

• MapMessage (2)

• Message (3) (this message type has no body)

• ObjectMessage (4)

• StreamMessage (5)

2.4.1. Message Components

When a JMS message passes through UM layers, its message properties are preserved as UM message properties
(../Design/lbm-objects.html#MESSAGEPROPERTIESOBJECT). Also, header fields are translated into additional
message properties.

Figure 3. Message Structure

A JMS message header consists of the following fields. In the UM layers, their information becomes UM message
properties. Note that there is not always a one-to-one correlation between UM message properties and JMS
properties/header fields.

7

Ultra Messaging JMS Guide

• JMSDestination

• JMSDeliveryMode

• JMSMessageID

• JMSTimestamp

• JMSCorrelationID

• JMSReplyTo

• JMSRedelivered

• JMSType

• JMSExpiration

• JMSPriority

2.4.2. Message Properties

Message properties are defined by unique names and can be assigned values. UM supports all JMS message
properties, which come in three categories.

JMS defined properties - The JMS Specification
(http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf) defines these
properties (with prefix "JMSX") and reserves the use of their names.

Provider-specific properties - These are properties defined and reserved for UM, and include:

• LBMMessageType (JMS message body types)

• JMSTopicType (string, UMS/UMP/UMQ)

• JMSReplyToName (string, topic name)

• JMSReplyToWildcard (boolean)

• JMSReplyToType (string, UMS/UMP/UMQ)

User properties - These are properties that you defined for your applications. A typical use for these is as Message
Selectors.

2.5. JMS Implementation
The Ultra Messaging JMS API serves as a wrapper, allowing JMS clients access to UM functionality. This section
describes in more detail the relationship between the Ultra Messaging JMS and UM layers.

2.5.1. JMS Architecture

The following diagram shows how Ultra Messaging JMS relates to the UM core middleware. When creating
connections and sessions, you typically use JNDI (Java Naming and Directory Interface) to look up administered
objects in Ultra Messaging Manager (UMM).

8

Ultra Messaging JMS Guide

Figure 4. Ultra Messaging JMS Architecture

The store (UMP) can be used with Publish/Subscribe applications, and the UMQ queue is needed for use with
Point-To-Point applications.

2.5.2. JMS-To-UM Object Mapping

From the JMS API layer to the Java API layer, there is a functional mapping of objects, as shown in the following
diagram.

Figure 5. JMS-To-UM Mapping

ConnectionFactory - One of the two objects that are administered (the other being Destination). A client uses the
ConnectionFactory to create a connection with a provider.

Connection - A connection to the provider can be either a queue connection or a topic connection, and creates
session objects.

9

Ultra Messaging JMS Guide

Session - The session is the factory for producing producers and consumers. The ConnectionFactory, Connection,
and Session combine to functionally map to a UM context, though you can reuse a context for multiple
ConnectionFactories/connections.

Producer - The producer maps directly to a UM source.

Consumer - The consumer maps directly to a UM receiver. The JMS concept of a durable consumer and persistent
delivery employ UMP receivers and UMP persistent stores.

Destination - A client uses a destination to specify the target of messages it produces and/or the source of messages
it consumes.

Message - The JMS and UM message are variations on each other, with the primary difference being that JMS
message header fields are message properties in the UM message.

2.6. Ultra Messaging JMS Programming Architecture
The general JMS programming model is shown in the following figure. Life Cycle of an Ultra Messaging JMS
Application offers details for developing producer and consumer applications.

Figure 6. JMS Programming Model

2.7. Quality of Service
Ultra Messaging JMS uses UMP and UMQ to provide the desired QoS based on the type of destination configured
in JMSConfig.xml.

MessageProducer

• Persistent - The send method, if using a Destination configured as a UMP-type destination, blocks until the
producer receives a Stability Acknowledgement.

• Non-Persistent - The send method does not block if using a Destination configured as a UMS or UMQ type.

MessageConsumer

10

Ultra Messaging JMS Guide

• Consumer - Only receives messages while the application is active.

• Durable Consumer - Receives all messages for the topic if the MessageConsumer was created with a UMP type
destination, including messages sent while the durable consumer application was not running.

2.8. Interoperability
In general, it is possible for JMS producers to send messages to UM receivers, or UM sources to send to JMS
consumers. This is typically successful with default settings and message body types of TextMessage or
BytesMessage. Such interoperability scenarios are also possible with non-default JMS or UM settings if you
carefully select and test compatible configurations.

A JMS application can communicate with a UM application on a limited basis, with the proper attention paid to
mapping with JMS headers and message properties. A UM application can receive and process the data of a JMS
message the same way as when it receives standard UM messages.

2.8.1. Native Source

For a UM application sending to a JMS application, we recommend you send message data in byte or text format to
avoid the risk of unrecognized data formatting. At the JMS application, set the DEFAULT_MESSAGE_TYPE attribute
in FactoryAttributes to match this format. If you need to use more than one message type, at the UM source use the
LBMMessageType property to manage this on a per-message basis.

2.8.2. Native Receiver

Native receiver applications can receive messages from a JMS producer. These messages contain all JMS message
properties and JMS header information within their own UM message properties objects.

2.8.3. Request/Reply Example

The JMS Request/Reply feature employs the JMSReplyTo and JMSCorrelationID header fields to ensure that the
correct receiver/consumer receives a reply and knows which request it pertains to. Consider the Request/Reply case
where a native application issues a request to a JMS client (see the figure below).

Figure 7. Interoperation Example

11

Ultra Messaging JMS Guide

In this scenario, the UM application sends a request that the JMS client receives, and the JMS application responds
by sending a reply. The following sequence of events provides more detail about this scenario. Note that code
excerpts are from a C-sharp UM application and a Java JMS application, and example classes may not be part of any
UM API.

1. The UM application creates a source, which sends a message on topic AAA. The application has set several
message properties to identify the topic type, message type, who to reply to, and a unique message identifier.

LBMSourceSendExInfo exinfo = new LBMSourceSendExInfo();

/* We want JMS to reply via the JMSReplyTo */
LBMMessageProperties props = new LBMMessageProperties();
props.set("JMSReplyToName", replyTopicString);
props.set("JMSReplyToWildcard", false);
props.set("JMSReplyToType", "LBM");
props.set("JMSTopicType", "topic");
props.set("LBMMessageType", 0); // Indicates to JMS that the message payload will be a text message
exinfo.setMessageProperties(props);
exinfo.setFlags(LBM.SRC_SEND_EX_FLAG_PROPERTIES);

/* Added sequence number info flag to print out the expected JMSCorrelationID */
exinfo.setFlags(exinfo.flags() | LBM.SRC_SEND_EX_FLAG_SEQUENCE_NUMBER_INFO | LBM.SRC_SEND_EX_FLAG_UMQ_MESSAGE_ID_INFO);

src.send(message, msglen, block ? 0 : LBM.SRC_NONBLOCK, exinfo);

2. The UM application also creates a receiver for the anticipated reply.

private static string replyTopicString = "REPLY_" + Guid.NewGuid().ToString();

The key here is that the source sends replyTopicString as a message property to provide a "return address".
The application then creates a receiver that listens on this topic for the reply.

SampleJMSRequestReceiver rcv = new SampleJMSRequestReceiver(verbose);
LBMReceiverAttributes rattr = new LBMReceiverAttributes();
LBMTopic replyTopic = ctx.lookupTopic(replyTopicString, rattr);

LBMReceiver lbmrcv = new LBMReceiver(ctx, replyTopic, rcv.onReceive, null);

3. The network passes the message to the JMS application, which converts message properties to JMS header field
values and JMS properties, and confirms message type.

4. The JMS application has a consumer that is listening on AAA. It receives the message.

5. Using the JMS header fields, the JMS application’s producer sends its reply message to the receiver, getting its
reply destination extracted from the JMSReplyTo field. The native application’s UM receiver already listening
on this topic then receives the reply.

public void onMessage(Message message) {
try {

TextMessage requestMessage = (TextMessage) message;
String contents = requestMessage.getText();
System.out.println("Got Message: " + contents);
// get the reply to destination

12

Ultra Messaging JMS Guide

Destination replyDestination = requestMessage.getJMSReplyTo();

TextMessage replyMessage = session.createTextMessage();
contents = "Re:" + contents;
replyMessage.setText(contents);

replyMessage.setJMSCorrelationID(requestMessage.getJMSMessageID());
System.out.println("Sending reply of: " + contents);

replyProducer.send(replyDestination, replyMessage);
} catch (Exception e) {

System.err.println("Exception occurred: " + e.getMessage());
System.exit(-1);

}
}

6. The network again passes the reply message to the UM application, which converts JMS header field values and
JMS properties to UM message properties usable by the receiver. The UM application uses the
JMSCorrelationID to match the reply to its original request.

This example conveniently illustrates both native source and native receiver scenarios. Note that the key to successful
interoperation is the correct exchange of information between UM message properties and JMS headers/properties.

2.8.4. Native Application Notes

When a native source or receiver accesses message property JMSDeliveryMode, the property must be an integer
type, with a value of 1 (NON_PERSISTENT) or 2 (PERSISTENT). For example (in C language):

int delivery_mode = 1;
lbm_msg_properties_set(properties, "JMSDeliveryMode", &delivery_mode, LBM_MSG_PROPERTY_INT,
sizeof(int));

2.8.5. Compatibility With Other UM Features

Please note that while most UM features are compatible with Ultra Messaging JMS, some are not. Following is a
table of features and their compatibilities with Ultra Messaging JMS.

UM Feature UM JMS Notes
Acceleration - DBL No

Acceleration - UD No

Hot Failover (HF) No

Hot Failover Across Contexts (HFX) No

Late Join Yes

Message Batching Yes

Monitoring/Statistics Yes

Multicast Immediate Messaging (MIM) No

13

Ultra Messaging JMS Guide

UM Feature UM JMS Notes
Multi-Transport Threads No

Off-Transport Recovery (OTR) Yes

Ordered Delivery Yes

Pre-Defined Messaging (PDM) Yes Must use BytesMessage

Request/Response No

Self-Describing Messaging (SDM) Yes Must use BytesMessage

Source Side Filtering No

Transport LBT-IPC Yes

Transport LBT-RDMA Yes

Transport LBT-RM Yes

Transport LBT-RU Yes

Transport TCP Yes

Transport TCP-LB Yes

UM Gateway No

UM Spectrum No

Wildcard Receivers Yes Cannot use wildcard and
non-wildcard receivers
simultaneously

Zero Object Delivery (ZOD) No

UMP Implicit/Explicit Acknowledgements Yes

UMP Persistent Store Yes

UMP Proxy Sources Yes

UMP Quorum Consensus Yes

UMP Receiver-Paced Persistence (RPP) Yes

UMP Registration ID/Session Management Yes

UMP Round Robin Yes Not recommended

UMP Store Failover Yes Via umestored configuration

UMQ Application Sets Yes

UMQ Parallel Queue Dissemination (PQD) Yes

UMQ Queue Browser Yes

UMQ Queue Failover Yes Via umestored configuration

UMQ Queue Redundancy Yes Via umestored configuration

UMQ Registration ID/Session Management Yes

UMQ Serial Queue Dissemination (SQD) Yes

UMQ Source Dissemination (SD) Yes

UMQ Ultra Load Balancing (ULB) No Not inhibited

Ultra Messaging Desktop Services (UMDS) No

Ultra Messaging Manager (UMM) Yes

UM SNMP Agent Yes

14

Ultra Messaging JMS Guide

UM Feature UM JMS Notes
UMCache No

2.9. Unsupported JMS Specifications
The Ultra Messaging JMS does not currently support the following JMS specifications.

• Message prioritization

• JMS Application Server Facilities

• synchronous message consumption/delivery (partial support; see Point-To-Point Model)

• recover() method (for session recovery)

• pull model for delivering messages from a queue to a receiver

• provider-supplied property naming requirement

• TopicSubscriber NoLocal attribute

• JMSMessageID passed over the wire from sender to receiver

3. Life Cycle of an Ultra Messaging JMS Application
Using the Ultra Messaging JMS API, you can write end-to-end messaging applications with the programming model
shown in Ultra Messaging JMS Programming Architecture. This section discusses the following topics.

• Producer Application

• Consumer Application

3.1. Producer Application
Producer applications take the following actions.

1. Look-up ConnectionFactory. The Ultra Messaging JMS implementation supports JNDI lookup of a
ConnectionFactory.

2. Create a physical connection. The ConnectionFactory creates the Connection.

3. Create logical session(s) of a Connection. Sessions are light-weight connections that can multiplex over a
single physical Connection. Sessions provide the following.

a. Concurrent use of the physical Connection across multiple threads (one session per thread) and thus are
resource efficient.

b. Delineation of work between multiple producers.

c. A factory of producers.

15

Ultra Messaging JMS Guide

4. Create a Destination. You can create the destination programmatically or via JNDI lookup. The destination
consists of a Topic or Queue name.

5. Create a producer of a session and provide the destination.

6. Create Messages. For each Message, set the business data and set the associated routing properties.

7. Send Messages to the Destination address using the producer.

8. Close Objects by destroying the Message, Destination(s), producer, session(s), and Connection.

The following simple JMS producer example application demonstrates how to program the above actions.

// Obtain a ConnectionFactory via lookup or direct instantiation
ConnectionFactory factory = (ConnectionFactory)jndiContext.lookup("uJMSConnectionFactory");

// Create a connection - assuming no username/password required for UM
Connection connection = factory.createConnection();

// Create a session
Session session = connection.createSession(false, javax.jms.Session.AUTO_ACKNOWLEDGE);

// Create a topic destination
Destination destination = session.createTopic("TOPIC.1");

// Create a producer
MessageProducer msgProducer = session.createProducer(null);

// create a bytes message
BytesMessage msg = session.createBytesMessage();

byte[] buffer = {1,2,3,4,5};

msg.writeBytes(buffer);

// Publish the message
msgProducer.send(destination, msg);

// close the connection
connection.close();

3.2. Consumer Application
Consumer applications normally take the following actions.

1. Look up ConnectionFactory. The Ultra Messaging JMS implementation supports JNDI lookup of a
ConnectionFactory.

2. Create a physical connection. The ConnectionFactory creates the Connection.

16

Ultra Messaging JMS Guide

3. Create logical session(s) of a Connection. Sessions are light-weight connections that can multiplex over a
single physical Connection. Sessions provide the following.

a. Concurrent use of the physical Connection across multiple threads (one session per thread) and thus are
resource efficient

b. Delineation of work between multiple consumers.

c. A factory of consumers.

4. Create a Destination. You can create the destination, which consists of a Topic/Queue name,
programmatically or via JNDI/UMM lookup. The UMM repository contains a Wildcard designation for a
Destination.

5. Create a consumer of a session, providing the Destination created. If the messages are read asynchronously,
register the listener call-back function and exception with the consumer.

6. Read Messages from the Destination Address. For each destination address (absolute or wildcard), the read
could be synchronous, the consumer could register a listener call-back function to asynchronously receive
messages, or the consumer could also register a listener call-back exception function to asynchronously receive
exceptions, business or technical.

7. Process messages to access data and properties.

8. Close Objects by destroying Message; Destination(s), consumer, session(s), Connection.

The following simple JMS consumer example application demonstrates how to program the above actions.

// Obtain a ConnectionFactory via lookup or direct instantiation
ConnectionFactory factory = (ConnectionFactory)jndiContext.lookup("uJMSConnectionFactory");

// Create a connection - assuming no username/password required for UM
Connection connection = factory.createConnection();

// Create a session
Session session = connection.createSession(false, javax.jms.Session.AUTO_ACKNOWLEDGE);

// Create a topic destination
Destination destination = session.createTopic("TOPIC.1");

// create the consumer
MessageConsumer msgConsumer = session.createConsumer(destination);

// start the connection
connection.start();

// read messages
while(true)
{
// receive the message
msg = msgConsumer.receive();
if (msg == null)
break;

}

17

Ultra Messaging JMS Guide

// close the connection
connection.close();

4. JNDI Administered Objects
JMS administered objects encapsulate specific behavior so you can write producer and consumer applications
without the use of specific constructions. Your applications can use JNDI to look up LBMConnectionFactory and
Destination objects. The LBMConnectionFactory encapsulates all of the UM configuration properties for the
selected JNDI object and also creates and initializes the UM Context.

4.1. Look Up Administered Objects Using JNDI
The code below shows the typical steps to create an initial context and look up a ConnectionFactory and a
Destination using JNDI. The JNDI repository used depends on the values used for providerContextFactory
and providerUrl and would typically need to specify a userName and password.

// Import of Sun’s JMS interface
import javax.jms.*;

// Imports for JNDI
import javax.naming.*;
import javax.naming.directory.*;

// Create the Context
InitialContext jndiContext = new InitialContext();
// Lookup the objects
ConnectionFactory cf = (ConnectionFactory)jndiContext.lookup("uJMSConnectionFactory");
Destination d = (Destination)jndiContext.lookup("TOPIC1");

5. Ultra Messaging JMS Configuration
You configure options/attributes for Ultra Messaging JMS object creation in one of three general ways:

• Using a UM configuration XML file

• Using UMM

• Using a JMSConfig file

This section discusses the following topics:

• jndi.properties

• Configuring Ultra Messaging JMS with a UM XML File

18

Ultra Messaging JMS Guide

• Configuring Ultra Messaging JMS with Ultra Messaging Manager

• Configuring Ultra Messaging JMS with a JMSConfig XML File

5.1. jndi.properties
The /jmsclient/bin/jndi.properties governs from where your JMS applications receive their configuration
data. Regardless of which of the three configuration methods you decide to use, you must edit or ensure that this file
matches the selected method. The jndi.properties, in its default form, appears below. Note that the file specifies
the third configuration method (JMSConfig XML file).

Use the LBM XML based context factory
#java.naming.factory.initial = com.latencybusters.jms.LBMXmlContextFactory
where the xml config file is one of
#java.naming.provider.url = classpath:umjms.xml
#java.naming.provider.url = file:C:/umjms.xml
#java.naming.provider.url = file:/home/user1/umjms.xml

Use the UMM based context factory
#java.naming.factory.initial = com.latencybusters.jms.UMMContextFactory
where the ummd is running at the following url
#java.naming.provider.url = localhost:15701
#java.naming.security.principal = JMSUser
#java.naming.security.credentials = JMSUser

Use Sun’s RefFSContextFactory (with .bindings file)
java.naming.factory.initial = com.sun.jndi.fscontext.RefFSContextFactory
where the .bindings file is
java.naming.provider.url = file:.

The next three sections describe how to edit the appropriate sections of this file.

5.2. Configuring Ultra Messaging JMS with a UM XML File
You can create an XML configuration file using an XML editor or by using the UMM GUI. See Using the UMM
GUI (../UMM/umm-gui.html) for details. With this method, the UMM Daemon doesn’t have to be running when
your Ultra Messaging JMS applications start.

To use this configuration method, edit the jndi.properties file as follows:

1. Make sure that all lines in the second and third section are commented out.

2. Un-comment the line, java.naming.factory.initial =

com.latencybusters.jms.LBMXmlContextFactory

3. Un-comment one of the java.naming.provider.url lines and supply the path and filename of your XML
configuration file. See also Configuring Ultra Messaging JMS with Ultra Messaging Manager.

4. Save the jndi.properties file.

The UM XML configuration file has the following high-level structure.

19

Ultra Messaging JMS Guide

<?xml version="1.0" encoding="UTF-8"?>
<um-configuration version="1.0">

<applications>
<application name="uJMS">

<contexts>
<context name="uJMSConnectionFactory" template="">

<sources/>
<receivers/>
<wildcard-receivers/>
<options type="context">

</context>
<context name="uJMSConnectionFactory-UMS">

<sources/>
<receivers/>
<wildcard-receivers/>

</context>
<context name="uJMSConnectionFactory-UMP">

<sources/>
<receivers/>
<wildcard-receivers/>

</context>
<context name="uJMSConnectionFactory-UMQ">

<sources/>
<receivers/>
<wildcard-receivers/>

</context>
</contexts>

<event-queues>
<event-queue/>

</event-queues>

<application-data>
<ConnectionFactory name="uJMSConnectionFactory">

<options type="ConnectionFactory">
</options>

</ConnectionFactory>
<Destination name="TempQueue">

<options type="Destination">
</options>

</Destination>
</application-data>

</application>
</applications>
</um-configuration>

Essentially, the structure has two parts. The first part contains the contexts that allow you to specify traditional UM
configuration option values. The second part, <application-data>, allows you to specify JMS options to
factories and destinations. The following details some of the major sections of the above high-level structure.

20

Ultra Messaging JMS Guide

• <context name="uJMSConnectionFactory" template=""> - Accepts general UM configuration option
values for the contexts, sources, and receivers used by your applications.

• <context name="uJMSConnectionFactory-UMS"> - Accepts option values specific to any Streaming
activities of your applications.

• <context name="uJMSConnectionFactory-UMP"> - Accepts option values specific to Persistent activities,
such as store configuration options.

• <context name="uJMSConnectionFactory-UMQ"> - Accepts option values specific to Queueing activities,
such as queue configuration options.

• <ConnectionFactory name="uJMSConnectionFactory"> - Accepts JMS Factory option values such as
default_message_type or default_topic_type.

• <Destination name="TempQueue"> - Accepts JMS destination option values such as type or dest_type .

To see a more complete XML file, see /jmsclient/config/umjms.xml. Unlike the high-level structure above,
this file contains relevant option values. You can also review the same information in the UMM GUI. The XML file
you create must adhere to the high-level structure presented above.

5.3. Configuring Ultra Messaging JMS with Ultra Messaging Manager
You can use the UMM GUI to create configurations for your JMS applications. With this method, the UMM
Daemon must be running to provide server configuration and license information to your JMS applications when
they start. To use this method, edit the jndi.properties file as follows:

1. Make sure that all lines in the first and third section are commented out.

2. Un-comment the line, java.naming.factory.initial =

com.latencybusters.jms.UMMContextFactory

3. Un-comment java.naming.provider.url and substitute an IP address and port number for
localhost:15701 to specify where the UMM Daemon runs. You can add a comma-separated list of daemons.

4. Save the jndi.properties file.

5.4. Configuring Ultra Messaging JMS with a JMSConfig XML File

Note: This is a legacy feature and no longer recommended.

With this method, you use the /jmsclient/bin/config.bat or /jmsclient/bin/config.sh script to create a
.bindings file from your config.xml. To use this method, edit the jndi.properties file as follows:

1. Make sure that all lines in the first and second section are commented out.

2. Un-comment the line, java.naming.factory.initial =

com.sun.jndi.fscontext.RefFSContextFactory

21

Ultra Messaging JMS Guide

3. Un-comment java.naming.provider.url = file:..

4. Save the jndi.properties file.

The JMSConfig.xml file allows you to assign UM configuration values to the Ultra Messaging JMS
ConnectionFactory and specify message topics as destinations. You can create a JMSConfig format XML
configuration file using an XML editor or text editor. See /jmsclient/config/config.xml for an example of a
JMSConfig file. This is the configuration file for the UM JMS examples described in Ultra Messaging JMS Quick
Start (../QuickStart/jms-binary-quick-start.html).

The configuration file has the following high-level structure.

<JMSConfig>
<ConnectionFactories>
<ConnectionFactory>
<FactoryAttributes>
<Attribute/>

</FactoryAttributes>
<ContextAttributes>
<Attribute "UM configuration options, scope=context" />

</ContextAttributes>
<SourcetAttributes>
<Attribute "UM configuration options, scope=source" />

</SourcetAttributes>
<ReceiverAttributes>
<Attribute "UM configuration options, scope=receiver" />

</ReceiverAttributes>
<WildcardRceiverAttributes>
<Attribute "UM configuration options, scope=wildcard-receiver" />

</WildcardReceiverAttributes>
</ConnectionFactory>

</ConnectionFactories>
<Destinations>
<Destination>
<DestinationAttributes>
<Attribute/>

</DestinationAttributes>
<ReceiverAttributes>
<Attribute/>

</RecieverAttributes>
</Destination>

</Destinations>
</JMSConfig>

This section discusses the following topics.

• ConnectionFactory Attributes

• Destination Attributes

22

Ultra Messaging JMS Guide

5.4.1. ConnectionFactory Attributes

You can configure as many ConnectionFactories as needed. The ConnectionFactory element contains the following
sets of attributes.

• FactoryAttributes

• ContextAttributes

• SourceAttributes

• ReceiverAttibutes

5.4.1.1. FactoryAttributes

See Ultra Messaging JMS Options (../Config/ultramessagingjmsoptions.html) for ConnectionFactory options.

The following is an example ConnectionFactory configuration that uses all the default values.

<ConnectionFactories>
<ConnectionFactory>
<FactoryAttributes>
<Attribute name="CLIENT_ID" value="UME1"/>
<Attribute name="DEBUG" value="false"/>
<Attribute name="DEFAULT_TOPIC_TYPE" value="UME"/>
<Attribute name="DEFAULT_TEMP_TOPIC_TYPE" value="LBM"/>
<Attribute name="USE_APP_HEADER" value="true"/>
<Attribute name="DEFAULT_MESSAGE_TYPE" value="TextMessage"/>

</FactoryAttributes>
</ConnectionFactory>

</ConnectionFactories>

Note: The following message methods will not work if set USE_APP_HEADER to false. (<Attribute
name="USE_APP_HEADER" value="false"/>).

• getJMSCorrelationID/setJMSCorrelationID

• getJMSDeliveryMode/setJMSDeliveryMode

• getJMSDestination/setJMSDestination

• getJMSExpiration/setJMSExpiration

• getJMSMessageID/setJMSMessageID

• getJMSPriority/setJMSPriority

5.4.1.2. ContextAttributes

A ConnectionFactory’s Context Attributes consist of any UM Configuration Options with the scope of Context. See
the Ultra Messaging Configuration Guide (../Config/index.html) for all configuration options. The following are
examples of ContextAttributes.

23

Ultra Messaging JMS Guide

<ContextAttributes>
<Attribute name="operational_mode" value="sequential"/>
<Attribute name="resolver_multicast_ttl" value="16"/>
<Attribute name="resolver_multicast_address" value="225.72.39.173"/>
<Attribute name="mim_address" value="225.72.39.174"/>
<Attribute name="transport_lbtrm_multicast_address_low" value="225.73.39.200"/>
<Attribute name="transport_lbtrm_multicast_address_high" value="225.73.39.210"/>
<Attribute name="request_tcp_port_low" value="16000"/>
<Attribute name="request_tcp_port_high" value="16010"/>
<Attribute name="transport_lbtrm_source_port_low" value="15000"/>
<Attribute name="transport_lbtrm_source_port_high" value="15500"/>
<Attribute name="transport_tcp_maximum_ports" value="20"/>
<Attribute name="transport_tcp_port_low" value="16500"/>
<Attribute name="transport_tcp_port_high" value="16600"/>
<Attribute name="resolver_unicast_port_high" value="45000"/>
<Attribute name="transport_lbtrm_data_rate_limit" value="500000000"/>
<Attribute name="transport_lbtrm_retransmit_rate_limit" value="1000000"/>
<Attribute name="transport_lbtrm_receiver_socket_buffer" value="8000000"/>
<Attribute name="request_tcp_reuseaddr" value="1"/>

</ContextAttributes>

5.4.1.3. SourceAttributes

A ConnectionFactory’s Source Attributes consist of any UM Configuration Options with the scope of Source. See
the Ultra Messaging Configuration Guide (../Config/index.html) for all configuration options. The following are
examples of SourceAttributes.

<SourceAttributes>
<Attribute name="transport" value="lbtrm"/>
<Attribute name="late_join" value="1"/>
<Attribute name="ume_store_name" value="JMSStore1"/>
<Attribute name="ume_store_name" value="JMSStore2"/>
<Attribute name="ume_store_name" value="JMSStore3"/>
<Attribute name="ume_store_behavior" value="qc"/>
<Attribute name="ume_proxy_source" value="1"/>
<Attribute name="umq_queue_name" value="JMSQueue"/>
<Attribute name="implicit_batching_minimum_length" value="1"/>

</SourceAttributes>

Note: You can define and add stores to a source’s store list by using either the ume_store or ume_store_name
attribute. We suggest the latter (which uses a name instead of an IP/port address), as this facilitates JMS
deployment to different machines and/or the UM Gateway.

24

Ultra Messaging JMS Guide

5.4.1.4. ReceiverAttibutes

A ConnectionFactory’s Receiver Attributes consist of any UM Configuration Options with the scope of Receiver.
See the Ultra Messaging Configuration Guide (../Config/index.html) for all configuration options. The following are
examples of Receiver Attributes.

<ReceiverAttributes>
<Attribute name="umq_receiver_type_id" value="100"/>

</ReceiverAttributes>

5.4.2. Destination Attributes

Destinations correspond to Ultra Messaging topics. See Ultra Messaging JMS Options
(../Config/ultramessagingjmsoptions.html) for destinations options.

The following is an example destination configuration.

<Destination name="ReplyTopic" type="Topic">
<DestinationAttributes>

<Attribute name="REGID" value="4400"/>
<Attribute name="WILDCARD" value="false"/>
<Attribute name="TYPE" value="LBM"/>

</DestinationAttributes>
</Destination>

6. Asynchronous Message Delivery
You can program asynchronous message delivery using the MessageListener class. The application registers a
callback handler to receive messages asynchronously.

// Obtain a ConnectionFactory via lookup or direct instantiation
ConnectionFactory factory = (ConnectionFactory)jndiContext.lookup("uJMSConnectionFactory");

// Create a connection - assuming no username/password required for UM
Connection connection = factory.createConnection();

// Create a Session
Session session = connection.createSession(false, javax.jms.Session.AUTO_ACKNOWLEDGE);

// set the exception listener callback
connection.setExceptionListener(this);

// Create a topic destination
Destination destination = session.createTopic("TOPIC.1");

25

Ultra Messaging JMS Guide

// create the consumer
MessageConsumer msgConsumer = session.createConsumer(destination);

// set the message listener callback
msgConsumer.setMessageListener(this);

// start the connection
connection.start();

// The exception listener
public void onException(JMSException e)
{
// print the connection exception status
System.err.println("Exception occurred: "+ e.getMessage());

}

// The message listener callback
public void onMessage(Message msg)
{
try
{
System.err.println("Received message: " + msg);
}
catch(Exception e)
{
System.err.println("Exception occurred: "+ e.getMessage());
System.exit(-1);

}
}

7. Message Selectors
This section discusses the following topics.

• Publish/Subscribe

• Point-To-Point

• Native Applications

Message Selection provides a way to filter messages at the consumer side utilizing message properties. A message
selector is an SQL92-compliant expression that guides a consumer to reject the message if it is not a match.

At the time of consumer creation, an application passes the message selector string to JMS. As messages arrive, the
consumer compares their header and properties information to the message selector and rejects messages that
evaluate false. For example, a message selector "MyProp > 5" allows consumers to receive messages whose JMS
message header field MyProp value is greater than 5.

26

Ultra Messaging JMS Guide

7.1. Publish/Subscribe
In the publish/subscribe scenario, you can have many consumers subscribed to the same topic, but use message
selectors to filter out selected consumers, and hence, selected receiving clients and applications. In this scenario, each
consumer decides whether or not to discard the message.

Figure 8. Message selectors, publish/subscribe

For example, to create a topic subscriber with a message selector for consuming messages with one property greater
than 5 and another property equal to 3:

// Create a selector to receive only messages with MyProp1 greater than 5 and MyProp2 equal to 3.
String selector = "MyProp1 > 5 AND MyProp2 = 3";

// Create a topic subscriber using the selector.
TopicSubscriber topicSubscriber = topicSession.createSubscriber(queue, selector);

7.2. Point-To-Point
In the point-to-point scenario, you can employ message selectors at the queue to determine which of multiple
consumers to send messages to. To ensure once-and-only-once delivery, the queue typically ensures that only the
consumer assigned per message selector consumes a given message.

Figure 9. Message selectors, point-to-point

27

Ultra Messaging JMS Guide

For example, to create a queue receiver with a message selector for consuming messages with one property greater
than 5 and another property equal to 3:

// Create a selector to receive only text messages with MyProp greater than 5.
String selector = "MyProp1 > 5 AND MyProp2 = 3";

// Create a queue receiver using the selector.
QueueReceiver queueReceiver = queueSession.createReceiver(queue, selector);

If a consumer is not available for a particular filtered message, the queue skips and retains this message, and then
continues processing subsequent messages.

When you configure a queuing application to use application sets, the message selectors can target individual
consumers in an application set. Application sets essentially split consumers into logical queues so that the desired
once-and-only-once message delivery behavior applies to all consumers inside them. A consumer in one application
set can receive the same message as a consumer in another. Message selectors in different application sets let the
queue assign messages to selected consumers within the same application set.

7.3. Native Applications
You can use message selectors at the native provider level (i.e., UM sources or receivers written in C, Java, or .NET).
Message selectors can work in the native application scenarios listed below.

JMS Producer to UM Receiver - Set option message_selector

(../Config/majoroptions.html#RECEIVERMESSAGESELECTOR) to the desired message selector string when
creating the consumer. This string must follow SQL92 syntax as described in the JMS Specification, for example
"MyProp1 = 6 AND MyProp2 < 7". See also Ultra Messaging JMS Options
(../Config/ultramessagingjmsoptions.html).

UM Source to JMS Consumer - Set message properties so that the name matches that used by the JMS consumer’s
message selector.

UM Source to UM Receiver - You can use the message selector feature outside of the JMS environment by setting
message properties at the UM source, and the message_selector
(../Config/majoroptions.html#RECEIVERMESSAGESELECTOR) option at the UM receiver.

Note: For a UM receiver, used with UMP, and with an event queue or if retaining/promoting messages outside of
the receiver callback function, we recommended you enable either explicit ACK’ing (ume_explicit_ack_only
(../Config/ultramessagingpersistenceoptions.html#RECEIVERUMEEXPLICITACKONLY)), or ACK batching
(ume_use_ack_batching
(../Config/ultramessagingpersistenceoptions.html#RECEIVERUMEUSEACKBATCHING)). This prevents
undesired/unwarranted ACKs for messages still waiting to be processed.

8. Session IDs
This section discusses the following topics.

28

Ultra Messaging JMS Guide

• UMP Session IDs

• UMQ Session IDs

When using UMP stores or UMQ queues, UM objects such as sources, receivers, and/or contexts must register with
the stores or queues, at which time they acquire registration IDs. You can use Session IDs to manage these
registration IDs.

8.1. UMP Session IDs
A UMP Session ID allows stores to identify an application’s sources and receivers by automatically assigning them
registration IDs. With session IDs, you do not need to directly assign registration IDs. You assign a UMP session ID
by first setting option use_ump_session_ids

(../Config/ultramessagingjmsoptions.html#CONNECTIONFACTORYUSEUMPSESSIONIDS) to True, then
assigning the session ID with the setClientID() method, or by setting the client_id
(../Config/ultramessagingjmsoptions.html#CONNECTIONFACTORYCLIENTID) option. Note that with this option
enabled, UM ignores attempts to maintain registration IDs directly.

When using this option, we recommend that you call the setClientID() function after creating a Connection
rather than setting the client_id option, to ensure that each created connection has a unique client identifier .

For more information about UMP registration IDs and session IDs, see Registration Identifiers
(../UME/ume.html#REGISTRATION-IDENTIFIERS), and more specifically, Managing RegIDs with Session IDs
(../UME/designing-persistent-applications.html#SESSION-IDS).

8.2. UMQ Session IDs
You can use UMQ Session IDs to manage context registration IDs and receiver assignment IDs. For expanded
information on UMQ Session IDs, see Queue Session IDs (../UME/ume.html#QUEUE-SES-IDS).

In configurations where a queue must always send messages, in order, to a specific assigned receiver, use UMQ
Session IDs, as described in the next paragraphs. This ensures that if a receiver fails, the queue retains messages for
that receiver until it recovers.

To configure this scenario, perform the following steps:

1. Set option message-reassignment-timeout (see Options for a Topic’s ume-attributes Element
(../UME/ume.html#UMESTORED-TOPIC-OPTIONS)) for the queue to a value of 0.

2. Set option umq_session_id (../Config/ultramessagingqueuingoptions.html#CONTEXTUMQSESSIONID) to
a unique value. Do not replicate this value elsewhere, even for sending applications.

9. Request/Reply Sample Applications
The following example applications demonstrate the request/reply model.

29

Ultra Messaging JMS Guide

9.1. Request Sample Application
// Obtain a ConnectionFactory via lookup or direct instantiation
ConnectionFactory factory = (ConnectionFactory)jndiContext.lookup("uJMSConnectionFactory");

// Create a connection - assuming no username/password required for UM
Connection connection = factory.createConnection();

// Create a Session
Session session = connection.createSession(false,

javax.jms.Session.AUTO_ACKNOWLEDGE);
// Create request and reply destinations
Destination requestTopic = lookupDestination(requestTopicName);
Destination replyTopic = lookupDestination(replyTopicName);

MessageProducer requestProducer = session.createProducer(requestTopic);
MessageConsumer replyConsumer = session.createConsumer(replyTopic);

TextMessage requestMessage = session.createTextMessage();
requestMessage.setText("Hello world.");
requestMessage.setJMSReplyTo(replyTopic);
requestProducer.send(requestMessage);

// start the connection
connection.start();

// Wait for the reply
Message replyMessage = replyConsumer.receive();

// Could check correlationID, not really necessary with sync request reply
if (replyMessage.getJMSCorrelationID() != requestMessage.getJMSMessageID())
{
System.err.println("Unexpected reply message"+ e.getMessage());
}

9.2. Reply Sample Application
// Obtain a ConnectionFactory via lookup or direct instantiation
ConnectionFactory factory = (ConnectionFactory)jndiContext.lookup("uJMSConnectionFactory");

// Create a connection - assuming no username/password required for UM
Connection connection = factory.createConnection();

// Create a Session
Session session = connection.createSession(false,

javax.jms.Session.AUTO_ACKNOWLEDGE);
// Create request destination
Destination requestTopic = lookupDestination(requestTopicName);

30

Ultra Messaging JMS Guide

// Create consumer on request topic
MessageConsumer requestConsumer = session.createConsumer(requestTopic);

// Create a producer, don’t know reply destination at this point.
MessageProducer replyProducer = session.createProducer(null);

// set the message listener callback
msgConsumer.setMessageListener(this);

// start the connection
connection.start();

// The message listener callback
public void onMessage(Message message)
{
try
{
TextMessage requestMessage = (TextMessage) message;
String contents = requestMessage.getText();

// get the reply to destination
Destination replyDestination = requestMessage.getJMSReplyTo();

TextMessage replyMessage = session.createTextMessage();
replyMessage.setText(contents);

replyMessage.setJMSCorrelationID(requestMessage.getJMSMessageID());
replyProducer.send(replyDestination, replyMessage);
}
catch(Exception e)
{
System.err.println("Exception occurred: "+ e.getMessage());
System.exit(-1);

}
}

31

	Table of Contents
	1. Introduction
	2. Ultra Messaging JMS Overview
	2.1. The JMS Specification
	2.2. Publish/Subscribe Model
	2.3. PointToPoint Model
	2.4. JMS Messages
	2.4.1. Message Components
	2.4.2. Message Properties

	2.5. JMS Implementation
	2.5.1. JMS Architecture
	2.5.2. JMSToUM Object Mapping

	2.6. Ultra Messaging JMS Programming Architecture
	2.7. Quality of Service
	2.8. Interoperability
	2.8.1. Native Source
	2.8.2. Native Receiver
	2.8.3. Request/Reply Example
	2.8.4. Native Application Notes
	2.8.5. Compatibility With Other UM Features

	2.9. Unsupported JMS Specifications

	3. Life Cycle of an Ultra Messaging JMS Application
	3.1. Producer Application
	3.2. Consumer Application

	4. JNDI Administered Objects
	4.1. Look Up Administered Objects Using JNDI

	5. Ultra Messaging JMS Configuration
	5.1. jndi.properties
	5.2. Configuring Ultra Messaging JMS with a UM XML File
	5.3. Configuring Ultra Messaging JMS with Ultra Messaging Manager
	5.4. Configuring Ultra Messaging JMS with a JMSConfig XML File
	5.4.1. ConnectionFactory Attributes
	5.4.1.1. FactoryAttributes
	5.4.1.2. ContextAttributes
	5.4.1.3. SourceAttributes
	5.4.1.4. ReceiverAttibutes

	5.4.2. Destination Attributes

	6. Asynchronous Message Delivery
	7. Message Selectors
	7.1. Publish/Subscribe
	7.2. PointToPoint
	7.3. Native Applications

	8. Session IDs
	8.1. UMP Session IDs
	8.2. UMQ Session IDs

	9. Request/Reply Sample Applications
	9.1. Request Sample Application
	9.2. Reply Sample Application

