
The Ultra Messaging® Guide for
Persistence and Queuing

Copyright © 2007 - 2014 Informatica
March 2014

Informatica Ultra Messaging
Version 5.3
March 2014
Copyright (c) 1998-2014 Informatica Corporation. All rights reserved.
This software and documentation contain proprietary information of Informatica Corporation and are
provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright law. Reverse engineering of the software is prohibited. No part of this
document may be reproduced or transmitted in any form, by any means (electronic, photocopying,
recording or otherwise) without prior consent of Informatica Corporation. This Software may be
protected by U.S. and/or international Patents and other Patents Pending.
Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions
set forth in the applicable software license agreement and as provided in DFARS 227.7202-1(a) and
227.7702-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or
FAR 52.227-14 (ALT III), as applicable.
The information in this product or documentation is subject to change without notice. If you find any
problems in this product or documentation, please report them to us in writing.
Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT,
PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange, PowerMart, Metadata Manager,
Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica
B2B Data Exchange Informatica On Demand, Informatica Identity Resolution, Informatica Application
Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging and
Informatica Master Data Management are trademarks or registered trademarks of Informatica
Corporation in the United States and in jurisdictions throughout the world. All other company and
product names may be trade names or trademarks of their respective owners.
Portions of this software and/or documentation are subject to copyright held by third parties, including
without limitation: Copyright DataDirect Technologies. All rights reserved. Copyright (c) Sun
Microsystems. All rights reserved. Copyright (c) RSA Security Inc. All Rights Reserved. Copyright (c)
Ordinal Technology Corp. All rights reserved.Copyright (c) Aandacht c.v. All rights reserved. Copyright
Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright (c)
Meta Integration Technology, Inc. All rights reserved. Copyright (c) Intalio. All rights reserved.
Copyright (c) Oracle. All rights reserved. Copyright (c) Adobe Systems Incorporated. All rights
reserved. Copyright (c) DataArt, Inc. All rights reserved. Copyright (c) ComponentSource. All rights
reserved. Copyright (c) Microsoft Corporation. All rights reserved. Copyright (c) Rogue Wave Software,
Inc. All rights reserved. Copyright (c) Teradata Corporation. All rights reserved. Copyright (c) Yahoo!
Inc. All rights reserved. Copyright (c) Glyph & Cog, LLC. All rights reserved. Copyright (c) Thinkmap,
Inc. All rights reserved. Copyright (c) Clearpace Software Limited. All rights reserved. Copyright (c)
Information Builders, Inc. All rights reserved. Copyright (c) OSS Nokalva, Inc. All rights reserved.
Copyright Edifecs, Inc. All rights reserved. Copyright Cleo Communications, Inc. All rights reserved.
Copyright (c) International Organization for Standardization 1986. All rights reserved. Copyright (c)
ej-technologies GmbH. All rights reserved. Copyright (c) Jaspersoft Corporation. All rights reserved.
Copyright (c) is International Business Machines Corporation. All rights reserved. Copyright (c)
yWorks GmbH. All rights reserved. Copyright (c) Lucent Technologies. All rights reserved. Copyright
(c) University of Toronto. All rights reserved. Copyright (c) Daniel Veillard. All rights reserved.
Copyright (c) Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright (c) MicroQuill Software
Publishing, Inc. All rights reserved. Copyright (c) PassMark Software Pty Ltd. All rights reserved.
Copyright (c) LogiXML, Inc. All rights reserved. Copyright (c) 2003-2010 Lorenzi Davide, All rights
reserved. Copyright (c) Red Hat, Inc. All rights reserved. Copyright (c) The Board of Trustees of the
Leland Stanford Junior University. All rights reserved. Copyright (c) EMC Corporation. All rights
reserved. Copyright (c) Flexera Software. All rights reserved. Copyright (c) Jinfonet Software. All rights
reserved. Copyright (c) Apple Inc. All rights reserved. Copyright (c) Telerik Inc. All rights reserved.

1

The Ultra Messaging® Guide for Persistence and Queuing

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/), and/or other software which is licensed under various versions of the
Apache License (the "License"). You may obtain a copy of these Licenses at
http://www.apache.org/licenses/. Unless required by applicable law or agreed to in writing, software
distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the Licenses for the specific language
governing permissions and limitations under the Licenses.
This product includes software which was developed by Mozilla (http://www.mozilla.org/), software
copyright The JBoss Group, LLC, all rights reserved; software copyright (c) 1999-2006 by Bruno
Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU
Lesser General Public License Agreement, which may be found at http://
www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is",
without warranty of any kind, either express or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.
The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his
research group at Washington University, University of California, Irvine, and Vanderbilt University,
Copyright (c) 1993-2006, all rights reserved.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(copyright The OpenSSL Project. All Rights Reserved) and redistribution of this software is subject to
terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.
This product includes Curl software which is Copyright 1996-2007, Daniel Stenberg,
<daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this software are
subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
The product includes software copyright 2001-2005 (c) MetaStuff, Ltd. All Rights Reserved.
Permissions and limitations regarding this software are subject to terms available at
http://www.dom4j.org/ license.html.
The product includes software copyright (c) 2004-2007, The Dojo Foundation. All Rights Reserved.
Permissions and limitations regarding this software are subject to terms available at
http://dojotoolkit.org/license.
This product includes ICU software which is copyright International Business Machines Corporation
and others. All rights reserved. Permissions and limitations regarding this software are subject to
terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.
This product includes software copyright (c) 1996-2006 Per Bothner. All rights reserved. Your right to
use such materials is set forth in the license which may be found at http:// www.gnu.org/software/
kawa/Software-License.html.
This product includes OSSP UUID software which is Copyright (c) 2002 Ralf S. Engelschall, Copyright
(c) 2002 The OSSP Project Copyright (c) 2002 Cable & Wireless Deutschland. Permissions and
limitations regarding this software are subject to terms available at
http://www.opensource.org/licenses/mit-license.php.
This product includes software developed by Boost (http://www.boost.org/) or under the Boost
software license. Permissions and limitations regarding this software are subject to terms available at
http:/ /www.boost.org/LICENSE_1_0.txt.
This product includes software copyright (c) 1997-2007 University of Cambridge. Permissions and
limitations regarding this software are subject to terms available at http:// www.pcre.org/license.txt.
This product includes software copyright (c) 2007 The Eclipse Foundation. All Rights Reserved.
Permissions and limitations regarding this software are subject to terms available at http://
www.eclipse.org/org/documents/epl-v10.php.
This product includes software licensed under the terms at
http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License,
http://www.stlport.org/doc/ license.html, http:// asm.ow2.org/license.html,
http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html,
http://httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt ,
http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/release/license.html,
http://www.libssh2.org, http://slf4j.org/license.html,
http://www.sente.ch/software/OpenSourceLicense.html,
http://fusesource.com/downloads/license-agreements/fuse-message-broker-v-5-3- license-agreement;
http://antlr.org/license.html; http://aopalliance.sourceforge.net/;
http://www.bouncycastle.org/licence.html; http://www.jgraph.com/jgraphdownload.html;

2

The Ultra Messaging® Guide for Persistence and Queuing

http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; .
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231;
http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html;
http://www.json.org/license.html; http://forge.ow2.org/projects/javaservice/,
http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html,
http://www.tcl.tk/software/tcltk/license.html, http://www.jaxen.org/faq.html,
http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html;
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/License;
http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html;
http://www.edankert.com/bounce/index.html; http://www.net-snmp.org/about/license.html;
http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; and
http://benalman.com/about/license/;
https://github.com/CreateJS/EaselJS/blob/master/src/easeljs/display/Bitmap.js;
http://www.h2database.com/html/license.html#summary; and http://jsoncpp.sourceforge.net/LICENSE.
This product includes software licensed under the Academic Free License
http://www.opensource.org/licenses/afl-3.0.php), the Common Development and Distribution License
(http://www.opensource.org/licenses/cddl1.php) the Common Public License
(http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary Code License Agreement
Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php)
the MIT License (http://www.opensource.org/licenses/mit-license.php) and the Artistic License
(http://www.opensource.org/licenses/artistic-license-1.0).
This product includes software copyright (c) 2003-2006 Joe WaInes, 2006-2007 XStream Committers.
All rights reserved. Permissions and limitations regarding this software are subject to terms available
at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana
University Extreme! Lab. For further information please visit http://www.extreme.indiana.edu/.
This Software is protected by U.S. Patent Numbers 5,794,246; 6,014,670; 6,016,501; 6,029,178;
6,032,158; 6,035,307; 6,044,374; 6,092,086; 6,208,990; 6,339,775; 6,640,226; 6,789,096; 6,820,077;
6,823,373; 6,850,947; 6,895,471; 7,117,215; 7,162,643; 7,243,110, 7,254,590; 7,281,001; 7,421,458;
7,496,588; 7,523,121; 7,584,422; 7676516; 7,720,842; 7,721,270; and 7,774,791, international Patents and
other Patents Pending.
DISCLAIMER: Informatica Corporation provides this documentation "as is" without warranty of any
kind, either express or implied, including, but not limited to, the implied warranties of noninfringement,
merchantability, or use for a particular purpose. Informatica Corporation does not warrant that this
software or documentation is error free. The information provided in this software or documentation
may include technical inaccuracies or typographical errors. The information in this software and
documentation is subject to change at any time without notice.
NOTICES
This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from
DataDirect Technologies, an operating company of Progress Software Corporation ("DataDirect")
which are subject to the following terms and conditions:
1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER
CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL OR OTHER
DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF
THE POSSIBILITIES OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF
ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH OF WARRANTY,
NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

3

The Ultra Messaging® Guide for Persistence and Queuing

Table of Contents
1. Introduction...4
2. Concepts...5
3. Architectures ...12
4. Operational View ..16
5. Enabling Persistence...47
6. Demonstrating Persistence ...51
7. Designing Persistence Applications ...56
8. Enabling Queuing ...88
9. Designing Queuing Applications ...90
10. Fault Tolerance..93
11. Man Pages..106
12. Configuration Reference for Umestored...109
13. Ultra Messaging Web Monitor ..143

1. Introduction
In addition to high performance streaming, Ultra Messaging® also provides persistence and low latency queuing by
implementing a configurable daemon that runs persistent stores , queues or both .

1.1. Persistence
A system implementing UMP persistence comprises any number of sources, receivers, and persistent stores. Ultra
Messaging’s unique design provides Parallel Persistence®, which refers to the ability of a persistent store or stores
to run independently of sources and receivers and in parallel with messaging. The persistence store does not interfere
with message delivery to receiving applications. Parallel Persistence adds several key features missing in other
messaging solutions.

• A fault recovery ability

• The capacity to continue operation during specific types of failures

Fault recovery refers to the system’s ability to recover from a failure of any system component (source, receiver or
store). Under certain circumstances, Ultra Messaging can even recover from multiple failures and multiple
cascading failures.

1.2. Queuing
In addition to the capabilities of UMP and UMS, UMQ supports brokered and brokerless queuing semantics.

Key features of UMQ include the following:

4

The Ultra Messaging® Guide for Persistence and Queuing

• Once and only once (OAOO) delivery for applications such as clearing and settlement that require each trade be
processed only once.

• Application Sets for publishing into multiple logical queues with a single send, making it easy to onboard new
applications that require copies of the same data.

• Ultra Load Balancing (ULB) for brokerless non-persistent queuing semantics, with special considerations for
message assignment, receiver pacing, and multi-source fairness.

• Java Messaging Service (JMS) support. See the Ultra Messaging JMS Guide for more details.

Queuing semantics are supported only within the same Topic Resolution Domain (TRD), without Gateways or
Dynamic Routers in the data path.

1.3. Semantic Responsibilities
Brokered and brokerless queuing semantics are orthogonal and independent from the reliable non-persistent and
durable persistent streaming semantics provided by UMS and UMP. Differences outlined in the following list:

• Reliable non-persistent streaming (UMS) provides in-order message delivery and gap/loss notification, while
applications are running, without load-balanced message delivery.

• Durable persistent streaming (UMP) provides in-order message delivery and gap/loss notification, while
applications are running and across restarts, without load-balanced message delivery.

• Brokered queuing (UMQ) provides load-balanced message delivery, while applications are running and across
restarts, without message ordering and without gap/loss notification.

• Brokerless queuing (UMQ) provides load-balanced message delivery, while applications are running, without
message ordering and without gap/loss notification.

Regardless of the messaging semantic chosen, applications assume the following responsibilities to the extent
applicable for their use case:

• Application resubmission (re-sending) of in-flight messages after source application restart

• Handling potentially duplicate messages from messaging layer or application resubmission

• Marking application resubmitted messages as such if needed to support duplicate handling

• Detecting stale data, for example, by using synchronized timestamps

• Source and receiver application failover and state reconstruction

Queuing is recommended for cases where load-balanced message delivery is required and out-of-order message
delivery and message loss without notification are acceptable, i.e., message delivery order and message loss are
either unimportant or are handled by applications (inclusive of application-level sequencing and gap detection, or
equivalent). For example, queuing is well-suited for load-balanced request/response with bidirectional topics and
application-level retries.

When designing queuing applications, it is important to consider whether message processing is stateless (any
receiver can process any message) or requires local state (only certain receivers can process certain messages). If
local state is required, the recovery strategy for receiver hardware failure must consider how to rebuild that local
state. Receivers with local state may be better served by durable persistent streaming rather than queuing.

5

The Ultra Messaging® Guide for Persistence and Queuing

2. Concepts
This section illuminates important UMP and UMQ concepts and features.

• Persistence

• Queuing Features

Contained in UMP and UMQ are all of the features and capabilities of Ultra Messaging’s high performance,
message streaming. This document explains persistence and queuing capabilities only. For specific information about
Ultra Messaging’s high performance streaming, see Ultra Messaging Concepts (../Design/index.html).

Also available to UMP and UMQ is the Ultra Messaging Manager. UMM provides a GUI that simplifies the
creation of UM XML configuration files and also allows you to assign application configurations to specific users,
also created in the UMM GUI. The UMM Daemon runs this feature, offering a UMM GUI API to support custom
GUIs and uses a MySQL database to store configurations. See the Ultra Messaging Manager Guide
(../UMM/index.html).

2.1. Persistence
In discussing UMP , we refer to specific recovery from the failures of sources, receivers, and persistent stores. Failed
sources can restart and resume sending data from the point at which they stopped. Receivers can recover from failure
and begin receiving data from the point immediately prior to failure. This process is sometimes called durable
subscription. Persistent stores can also be restarted and continue providing persistence to the sources and receivers
that they serve. UMP is not designed to address ongoing, corrupting agents. Rather, if one of its components fails,
the design of UMP ’s persistence enables it to continue supporting its ongoing operations at some level.

The default mode of UMP Persistence is Source-paced Persistence (SPP). In this mode, the consumption of
messages by receivers does not impact the rate a UM source can send messages. Sources send messages
simultaneously to receivers and the persistent store. (See Normal Operation.) Receiver-paced Persistence (RPP) is
the second mode. In RPP, sources also send messages to receivers and the persistent store in parallel, but the store
retains RPP messages until all RPP receivers acknowledge consumption. In addition, sources can be slowed to ensure
that the store is not overrun with messages resulting in messages being dropped and not delivered to all RPP
receivers. (See RPP Normal Operations.)

2.1.1. Persistent Store

UMP uses a daemon to persist source and receiver state outside the actual sources and receivers themselves. This is
the UMP Persistent Store. The store can persist state in memory as well as on disk. State is persisted on a per-topic,
per-source basis by the store. UMP stores need not be a single entity. For fault tolerance purposes, it is possible to
configure multiple stores in various ways. See Adding the UMP Store to a Source, UMP Stores, Store Configuration
Considerations, Man Pages and Configuration Reference for Umestored.

2.1.2. Registration Identifier

UMP identifies sources and receivers with Registration Identifiers, also called Registration IDs or RegIDs. A RegID
is a 32-bit number that uniquely identifies a source or a receiver to a store. This means that RegIDs are also specific
to a store and can be reused between individual stores, if needed. No two active sources or receivers can share a
RegID or use the same RegID at the same time. This point is critical: since UMP enables your application to use and

6

The Ultra Messaging® Guide for Persistence and Queuing

handle RegIDs very freely, you must use RegIDs carefully to avoid destructive results. See Adding Fault Recovery
with Registration IDs and Registration Identifiers. RegIDs can also be managed easily with the use of Session IDs.
See Managing RegIDs with Session IDs.

2.1.3. Delivery Confirmation

UMP provides feedback to sources upon notification that a receiver has consumed a given piece of data, in other
words, that it has received and processed a message. This feedback is called Delivery Confirmation. See also
Confirmed Delivery and Source Message Retention and Release.

2.1.4. Release Policy

Sources and persistent stores retain data according to a release policy, which is a set of rules that specifies when a
message can be reclaimed. Each rule would allow any message that complies with the rule to be reclaimed. However,
a message must comply with all rules before it can be reclaimed. Conversely, any message not complying with all
rules will not be reclaimed. A source or store retains messages until its retention policy dictates the message may be
removed. Sources and stores use slightly different retention policies based on their individual roles. For more
information on retention policies, see Source Message Retention and Release.

2.1.5. Message Stability

Sources send messages to both receivers and to stores. Messages become stable once the message has been persisted
at the store or a set of stores. The number of messages that can be sent by a source has no relation to the number of
its messages that have been stabilized unless UMP Flight Size is enabled. In addition, UMP informs the application
when messages are stabilized, enabling the application to take any desired action. See Source Message Retention and
Release.

Publishing messages to a store is a coordinated hand-off between the publishing application and the store. The store
assumes responsibility for delivering a message only when the publisher is informed that the message is stable.
Stability refers to the store having a copy of the message in memory and/or on disk, depending on configuration.
Until the publisher is informed that a message is stable, it may be lost upon restart. Messages may be delivered
without the publisher being informed that they were stable. Upon restart, the publisher is expected to send again any
messages previously sent that were not known to be stable. Since the store cannot differentiate between new
messages and messages sent again upon publisher restart, the application is responsible for marking messages as sent
again in some manner (e.g., by setting a flag in message content or properties), if required for downstream duplicate
checking.

2.1.6. Round-Robin Store Failover

Stores can also experience failures from which they may or may not recover. A source can be configured to move to a
second store if the first store fails and can not recover in time. Round-robin store behavior describes the behavior of a
source moving through a list of stores, using a single store at any one time, with several specified backups available
to it in case the single store fails.

See also Sources Using Round-Robin Store Configuration and Round-Robin Store Usage

7

The Ultra Messaging® Guide for Persistence and Queuing

2.1.7. Quorum/Consensus Store Failover

In addition to a source being configured for round-robin store behavior, several stores can be configured for
simultaneous operation. In this situation, a single store or even a handful of stores can fail without impacting the
source and receivers. As long as a quorum of the configured stores is accessible, messaging operation generally
continues uninterrupted. (UMP defines a Quorum as a majority.)

See also Sources Using Quorum/Consensus Store Configuration, Quorum/Consensus Store Usage,
Quorum/Consensus - Single Location Groups and Quorum/Consensus - Mixed Location Groups.

2.2. Queuing Features
A queue may be persistent or may be volatile in nature. Receiver message processing follows a once-and-only-once
(OAOO) semantic where each message is only processed by a single receiver of the application set. The following
concepts are integral to UMQ.

2.2.1. Source Streaming

Sources may send and have in flight several messages to the queue at the same time. This provides some significant
throughput benefits.

2.2.2. Message Stability

Publishing messages to a queue is a coordinated hand-off between the publishing application and the queue. The
queue assumes responsibility for delivering a message only when the publisher is informed that the message is
stable. Stability refers to the queue having a copy of the message in memory and/or on disk, depending on
configuration. Until the publisher is informed that a message is stable, it may be lost upon restart. Messages may be
delivered without the publisher being informed that they were stable. Upon restart, the publisher is expected to send
again any messages previously sent that were not known to be stable. Since the queue cannot differentiate between
new messages and messages sent again upon publisher restart, the application is responsible for marking messages as
sent again in some manner (e.g., by setting a flag in message content or properties), if required for downstream
duplicate checking.

2.2.3. Once-and-Only-Once Delivery

Once-and-Only-Once (OAOO) delivery means that each message is assigned to only one receiver at a time. If a
message is not acknowledged by the assigned receiver, it can be reassigned and redelivered to either the same or a
different receiver (depending on configuration and circumstances), in which case the resent message is flagged as
redelivered. Applications are always responsible for detection and proper handling of potentially duplicate messages.

2.2.4. Application Sets

An Application Set is a group of receivers and can be used to load balance queue topics within a receiving
application or accommodate multiple processing purposes for a single topic. The OAOO semantic applies to an

8

The Ultra Messaging® Guide for Persistence and Queuing

Application Set. Therefore, you can configure multiple Application Sets for a queue and only one receiver in each set
will process a given message. See Application Set Element.

2.2.5. Receiver Portion Size

You can increase the throughput to receivers by increasing their portion size. This increases the number of messages
in flight to a receiver. This setting is specified in a Receiver Type ID. See Options for a Receiver Type’s
ume-attributes Element. A receiver configured with one Receiver Type ID and subscribed to Topic A in one
application can have 5 messages in flight, where a Topic A receiver configured with a different Receiver Type ID in
another application can have only one message in flight.

2.2.6. Configurable Store and Forward

You can configure a Queue to assign and send data to receivers after the data has been persisted to disk
(Store-Then-Forward) or in parallel to being persisted to disk (Store-While-Forwarding).
Store-While-Forwarding produces lower end-to-end latency from sources to receivers at the expense of potential
message loss under certain multiple failure conditions. See also ...

• Queue Element

• Queuing Architecture

2.2.7. Multiple Dissemination Models

UMQ provides the following load balancing configurations for data dissemination not possible with other queuing
products.

• Serial Queue Dissemination (SQD): Queue sends data to each receiver via serial unicasts. Only the receivers
assigned to a message receive that message.

• Parallel Queue Dissemination (PQD): Queue sends data and control information to all receivers via UM transport
sessions. Control information contains assignment information.

• Source Dissemination (SD): Source sends data to all receivers via UM transport sessions. Queues send control
information to all receivers via separate transport sessions. Control information contains assignment information.

2.2.8. Queue Fault Tolerance

Queues may be composed of several actual queue instances that operate with source and receivers in such a way that
failure of one queue instance or even several queue instances need not stop or even slow down sources and receivers
from performing queuing operations. See Queue Redundancy.

Known Issue: Configurations with multiple queue instances (slaves) can lead to inconsistent state, which can trigger
message loss, crashes or restart issues necessitating removal of files resulting in message loss. Therefore, Informatica
recommends deploying configurations with only a single queue instance (without slaves). To facilitate failover, set
the sinc-log-filename, sinc-data-filename, and sinc-queue-swap-filename to write to a shared
file-system, and use external process management (automatic or manual) to start up a secondary queue instance
referencing the same files if and only if the active instance fails (i.e. only allow one queue instance to access the files

9

The Ultra Messaging® Guide for Persistence and Queuing

at any time). With this configuration, sinc files will grow over time, so clean restarts (i.e. shut down, delete all files
and restart) will be required periodically. Using a shared file-system may impact performance; Informatica strongly
recommends holistic system performance characterization prior to any production deployment.

2.2.9. Indexed Queuing

Messages may be sent with an index using an extended send call, lbm_src_sendv_ex, that includes a pointer to
lbm_umq_index_info_t (../API/structlbm__umq__index__info__t__stct.html) in lbm_src_send_ex_info_t.

An index is an application-defined 64-bit unsigned number or free-form string.

By default, all receivers are eligible to be assigned indices by the Queue. Once the Queue assigns the first message
sent with a particular index to an individual receiver in each Application Set, the Queue assigns subsequent messages
(sent from any source) with that same index to those same individual receivers, provided the receivers remain alive
and responsive.

You can exert greater control over how a Queue assigns indices to receivers by configuring individual indices and
ranges of indices in the Queue’s umestored XML configuration file. You can then set rules that allow or deny
receivers the permission to process messages with certain indices. See Indices Element.

Note that with indexed queuing, messages with a particular index can be assigned only to the single consumer
responsible for that index (i.e., assignment is "sticky"). If an index consumer stops consuming messages (a failure
scenario) long enough for its configured portion size to become full while another message with the same index is
pending, message delivery to all other consumers within the same Application Set is halted. Therefore, Informatica
recommends using indexed queuing only in configurations with message reassignment enabled and set to a relatively
brief interval, as this determines the amount of time that message consumption within an Application Set may be
halted in the event of receiver failure.

2.2.10. Dead Letter Queue

Queues can be configured to isolate unconsumed messages in a Dead Letter Queue, which prevents these messages
from causing application or queuing system problems. These unconsumed messages remain in the Dead Letter
Queue for the life of the Queue. Other applications can access these messages for analysis by starting a wildcard
receiver for the Dead Letter topic queue.

Configuring a Dead Letter Queue involves the following actions in the Queue’s umestored XML configuration file.

1. Configure a dead-letter-topic-prefix and dead-letter-topic-separator for the Queue. UMQ uses
this information to compose a Dead Letter topic name. The example below illustrates this step, but may or may
not be suitable to include in your umestored XML configuration file. See also General Options for a Queue’s
ume-attributes Element.

<queues>
<queue name="Sample_Queue_with_Dead_Letter_Topic" port="20333" group-index="0">
<ume-attributes>
<!-- dead-letter-topic-prefix must be specified for any dead letter queues to be created -->
<option type="queue" name="dead-letter-topic-prefix" value="dead_letter"/>
<!-- dead-letter-topic-separator defaults to ’/’, so the following line isn’t necessary -->
<option type="queue" name="dead-letter-topic-separator" value="/"/>
</ume-attributes>
</queue>

10

The Ultra Messaging® Guide for Persistence and Queuing

2. In each of the Queue’s Application Sets from which you wish to capture unconsumed messages, set the
discard-behavior to dead-letter. The example below illustrates this step, but may or may not be suitable
to include in your umestored XML configuration file. See also Options for an Application Set’s ume-attributes
Element.

<application-sets>
<application-set name="Set 1">
<ume-attributes>
<option type="queue" name="log-audit-trail" value="1"/>
<!-- discard-behavior set to dead-letter tells the queue that when messages
EOL off this appset, they should be placed on a dead letter queue -->
<option type="queue" name="discard-behavior" value="dead-letter"/>
</ume-attributes>
</application-set>
</application-sets>

3. Configure a dead-letter-topic for the Queue and assign it to a different application set than the one in
step 2 that has its discard-behavior set to drop. The example below illustrates this step, but may or may not
be suitable to include in your umestored XML configuration file. See also Options for a Queue Topic’s
ume-attributes Element.

<topics>
<!-- since the dead-letter-topic-prefix is dead_letter, it is necessary to specify a topic
pattern that matches dead_letter -->
<topic pattern="dead_letter" type="PCRE">
<ume-attributes>
<!-- this topic is a dead-letter-topic -->
<!-- you cannot create a source and submit messages directly to a dead
letter topic -->
<option type="queue" name="dead-letter-topic" value="1"/>
</ume-attributes>
<application-sets>
<!-- you must assign this dead-letter-topic to an application set that has its
"discard-behavior" set to "drop" -->
<application-set name="Set 2"/>
</application-sets>
</topic>
</topics>

2.2.11. Message Lifetimes

You can configure a lifetime period for messages during which the message may be assigned to a receiver. Upon
expiration of the message lifetime, the queue cannot assign the message to a receiver. The queue either discards the
message from the queue permanently or sends it to the Dead Letter Queue, if configured. A message’s total lifetime
starts when the queue enqueues the message. Messages lifetimes apply to both UMQ and ULB messages. See
Message Lifetimes and Reassignment.

2.2.12. Queuing Terminology

Ultra Messaging Queuing Edition uses the following terms.

11

The Ultra Messaging® Guide for Persistence and Queuing

Term Description
Queue A named, virtual entity to which sources submit messages and from which receivers

retrieve messages.

Queue Instance A running daemon that is part of a Queue. In UMP , this is the umestored process. The
collection of all queue instances with the same name constitutes a Queue.

Registration ID The ID that a source or receiver application uses to register a context with a Queue. The
context uses the same Registration ID for each Queue Instance. The context may generate
a Registration ID or the user may specify Registration IDs to be used with specific
Queues. See umq_queue_registration_id (../Con-
fig/ultramessagingqueuingoptions.html#CONTEXTUMQQUEUEREGISTRATIONID)

Message ID The unique ID of a queue message.

Assignment The designation of particular queued messages to individual receivers for processing.

Consumption The processing of a queue message by an assigned receiver.

Consumption Report (CR) Receivers send Consumption Report (CR) messages to notify Queues of message
consumption.

Re-Assignment When a receiver does not consume a message within a specified period of time, the Queue
re-assigns the message to another receiver.

Assignment ID Used by the Queue to identify receivers registered with certain topics. Found within
control information.

Receiver Control Record
(RCR)

Message control information sent to receivers by Queues using Parallel Queue
Dissemination (PQD) or Source Dissemination (SD). An RCR contains the Message ID
of the message, a list of the Assignment IDs (receivers) that should process the message,
and ordering information.

RCR Index An index that identifies a topic on a Queue.

End of Lifetime (EOL) Maximum time limit before a message must be consumed. The timer starts when the
Queue assigns the message to a receiver and is unaffected by reassignments. The Queue
discards any message with an expired EOL.

Receiver Type ID Indicates the Application Set a receiving application wishes to join. This ID is fully
managed by the administrator of the Queue and implies not only Application Set but also
some other ways that the receiver is treated, such as portion size and assignment options.

3. Architectures
The same Ultra Messaging API may be used for stream-based messaging or persistent messaging and queuing .
Similarly, the umestored daemon can be configured as a persistent store or queue, providing consistent and efficient
operation across persistent and queuing messaging systems.

3.1. Persistence Architecture
As shown in the diagram, UMP provides messaging functionality as well as persistent operation. See UMP

12

The Ultra Messaging® Guide for Persistence and Queuing

Persistence Architecture for an overview of UMP architecture.

Figure 1. UMP Persistence Architecture

The highlights of this architecture are:

• Sources communicate with stores

• Receivers communicate with stores

• Sources communicate with receivers

Note: The persistent store does not lie in the middle of the data path between source and receivers. Along with
other enhancements, this feature, called Parallel Persistence, gives UMP a significant performance edge over
any other persistent messaging product.

Note: The persistent store is not supported on the HP NonStop® platform.

3.2. Persistent Store Architecture
The umestored daemon runs the UMP persistent store feature. You can configure multiple stores per daemon using
the <store> element in the umestored XML configuration file. See Configuration Reference for Umestored.

13

The Ultra Messaging® Guide for Persistence and Queuing

Individual stores can use separate disk cache and disk state directories and be configured to persist messages for
multiple sources (topics), which are referred to as, source repositories. UMP provides each umestored daemon with
a Web Monitor for statistics monitoring. See Ultra Messaging Web Monitor.

Figure 2. Store Architecture

This section discusses the following topics.

• Source Repositories

• Persistent Store Fault Tolerance

3.2.1. Source Repositories

Within a store, you configure repositories for individual topics and each can have their own s et of <topic> level
options that affect the repository’s type, size, liveness behavior and much more. If you have multiple sources sending
on the same topic, UMP creates a separate repository for each source. UMP uses the repository options configured
for the topic to apply to each source’s repository. If you specify 48MB for the size of the repository and have 10
sources sending on the topic, the persistent store requires 480MB of storage for that topic.

A repository can be configured as one of the following types.

• no cache - the repository does not retain any data, only state information

• memory - the repository maintain both state and data only in memory

• disk - the repository maintains state and data on disk, but also uses a memory cache.

• reduced-fd - the repository maintains state and data on disk, also uses a memory cache but uses significantly
fewer File Descriptors. Normally a store uses two File Descriptors per topic in addition to normal UM file
descriptors for transports and other objects. The reduced-fd repository type uses 5 File Descriptors for the entire
store, regardless of the number of topics, in addition to normal UM file descriptors for transports and other objects.
Use of this repository type may impact performance.

You can configure any combination of repository types within a single store configuration.

14

The Ultra Messaging® Guide for Persistence and Queuing

Note: If you run a store with all disk or reduced-fdtype repositories, then restart the store with memory type
repositories and do not clear out the disk-cache-directory and disk-state-directory, the memory
repositories revert automatically to disk repositories.

Note: With UMP Version 5.3, the UMP store daemon has Standard C++ Library dependencies for Unix
packages. The libstdc++ must also be included in LD_LIBRARY_PATH. See Section 3. Code
(../../DocIntro.html#CODE) for more infromation.

3.2.2. Persistent Store Fault Tolerance

Sources and receivers register with a store and use individual repositories within the store. Sources can use redundant
repositories configured in multiple stores in either a Round Robin or Quorum/Consensus arrangement for fault
tolerance. Stores and repositories have no indication of these arrangements.

The following diagram depicts an example Quorum/Consensus configuration of stores and repositories. These stores
could also be run by a single umestored daemon or one daemon for each store.

Figure 3. Example Store Configuration

See Store Configuration Considerations and also Stores Element for more about store configuration.

3.3. Queuing Architecture
The architecture of Queues follows a lot of the same tenets as the UMP persistence architecture. Source and receiver
applications can create sources, listen on topics and do normal operations typical of UM applications. Receivers
require no special configuration to receive messages from a queue.

The central components to any queuing deployment are:

15

The Ultra Messaging® Guide for Persistence and Queuing

• the source applications

• the receiving applications

• the umestored daemon, which provides queue instances

The umestored daemon provides separate Queue instances. Just as umestored may contain individual UMP
stores, it may also contain individual queue instances as well.

Figure 4. Queuing Architecture

4. Operational View
This section discusses the following topics.

• Persistence Operations

• Receiver-paced Persistence Operations

• Queuing Operations

• Ultra Load Balancing Operations

• UMP and UMQ Events

16

The Ultra Messaging® Guide for Persistence and Queuing

Note: If your application is running with the UM configuration option, request_tcp_bind_request_port

(../Config/requestnetworkoptions.html#CONTEXTREQUESTTCPBINDREQUESTPORT) set to zero, request port
binding has been turned off, which also disables UMP .

4.1. Persistence Operations
Sources, receivers, and stores in UMP interact in very controlled ways. This section illustrates the flow of network
traffic between the components during three modes of operation and also provides a reference of UMP Events.

• Registration

• Normal Operation

• Receiver Recovery

4.1.1. Registration

Figure 5 illustrates network flow during the Registration process.

Figure 5. UMP Registration

Sources and receivers unicast registrations to the store. The store unicasts responses back to the sources and
receivers. Registrations are on a per topic per source basis. Stores use RegIDs to identify sources and receivers. After
registration, receivers may handle recovery, sources may send data, and receivers may send acknowledgements

4.1.2. Normal Operation

Figure 6 illustrates the normal operation of data reception and acknowledgement and also shows how UMP attains
Parallel Persistence. The source sends message data to receivers and stores in parallel.

17

The Ultra Messaging® Guide for Persistence and Queuing

Figure 6. UMP Normal Operation

1. Sources transmit data to receivers and stores at the same time over UM multicast or unicast transport protocols.

2. As the store receives and persists messages, the store unicasts acknowledgements, (message stability control
messages), to the source letting it know of successful reception and storage.

3. As receivers process and consume messages they unicast acknowledgments to the store letting the store know of
successful consumption of data.

4. If the source desires delivery confirmation, the receiver unicasts acknowledgements directly to the source letting
the source know of message consumption as well.

Normal operation and recovery can proceed at the same time. In addition, as a receiver consumes retransmitted
messages, the receiver sends normal acknowledgements for consumption and confirmed delivery (if requested by the
source).

Note: A store can be configured with different storage limits for each repository. If the repository reaches this
limit, the repository releases the oldest message in order to persist a new message. This behavior occurs for a
memory repository as well as a disk repository. If a repository releases a message that one or more receivers
have not consumed (sent a consumption notification), the repository logs a single warning message in the store
log file per receiver per registration.

4.1.2.1. UMP Flight Size

UMP supports a flight size mechanism that tracks messages in flight from a particular source and responds when a
send would exceed the configured flight size (ume_flight_size
(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEFLIGHTSIZE) and/or
ume_flight_size_bytes

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEFLIGHTSIZEBYTES)). You can configure
ume_flight_size_behavior

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEFLIGHTSIZEBEHAVIOR) to either:

18

The Ultra Messaging® Guide for Persistence and Queuing

• block any sends that would exceed the flight size or,

• allow the sends while notifying your application.

UMP considers a sent message in flight until the following two conditions are met.

1. The source receives the configured number of stability acknowledgements from the store(s).

2. The source has received the configured number of delivery confirmation notifications. (See
ume_retention_unique_confirmations

(../Config/config.html#SOURCEUMERETENTIONUNIQUECONFIRMATIONS).)

If configuring both ume_flight_size

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEFLIGHTSIZE) and
ume_flight_size_behavior

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEFLIGHTSIZEBEHAVIOR), UMP uses the smaller
of the two flight sizes on a per send basis.

ume_flight_size ume_flight_size_bytes Result
Exceeded Exceeded ume_flight_size_behavior executes

Exceeded Not Exceeded ume_flight_size_behavior executes

Not Exceeded Exceeded ume_flight_size_behavior executes

Not Exceeded Not Exceeded No flight size sending restriction

When using stores in a Quorum/Consensus configuration, intragroup (../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMERETENTIONINTRAGROUPSTABILITYBEHAVIOR)
and intergroup (../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMERETENTIONINTERGROUPSTABILITYBEHAVIOR)
stability settings affect whether UMP considers a messages in flight. Consider a case with three stores in a single QC
group, and two receivers. Given the default configuration, until a source receives a stability notification from two of
the three stores, UMP considers a given message in-flight. In addition, if you set
ume_retention_unique_confirmations

(../Config/config.html#SOURCEUMERETENTIONUNIQUECONFIRMATIONS) to 2, that same message would
be considered in flight until the source receives two stability notifications AND two delivery confirmation
notifications. See also Sources Using Quorum/Consensus Store Configuration.

Note: The UMP flight size mechanism operates on a per message basis, not a per fragment basis.

Note: The UMP flight size bytes mechanism operates with only payload data. UM or network overhead is not
included in the byte count.

4.1.2.1.1. Blocking Message Sends That Exceed the Flight Size

By default, when a source sends a message that exceeds it’s flight size, the call to send blocks. For example, suppose
the flight size is set to 1. The first send completes but before the source receives a stability notification or delivery

19

The Ultra Messaging® Guide for Persistence and Queuing

confirmation, it initiates a second call to send. If the source uses a blocking send, the send call blocks until the first
message stabilizes. If the source uses a non-blocking send, the send returns an LBM_EWOULD_BLOCK.

4.1.2.1.2. Notification of Message Sends That Exceed the Flight Size

Alternatively, ume_flight_size_behavior

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEFLIGHTSIZEBEHAVIOR) can be set to notify
your application when a message send surpasses the flight size. A send that exceeds the configured flight size
succeeds and also triggers a flight size notification, indicating that the flight size has been surpassed. Once the
number of in-flight messages falls below the configured flight size, another flight size notification source event is
triggered, this time, informing the application that the number of in-flight messages is below the source’s flight size.

4.1.3. Receiver Recovery

Figure 7 illustrates receiver recovery.

Figure 7. UMP Messages Recovery

Receivers unicast retransmission requests. If the store has the message, it unicasts the retransmission to the receiver.
If it does not have the message and is configured to forward the request to the source (See
retransmission-request-forwarding in Options for a Topic’s ume-attributes Element), it unicasts the
retransmission request to the source. If the source has the message, it unicasts the retransmission directly to the
receiver.

UM sends retransmissions from a thread separate from the main context thread so as not to impede live message data
processing. The <store> configuration option, retransmission-request-processing-rate, sets the store’s
capacity to process retransmission requests. The retransmission thread processes requests off a retransmission queue
which is set at 4 times the size of retransmission-request-processing-rate. The following UM Web
Monitor statistics record retransmission activity. See UM Web Monitor Store Page.

• Retransmission requests received rate

20

The Ultra Messaging® Guide for Persistence and Queuing

• Retransmission requests served rate

• Retransmission requests dropped rate

• Total retransmission requests dropped since store startup

4.2. Receiver-paced Persistence Operations
Receiver-paced Persistence (RPP) refers to different message retention behavior for designated receivers. You enable
RPP with UM configuration options. No special API calls are needed. RPP differs from UMP’s default source-paced
persistence in the following ways.

• The repository must be configured to allow RPP and sources and receivers must be configured to request RPP
behavior during registration.

• Sources can modify specific repository configuration options that pertain to RPP.

• The repository retains RPP messages until all RPP receivers acknowledge consumption. The repository maintains
an accurate count of all RPP receivers.

• Late Joining receivers cannot receive all previously sent topic messages, only those unconsumed by all RPP
receivers. Late Joining receivers can always start at the current message retained by the repository, defined as the
earliest message not consumed by all RPP receivers.

• Sources must also configure their flight size in bytes, and optionally, in message count. By using a total bytes flight
size, the store can keep track of exactly how must space it has available and not send stability acknowledgements
if new messages would exceed the available space, which would endanger the receipt of all messages by all RPP
receivers. See UMP Flight Size.

In addition, a disk write delay interval for the repository, available for Source-paced Persistence as well, improves
performance by preventing unnecessary disk activity.

This section discusses the following topics.

• RPP Registration

• RPP Normal Operations

• RPP Message Recovery

• RPP Deregistration

• Implementing RPP

• Example RPP Configuration Files

• RPP Cross Feature Functionality

4.2.1. RPP Registration

If a source sets ume_receiver_paced_persistence
(../Config/ultramessagingpersistenceoptions.html#SOURCEUMERECEIVERPACEDPERSISTENCE), its topic
becomes a RPP topic. When the source registers with the store, the source’s repository also becomes a RPP
repository. Receivers registering with a store on the RPP topic become RPP receivers.

21

The Ultra Messaging® Guide for Persistence and Queuing

Figure 8. RPP Registration

A source registration request includes the following.

• Designation of a RPP topic (LBMC_UME_PREG_FLAG_REGISTER flag)

• Reconfigured repository configuration option values. Possible options are the 3 repository size options,
repository-allow-ack-on-reception, repository-disk-write-delay and
source-flight-size-bytes-maximum.

• Re-registration must request same configuration options or the store rejects the request.

Receiver registration request includes its designation as a RPP receiver (LBMC_UME_PREG_FLAG_REGISTER
flag).

The repository’s registration response to both a source and a receiver acknowledges RPP mode.

4.2.1.1. Late Registering Receiver

Late joining receivers that register after the first RPP topic message has been sent cannot receive any messages sent
prior to their registration, except for messages not yet consumed by all RPP receivers. This behavior also applies to
the very first receiver of a RPP group that registers after the source sends the first message. Any messages published
prior to RPP receiver registration are not available for recovery.

4.2.1.2. Early Exiting Receiver

Should a registered receiver’s activity timer expire and be declared by the repository to be inactive, the repository
retains all messages published since the receiver’s last acknowledged message (or initial sequence number if no
messages were acknowledged) until its receiver state lifetime expires and the repository deletes the receiver state
information. Deleting receiver state removes all knowledge of the receiver from the repository. As a result, the
repository also deletes all messages being held solely for this receiver.

Should an early exiting receiver reregister (or otherwise become active) before the expiration of its state lifetime, that
receiver can recover all messages retained for that receiver.

22

The Ultra Messaging® Guide for Persistence and Queuing

4.2.1.3. UMP Version RPP Compatibility Matrix

The following table indicates the result of registration requests across UMP versions.

Version/Object Pre-ver. 5.3 Store Ver. 5.3 RPP Store Ver. 5.3 Non-RPP Store
Pre 5.3 Source Granted Rejected * Granted *

5.3 RPP Source Granted - Source Error Granted * Rejected *

5.3 Non-RPP Source Granted Rejected * Granted *

Pre 5.3 Receiver Granted Rejected Granted

5.3 RPP Receiver Granted - Receiver Error Granted Rejected

5.3 Non-RPP Receiver Granted Rejected Granted

• Granted - Source Error indicates that the store granted the registration but the source detected that RPP behavior
was not acknowledged by the store.

• Granted - Receiver Error indicates that the store granted the registration but the receiver detected that RPP
behavior was not acknowledged by the store.

• * Refers only to the re-registration of a source with an existing source repository because the source determines
the repository’s behavior for new registrations.

4.2.2. RPP Normal Operations

Since all RPP receivers must receive all messages, message overruns at the store or receiver must be prevented by
regulating the sending pace of the source. The store uses the source’s flight size (bytes) to regulate the source’s
speed, by withholding stability acknowledgements if the repository does not have at least one flight size available.

1. Sources transmit data to receivers and store repositories at the same time over UM multicast or unicast transport
protocols.

2. When a disk repository receives a message, it holds the message in memory cache before it writes the message
to disk. The repository sends a stability notification to the source after it writes the message to disk. Memory
repositories send the stability notice upon reception. See also Acknowledge on Reception and Receiver
Acknowledgement and Flight Size below.

23

The Ultra Messaging® Guide for Persistence and Queuing

Figure 9. RPP Stability Acknowledgement

3. If the source desires delivery confirmation, receivers unicast acknowledgements directly to the source letting the
source know of message consumption as well.

The following also affect when a repository sends a stability acknowledgement to the source.

• Acknowledge on Reception - If you configure the repository for repository-allow-ack-on-reception and
the source also sets ume_repository_ack_on_reception

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEREPOSITORYACKONRECEPTION), the
repository sends a stability acknowledgement to the source immediately upon reception. If the disk write has not
already been initiated, UMP does not write the message to disk.

Figure 10. RPP Acknowledge on Reception

• Receiver Acknowledgement - If a repository receives acknowledgements from all receivers before writing the
message to disk, it immediately sends a stability acknowledgement to the source. If the disk write has not already

24

The Ultra Messaging® Guide for Persistence and Queuing

been initiated, UMP does not write the message to disk.

Figure 11. RPP Receiver Acknowledgement

• Write Delay - The repository option, repository-disk-write-delay, allows the repository to hold messages in
memory cache longer before persisting them to disk. This delay increases the probability that all RPP receivers
acknowledge message consumption, eliminating the need to persist the message to disk.

• Flight size - A disk repository only sends stability acknowledgement to the source if its memory cache has at least
one flight size (in both messages and bytes) available. A memory repository also sends stability acknowledgement
if it has at least one flight size (in both messages and bytes) available. A lack of available space in the repository
blocks the source until the repository reclaims the necessary storage space and sends a stability acknowledgement.

For memory store repositories, the behaviors Acknowledge on Reception, Receiver Acknowledgement and Write
Delay do not apply.

4.2.3. RPP Message Recovery

An RPP source repository retains messages until all RPP receivers acknowledge receipt of the message. Therefore an
RPP receiver can only recover messages that have not been consumed by all RPP receivers. It is important to note
that an RPP receiver joining after other RPP receivers have already joined and after messages have already been sent
can only be guaranteed to recover messages sent subsequent to its joining.

4.2.4. RPP Deregistration

You can deregister either sources or receivers using deregistration APIs, (lbm_src_ume_deregistration(),
lbm_rcv_ume_deregistration() and lbm_wrcv_ume_deregistration()). UM deletes the state of
deregistered objects. If you deregister a RPP receiver, UMP automatically updates the number of receiver
acknowledgements required to maintain RPP behavior. The store issues Deregistration Successful events for every
source or receiver that deregisters. See UMP and UMQ Events.

Applications should be cautious about using the deregistration APIs to deregister RPP sources or receivers. These
APIs can be disruptive to RPP.

25

The Ultra Messaging® Guide for Persistence and Queuing

• lbm_src_ume_deregistration() also deletes any persisted RPP messages in the source’s repository. A source
application should only use lbm_src_ume_deregistration() if it uses delivery confirmation from the
receiver and it knows all messages have been delivered. The source is blocked after deregistering and and must
restart in order to register again with the RPP store.

• Deregistering an RPP receiver with lbm_rcv_ume_deregistration() removes the receiver from the list of
RPP receivers maintained by the repository. It is no longer part of the persistence operation, but is a valid UM
receiver, able to receive messages, but unable to acknowledge message consumption to the repository. Any
messages not yet confirmed for that receiver are unrecoverable. The receiver must restart in order to register again
with the RPP repository.

• Deregistering an RPP wildcard receiver with lbm_wrcv_ume_deregistration() deregisters all individual
topic receivers receiving messages on topics that match the wildcard pattern. Individual topic receivers can still
receive messages after deregistering, but cannot acknowledge message consumption. The wildcard receiver must
restart in order to register again with the RPP store.

4.2.5. Implementing RPP

Follow the procedure below to configure Receiver-paced Persistence.

1. Set ume_receiver_paced_persistence

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMERECEIVERPACEDPERSISTENCE) for
sources and receivers in a UM configuration file. If only certain sources or receivers in a context are RPP, use
lbm_*setopt()l in the source or receiver application or use Ultra Messaging Manager to specify RPP in an
UM XML configuration file.

2. Set repository-allow-receiver-paced-persistence = 1 for the repository in the umestored XML
configuration file.

3. Coordinate ume_flight_size_bytes

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEFLIGHTSIZEBYTES) between the repository
and the source. Set the maximum flight size with the repository option,
source-flight-size-bytes-maximum. Sources can reconfigure the repository’s
source-flight-size-bytes-maximum to a value less than or equal to the maximum.

4. Optional. Coordinate the ume_repository_ack_on_reception

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEREPOSITORYACKONRECEPTION)
between the repository and the source. If the repository has repository-allow-ack-on-reception enabled
(1), the source can choose to keep it enabled or turn it off (ume_repository_ack_on_reception
(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEREPOSITORYACKONRECEPTION) = 0). If
the repository has repository-allow-ack-on-reception disabled (0), the source cannot turn it on.

5. Optional. If the repository is a disk repository (repository-type = disk or reduced-fd), set the maximum write
delay with the repository option, repository-disk-write-delay. Sources can reconfigure the repository’s
repository-disk-write-delay to a value less than or equal to the maximum configured for the repository
with ume_write_delay (../Config/ultramessagingpersistenceoptions.html#SOURCEUMEWRITEDELAY).

6. Optional. Coordinate repository size options between the source and repository. If you wish to use the
repository’s values, you do not need to configure source configuration values. The repository sets a maximum
for these three options. The source can reconfigure the repository’s options with values less than or equal to the
maximum configured for the repository using the following UM configuration options.

26

The Ultra Messaging® Guide for Persistence and Queuing

• ume_repository_size_threshold

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEREPOSITORYSIZETHRESHOLD)

• ume_repository_size_limit

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEREPOSITORYSIZELIMIT)

• ume_repository_disk_file_size_limit

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEREPOSITORYDISKFILESIZELIMIT)

4.2.6. Example RPP Configuration Files

The sample configuration files shown below show how a store configuration file establishes certain RPP option
values and the source can reconfigure them via a UM configuration file. Although only two files appear below, this
configuration represents two, single-store quorum/consensus groups and one UM context. A second umestored

configuration file would be required for the store store1rpp containing options and values identical to store0rpp.

4.2.6.1. UM Configuration File

The following example UM configuration file contains RPP options in the ##Persistence Options### section.

• The source uses the same repository size values as the store. In this case, you do not need to specify these option
values again in the source’s UM Configuration File. They appear in this file for the sake of completeness.

• The source reconfigures ume_flight_size_bytes to 1,000,000 bytes, which is less than the repository’s 4 MB
default. (The source can reconfigure this option to a value less than or equal to the repository’s configured value.)

• The source reconfigures ume_write_delay from the default of 0 ms to 1000 ms or 1 second.

• The option, ume_session_id 5353, is commented out because this file specifies RegIDs 2929 and 2930,
respectively, for the stores in the ume_store_name

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMESTORENAME) option. The option,
ume_session_id (../Config/ultramessagingpersistenceoptions.html#CONTEXTUMESESSIONID), appears in
this file as a reminder that you can use either RegIDs or Session IDs, but not both.

#Sample UM Configuration File, UMP Version 5.3
#Major Options
source transport lbtrm
in order and reassembled
receiver ordered_delivery 1
#Multicast Resolver Network Options
context resolver_multicast_address 225.8.17.29
context resolver_multicast_interface 10.29.3.0/24
Transport LBT-RM Netowrk Options
source transport_lbtrm_multicast_address 225.8.17.30
context transport_lbtrm_multicast_address_low 225.12.17.10
context transport_lbtrm_multicast_address_high 225.12.17.14
#Transport LBT-RM Operation Options
context transport_lbtrm_data_rate_limit 10000000
context transport_lbtrm_retransmit_rate_limit 5000000
Transport LBT-RM Reliability Options
receiver transport_lbtrm_nak_initial_backoff_interval 40000

27

The Ultra Messaging® Guide for Persistence and Queuing

receiver transport_lbtrm_nak_initial_backoff_interval 500
receiver transport_lbtrm_nak_generation_interval 10000
##Turn off NAKs
receiver transport_lbtrm_send_naks 0
#Request Network Options
context request_tcp_port_low 55000
context request_tcp_port_high 55500

Persistence Options
source ume_store_group 0:1
source ume_store_name store0rpp:2929:0
source ume_store_group 1:1
source ume_store_name store1rpp:2930:1
source ume_store_behavior qc
source ume_flight_size 500
source ume_flight_size_bytes 1000000
source ume_receiver-paced-persistence 1
source ume_repository_size_threshold 104857600
source ume_repository_size_limit 209715200
source ume_repository_disk_file_size_limit 1073741824
source ume_repository_ack_on_reception 1
source ume_write_delay 1000
receiver ume_receiver-paced-persistence 1
receiver ume_explicit_ack_only 1
source ume_proxy_source 1
#source ume_session_id 535353
context ume_source_liveness_timeout 4000
context ume_receiver_liveness_interval 1000
source ume_confirmed_delivery_notification 1

4.2.6.2. umestored Configuration File

The following example store configuration file contains RPP options in the ABC* topic section.

• The store has raised the repository-size-limit from the default of 48 MB to 200 MB, the
repository-size-threshold from the default of 0 to 100 MB, and the
repository-disk-file-size-limit from the default of 100MB to 1 GB.

• The store does not specify a source-flight-size-bytes-maximum, using the default of 4 MB.

<?xml version="1.0"?>
<ume-store version="1.2">

<daemon>
<log>/configs/stores/umestored1/umestored.log</log>
<lbm-license-file>/bin/umq_exp_license.txt</lbm-license-file>
<lbm-license-file>/bin/lbm_ume_umq_udx_rdma_license.txt</lbm-license-file>
<lbm-config>/configs/lbm_4_store.cfg</lbm-config>
<pidfile>/configs/stores/umestored1/umestored.pid</pidfile>
<web-monitor>*:15404</web-monitor>

</daemon>
<stores>

<store name="rpp-ump-test-store-1" port="14667">

28

The Ultra Messaging® Guide for Persistence and Queuing

<ume-attributes>
<option type="store" name="disk-cache-directory" value="/stores/store1/cache"/>
<option type="store" name="disk-state-directory" value="/stores/store1/state"/>
<option type="store" name="allow-proxy-source" value="0" />
<option type="store" name="context-name" value="store1rpp"/>

</ume-attributes>
<topics>

<topic pattern="ABC*" type="PCRE">
<ume-attributes>

<option type="store" name="repository-allow-receiver-paced-persistence" value="1"/>
<option type="store" name="repository-type" value="disk"/>
<option type="store" name="repository-size-threshold" value="104857600"/>
<option type="store" name="repository-size-limit" value="209715200"/>
<option type="store" name="repository-disk-file-size-limit" value="1073741824"/>
<option type="store" name="repository-allow-ack-on-reception" value="1"/>
<option type="store" name="repository-disk-write-delay" value="1000"/>
<option type="store" name="receiver-new-registration-rollback" value="0"/>
<option type="store" name="source-activity-timeout" value="120000"/>
<option type="store" name="receiver-activity-timeout" value="30000"/>
<option type="store" name="retransmission-request-forwarding" value="0"/>

</ume-attributes>
</topic>

</topics>
</store>

</stores>
</ume-store>

4.2.7. RPP Cross Feature Functionality

UM Feature Supported Notes
UMP Proxy Sources Yes

UM Gateway No Source-paced Persistence and
Receiver-paced Persistence are currently
not supported over a UM Gateway.

UM Transports Yes

Multi-Transport Threads No

Off-Transport Recovery Yes

Late Join Yes With the new store option,
Acknowledge on Reception, sources
may not retain sufficient sent messages
to provide an effective Late Join
capability.

HF Yes

HFX Yes

Wildcard Receivers Yes

29

The Ultra Messaging® Guide for Persistence and Queuing

UM Feature Supported Notes
Message Batching Yes

Ordered Delivery Yes

Request/Response Yes

Multicast Immediate
Messaging (MIM)

No MIM messages are not persisted and
have no impact on RPP.

Source Side Filtering Yes

Self-Describing
Messaging (SDM)

Yes

Pre-Defined Messaging
(PDM)

Yes

UM Spectrum Yes

Monitoring/Statistics Yes

Acceleration - DBL Yes

Acceleration - UD Yes

Implicit/Explicit
Acknowledgements

Yes

Registration ID/Session
Management

Yes

Fault Tolerance - Round
Robin

No If a RPP source attempts to register to a
source repository configured for Round
Robin fault tolerance, lbm_src_create()
returns an error.

Fault Tolerance - Quorum
Consensus

Yes

UM SNMP Agent Yes

Ultra Messaging
Manager

Yes

Ultra Messaging Cache Yes

Ultra Messaging Desktop
Services

No

4.3. Queuing Operations
The communication between source and receiver applications and UMQ instances follow many of the same patterns
as the communication within UMP persistence applications. However to reduce the configuration of queue sources
and receivers, some Queue-specific activities such as registration or queue resolution operate automatically and
become active when the following two conditions occur.

1. The UM Configuration file contains the option, umq_queue_name
(../Config/ultramessagingqueuingoptions.html#SOURCEUMQQUEUENAME).

30

The Ultra Messaging® Guide for Persistence and Queuing

2. A umestored is running configured for queuing. A queue specification contains not only queue information,
but also the application sets receiving queue messages along with the topics being sent to the queue.

This section discusses the following topics.

• Registration and Assignment

• Message Paths

• Queue Feedback

• UMQ Flight Size

• Topics and Queues

• Queue Resolution

4.3.1. Registration and Assignment

Source and receiver applications in a queuing operation use the same registration and registration response behaviors
as sources and receivers in a persistence operation. (See UMP Registration.) The contents of the actual messages for
registration and registration response for queues are slightly different, but the message paths are essentially the same.

After a receiver registers with a Queue, the Queue issues an Assignment ID, which identifies the receiver. The Queue
assigns this ID to all messages queued for the receiver’s topic. The Assignment feature implements the OAOO
delivery feature. The Queue assigns messages to a receiver after any one of the following events.

• A message arrives at the Queue. (If no receiver interested in the topic has registered, the Queue holds the message
until a receiver interested in the message’s topic registers with the Queue.)

• A receiver registers with the Queue. (Obviously, the Queue must possess messages for the receiver’s topic.)

• The Queue receives a Consumption Report from a receiver.

4.3.1.1. Source Application Registration

At a high level, the following registration activity occurs before a source application submits messages to a queue
topic.

1. umq_queue_name (../Config/ultramessagingqueuingoptions.html#SOURCEUMQQUEUENAME) must be set
for queue Q1.

2. umestored must be started and configured for queue Q1 and topic SubjectA.

3. The source application creates a source object for topic SubjectA.

4. The source application’s context automatically registers with Q1 if not already registered.

5. The Queue sends a Queue Registration Complete context event to the source application.

6. The source object automatically registers as SubjectA with Q1.

7. The Queue sends a Queue Registration Complete source event to the source application.

31

The Ultra Messaging® Guide for Persistence and Queuing

4.3.1.2. Receiver Application Registration

At a high level, the following registration activity occurs before a receiver application can receive queue topic
messages.

1. umestored must be started and configured for queue Q1 and topic SubjectA.

2. The receiver application creates a receiver object for topic SubjectA.

3. The receiver discovers through topic resolution that Q1 has messages for topic SubjectA. (Topic advertisements
in a queuing operation contain the queue name.)

4. The receiver application’s context automatically registers with Q1 if not already registered.

5. The Queue sends a Queue Context Registration Complete message to the receiver application after the
receiver application’s context registers.

6. The receiver object automatically registers as SubjectA with Q1 If not using UMQ Sessions IDs, the receiver
includes its Assignment ID with the registration request.

7. The Queue sends a Queue Receiver Registration Complete message to the receiver application. If using
UMQ Sessions IDs, the Queue includes the receiver’s Assignment ID with the registration complete message.

4.3.2. Message Paths

Depending on the data dissemination model in use, the messaging paths between sources, receivers, and queue
instances may vary quite a bit.

4.3.2.1. Serial Queue Dissemination (SQD)

The Serial Queue Dissemination (SQD) model (Serial Queue Dissemination (SQD)) uses direct serial unicast from
the queue to the individual receivers. Receivers only receive the messages they are assigned to process. The term
serial indicates that the queue sends each message via unicast only to the message’s assigned receivers (one in each
application set). This dissemination model creates less work for receivers than either PQD or SD, which require
receivers to decipher control information to determine the messages they must consume.

32

The Ultra Messaging® Guide for Persistence and Queuing

Figure 12. Serial Queue Dissemination (SQD)

4.3.2.2. Parallel Queue Dissemination (PQD)

The Parallel Queue Dissemination (PQD) model (Parallel Queue Dissemination (PQD)) uses normal UM transport
sessions to disseminate messages. In fact, the queue uses individual UM topics to send messages to all receivers. In
addition, the Queue sends control information (Receiver Control Record - RCR) over a specific topic, configured
with the control-topic-name Queue option in the Queue’s XML configuration file. (See Queue Element.
Receivers listen to all data and control information and deliver all their assigned messages to the application,
ignoring all other messages.

Figure 13. Parallel Queue Dissemination (PQD)

33

The Ultra Messaging® Guide for Persistence and Queuing

4.3.2.3. Source Dissemination (SD)

The Source Dissemination (SD) model also uses normal UM transport sessions from source application to send
message data to the receivers. The queue sends control information (Receiver Control Record - RCR) as in the PQD
model that instructs receivers via assignments what to process and what to ignore. However, the queue does not send
data messages on topics.

Figure 14. Source Dissemination (SD)

4.3.3. Queue Feedback

Receiver applications as well as queue instances provide various forms of feedback. Queue instances send Stability
Acknowledgements directly back to UMQ source applications to indicate successful submission of messages to the
queue. Receiver applications signal message consumption by sending Consumption Reports back to the queue
instances. See Queue Feedback.

34

The Ultra Messaging® Guide for Persistence and Queuing

Figure 15. Queue Feedback

4.3.4. UMQ Flight Size

UMQ supports a flight size mechanism similar to UMP Flight Size that tracks messages in flight from a particular
source and responds when a send would exceed the configured flight size (umq_flight_size
(../Config/ultramessagingqueuingoptions.html#SOURCEUMQFLIGHTSIZE)). You can configure
umq_flight_size_behavior

(../Config/ultramessagingqueuingoptions.html#SOURCEUMQFLIGHTSIZEBEHAVIOR) to either:

• block any sends that would exceed the flight size or,

• allow the sends while notifying your application.

UMQ considers a sent message in-flight until the source receives the configured number of stability
acknowledgements from the queue(s). (No delivery confirmation exists in UMQ.) As with UMP
Quorum/Consensus, intragroup (../Con-
fig/ultramessagingqueuingoptions.html#SOURCEUMQRETENTIONINTRAGROUPSTABILITYBEHAVIOR) and
intergroup (../Con-

fig/ultramessagingqueuingoptions.html#SOURCEUMQRETENTIONINTERGROUPSTABILITYBEHAVIOR)
stability settings affect whether UMQ considers a messages in flight.

UMQ also supports a flight size mechanism for Multicast Immediate Messages (MIM). You configure MIM flight
size with the context scope configuration options, (context) umq_flight_size
(../Config/ultramessagingqueuingoptions.html#CONTEXTUMQFLIGHTSIZE) and (context)
umq_flight_size_behavior
(../Config/ultramessagingqueuingoptions.html#CONTEXTUMQFLIGHTSIZEBEHAVIOR).

Note: A source can be configured to publish via UMP and UMQ. In either of these cases, flight sizes and
behaviors can be configured differently with the appropriate configuration options. If a source publishes via both
UMP and UMQ and the flight size behaviors for each are set to block, a send that exceeds either flight size will
block.

35

The Ultra Messaging® Guide for Persistence and Queuing

4.3.5. Topics and Queues

Sources send messages on topics and receivers listen on topics for messages. Similarly, UMQ source applications
submit messages to queues with each message being sent on a specific topic. UMQ receiver applications listen on
topics for messages. This means that Application Sets and the once-and-only-once (OAOO) behavior are on a per
topic basis. A potentially helpful analogy is a queue may be the name of a mailbox and a topic may be the subject of
an individual letter.

4.3.6. Queue Resolution

Unlike UMP persistent messaging, queues use a queue resolution mechanism built upon UM topic resolution for
service location. A UMQ source application does not have to know the IP address and TCP port for each queue
instance. Instead, all it requires is the name of the queue. This provides some flexibility in deployment for moving
queue instances around and requires much less static information to be maintained for configuration of sources and
receivers.

4.3.7. Queue Browser

UMQ supports the JMS Queue Browser specification with the following C API (../API/index.html) and Java API
(../JavaAPI/html/index.html) calls.

Action C API Java API
Retrieve a list of topics and
application sets from a running
queue daemon.

lbm_ctx_umq_queue_topic_list() LBMContext.queueTopicList()

Retrieve a list of
currently-enqueued message IDs
from a running queue daemon.

lbm_rcv_umq_queue_msg_list() LBMReceiver.queueMessageList()

Retrieve specific messages by
message ID from a running queue
daemon.

lbm_rcv_umq_queue_msg_retrieve() LBMReceiver.queueMessageRetrieve()

The following UM configuration options apply to Queue Browsing.

• create_queue_browser_context

(../Config/ultramessagingjmsoptions.html#CONNECTIONFACTORYCREATEQUEUEBROWSERCONTEXT)

• queue_browser_creation_delay

(../Config/ultramessagingjmsoptions.html#CONNECTIONFACTORYQUEUEBROWSERCREATIONDELAY)

• queue_browser_timeout

(../Config/ultramessagingjmsoptions.html#CONNECTIONFACTORYQUEUEBROWSERTIMEOUT)

4.3.7.1. Queue Browser Authentication

UM queues can authenticate UM applications using the Ultra Messaging JMS Queue Browser feature. UM
applications can also authenticate the queue.

36

The Ultra Messaging® Guide for Persistence and Queuing

Note: Ultra Messaging JMS users do not need to configure authentication for a Queue Browser. UMQ uses a
internal default user, jmsuser, for JMS applications which requires no configuration.

The use of any of the queue browser APIs mentioned in Queue Browser, initiates authentication automatically
between your application and the queue. You can require authentication between your application and the queue,
ensuring that authentication must be successful before queue browsing can occur.

You require authentication by setting the UM Configuration option, umq_require_queue_authentication

(../Config/ultramessagingqueuingoptions.html#CONTEXTUMQREQUIREQUEUEAUTHENTICATION), to the
default setting of 1 (authentication required). In addition, set the queue (umestored) configuration option,
require-client-authentication to the default value of 1.

If you set ... Then,
umq_require_queue_authentication = 1 and
require-client-authentication = 0

Authentication fails. (Possible error code,
Core-5990-1) Your application does not respond to
browsing command responses sent by the queue.

umq_require_queue_authentication = 0 and
require-client-authentication = 1

Authentication fails. (Possible error code,
CoreApi-5688-4135) Your application may send
queue browsing commands to the queue, but the
queue responds with an authentication failure.

umq_require_queue_authentication = 0 and
require-client-authentication = 0

Authentication can either succeed or fail without
effect. Queue Browsing occurs.

4.3.7.2. Setting Queue Browser Authentication Credentials

Perform the following two tasks to set the Queue Browser authentication credentials.

1. Use the C API lbm_auth_set_credentials() or the Java API LBMAuthUserInfo() in your application to
create users and passwords in your application. A Credential callback provides a way for you to supply alternate
credentials in the event of authentication failure.

2. Generate a password.xml file that contains the usernames and passwords used by your application. Place
password.xml in the directory configured in the umestored XML configuration file with the option,
lbm-password-file. See Daemon Element. The queue accesses this file during authentication to verify
usernames and passwords. You can generate password.xml in one of the two following ways.

• Use the lbm_authstorage_*() API calls in an auxiliary application to create password.xml. This
application can import any existing user credentials (i.e. from LDAP). (No Java equivalent exists for these
functions.)

• Use the UMQ utility, /bin/lbmpwdgen to generate password.xml. Usage information appears within the
file. (This utility uses lbm_authstorage_*() API calls.)

A sample password.xml appears below. Notice that you can also create and assign user roles. In the sample you
may also notice that /bin/lbmpwdgen creates an anonymous user (<user name="">). UMQ requires this user
when authentication has not been enabled. You should not delete or edit this user.

37

The Ultra Messaging® Guide for Persistence and Queuing

<?xml version="1.0"?>
<um-configuration version="1.0">

<users>
<user name="userSmith">

<verifier>69A4aAE70US3NiuZr/TvAbSWztu5na5TbFo8bdHxU5.ILdMu8rLd5ragE3p4Qcuz/nXxAj6kGnwIF2JrKdCf704U/Lxs7jvK.b2uyOQoqKG</verifier>
<salt>3BmRWUznvzy0n2</salt>
<roles>

<role name="admin"></role>
<role name="normal"></role>

</roles>
</user>
<user name="">

<verifier/>
<salt/>
<roles>

<role name="admin"/>
</roles>

</user>
</users>
<roles>

<role name="admin">
<action>MSG_LIST</action>
<action>MSG_RETRIEVE</action>
<action>TOPIC_LIST</action>

</role>
<role name="normal">

<action>TOPIC_LIST</action>
</role>

</roles>
</um-configuration>

4.4. Ultra Load Balancing Operations
ULB, while similar in some ways to UMQ, differs in some other ways. This section provides some details on how
ULB works, and some comparisons with UMQ.

4.4.1. Parallel Source Dissemination (PSD)

ULB supports the Parallel Source Dissemination (PSD) dissemination model. In the figure below, note that the ULB
PSD model operates in a very similar way to the UMQ Parallel Queue Dissemination (PQD) model.

38

The Ultra Messaging® Guide for Persistence and Queuing

Figure 16. ULB Parallel Source Dissemination (PSD)

The key difference between ULB’s PSD model and UMQ’s is that with ULB, the source sends both the data and the
assignment/control information on the same transport session. ULB has no need for a control channel, as with UMQ.

ULB receivers, as with UMQ, send unicast Consumption Reports back to the source.

4.4.2. Source Fairness

ULB differs from UMQ somewhat in source "fairness". While UMQ decouples sources from receivers with a queue
-- and therefore avoids receiver overload -- ULB does not use a queue or other middleware, so sources could
conceivably combine to overload a receiver, because of the real-time nature of low-latency load balancing.

Therefore, ULB governs fairness between sources by using a) receiver feedback information and b) receiver portion
size, in concert with c) source configuration option umq_ulb_application_set_load_factor_behavior (../Con-
fig/ultramessagingqueuingoptions.html#SOURCEUMQULBAPPLICATIONSETLOADFACTORBEHAVIOR). For
more, see Queue Feedback and Receiver Portion Size.

4.4.3. Ultra Load Balancing Flight Size

ULB supports a flight size mechanism similar to UMP Flight Size and UMQ Flight Size that tracks messages in flight
from a particular source and responds when a send would exceed the configured flight size (umq_ulb_flight_size
(../Config/ultramessagingqueuingoptions.html#SOURCEUMQULBFLIGHTSIZE)). You can configure
umq_ulb_flight_size_behavior

(../Config/ultramessagingqueuingoptions.html#SOURCEUMQULBFLIGHTSIZEBEHAVIOR) to either:

• block any sends that would exceed the flight size or,

• allow the sends while notifying your application.

ULB considers a message in-flight until the source receives the MSG_COMPLETE notification from all application
sets. See also umq_ulb_events (../Config/ultramessagingqueuingoptions.html#SOURCEUMQULBEVENTS).

39

The Ultra Messaging® Guide for Persistence and Queuing

4.4.4. Indexed Ultra Load Balancing (ULB)

Indexed Ultra Load Balancing (ULB) is similar to Indexed Queuing. The source and receiver APIs are exactly the
same with only minor differences (e.g., receiver event types remain the same as for indexed queueing, but have a flag
set indicating that the source of the event was a ULB source). There are two important differences to note:

• Assignment of indices is done at the source, on a per-source basis, with no global coordination of index
assignments, so multiple sources sending on the same index may happen to assign the index to different receivers.

• The advanced allow/deny configuration rules and configuration option inheritance available via the
umestored’s Index Rules Element for indexed queueing are not available for indexed ULB.

4.5. UMP and UMQ Events
The Ultra Messaging API provides a number of events, callbacks, messages, functions, and settings. The API
reference (C API (../API/index.html), Java API (../JavaAPI/html/index.html) or .NET API
(../DotNetAPI/doc/Index.html)) can be used to see the true extent of the API. In order to design successful
applications, though, a high level understanding of the events and callbacks is essential.

• Events - Source events occur on a per source basis.

• Callbacks - Source and receiver callbacks called directly from UMP and UMQ internal operation and usually
demands a return value be filled in and/or are informational in nature. Typically, applications do very little
processing in callbacks.

• Messages - Messages to receivers can simply contain UMP or UMQ information or have impact on operation.

Some specific languages, such as C, Java, or C# may have specific nuances for the various events and callbacks. But,
by and large, an application should plan on having access to the items listed in the following sections. For details for
a particular language, consult the Ultra Messaging API documentation (C API (../API/index.html), Java API
(../JavaAPI/html/index.html) or .NET API (../DotNetAPI/doc/Index.html)).

4.5.1. Source Events

The following events and callbacks are available for source applications.

Event Name Type Description
Store Registration Success Source Event Delivered once a source has

successfully registered with a single
store. Event contains flags to show if
the source is "old" (i.e. a
re-registration) as well as the sequence
number that the source should use as
its initial sequence number when
sending, and the store information

40

The Ultra Messaging® Guide for Persistence and Queuing

Event Name Type Description
Store Registration Complete Source Event Delivered once a source has completed

registration with the required store(s).
This indicates the source may send as
it desires. Event contains the
consensus sequence number.

Store Registration Error Source Event Delivered once a source has received
an error from the store indicating the
requested registration was not granted.
Event contains an error message to
indicate what happened.

Queue Registration Complete Source Event Delivered once a source has completed
registration with the Queue. This
indicates the source may send as it
desires. Event contains the
Registration ID or Session ID.

Queue Registration Error Source Event Delivered once a source has received
an error from the Queue indicating the
requested registration was not granted.
Event contains an error message to
indicate what happened.

Store Message Stable Source Event Delivered once a message is stable at a
single store. Event contains the
message sequence number and
indicates if the the message meets
Intergroup and/or Intragroup stability
requirements. Also includes the store
information.

Queue Message Stability ACK Source Event Stability acknowledgement sent to the
source application by the Queue when
a message sent by the source is stable.
If the Queue is configured to persist
data to disk, the message is stable once
it has been written to the file.
Otherwise, the Queue acknowledges
the message upon receipt.

Queue Message ID Information Source Event The Queue assigns a unique ID to
every message in order to assign the
message to a receiver. This assignment
enforces OAOO delivery. The Queue
includes assignment information in the
control information sent to receivers in
a Parallel Queue Dissemination (PQD)
or Source Dissemination (SD) model.

41

The Ultra Messaging® Guide for Persistence and Queuing

Event Name Type Description
Delivery Confirmation Source Event Delivered once a message has been

confirmed as delivered and processed
by a receiving application. Event
contains the message sequence
number as well as indications whether
the message has met the unique
confirmations requirement. Also
contains the receiver’s Registration ID
or Session ID.

Store Unresponsive Source Event Delivered once a store is seen to be
unresponsive due to failure or network
disconnect. Event contains a message
with more details suitable for logging.
Sources using the unresponsive store
as their only store (not in
Round-Robin or Quorum/Consensus)
will be prevented from sending until
the store recovers.

Store Message Reclaimed Source Event Delivered once a message has passed
through retention and is about to be
released from memory or disk. Event
contains the message sequence
number. (Reclaim refers to storage
space reclamation.)

Store Forced Reclaim Callback Indicates a message is being forcibly
released because the memory size
limit (retransmit_retention_size_limit
(../Con-
fig/latejoinoptions.html#SOURCERETRANSMITRETENTIONSIZELIMIT))
has been exceeded. Event contains the
message sequence number.

Flight Size Notification Callback Indicates that the number of in-flight
messages for a source has exceeded or
fallen below the configured flight size
limit for a source. The event indicates
if the flight size has been exceeded
(OVER) by a new message send or
that a message recently stabilized has
reduced the number of in flight
messages to less than the flight size
limit (UNDER). Notification also
indicates if the event is for UMP,
UMQ or ULB.

42

The Ultra Messaging® Guide for Persistence and Queuing

Event Name Type Description
RPP Source Registration

Success

Source Event Delivered once a source has
successfully registered with a single
store as a RPP source. The event
contains either the RegID or Session
ID, the sequence number of the last
message stored for the source and
store information.

RPP Source Registration

Failure

Source Event Delivered once a source has received
an error from the store indicating the
requested registration was not granted.
Event contains an error message to
indicate what happened.

RPP Source Deregistration

Success

Source Event Delivered once a source successfully
deregisters from an individual store.
The event contains either the RegID or
Session ID, the sequence number of
the last message stored for the source
and store information.

RPP Source Deregistration

Complete

Source Event Delivered once UMP receives a
successful deregistration event from
all stores.

4.5.2. Receiver Events

The following callbacks and messages are available for receiver applications

Event Name Type Description
Store Registration Success Message Delivered once a receiver has

successfully registered with a single
store. Message contains flags to show
if the receiver is "old" (i.e. Not a new
registration) as well as the sequence
number that the receiver should use as
its low sequence number, and the store
information. In addition, the event
contains the source’s Registration ID
or Session ID and the receiver’s
Registration ID or Session ID.

Store Registration Complete Message Delivered once a receiver has
completed registration with the
store(s) required. This indicates the
receiver may now receive data.
Message contains the consensus
sequence number.

43

The Ultra Messaging® Guide for Persistence and Queuing

Event Name Type Description
RPP Receiver Registration

Success

Message Delivered once a receiver has
successfully registered with a single
store as a RPP receiver. Message
contains either the RegID or Session
ID, the sequence number of the last
message stored for the source and
store information.

RPP Receiver Registration

Failure

Message Delivered once a receiver has received
an error from the store indicating the
requested registration was not granted.
Event contains an error message to
indicate what happened.

RPP Receiver Deregistration

Success

Message Delivered once a receiver successfully
deregisters from an individual store.
The message contains either the
RegID or Session ID for the receiver
and the source, the sequence number
of the last message stored for the
source and store information.

RPP Receiver Deregistration

Complete

Message Delivered once UMP receives a
successful deregistration event from
all stores.

Queue Registration Complete Message Delivered once a receiver has
completed registration with the Queue.
Message contains assignment
information.

Store Registration Error Message Delivered once a receiver has received
an error from the store indicating the
requested registration was not granted.
Message contains an error message to
indicate what happened.

Queue Registration Error Message Delivered once a receiver has received
an error from the Queue indicating the
requested registration was not granted.
Message contains an error message to
indicate what happened.

Store Registration Change Message Delivered once a change in store
information is received from the
source. The extent of the change is
included in a message suitable for
logging.

44

The Ultra Messaging® Guide for Persistence and Queuing

Event Name Type Description
Queue Deregistration

Complete

Message Event delivered to a UMQ receiving
application by the Queue when a
receiver deregisters from a Queue by
calling
lbm_rcv_umq_deregister(). All
messages must be delivered to the
application before the Queue sends the
deregistration event. Deregistered
receivers cannot be assigned any new
messages.

Store Retransmission Message Retransmissions from recovery come
in as normal messages with a flag
indicating their status as a
retransmission.

Store Registration Function Callback Called once a receiver receives store
information from a source and UMP
desires to know the RegID to use for
the receiver. Callback passes the
source RegID, the store information,
and the source transport name. The
return value is the RegID that UMP
should request to use from the store.

Store Recovery Sequence

Number Function

Callback Called once registration is about to
complete and the low sequence
number must be determined. Callback
passes the highest sequence number
seen from the source and the
consensus sequence number from the
stores or sequence number from the
store if using round-robin.

Queue Index Assignment

Eligibility Start Complete

Message Event delivered to a UMQ receiving
application by the Queue when a
receiver becomes eligible for new
index assignments from a Queue as a
result of calling the
lbm_rcv_umq_index_start_assignment()

function.

45

The Ultra Messaging® Guide for Persistence and Queuing

Event Name Type Description
Queue Index Assignment

Eligibility Stop Complete

Message Event delivered to a UMQ receiving
application by the Queue when a
receiver becomes ineligible for new
index assignments from a Queue as a
result of calling the
lbm_rcv_umq_index_stop_assignment()

function. After this event is delivered,
a receiver no longer receives new
index assignments from the Queue.
Existing index assignments remain in
place.

Queue Index Assigned Message Event delivered to a UMQ receiving
application by the Queue when the
Queue assigns a receiver a new index.
After this event is delivered, the
receiver begins receiving messages on
the new index.

Queue Index Released Message Event delivered to a UMQ receiving
application by the Queue when the
Queue removes one of the receiver’s
existing index assignments. This
usually occurs after the receiver calls
lbm_rcv_umq_index_release().
As a result, the receiver no longer
receives any messages for the removed
index.

4.5.3. Context Events

The following events are available for the context of source and receiver applications.

Event Name Type Description
Queue Registration Complete Context Event Delivered once a source or receiver

application’s context has completed
registration with the Queue. A context
only needs to register once with a
Queue. Event contains the Registration
ID or Session ID.

Queue Registration Error Context Event Delivered once a source or receiver
application has received an error from
the Queue indicating the requested
registration was not granted. Event
contains an error message indicating
what happened.

46

The Ultra Messaging® Guide for Persistence and Queuing

Event Name Type Description
Instance List Notification Context Event Delivered once a queue instance has

changed. Event holds information
string.

Flight Size Notification Context Event Indicates that the number of in-flight
Multicast Immediate Messages has
exceeded or fallen below the
configured flight size limit. The event
indicates if the flight size has been
exceeded (OVER) by a new message
send or that a message recently
stabilized has reduced the number of
in flight messages to less than the
flight size limit (UNDER).

5. Enabling Persistence
In this section, we explain how to build a persistence messaging application by starting with a minimum source and
receiver and then adding UMP features incrementally. With the help of example source, this section explains the
following operations.

• Adding the UMP Store to a Source

• Adding Fault Recovery with Registration IDs

• Enabling Persistence Between the Source and Store

• Enabling Persistence in the Source

• Enabling Persistence in the Receiver

Prerequisite: You should understand basic Ultra Messaging concepts such as Sources and Receivers and the basic
methods for configuring them.

The following table lists all source files used in this section. You can also find links to them in the appropriate task.
The files can also be found in the /doc/UME directory.

Object Filename
Source Application ume-example-src.c

Receiver Application ume-example-rcv.c

Source Application 2 ume-example-src-2.c

Receiver Application 2 ume-example-rcv-2.c

Source Application 3 ume-example-src-3.c

Receiver Application 3 ume-example-rcv-3.c

UMP Store Configuration File ume-example-config.xml

47

The Ultra Messaging® Guide for Persistence and Queuing

5.1. Starting Configuration
We begin with the minimal source and receiver used by the QuickStart Guide (../QuickStart/index.html). To more
easily demonstrate the UMP features we are interested in, we have modified the QuickStart source and receiver in
the following ways.

• Modified the source to send 20 messages with a one second pause between each message

• Modified the receiver to anticipate 20 messages instead of just one

• Assigned the topic, UME Queue Example, to both the source and receiver

• Modified the receiver to not exit on unexpected receiver events

The last change allows us to better demonstrate basic operation and evolve our receiver slowly without having to
anticipate all the options that UMP provides up front.

Example files for our exercise are:

Object File
Source Application ume-example-src.c

Receiver Application ume-example-rcv.c

Note: Be sure to build ume-example-rcv.c and ume-example-src.c. Instructions for building them are at the
beginning of the source files.

5.2. Adding the UMP Store to a Source
The fundamental component of a UMP persistence solution is the persistent store. To use a store, a source needs to
be configured to use one by setting ume_store

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMESTORE) for the source. We can do that with the
following piece of code.

err = lbm_src_topic_attr_str_setopt(&attr, "ume_store", "127.0.0.1:14567");

This sets the UMP persistent store for the source to the store running at 127.0.0.1 on port 14567.

Note: If you desire to run a store on a different machine than where the source and receiver are run, then you
should replace 127.0.0.1 with the IP address (not hostname) of the machine running the UMP persistent store.

Example files for our exercise are:

Object Filename
Source Application ume-example-src.c

Receiver Application ume-example-rcv.c

UMP Store Configuration File ume-example-config.xml

48

The Ultra Messaging® Guide for Persistence and Queuing

After adding the ume-store specification to the source, perform the following steps.

1. Create the cache and state directories. $ mkdir umestored-cache ; mkdir umestored-state

2. Start up the store. $ umestored ume-example-config.xml

3. Start the Receiver. $ ume-example-rcv

4. Start the Source. $ ume-example-src

You should see a message on the source that says:

INFO: Source "UME Example" Late Join not set, but UME store specified. Setting Late Join.

This is an informational message from UMP and merely means Late Join was not set and that UMP is going to set it.

Notice that the receiver was not configured with any store information. That is because setting it on the source is all
that is needed. The receiver learns UMP store settings from the source through the normal UM topic resolution
process. Receivers don’t need to do anything special to leverage the usage of a store by a source.

5.3. Adding Fault Recovery with Registration IDs
If the source or receiver crashes, how does the source and receiver tell the store that they have restarted and wish to
resume where they left off? We need to add in some sort of identifiers to the source and receiver so that the store
knows which sources and receivers they are.

In UMP , these identifiers are called Registration IDs or RegIDs. UMP allows the application to control the use of
RegIDs as it wishes. This allows applications to migrate sources and receivers not just between systems, but between
locations with true, unprecedented freedom. However, UMP requires an application to be careful of how it uses
RegIDs. Specifically, an application must not use the same RegID for multiple sources and/or receivers at the same
time.

Now let’s look at how we can use RegIDs to provide complete fault recovery of sources and receivers. We’ll first
handle RegIDs in the simplest manner by using static IDs for our source and receiver. For the source, the RegID of
1000 can be added to the existing store specification by changing the string to

127.0.0.1:14567:1000

This yields the source code in ume-example-src-2.c

For the receiver, we accomplish this in two steps.

1. Set a callback function to be called when we desire to set the RegID to 1100. This is done by declaring the
callback function, app_rcv_regid_callback, which will return the RegID value 1100 to UMP .

2. Inform the UMP configuration for the receiver to use this callback function. That is accomplished by setting the
ume_registration_extended_function (../Con-

fig/ultramessagingpersistenceoptions.html#RECEIVERUMEREGISTRATIONEXTENDEDFUNCTION)
similar to example code below.

lbm_ume_rcv_regid_ex_func_t id; /* structure to hold registration function information */
id.func = app_rcv_regid_callback; /* the callback function to call */
id.clientd = NULL; /* the value to pass in the clientd to the function */
err = lbm_rcv_topic_attr_setopt(&attr, "ume_registration_extended_function", &id, sizeof(id));

49

The Ultra Messaging® Guide for Persistence and Queuing

Once this is done, the receiver has the ability to control what RegID it will use. This yields the source code in
ume-example-rcv-2.c.

With these in place, you can experiment with killing the receiver and bringing it back (as long as you bring it back
before the source is finished), as well as killing the source and bringing it back.

The restriction to this initial approach to RegIDs is that the RegIDs 1000 and 1100 may not be used by any other
objects at the same time. If you run additional sources or receivers, they must be assigned new RegIDs, not 1000 or
1100. Let’s now take a more sophisticated approach to RegIDs that will allow much more flexibility

5.4. Enabling Persistence Between the Source and Store
Let’s refine our source to include some desired behavior following a crash. Upon restart, we want our source to
resume with the first unsent message. For example, if the source sent 10 messages and crashed, we want our source
to resume with the 11th message and continue until it has sent the 20th message.

Accomplishing this graceful resumption requires us to ensure that our source is the only source that uses the RegID
assigned to it. The same RegID should be used as long as the source has not sent the 20th message regardless of any
crashes that may occur. We can do this with the following changes to the store:

1. Configure the store to assign a RegID when the source starts.

2. Configure the store to save the RegID to disk so that it can be used after a crash.

In addition to these two changes to the store’s configuration, the following two sections explain the changes needed
for the source and receiver, which become fairly easy due to the events that UMP delivers to the application during
UMP operation.

Note: While the following sections are instructive about how UMP uses RegIDs to provide persistence, RegIDs
can also be managed easily with the use of Session IDs. See Managing RegIDs with Session IDs.

5.5. Enabling Persistence in the Source
With the above mentioned behaviors in mind, let’s turn to looking at how they may be implemented with UMP ,
starting with the source. We can summarize the changes we need by the following list.

1. At source startup, use any saved RegID information found in the file by setting information in the ume_store

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMESTORE) configuration variable.

2. After the store registration is successful, if a new RegID was assigned to the source, save the RegID to the file.

3. Set the message number to begin sending. Refer to the explanation below.

4. Send until message number 20 has been sent.

5. After message 20 has been sent, delete the saved RegID file.

50

The Ultra Messaging® Guide for Persistence and Queuing

For Step 3, if the source has just been initialized, the application starts with message number 1. If the source has been
restarted after a crash, the application looks to UMP to establish the beginning message number because UMP will
use the next sequence number. For this simple example, we can make the assumption that each message is one
sequence number for UMP and that UMP starts with sequence number 0. Thus the application can set the message
number it begins resending with the value of the UMP sequence number + 1.

Note: Using sequence numbers to set the message number is a good practice if you send messages smaller
than 8K.

These changes yield the source code in ume-example-src-3.c.

5.6. Enabling Persistence in the Receiver
Let’s also refine the receiver to resume where it left off after a crash. Just as with the source, the receiver can have the
store assign it a RegID if the receiver is just beginning. Once the receiver receives the 20th message from the source,
it can get rid of the RegID and exit. Because the receiver can receive some messages, crash, and come back, we
should only need to look at a message and check if it is the 20th message based on the message contents or sequence
number. UMP provides all the events to the application that we need to create these behaviors in the receiver.

The receiver changes are summarized below.

1. At receiver startup, use any saved RegID information found in the file for callback information when needed.

2. When RegID callback is called: Check to see if the source RegID matches the saved source RegID. If it does,
return the saved receiver RegID. RegID matches the saved source RegID if so, return the saved receiver RegID.

3. After store registration is successful: If not using a previously saved RegID, then save the RegID assigned by the
store to the source to a file, as well as the store information and the source RegID.

4. After the last message is received (message number 20 or UMP sequence number 19), end the application and
delete the saved RegID file.

RegIDs in UMP can be considered to be per source and per topic. Thus the receiver does not want to use the wrong
RegID for a different source on the same topic. To avoid this, we save the source RegID and even store information
so that the app_rcv_regid_callback can make sure to use the correct RegID for the given source RegID. These
changes yield the source code in ume-example-rcvc-3.c (ume-example-rcv-3.c)

The above sources and receivers are simplified for illustration purposes and do have some limitations. The receiver
will only keep the information for one source at a time saved to the file. This is fine for illustration purposes, but
would be lacking in completeness for production applications unless it was assured that a single source for any topic
would be in use. To extend the receiver to include several sources is simply a matter of saving each to the file,
reading them in at startup, and being able to search for the correct one for each callback invoked.

6. Demonstrating Persistence
This section demonstrates the following events using the ume-example applications described in Enabling
Persistence.

51

The Ultra Messaging® Guide for Persistence and Queuing

• Running UMP Example Applications

• Single Receiver Fails and Recovers

• Single Source Fails and Recovers

• Single Store Fails

Note: While these four sections demonstrate how UMP uses RegIDs to provide persistence, RegIDs can also be
managed easily with the use of Session IDs. See Managing RegIDs with Session IDs.

The following table lists all source files used in this section. The files can also be found in the /doc/UME directory.

Object Filename
Source Application 3 ume-example-src-3.c

Receiver Application 3 ume-example-rcv-3.c

UMP Store Configuration File ume-example-config.xml

Perform the following tasks first.

1. Build ume-example-rcv-3.c (ume-example-src-3.c) and ume-example-src-3.c (ume-example-rcv-3.c).
Instructions for building them are at the beginning of the source files.

2. Create default directories, umestored-cache and umestored-state in the /doc/UME directory where the
other ume-example files are located. Our sample XML store configuration file, ume-example-config.xml,
doesn’t specify directories for the store’s cache and state files, so those will be placed in the default directories.

3. Start the store. $ umestored ume-example-config.xml

You should see no output if the store started successfully. However, you should find a new log file,
ume-example-stored.log, in the directory you ran the store in. The first couple lines should look similar to
below.

Fri Feb 01 07:34:28 2009 [INFO]: Latency Busters Persistent Store version 2.0
Fri Feb 01 07:34:28 2009 [INFO]: LBM 3.3 [UME-2.0] Build: Jan 31 2009, 02:10:43
(DEBUG license LBT-RM LBT-RU) WC[PCRE 6.7 04-Jul-2006, appcb]

You’ll also be able to view the store’s web monitor. Open a web browser and go to:

http://127.0.0.1:15304/

You should see the store’s web monitor page, which is a diagnostic and monitoring tool for the UMP store. See Ultra
Messaging Web Monitor.

6.1. Running UMP Example Applications
With the store running, let’s try our example source and receiver applications.

52

The Ultra Messaging® Guide for Persistence and Queuing

1. Start the Receiver. $ ume-example-rcv-3.exe

2. Start the Source. $ ume-example-src-3.exe

You should see output for the source similar to the following:

saving RegID info to "UME-example-src-RegID" - 127.0.0.1:14567:2795623327

You should see output for the receiver similar to the following:

UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371][2795623327] Requesting RegID: 0
saving RegID info to "UME-example-rcv-RegID" - 127.0.0.1:14567:2795623327:2795623328
Received 15 bytes on topic UME Example (sequence number 0) ’UME Message 01’
Received 15 bytes on topic UME Example (sequence number 1) ’UME Message 02’
Received 15 bytes on topic UME Example (sequence number 2) ’UME Message 03’
Received 15 bytes on topic UME Example (sequence number 3) ’UME Message 04’
...

The example source sends 20 messages. After the 20th messages, both the source and receiver exit and print the
message removing saved RegID file... So what just happened? Let’s walk through the output line by line.

Source

saving RegID info to "UME-example-src-RegID" - 127.0.0.1:14567:2795623327

The source successfully registered with the store using its pre-configured store address and port of 127.0.0.1:14567.
It didn’t ask for a specific RegID from the store, so the store automatically assigned one to it. In this case, the store
assigned the ID, 2795623327. Your source’s ID will likely be different because stores assign random RegIDs.

If you run the test again, you’ll notice the source application has written a file called UME-example-src-RegID

that contains the same information the source printed on startup, namely the IP address and port of the store it
registered with, along with its RegID assigned by the store.

Receiver

UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371][2795623327] Requesting RegID: 0
saving RegID info to "UME-example-rcv-RegID" - 127.0.0.1:14567:2795623327:2795623328

The receiver has been informed of how to connect to the store by the source, and it also successfully registered with
the store. The store’s IP address and port are shown, followed by the source’s unique identifier string (in this case, it’s
a TCP source on port 14371), and the source’s RegID. The receiver then requests RegID 0 from the store, which is a
special value that means pick an ID for me (Although not displayed, the source requested ID 0 when it started up as
well).

In parallel with the source application, the receiver application writes its RegID with this store to the file,
UME-example-rcv-RegID.

After sending 20 messages under normal, stable conditions, the source and receiver applications exit and remove
their RegID files.

53

The Ultra Messaging® Guide for Persistence and Queuing

6.2. Single Receiver Fails and Recovers
Perform the following procedure with the store running to see what happens when a receiver fails and recovers.

1. Start the Receiver. $ ume-example-rcv-3.exe

2. Start the source. $ ume-example-src-3.exe Let it run for a few seconds so the receiver gets a few messages.

UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371][3735579353] Requesting RegID: 0
saving RegID info to "UME-example-rcv-RegID" - 127.0.0.1:14567:3735579353:3735579354
Received 15 bytes on topic UME Example (sequence number 0) ’UME Message 01’
Received 15 bytes on topic UME Example (sequence number 1) ’UME Message 02’
Received 15 bytes on topic UME Example (sequence number 2) ’UME Message 03’

3. Stop the receiver (Ctrl/C) and leave the source running. Wait a few more seconds so that the source sends some
messages while the receiver was down.

4. Restart the Receiver and let it run to completion. $ ume-example-rcv-3.exe

read in saved RegID info from "UME-example-rcv-RegID" - 127.0.0.1:14567 RegIDs
source 3735579353, receiver 3735579354
UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371][3735579353]
Requesting RegID: 3735579354
Received 15 bytes on topic UME Example (sequence number 3) ’UME Message 04’
Received 15 bytes on topic UME Example (sequence number 4) ’UME Message 05’
Received 15 bytes on topic UME Example (sequence number 5) ’UME Message 06’
Received 15 bytes on topic UME Example (sequence number 6) ’UME Message 07’
Received 15 bytes on topic UME Example (sequence number 7) ’UME Message 08’
Received 15 bytes on topic UME Example (sequence number 8) ’UME Message 09’
Received 15 bytes on topic UME Example (sequence number 9) ’UME Message 10’
Received 15 bytes on topic UME Example (sequence number 10) ’UME Message 11’

Notice that the receiver picked up the message stream right where it had left off - after message 3. The first few
messages (which the source had sent while the receiver was down) appear to come in much faster than the source’s
normal rate of one per second. That’s because they are being served to the receiver from the store. The remaining
messages continue to come in at the normal one-per-second rate because they’re being received from the source’s
live message stream. This is durable subscription at work.

6.3. Single Source Fails and Recovers
Perform the following procedure with the store running to see what happens when a source fails and recovers.

1. Start the Receiver. $ ume-example-rcv-3.exe

2. Start the source. $ ume-example-src-3.exe Let it run for a few seconds so the receiver gets a few messages.

3. Stop the Source (Ctrl/C).

4. Restart the Source and let it run to completion. $ ume-example-rcv-3.exe

Source

You should see output similar to the following on the second run of the source.

54

The Ultra Messaging® Guide for Persistence and Queuing

read in saved RegID info from "UME-example-src-RegID" - 127.0.0.1:14567:2118965523
will start with message number 5
removing saved RegID file "UME-example-src-RegID"

Receiver

The receiver’s output looks like the following.

UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371][2118965523] Requesting RegID: 0
saving RegID info to "UME-example-rcv-RegID" - 127.0.0.1:14567:2118965523:2118965524
Received 15 bytes on topic UME Example (sequence number 0) ’UME Message 01’
Received 15 bytes on topic UME Example (sequence number 1) ’UME Message 02’
Received 15 bytes on topic UME Example (sequence number 2) ’UME Message 03’
Received 15 bytes on topic UME Example (sequence number 3) ’UME Message 04’
UME Store 0: 127.0.0.1:14567 [TCP:169.254.97.160:14371][2118965523] Requesting RegID: 2118965524
saving RegID info to "UME-example-rcv-RegID" - 127.0.0.1:14567:2118965523:2118965524
Received 15 bytes on topic UME Example (sequence number 4) ’UME Message 05’
Received 15 bytes on topic UME Example (sequence number 5) ’UME Message 06’
Received 15 bytes on topic UME Example (sequence number 6) ’UME Message 07’
Received 15 bytes on topic UME Example (sequence number 7) ’UME Message 08’
...

When the source was restarted, it read in its previously saved RegID and requested the same ID when registering
with the store. The store informed the source that it had left off at sequence number 3 (UME Message 04), and the
next sequence number it should send is 4 (UME Message 05). Bringing the source back up also caused the receiver
to re-register with the store. Receivers can only find out about stores from sources they are listening to. Once the
receiver re-registered with the store, it continued receiving messages from the source where it had left off.

6.4. Single Store Fails
Perform the following procedure with the store running to see what happens when the store itself fails.

1. Start the Receiver. $ ume-example-rcv-3.exe

2. Start the source. $ ume-example-src-3.exe Let it run for a few seconds so the receiver gets a few messages.

3. Stop the Store (Ctrl/C).

Notice that with this simple example program, the source simply prints the following and exits.

saving RegID info to "UME-example-src-RegID" - 127.0.0.1:14567:4095035673
Store unresponsive: store 0 [127.0.0.1:14567] unresponsive
Store unresponsive: store 0 [127.0.0.1:14567] unresponsive - no registration response.
line 318: not currently registered with enough UMP stores

When a source application tries to send a message without being registered with a store, the send call returns an
error. Messages sent while not registered with a store cannot be persisted. See UMP Stores for information about
using multiple stores.

55

The Ultra Messaging® Guide for Persistence and Queuing

Your source application(s) should assume an unresponsive store is a temporary problem and wait before sending the
message again. See umesrc.c (../example/umesrc.c), umesrc.java (../java_example/umesrc.java), or umesrc.cs
(../dotnet_example/umesrc.cs) for examples of this behavior.

7. Designing Persistence Applications
This section discusses considerations and methods for utilizing UMP persistence in your applications.

• Pieces of a Persistence Solution

• Fault Recovery

7.1. Pieces of a Persistence Solution
In UMP , a persistent system is composed of sources, receivers, and stores managed by one or more applications.
Sources and receivers are the endpoints of communication and the store(s) provide fault recovery and persistence of
state information. Your application can leverage UMP ’s flexible methods of persistence to add an unprecedented
level of fault tolerance. With this flexibility your applications assume new responsibilities not normally required in
other persistent messaging systems. This section identifies the important considerations for your messaging
applications when implementing the following UMP features.

• Registration Identifiers

• UMP Sources

• UMP Receivers

• UMP Stores

7.1.1. Registration Identifiers

As mentioned in Registration Identifier and Adding Fault Recovery with Registration IDs, stores use RegIDs to
identify sources and receivers. UMP offers three main methods for managing RegIDs.

• Your applications assign static RegIDs and ensure that the same RegID is not assigned to multiple sources and/or
receivers. See Use Static RegIDs.

• You can allow UMP stores to assign RegIDs and then save the assigned RegIDs. See Save Assigned RegIDs

• Use Session IDs to enable the UMP store to both assign and manage RegIDs. See Managing RegIDs with Session
IDs

Your applications can manage RegIDs for the lifetime of a source or receiver as long as multiple applications do not
reuse RegIDs simultaneously on the same store. RegIDs only need to be unique on the same store and may be reused
between stores as desired. You can use a static mapping of RegIDs to applications or use some simple service to
assign them.

56

The Ultra Messaging® Guide for Persistence and Queuing

7.1.1.1. Use Static RegIDs

The simplest method uses static RegIDs for individual applications. This method works best if:

• Applications use separate stores

• Multiple instances of an application also use separate stores

In the latter case, the same static source RegID can be used in every instance of the application because receivers will
identify every Store/Source RegID tuple as unique.

The following source code examples assign a static RegID to a source by adding the RegID, 1000, to the
ume_store attribute. (See also ume-example-src-2.c.)

C API

lbm_src_topic_attr_t * sattr;

if (lbm_src_topic_attr_create(&sattr) == LBM_FAILURE) {
fprintf(stderr, "lbm_src_topic_attr_create: %s\n", lbm_errmsg());
exit(1);

}
if (lbm_src_topic_attr_str_setopt(sattr, "ume_store", "127.0.0.1:14567:1000")
== LBM_FAILURE) {

fprintf(stderr, "lbm_src_topic_attr_str_setopt: %s\n", lbm_errmsg());
exit(1);

}

JAVA API

LBMSourceAttributes sattr = null;
try {
sattr = new LBMSourceAttributes();
sattr.setValue("ume_store", "127.0.0.1:14567:1000");
}
catch (LBMException ex) {
System.err.println("Error creating source attribute: " + ex.toString());
System.exit(1);
}

.NET API

LBMSourceAttributes sattr = null;
try {
sattr = new LBMSourceAttributes();
sattr.setValue("ume_store", "127.0.0.1:14567:1000");
}
catch (LBMException ex) {
System.Console.Error.WriteLine ("Error creating source attribute: " + ex.toString());
System.Environment.Exit(1);

}

57

The Ultra Messaging® Guide for Persistence and Queuing

7.1.1.2. Save Assigned RegIDs

Your application can save the RegID assigned to a source or receiver from the store because the UMP API informs
your application of the RegID used for each registration. This method of managing RegIDs is perhaps the most
flexible, but also requires some work by the application to save RegIDs and retrieve them in some way.

The following source code examples save the RegID assigned to a source to a file. (See also ume-example-src-3.c.)

C API

typedef struct src_info_t_stct {
int existing_regid;
int message_num;
} src_info_t;

#define SRC_REGID_SAVE_FILENAME "UME-example-src-RegID"

int save_src_regid_to_file(const char *filename, lbm_src_event_ume_registration_ex_t *reg)
{
FILE *fp;

if ((fp = fopen(filename, "w")) == NULL)
return -1;
fprintf(fp, "%s:%u", reg->store, reg->registration_id);
printf("saving RegID info to \"%s\" - %s:%u\n", filename, reg->store, reg->registration_id);
fflush(fp);
fclose(fp);
return 0;
}

7.1.1.3. Managing RegIDs with Session IDs

The RegIDs used by stores to identify sources and receivers must be unique. Rather than maintaining RegIDs (either
statically or dynamically), applications can use a Session ID, which is simply a 64-bit value that uniquely identifies
any set of sources with unique topics and receivers with unique topics. A single Session ID allows UMP stores to
correctly identify all the sources and receivers for a particular application.

Combinations of sources and receivers that make up a single valid session include the following.

• Sources for topics A, B, and C

• Receivers for topics A, B, and C

• Sources for topics A, B, and C, and receivers for topics X, Y and Z

• Sources for topics A, B, and C, and receivers for topics A, B, and C

Note: Note that any topic can be used for a source and a receiver at the same time, but not for more than one of
each. Two sources using topic A, for example, would need to be split into two different contexts.

58

The Ultra Messaging® Guide for Persistence and Queuing

The UMP configuration option, ume_session_id

(../Config/ultramessagingpersistenceoptions.html#CONTEXTUMESESSIONID), specifies a Session ID for a source,
receiver or a context. If you want all sources and receivers for a particular context to use the same Session ID, use
(context) ume_session_id (../Config/ultramessagingpersistenceoptions.html#CONTEXTUMESESSIONID).

Any source or receiver that does not specify its own Session ID inherits the context’s session ID. If a source or
receiver specifies its own Session ID, it overrides the context Session ID for that individual source or receiver.

Of the two mutually exclusive methods for managing RegIDs, ...

1. Enable your application to assign and manage every RegID, ensuring no two objects registered with an
individual store share the same RegID.

2. Allow the store to assign every RegID and enable your application to persist the RegIDs.

... using Session IDs simplifies the second management method. Since you cannot combine these two strategies at
any single store, you also cannot combine the first method with the use of Session IDs at a single store.

7.1.1.3.1. How Stores Associate Session IDs and RegIDs

Session IDs do not replace the use of RegIDs by UMP but rather simplify RegID management. Using Session IDs
equates to your application specifying a 0 (zero) RegID for all sources and receivers. However, instead of your
application persisting the RegID assigned by the store, the store maintains the RegID for you.

When a store receives a registration request from a source or receiver with a particular Session ID, it checks to see if
it already has a source or receiver for that topic/Session ID. If it does, then it responds with that source’s or receiver’s
RegID.

If it does not find a source or receiver for that topic/Session ID pair, the store ...

1. Assigns a new RegID.

2. Associates the topic/Session ID with the new RegID.

3. Responds to the source or receiver with the new RegID.

The source can then advertise with the RegID supplied by the store. Receivers include the source’s RegID in their
registration request.

7.1.2. UMP Sources

The major concerns of sources revolve around RegID management and message retention. This section discusses the
following topics.

• New or Re-Registration

• Sources Must Be Able to Resume Sending

• Source Message Retention and Release

• Source Release Policy Options

• Confirmed Delivery

59

The Ultra Messaging® Guide for Persistence and Queuing

• Sources Using Round-Robin Store Configuration

• Sources Using Quorum/Consensus Store Configuration

• Source Event Handler

• Source Event Handler - Stability, Confirmation and Release

• Mapping Your Message Numbers to UMS/UMP Sequence Numbers

• Receiver Liveness Detection

7.1.2.1. New or Re-Registration

Any source needs to know at start-up if it is a new registration or a re-registration. The answer determines how a
source registers with the store. UMP can not answer this question. Therefore, it is essential that the developer
consider what identifies the lifetime of a source and how a source determines the appropriate value to use as the
RegID when it is ready to register. RegIDs are per source per topic per store, thus a single RegID per store is needed.

The following source code examples look for an existing RegID from a file and uses a new RegID assigned from the
store if it finds no existing RegID. (See also ume-example-src-3.c.)

C API

err = lbm_context_create(&ctx, NULL, NULL, NULL);
if (err) {printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);}

srcinfo.message_num = 1;
srcinfo.existing_regid = 0;

err = read_src_regid_from_file(SRC_REGID_SAVE_FILENAME, store_info, sizeof(store_info));
if (!err) { srcinfo.existing_regid = 1; }

err = lbm_src_topic_attr_create(&attr);
if (err) {printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);}

err = lbm_src_topic_attr_str_setopt(attr, "ume_store", store_info);
if (err) {printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);}

The use of Session IDs allows UMP , as opposed to your application, to accomplish the same RegID management.
See Managing RegIDs with Session IDs.

7.1.2.2. Sources Must Be Able to Resume Sending

A source sends messages unless UMP prevents it, in which case, the send function returns an error. A source may
lose the ability to send messages temporarily if the store(s) in use become unresponsive, e.g. the store(s) die or
become disconnected from the source. Once the store(s) are responsive again, sending can continue. Thus source
applications need to take into account that sending may fail temporarily under specific failure cases and be able to
resume sending when the failure is removed.

The following source code examples demonstrate how a failed send function can sleep for a second and try again.

C API

while (lbm_src_send(src, message, len, 0) == LBM_FAILURE) {

60

The Ultra Messaging® Guide for Persistence and Queuing

If (lbm_errnum() == LBM_EUMENOREG) {
printf("Send unsuccessful. Waiting...\n");
sleep(1);
continue;
}
fprintf(stderr, "lbm_src_send: %s\n", lbm_errmsg());

exit(1);
}

JAVA API

for (;;) {
try {
src.send(message, len, 0);
}
catch (UMENoRegException ex) {
System.out.println("Send unsuccessful. Waiting...");
try {
Thread.sleep(1000);
}
catch (InterruptedException e) { }
continue;
}
catch (LBMException ex) {
System.err.println("Error sending message: " + ex.toString());
System.exit(1);
}
break;
}

.NET API

for (;;) {
try {
src.send(message, len, 0);
}
catch (UMENoRegException ex) {
System.Console.Out.WriteLine("Send unsuccessful. Waiting...");
System.Threading.Thread.Sleep(1000);
continue;
}
catch (LBMException ex) {
System.Console.Out.WriteLine ("Error sending message: " + ex.toString());
System.exit(1);
}
break;
}

61

The Ultra Messaging® Guide for Persistence and Queuing

7.1.2.3. Source Message Retention and Release

UMP allows streaming of messages from a source without regard to message stability at a store, which is one reason
for UMP’s performance advantage over other persistent messaging systems. Sources retain all messages until
notified by the active store(s) that they are stable. This provides a method for stores to be brought up to date when
restarted or started anew.

Note: Source message retention is separate from the persistence of messages in the store.

When messages are considered stable at the store, the source can release them which frees up source retention
memory for new messages. Generally, the source releases older stable messages first. To release the oldest retained
message, all the following conditions must be met:

• message must meet stability requirements of the source, which can range from a single stability notice from the
active store to stability notices from a group of stores (See Sources Using Quorum/Consensus Store Configuration)

and

• message must have been confirmed as delivered by a configured number of receivers
(ume_retention_unique_confirmations),

and

• the aggregate amount of buffered messages exceeds retransmit_retention_size_threshold bytes in
payload and headers.

Some things to note:

• If the retransmit_retention_size_threshold is not met, no messages will be released regardless of
stability.

• If the source registered with a "no-cache" store (See UMP Stores) or
ume_message_stability_notification is turned off, ume_retention_unique_confirmations is the
only way to allow the source to release messages before retention size options come into play.

• If the aggregate amount of buffered messages exceeds retransmit_retention_size_limit bytes in payload
and headers, then the oldest retained message is forcibly released even if it does not meet one or more of the
conditions above. This condition should be avoided and suggests increasing the
retransmit_retention_size_limit or lowering the retransmit_retention_size_threshold.

7.1.2.4. Source Release Policy Options

sources use a set of configuration options to release messages that, in effect, specify the source’s release policy. The
following configuration options directly impact when the source may release retained messages.

• ume_message_stability_notification

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEMESSAGESTABILITYNOTIFICATION)

• ume_retention_unique_confirmations

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMERETENTIONUNIQUECONFIRMATIONS)

62

The Ultra Messaging® Guide for Persistence and Queuing

• retransmit_retention_size_threshold

(../Config/latejoinoptions.html#SOURCERETRANSMITRETENTIONSIZETHRESHOLD)

• retransmit_retention_size_limit

(../Config/latejoinoptions.html#SOURCERETRANSMITRETENTIONSIZELIMIT)

7.1.2.5. Confirmed Delivery

As mentioned earlier, ume_retention_unique_confirmations requires a message to have a minimum number
of unique confirmations from different receivers before the message may be released. This retains messages that have
not been confirmed as being received and processed and keeps them available to fulfill any retransmission requests.

The following code samples show how to require a message to have 10 unique receiver confirmations

C API

lbm_src_topic_attr_t * sattr;

if (lbm_src_topic_attr_create(&sattr) == LBM_FAILURE) {
fprintf(stderr, "lbm_src_topic_attr_create: %s\n", lbm_errmsg());
exit(1);

}
if (lbm_src_topic_attr_str_setopt(sattr, "ume_retention_unique_confirmations",
"10")
== LBM_FAILURE) {

fprintf(stderr, "lbm_src_topic_attr_str_setopt: %s\n", lbm_errmsg());
exit(1);

}

JAVA API

LBMSourceAttributes sattr = null;
try {
sattr = new LBMSourceAttributes();
sattr.setValue("ume_retention_unique_confirmations", "10");
}
catch (LBMException ex) {
System.err.println("Error creating source attribute: " + ex.toString());
System.exit(1);
}

.NET API

LBMSourceAttributes sattr = null;
try {
sattr = new LBMSourceAttributes();
sattr.setValue("ume_retention_unique_confirmations", "10");
}
catch (LBMException ex) {
System.Console.Error.WriteLine ("Error creating source attribute: " + ex.toString());
System.Environment.Exit(1);

}

63

The Ultra Messaging® Guide for Persistence and Queuing

7.1.2.6. Sources Using Round-Robin Store Configuration

The source retains messages until they are considered stable at the active store(s). For Round-Robin store behavior,
this means the current active store notifies the source that it has stabilized the message via a message stability
notification. The following configuration file statements implement Round-Robin behavior among 3 stores.

source ume_store 10.29.3.77:15313:150000:0
source ume_store 10.29.3.76:16313:160000:0
source ume_store 10.29.3.75:17313:170000:0
source ume_message_stability_notification 1
source ume_store_behavior rr

See also Round-Robin Store Usage

7.1.2.7. Sources Using Quorum/Consensus Store Configuration

In the case of Quorum/Consensus store behavior, a message is considered stable after it has been successfully stored
within a group of stores or among groups of stores according to the two settings, intergroup behavior and intragroup
behavior, described below.

• The intragroup behavior (../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMERETENTIONINTRAGROUPSTABILITYBEHAVIOR)
specifies the requirements needed to stabilize a message among the stores within a group. A message is stable for
the group once it is successfully stored at a quorum (majority) of the group’s stores or successfully stored in all the
stores in the group.

• The intergroup behavior (../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMERETENTIONINTERGROUPSTABILITYBEHAVIOR)
specifies the requirements needed to stabilize a message among groups of stores. A message is stable among the
groups if it is successfully stored at any group, a majority of groups, or all groups.

Notice that a message needs to meet intragroup stability requirements before it can meet intergroup stability
requirements. These options provide a number of possibilities for retention of messages for the source.

The following configuration file statements implement a 3-group Quorum/Consensus configuration with each group
on a different machine, in which a message is considered stable when it has been successfully stored at a quorum of
stores in at least one group. (See Quorum/Consensus - Single Location Groups for more information about this
configuration.)

source ume_store 10.29.3.77:10313:101000:0
source ume_store 10.29.3.77:11313:110000:0
source ume_store 10.29.3.77:12313:120000:0
source ume_store 10.29.3.77:13313:130000:0
source ume_store 10.29.3.77:14313:140000:0
source ume_store 10.29.3.78:15313:150000:1
source ume_store 10.29.3.78:16313:160000:1
source ume_store 10.29.3.78:17313:170000:1
source ume_store 10.29.3.79:18313:180000:2

64

The Ultra Messaging® Guide for Persistence and Queuing

source ume_store 10.29.3.79:19313:190000:2
source ume_store 10.29.3.79:29313:290000:2
source ume_store 10.29.3.79:39313:390000:2
source ume_store 10.29.3.79:49313:490000:2

source ume_message_stability_notification 1
source ume_store_behavior qc

source ume_store_group 0:5
source ume_store_group 1:3
source ume_store_group 2:5

source ume_retention_intragroup_stability_behavior quorum
source ume_retention_intergroup_stability_behavior any

See also Quorum/Consensus Store Usage and Quorum/Consensus - Mixed Location Groups.

7.1.2.8. Source Event Handler

The Source Event Handler is a function callback initialized at source creation to provide source events to your
application related to the operation of the source. The following source code examples illustrate the use of a source
event handler for registration events. To accept other source events, additional case statements would be required,
one for each additional source event. See also UMP and UMQ Events.

C API

int handle_src_event(lbm_src_t *src, int event, void *ed, void *cd)
{

switch (event) {
case LBM_SRC_EVENT_UME_REGISTRATION_ERROR:

{
const char *errstr = (const char *)ed;

printf("Error registering source with UME store: %s\n", errstr);
}
break;

case LBM_SRC_EVENT_UME_REGISTRATION_SUCCESS_EX:
{
lbm_src_event_ume_registration_ex_t *reg =

(lbm_src_event_ume_registration_ex_t *)ed;

printf("UME store %u: %s registration success. RegID %u. Flags %x ",
reg->store_index, reg->store, reg->registration_id,
reg->flags);

if (reg->flags & LBM_SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_FLAG_OLD)
printf("OLD[SQN %x] ", reg->sequence_number);

if (reg->flags & LBM_SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_FLAG_NOACKS)
printf("NOACKS ");

printf("\n");
}
break;
case LBM_SRC_EVENT_UME_REGISTRATION_COMPLETE_EX:
{

65

The Ultra Messaging® Guide for Persistence and Queuing

lbm_src_event_ume_registration_complete_ex_t *reg;

reg = (lbm_src_event_ume__complete_ex_t *)ed;
printf("UME registration complete. SQN %x. Flags %x ", reg->sequence_number,

reg->flags);
if (reg->flags & LBM_SRC_EVENT_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM)

printf("QUORUM ");
printf("\n");

}
break;
case LBM_SRC_EVENT_UME_STORE_UNRESPONSIVE:
{

const char *infostr = (const char *)ed;
printf("UME store: %s\n", infostr);

}
break;

default:
printf("Unknown source event %d\n", event);
break;

}
return 0;

}

JAVA API

public int onSourceEvent(Object arg, LBMSourceEvent sourceEvent)
{

switch (sourceEvent.type()) {
case LBM.SRC_EVENT_UME_REGISTRATION_ERROR:

System.out.println("Error registering source with UME store: "
+ sourceEvent.dataString());
break;

case LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX:
UMESourceEventRegistrationSuccessInfo reg = sourceEvent.registrationSuccessInfo();
System.out.print("UME store " + reg.storeIndex() + ": " + reg.store()
+ " registration success. RegID " + reg.registrationId() + ". Flags "
+ reg.flags() + " ");

if (((reg.flags() & LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_FLAG_OLD))
!= 0) {

System.out.print("OLD[SQN " + reg.sequenceNumber() + "] ");
}
if (((reg.flags() & LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_FLAG_NOACKS))
!= 0) {

System.out.print("NOACKS ");
}
System.out.println();
break;

case LBM.SRC_EVENT_UME_REGISTRATION_COMPLETE_EX:
UMESourceEventRegistrationCompleteInfo regcomp =
sourceEvent.registrationCompleteInfo();
System.out.print("UME registration complete. SQN " + regcomp.sequenceNumber()

+ ". Flags " + regcomp.flags() + " ");

66

The Ultra Messaging® Guide for Persistence and Queuing

if ((regcomp.flags() &
LBM.SRC_EVENT_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM) != 0) {

System.out.print("QUORUM ");
}
System.out.println();
break;

case LBM.SRC_EVENT_UME_STORE_UNRESPONSIVE:
System.out.println("UME store: "

+ sourceEvent.dataString());
break;

...
default:

System.out.println("Unknown source event "
+ sourceEvent.type());

break;
}
return 0;

}

.NET API

public int onSourceEvent(Object arg, LBMSourceEvent sourceEvent)
{

switch (sourceEvent.type()) {
case LBM.SRC_EVENT_UME_REGISTRATION_ERROR:

System.Console.Out.WriteLine("Error registering source with UME store: "
+ sourceEvent.dataString());
break;

case LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX:
UMESourceEventRegistrationSuccessInfo reg = sourceEvent.registrationSuccessInfo();
System.Console.Out.Write("UME store " + reg.storeIndex() + ": " + reg.store()
+ " registration success. RegID " + reg.registrationId() + ". Flags "
+ reg.flags() + " ");

if (((reg.flags() & LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_FLAG_OLD))
!= 0) {

System.Console.Out.Write("OLD[SQN " + reg.sequenceNumber() + "] ");
}
if (((reg.flags() & LBM.SRC_EVENT_UME_REGISTRATION_SUCCESS_EX_FLAG_NOACKS))
!= 0) {

System.Console.Out.Write("NOACKS ");
}
System.Console.Out.WriteLine();
break;

case LBM.SRC_EVENT_UME_REGISTRATION_COMPLETE_EX:
UMESourceEventRegistrationCompleteInfo regcomp =
sourceEvent.registrationCompleteInfo();
System.Console.Out.Write("UME registration complete. SQN " +
regcomp.sequenceNumber()

+ ". Flags " + regcomp.flags() + " ");
if ((regcomp.flags() &
LBM.SRC_EVENT_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM) != 0) {

System.Console.Out.Write("QUORUM ");

67

The Ultra Messaging® Guide for Persistence and Queuing

}
System.Console.Out.WriteLine();
break;

case LBM.SRC_EVENT_UME_STORE_UNRESPONSIVE:
System.Console.Out.WriteLine("UME store: "

+ sourceEvent.dataString());
break;

...
default:

System.Console.Out.WriteLine("Unknown source event "
+ sourceEvent.type());

break;
}
return 0;

}

7.1.2.9. Source Event Handler - Stability, Confirmation and Release

As shown in Section 7.1.2.8 above, the Source Event Handler can be expanded to handle more source events by
adding additional case statements. The following source code examples show case statements to handle message
stability events, delivery confirmation events and message release (reclaim) events. See also UMP and UMQ Events.

C API

case LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX:
/* requires that source ume_message_stability_notification attribute is enabled */

{
lbm_src_event_ume_ack_ex_info_t *info = (lbm_src_event_ume_ack_ex_info_t *)ed;

printf("UME store %u: %s message stable. SQN %x (msgno %d). Flags %x ",
info->store_index, info->store,

info->sequence_number, (int)info->msg_clientd - 1, info->flags);
if (info->flags & LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_INTRAGROUP_STABLE)

printf("IA "); /* Stable within store group */
if (info->flags & LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_INTERGROUP_STABLE)

printf("IR "); /* Stable amongst all stores */
if (info->flags & LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_STABLE)

printf("STABLE "); /* Just plain stable */
if (info->flags & LBM_SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_STORE)

printf("STORE "); /* Stability reported by UME Store */
printf("\n");

}
break;

case LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX:
/* requires that source ume_confirmed_delivery_notification attribute is enabled */

{
lbm_src_event_ume_ack_ex_info_t *info = (lbm_src_event_ume_ack_ex_info_t *)ed;

printf("UME delivery confirmation. SQN %x, Receiver RegID %u (msgno %d). Flags %x ",
info->sequence_number, info->rcv_registration_id,

68

The Ultra Messaging® Guide for Persistence and Queuing

(int)info->msg_clientd - 1, info->flags);
if (info->flags & LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_UNIQUEACKS)

printf("UNIQUEACKS ");
/* Satisfied number of unique ACKs requirement */

if (info->flags & LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_UREGID)
printf("UREGID ");
/* Confirmation contains receiver application registration ID */

if (info->flags & LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_OOD)
printf("OOD ");
/* Confirmation received from arrival order receiver */

if (info->flags & LBM_SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_EXACK)
printf("EXACK ");
/* Confirmation explicitly sent by receiver */

printf("\n");
}
break;

case LBM_SRC_EVENT_UME_MESSAGE_RECLAIMED:
/* requires that source ume_confirmed_delivery_notification or ume_message_stability_notification
attributes are enabled */

{
lbm_src_event_ume_ack_info_t *ackinfo = (lbm_src_event_ume_ack_info_t *)ed;

printf("UME message released - sequence number %x (msgno %d)\n",
ackinfo->sequence_number, (int)ackinfo->msg_clientd - 1);

}
break;

JAVA API

case LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX:
// requires that source ume_message_stability_notification attribute is enabled

UMESourceEventAckInfo staInfo = sourceEvent.ackInfo();
System.out.print("UME store " + staInfo.storeIndex() + ": "

+ staInfo.store() + " message stable. SQN " + staInfo.sequenceNumber()
+ " (msgno " + staInfo.clientObject() + "). Flags "
+ staInfo.flags() + " ");

if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_INTRAGROUP_STABLE)
!= 0) {

System.out.print("IA "); // Stable within store group
}
if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_INTERGROUP_STABLE)
!= 0) {

System.out.print("IR "); // Stable amongst all stores
}
if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_STABLE) != 0) {

System.out.print("STABLE "); // Just plain stable
}
if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_STORE) != 0) {

System.out.print("STORE "); // Stability reported by UME Store
}

69

The Ultra Messaging® Guide for Persistence and Queuing

System.out.println();
break;

case LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX:
// requires that source ume_confirmed_delivery_notification attribute is enabled

UMESourceEventAckInfo cdelvinfo = sourceEvent.ackInfo();
System.out.print("UME delivery confirmation. SQN " + cdelvinfo.sequenceNumber()

+ ", RcvRegID " + cdelvinfo.receiverRegistrationId() + " (msgno "
+ cdelvinfo.clientObject() + "). Flags " + cdelvinfo.flags() + " ");

if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_UNIQUEACKS)
!= 0) {

System.out.print("UNIQUEACKS "); // Satisfied number of unique ACKs requirement
}
if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_UREGID)
!= 0) {

System.out.print("UREGID "); // Confirmation contains receiver application
registration ID

}
if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_OOD)
!= 0) {

System.out.print("OOD "); // Confirmation received from arrival order
receiver

}
if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_EXACK)
!= 0) {

System.out.print("EXACK "); // Confirmation explicitly sent by receiver
}
System.out.println();
break;

case LBM.SRC_EVENT_UME_MESSAGE_RECLAIMED:
// requires that source ume_confirmed_delivery_notification or
// ume_message_stability_notification attributes are enabled

System.out.println("UME message released - sequence number "
+ Long.toHexString(sourceEvent.sequenceNumber())
+ " (msgno "
+ Long.toHexString(((Integer)sourceEvent.clientObject()).longValue())
+ ")");

break;

.NET API

case LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX:
// requires that source ume_message_stability_notification attribute is enabled

UMESourceEventAckInfo staInfo = sourceEvent.ackInfo();
System.Console.Out.Write("UME store " + staInfo.storeIndex() + ": "

+ staInfo.store() + " message stable. SQN " + staInfo.sequenceNumber()
+ " (msgno " + ((int)staInfo.clientObject()).ToString("x") + ").
Flags " + staInfo.flags() + " ");

if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_INTRAGROUP_STABLE)
!= 0)
{

70

The Ultra Messaging® Guide for Persistence and Queuing

System.Console.Out.Write("IA "); // Stable within store group
}
if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_INTERGROUP_STABLE)
!= 0)
{

System.Console.Out.Write("IR "); // Stable amongst all stores
}
if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_STABLE) != 0)
{

System.Console.Out.Write("STABLE "); // Just plain stable
}
if ((staInfo.flags() & LBM.SRC_EVENT_UME_MESSAGE_STABLE_EX_FLAG_STORE) != 0)
{

System.Console.Out.Write("STORE "); // Stability reported by UME Store
}
System.Console.Out.WriteLine();
break;

case LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX:
// requires that source ume_confirmed_delivery_notification attribute is enabled

UMESourceEventAckInfo cdelvinfo = sourceEvent.ackInfo();

System.Console.Out.Write("UME delivery confirmation. SQN " +
cdelvinfo.sequenceNumber()

+ ", RcvRegID " + cdelvinfo.receiverRegistrationId() + " (msgno "
+ ((int)cdelvinfo.clientObject()).ToString("x") + "). Flags " +
cdelvinfo.flags() + " ");

if ((cdelvinfo.flags() &
LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_UNIQUEACKS) != 0)
{

System.Console.Out.Write("UNIQUEACKS "); // Satisfied number of unique
ACKs requirement

}
if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_UREGID)
!= 0)
{

System.Console.Out.Write("UREGID "); // Confirmation contains receiver
application registration ID

}
if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_OOD)
!= 0)
{

System.Console.Out.Write("OOD "); // Confirmation received from arrival
order receiver

}
if ((cdelvinfo.flags() & LBM.SRC_EVENT_UME_DELIVERY_CONFIRMATION_EX_FLAG_EXACK)
!= 0)
{

System.Console.Out.Write("EXACK "); // Confirmation explicitly sent by
receiver

}
System.Console.Out.WriteLine();

71

The Ultra Messaging® Guide for Persistence and Queuing

break;

case LBM.SRC_EVENT_UME_MESSAGE_RECLAIMED:
// requires that source ume_confirmed_delivery_notification or
// ume_message_stability_notification attributes are enabled

System.Console.Out.WriteLine("UME message released - sequence number "
+ sourceEvent.sequenceNumber().ToString("x")
+ " (msgno "
+ ((int)sourceEvent.clientObject()).ToString("x")
+ ")");

break;

7.1.2.10. Mapping Your Message Numbers to UMS/UMP Sequence Numbers

lbm_src_sendv_ex() allows you to create a pointer to an object or structure. This pointer will be returned to your
application along with all source events. You can then update the object or structure with source event information.
For example, if your messages exceed 8K - which requires fragmentation your application’s message into more than
one UM message - receiving sequence number events with this pointer allows you to determine all the UM sequence
numbers for the message and, therefore, how many release (reclaim) events to expect. The following two source code
examples show how to:

• Enable message sequence number information

• Handle sequence number source events to determine the application message number in the Source Event Handler

C API - Enable Message Information

lbm_src_send_ex_info_t exinfo;

/* Enable message sequence number info to be returned */
exinfo.flags = LBM_SRC_SEND_EX_FLAG_UME_CLIENTD | LBM_SRC_SEND_EX_FLAG_SEQUENCE_NUMBER_INFO;
exinfo.ume_msg_clientd = (void *)(msgno + 1);
/* msgno set to application message number (can’t evaluate to NULL) */
while (lbm_src_send_ex(src, message, msglen, 0, &exinfo) == LBM_FAILURE)
{
if (lbm_errnum() == LBM_EUMENOREG)

{
printf("Send unsuccessful. Waiting...\n");

SLEEP_MSEC(1000); /* Sleep for 1 second */
}

else
{
fprintf(stderr, "lbm_src_send: %s\n", lbm_errmsg());

break;
}
}

C API - Sequence Number Event Handler

72

The Ultra Messaging® Guide for Persistence and Queuing

int handle_src_event(lbm_src_t *src, int event, void *ed, void *cd)
{

switch (event) {
case LBM_SRC_EVENT_SEQUENCE_NUMBER_INFO:

{
lbm_src_event_sequence_number_info_t *info =
(lbm_src_event_sequence_number_info_t *)ed;

if (info->first_sequence_number != info->last_sequence_number) {
printf("SQN [%x,%x] (msgno %d)\n", info->first_sequence_number,
info->last_sequence_number, (int)info->msg_clientd - 1);

} else {
printf("SQN %x (msgno %d)\n", info->last_sequence_number,
(int)info->msg_clientd - 1);

}
}
break;

...
}
return 0;

}

JAVA API - Enable Message Information

LBMSourceSendExInfo exinfo = new LBMSourceSendExInfo();
exinfo.setClientObject(new Integer(msgno)); // msgno set to application message number
exinfo.setFlags(LBM.SRC_SEND_EX_FLAG_SEQUENCE_NUMBER_INFO);
// Enable message sequence number info to be returned
for (;;)
{
try
{
src.send(message, msglen, 0, exinfo);
}
catch(UMENoRegException ex)
{

try
{
Thread.sleep(1000);
}
catch (InterruptedException e) { }

continue;

}
catch (LBMException ex)
{

System.err.println("Error sending message: " + ex.toString());
}
break;
}

73

The Ultra Messaging® Guide for Persistence and Queuing

JAVA API - Sequence Number Event Handler

public int onSourceEvent(Object arg, LBMSourceEvent sourceEvent)
{

switch (sourceEvent.type())
{

case LBM.SRC_EVENT_SEQUENCE_NUMBER_INFO:
LBMSourceEventSequenceNumberInfo info = sourceEvent.sequenceNumberInfo();
if (info.firstSequenceNumber() != info.lastSequenceNumber()) {

System.out.println("SQN [" + info.firstSequenceNumber()
+ "," + info.lastSequenceNumber() + "] (msgno "
+ info.clientObject() + ")");

}
else {

System.out.println("SQN " + info.lastSequenceNumber()
+ " (msgno " + info.clientObject() + ")");

}
break;

...
}
return 0;

}

.NET API - Enable Message Information

LBMSourceSendExInfo exinfo = new LBMSourceSendExInfo();
exinfo.setClientObject(msgno); // msgno set to application message number
exinfo.setFlags(LBM.SRC_SEND_EX_FLAG_SEQUENCE_NUMBER_INFO);
// Enable message sequence number info to be returned
for (;;)
{
try
{
src.send(message, msglen, 0, exinfo);
}
catch(UMENoRegException ex)
{

System.Threading.Thread.Sleep(100);
continue;

}
catch (LBMException ex)
{

System.Console.Out.WriteLine("Error sending message: " + ex.Message());
}
break;
}

.NET API - Sequence Number Event Handler

public void onSourceEvent(Object arg, LBMSourceEvent sourceEvent)

74

The Ultra Messaging® Guide for Persistence and Queuing

{
switch (sourceEvent.type())
{

case LBM.SRC_EVENT_SEQUENCE_NUMBER_INFO:
LBMSourceEventSequenceNumberInfo info = sourceEvent.sequenceNumberInfo();
if (info.firstSequenceNumber() != info.lastSequenceNumber())
{

System.Console.Out.WriteLine("SQN [" + info.firstSequenceNumber()
+ "," + info.lastSequenceNumber() + "] (cd "
+ ((int)info.clientObject()).ToString("x") + ")");

}
else
{

System.Console.Out.WriteLine("SQN " + info.lastSequenceNumber()
+ " (msgno " + ((int)info.clientObject()).ToString("x") + ")");

}
break;

...

}
return 0;

}

7.1.2.11. Receiver Liveness Detection

As an extension to Confirmed Delivery, you can set receivers to send a keepalive to a source during a measured
absence of delivery confirmations (due to traffic lapse). In the event that neither message reaches the source within a
designated interval, or if the delivery confirmation TCP connection breaks down, the receiver is assumed to have
"died". UM then notifies the publishing application via context event callback. This lets the publisher assign a new
subscriber.

To use this feature, set these five configuration options:

• ume_source_liveness_timeout

(../Config/ultramessagingpersistenceoptions.html#UMESOURCELIVENESSTIMEOUT)

• ume_receiver_liveness_interval

(../Config/ultramessagingpersistenceoptions.html#UMERECEIVERLIVENESSINTERVAL)

• ume_confirmed_delivery_notification

(../Config/ultramessagingpersistenceoptions.html#UMECONFIRMEDDELIVERYNOTIFICATION)

• ume_user_receiver_registration_id

(../Config/ultramessagingpersistenceoptions.html#UMEUSERRECEIVERREGISTRATIONID)

• ume_session_id (../Config/ultramessagingpersistenceoptions.html#UMESESSIONID)

Note: You must set the ume_source_liveness_timeout option to 5 times the value of
ume_receiver_liveness_interval.

75

The Ultra Messaging® Guide for Persistence and Queuing

This specialized feature is not recommended for general use. If you are considering it, please note the following
caveats:

• Do not use in conjunction with a UM Gateway.

• There is a variety of potential network occurrences that can break or reset the TCP connection and falsely indicate
the death of a receiver.

• In cases where a receiver object is deleted while its context is not, the publisher may still falsely assume the
receiver to be alive. Other false receiver-alive assumptions could be caused by the following:

• TCP connections can enter a half-open or otherwise corrupted state.

• Failed TCP connections sometimes do not fully close, or experience objectionable delays before fully closing.

• A switch or router failure along the path does not affect the TCP connection state.

7.1.3. UMP Receivers

Receivers are predominantly interested in RegID management and recovery management. This section discusses the
following topics.

• Receiver RegID Management

• Receiver Message and Event Handler

• Recovery Management

• Setting Callback Function to Set Recovery Sequence Number

• Message Consumption

7.1.3.1. Receiver RegID Management

RegIDs are slightly more involved for receivers than for sources. Since RegIDs are per source per topic per store and
a topic may have several sources, a receiver may have to manage several RegIDs per store in use. Fortunately,
receivers in UMP can leverage the RegID of the source with the use of a callback as discussed in Adding Fault
Recovery with Registration IDs and shown in ume-example-rcv-2.c. Your application can determine the correct
RegID to use and return it to UMP . You can also use Session IDs to enable UMP to manage receiver RegIDs. See
Managing RegIDs with Session IDs.

Much like sources, receivers typically have a lifetime based on an amount of work, perhaps an infinite amount. And
just like sources, it may be helpful to consider that a RegID is "assigned" at the start of that work and is out of use at
the end. In between, the RegID is in use by the instance of the receiver application. However, the nature of RegIDs
being per source means that the expected lifetime of a source should play a role in how RegIDs on the receiver are
managed. Thus, it may be helpful for the application developer to consider the source application lifetime when
deciding how best to handle RegIDs on the receiver.

7.1.3.2. Receiver Message and Event Handler

The Receiver Message and Event Handler is a function callback started at receiver initialization to provide Receiver
messages to your application on behalf of the receiver. The following source code examples illustrate the use of a

76

The Ultra Messaging® Guide for Persistence and Queuing

receiver message and event handler for registration messages. To accept other receiver events, additional case
statements would be required, one for each additional event. See also UMP and UMQ Events.

C API

int rcv_handle_msg(lbm_rcv_t *rcv, lbm_msg_t *msg, void *clientd)
{

switch (msg->type) {
...
case LBM_MSG_UME_REGISTRATION_ERROR:

printf("[%s][%s] UME registration error: %s\n", msg->topic_name, msg->source,
msg->data);

exit(0);
break;
case LBM_MSG_UME_REGISTRATION_SUCCESS:

{
lbm_msg_ume_registration_t *reg = (lbm_msg_ume_registration_t *)

(msg->data);

printf("[%s][%s] UME registration successful. SrcRegID %u RcvRegID %u\n",
msg->topic_name, msg->source, reg->src_registration_id,

reg->rcv_registration_id);
}
break;

case LBM_MSG_UME_REGISTRATION_SUCCESS_EX:
{

lbm_msg_ume_registration_ex_t *reg = (lbm_msg_ume_registration_ex_t *)
(msg->data);

printf("[%s][%s] store %u: %s UME registration successful. SrcRegID %u
RcvRegID %u. Flags %x ",

msg->topic_name, msg->source, reg->store_index, reg->store,
reg->src_registration_id, reg->rcv_registration_id, reg->flags);

if (reg->flags & LBM_MSG_UME_REGISTRATION_SUCCESS_EX_FLAG_OLD)
printf("OLD[SQN %x] ", reg->sequence_number);

if (reg->flags & LBM_MSG_UME_REGISTRATION_SUCCESS_EX_FLAG_NOCACHE)
printf("NOCACHE ");

printf("\n");
}
break;

case LBM_MSG_UME_REGISTRATION_COMPLETE_EX:
{

lbm_msg_ume_registration_complete_ex_t *reg;

reg = (lbm_msg_ume_registration_complete_ex_t *)(msg->data);
printf("[%s][%s] UME registration complete. SQN %x. Flags %x ",

msg->topic_name, msg->source, reg->sequence_number, reg->flags);
if (reg->flags & LBM_MSG_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM)

printf("QUORUM ");
if (reg->flags & LBM_MSG_UME_REGISTRATION_COMPLETE_EX_FLAG_RXREQMAX)

printf("RXREQMAX ");
printf("\n");

}

77

The Ultra Messaging® Guide for Persistence and Queuing

break;
case LBM_MSG_UME_REGISTRATION_CHANGE:

printf("[%s][%s] UME registration change: %s\n", msg->topic_name, msg->source,
msg->data);

break;
...
default:

printf("Unknown lbm_msg_t type %x [%s][%s]\n", msg->type, msg->topic_name,
msg->source);

break;
}
return 0;

}

JAVA API

public int onReceive(Object cbArg, LBMMessage msg)
{

case LBM.MSG_UME_REGISTRATION_ERROR:
System.out.println("[" + msg.topicName() + "][" + msg.source()

+ "] UME registration error: " + msg.dataString());
break;

case LBM.MSG_UME_REGISTRATION_SUCCESS_EX:
UMERegistrationSuccessInfo reg = msg.registrationSuccessInfo();
System.out.print("[" + msg.topicName() + "][" + msg.source()

+ "] store " + reg.storeIndex() + ": "
+ reg.store() + " UME registration successful. SrcRegID "
+ reg.sourceRegistrationId() + " RcvRegID " + reg.receiverRegistrationId()
+ ". Flags " + reg.flags() + " ");

if ((reg.flags() & LBM.MSG_UME_REGISTRATION_SUCCESS_EX_FLAG_OLD) != 0)
System.out.print("OLD[SQN " + reg.sequenceNumber() + "] ");

if ((reg.flags() & LBM.MSG_UME_REGISTRATION_SUCCESS_EX_FLAG_NOCACHE) != 0)
System.out.print("NOCACHE ");

System.out.println();
break;

case LBM.MSG_UME_REGISTRATION_COMPLETE_EX:
UMERegistrationCompleteInfo regcomplete = msg.registrationCompleteInfo();
System.out.print("[" + msg.topicName() + "][" + msg.source()

+ "] UME registration complete. SQN " + regcomplete.sequenceNumber()
+ ". Flags " + regcomplete.flags() + " ");

if ((regcomplete.flags() & LBM.MSG_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM)
!= 0) {

System.out.print("QUORUM ");
}
if ((regcomplete.flags() & LBM.MSG_UME_REGISTRATION_COMPLETE_EX_FLAG_RXREQMAX)
!= 0) {

System.out.print("RXREQMAX ");
}
System.out.println();
break;

case LBM.MSG_UME_REGISTRATION_CHANGE:
System.out.println("[" + msg.topicName() + "][" + msg.source()

78

The Ultra Messaging® Guide for Persistence and Queuing

+ "] UME registration change: " + msg.dataString());
break;

...
default:

System.err.println("Unknown lbm_msg_t type " + msg.type() + " ["
+ msg.topicName() + "][" + msg.source() + "]");

break;
}

return 0;
}

.NET API

public int onReceive(Object cbArg, LBMMessage msg)
{

case LBM.MSG_UME_REGISTRATION_ERROR:
System. Console.Out.WriteLine("[" + msg.topicName() + "][" + msg.source()

+ "] UME registration error: " + msg.dataString());
break;

case LBM.MSG_UME_REGISTRATION_SUCCESS_EX:
UMERegistrationSuccessInfo reg = msg.registrationSuccessInfo();
System.Console.Out.Write("[" + msg.topicName() + "][" + msg.source()

+ "] store " + reg.storeIndex() + ": "
+ reg.store() + " UME registration successful. SrcRegID "
+ reg.sourceRegistrationId() + " RcvRegID " + reg.receiverRegistrationId()
+ ". Flags " + reg.flags() + " ");

if ((reg.flags() & LBM.MSG_UME_REGISTRATION_SUCCESS_EX_FLAG_OLD) != 0)
System.Console.Out.Write ("OLD[SQN " + reg.sequenceNumber() + "] ");

if ((reg.flags() & LBM.MSG_UME_REGISTRATION_SUCCESS_EX_FLAG_NOCACHE) != 0)
System.Console.Out.Write ("NOCACHE ");

System.Console.Out.WriteLine();
break;

case LBM.MSG_UME_REGISTRATION_COMPLETE_EX:
UMERegistrationCompleteInfo regcomplete = msg.registrationCompleteInfo();
System.Console.Out.Write("[" + msg.topicName() + "][" + msg.source()

+ "] UME registration complete. SQN " + regcomplete.sequenceNumber()
+ ". Flags " + regcomplete.flags() + " ");

if ((regcomplete.flags() & LBM.MSG_UME_REGISTRATION_COMPLETE_EX_FLAG_QUORUM)
!= 0) {

System.Console.Out.Write("QUORUM ");
}
if ((regcomplete.flags() & LBM.MSG_UME_REGISTRATION_COMPLETE_EX_FLAG_RXREQMAX)
!= 0) {

System.Console.Out.Write("RXREQMAX ");
}

System.Console.Out.WriteLine();
break;

case LBM.MSG_UME_REGISTRATION_CHANGE:
System.Console.Out.WriteLine("[" + msg.topicName() + "][" + msg.source()

+ "] UME registration change: " + msg.dataString());
break;

...

79

The Ultra Messaging® Guide for Persistence and Queuing

default:
System.Console.Out.WriteLine("Unknown lbm_msg_t type " + msg.type() + " ["

+ msg.topicName() + "][" + msg.source() + "]");
break;

}
return 0;

}

7.1.3.3. Recovery Management

Recovery management for receivers is fairly simple because UMP requests any missing messages from the store(s)
and delivers them as they are retransmitted. However, your application can specify a different message to begin
retransmission with using either the retransmit_request_maximum

(../Config/latejoinoptions.html#RECEIVERRETRANSMITREQUESTMAXIMUM) configuration option or
lbm_ume_rcv_recovery_info_ex_func_t.

For example, assume a source sends 7 messages with sequence numbers 0-6 which are stabilized at the store. The
receiver, configured with the retransmit_request_maximum

(../Config/latejoinoptions.html#RECEIVERRETRANSMITREQUESTMAXIMUM) set to 2, consumes message 0,
goes down, then comes back at message 6. lbm_ume_rcv_recovery_info_ex_func_t returns the following:

high_sequence_number = 6
low_rxreq_max_sequence_number = 4
low_sequence_number = 1

NOTE: low_rxreq_max_sequence_number = high_sequence_number - retransmit_request_maximum

• UMP obeys the retransmit_request_maximum

(../Config/latejoinoptions.html#RECEIVERRETRANSMITREQUESTMAXIMUM) configuration option and
restarts with message 4. This is the default.

• If you modify the low_sequence_number to satisfy some other requirements, you can override the configuration
option and restart at message 0, 2, 3, 5 or 6. See Setting Callback Function to Set Recovery Sequence Number
below.

• The only way to restart at message 1 in this case, is to set the retransmit_request_maximum

(../Config/latejoinoptions.html#RECEIVERRETRANSMITREQUESTMAXIMUM) configuration option to its
default value of 0. If your application changes the low_sequence_number and for whatever reason, the
calculation results in the same value as the low_sequence_number, UMP ignores the calculation and restarts
with message 4.

All messages retransmitted to a receiver are marked as retransmissions via a flag in the message structure. Thus it is
easy for an application to determine if a message is a new message from the source or a retransmission, which may
or may not have been processed before the failure. The presence or absence of the retransmit flag gives the
application a hint of how best to handle the message with regard to it being processed previously or not.

80

The Ultra Messaging® Guide for Persistence and Queuing

7.1.3.4. Setting Callback Function to Set Recovery Sequence Number

The sample source code below demonstrates how to use the recovery sequence number info function to determine
the stored message with which to restart a receiver. This method retrieves the low sequence number from the
recovery sequence number structure and adds an offset to determine the beginning sequence number. The offset is a
value completely under the control of your application. For example, if a receiver was down for a "long" period and
you only want the receiver to receive the last 10 messages, use an offset to start the receiver with the 10th most recent
message. If you wish not to receive any messages, set the low_sequence_number to the
high_sequence_number plus one.

C API

lbm_ume_rcv_recovery_info_ex_func_t cb;

cb.func = ume_rcv_seqnum_ex;
cb.clientd = NULL;
if (lbm_rcv_topic_attr_setopt(&rcv_attr, "ume_recovery_sequence_number_info_function",
&cb, sizeof(cb)) == LBM_FAILURE) {

fprintf(stderr,
"lbm_rcv_topic_attr_setopt:ume_recovery_sequence_number_info_function: %s\n",
lbm_errmsg());
exit(1);

}
printf("Will use seqnum info with low offset %u.\n", seqnum_offset);

int ume_rcv_seqnum_ex(lbm_ume_rcv_recovery_info_ex_func_info_t *info, void *clientd)
{

lbm_uint_t new_lo = info->low_sequence_number + seqnum_offset;

printf("[%s] SQNs Low %x (will set to %x), Low rxreqmax %x, High %x (CD %p)\n",
info->source, info->low_sequence_number,

new_lo, info->low_rxreq_max_sequence_number, info->high_sequence_number,
info->source_clientd);

info->low_sequence_number = new_lo;
return 0;

}

JAVA API

UMERcvRecInfo umerecinfocb = new UMERcvRecInfo(seqnum_offset);
rcv_attr.setRecoverySequenceNumberCallback(umerecinfocb, null);
System.out.println("Will use seqnum info with low offset " + seqnum_offset + ".");

class UMERcvRecInfo implements UMERecoverySequenceNumberCallback {
private long _seqnum_offset = 0;

public UMERcvRecInfo(long seqnum_offset) {
_seqnum_offset = seqnum_offset;

}

public int setRecoverySequenceNumberInfo(Object cbArg,
UMERecoverySequenceNumberCallbackInfo cbInfo)
{

81

The Ultra Messaging® Guide for Persistence and Queuing

long new_low = cbInfo.lowSequenceNumber() + _seqnum_offset;
if (new_low < 0) {
System.out.println("New low sequence number would be negative.
Leaving low SQN unchanged.");
new_low = cbInfo.lowSequenceNumber();

}
System.out.println("SQNs Low " + cbInfo.lowSequenceNumber() + " (will set to "

+ new_low + "), Low rxreqmax " + cbInfo.lowRxReqMaxSequenceNumber()
+ ", High " + cbInfo.highSequenceNumber());

try {
cbInfo.setLowSequenceNumber(new_low);

}
catch (LBMEInvalException e) {

System.err.println(e.getMessage());
}
return 0;

}

.NET API

UMERcvRecInfo umerecinfocb = new UMERcvRecInfo(seqnum_offset);
rcv_attr.setRecoverySequenceNumberCallback(umerecinfocb, null);
System.Console.Out.WriteLine("Will use seqnum info with low offset " + seqnum_offset + ".");

class UMERcvRecInfo implements UMERecoverySequenceNumberCallback {
private long _seqnum_offset = 0;

public UMERcvRecInfo(long seqnum_offset) {
_seqnum_offset = seqnum_offset;

}

public int setRecoverySequenceNumberInfo(Object cbArg,
UMERecoverySequenceNumberCallbackInfo cbInfo)
{

long new_low = cbInfo.lowSequenceNumber() + _seqnum_offset;
if (new_low < 0) {
System.Console.Out.WriteLine ("New low sequence number would be negative.
Leaving low SQN unchanged.");
new_low = cbInfo.lowSequenceNumber();

}
System.Console.Out.WriteLine ("SQNs Low " + cbInfo.lowSequenceNumber() + "

(will set to "
+ new_low + "), Low rxreqmax " + cbInfo.lowRxReqMaxSequenceNumber()
+ ", High " + cbInfo.highSequenceNumber());

try {
cbInfo.setLowSequenceNumber(new_low);

}
catch (LBMEInvalException e) {

System.Console.Out.WriteLine (e.getMessage());
}
return 0;

}

82

The Ultra Messaging® Guide for Persistence and Queuing

7.1.3.5. Message Consumption

Receivers use message consumption, defined as message deletion, to indicate that UMP should notify the store(s)
that the application consumed the message. This notification takes the form of an acknowledgement, or ACK, to the
store(s) in use as well as to the source if you configured the source for delivery confirmation
(../Config/ultramessagingpersistenceoptions.html#SOURCEUMECONFIRMEDDELIVERYNOTIFICATION).

• In the C API (../API/index.html), message deletion happens by default when the receive callback returns, unless
the callback uses lbm_msg_retain(). If the callback uses lbm_msg_retain() then the application has
responsibility to use lbm_msg_delete() when it has finished processing the message.

• In the Java API (../JavaAPI/html/index.html) and .NET API (../DotNetAPI/doc/Index.html), message deletion
must be triggered explicitly by the application by using the dispose() method of the message object. Without
explicit usage of dispose(), UMP does not know when the application has finished processing the message.

7.1.3.5.1. Batching Acknowledgments

You can configure UMP to acknowledge message consumption to a store(s) for a series of messages independent of
when the receiving application consumed the messages. This option works well if multiple threads process messages
off of an event queue, which may result in messages being consumed out of order. This feature is not compatible
with Explicit Acknowledgments.

If you set ume_use_ack_batching

(../Config/ultramessagingpersistenceoptions.html#RECEIVERUMEUSEACKBATCHING) to 1, UMP does not
acknowledge individual messages as the application consumes them. Instead, UMP checks the consumed, but
unacknowledged messages at the interval configured with ume_ack_batching_interval

(../Config/ultramessagingpersistenceoptions.html#CONTEXTUMEACKBATCHINGINTERVAL). When UMP
discovers a contiguous series of consumed message sequence numbers (sqn), it sends acknowledgments to the
store(s) for all the contiguous messages.

For example, assume your application consumes and acknowledges messages 1 and 2, then consumes subsequent
messages in the following order: 4, 5, 7, 8, 6, 10, 3. At the next ume_ack_batching_interval

(../Config/ultramessagingpersistenceoptions.html#CONTEXTUMEACKBATCHINGINTERVAL), UMP sends
consumption acknowledgments to the store(s) for messages 3 - 8.

7.1.3.5.2. Explicit Acknowledgments

In addition, UMP supports Explicit ACKs (ume_explicit_ack_only
(../Config/ultramessagingpersistenceoptions.html#RECEIVERUMEEXPLICITACKONLY)), which silences UMP’s
acknowledgement behavior, allowing your application control of message consumption notification. See also
lbm_msg_ume_send_explicit_ack() in the C API (../API/index.html) and the LBMMessage class method
sendExplicitAck() in the Java API (../JavaAPI/html/index.html) and .NET API (../DotNetAPI/doc/Index.html).

The explicit ACK sending function/method automatically supplies additional ACKs for missing messages in
sequence number gaps. This can be a useful efficiency feature, but note that to acknowledge each message
consumption individually, you must issue their ACKs in ascending sequence-number order.

83

The Ultra Messaging® Guide for Persistence and Queuing

7.1.3.5.3. Object-free Explicit Acknowledgments

When using explicit ACKs in your Java (../JavaAPI/html/index.html) or .NET (../DotNetAPI/doc/Index.html)
application, you can extract ACK information from messages and then send acknowledgements to the store(s) for
any sequence number. You can also extract ACK information from a message when using the C API
(../API/index.html) with lbm_msg_extract_ume_ack().

The following source code examples show how to extract ACK information and send an explicit ACK.

C API

int rcv_handle_msg(lbm_rcv_t *rcv, lbm_msg_t *msg, void *clientd)
{
lbm_ume_rcv_ack_t *ack = NULL;
...

ack = lbm_msg_extract_ume_ack(msg);
lbm_ume_ack_send_explicit_ack(ack, msg->sequence_number);
lbm_ume_ack_delete(ack);
...

}

JAVA API or .NET API

public int onReceive(Object cbArg, LBMMessage msg)
{
UMEMessageAck ack;
...

ack = msg.extractUMEAck();
ack.sendExplicitAck(msg.sequenceNumber());
ack.dispose();

...

}

7.1.4. UMP Stores

As mentioned in Persistent Store, the UMP persistent stores, also just called stores, actually persist the source and
receiver state and use RegIDs to identify sources and receivers. Each source to which a store provides persistence
may have zero or more receivers. The store maintains each receiver’s state along with the source’s state and the
messages the source has sent.

The store can be configured with its own set of options (../UME/umestored-config.html) to persist this state
information on disk or simply in memory. The term disk store is used to signify a store that persists state to disk, and
the term memory store is used to signify a store that persists state only in memory. A store may also be configured

84

The Ultra Messaging® Guide for Persistence and Queuing

not to cache the source’s data, but to simply persist the source and receiver state in memory. This is called a no-cache
store.

Unlike many persistent systems, the persistent store in UMP is not in the message path. In other words, a source does
not send data to the store and then have the store forward it to the receivers. In UMP , the source sends to the
receiver(s) and the store(s) in parallel. See Normal Operation. Thus, UMP can provide extremely low latency to
receiving applications.

The store(s) that a source uses are part of the source’s configuration settings. Sources must be configured to use
specific store(s) and use one of two different types of store failover behaviors to match expected failure scenarios.
See Round-Robin Store Usage and Quorum/Consensus Store Usage below for more about store failover scenarios.

Receivers, on the other hand, do not need to be configured with store information a priori. The source advertises store
information as part of the normal UM topic resolution process. Thus the receivers will learn the store(s) to use from
the source without needing to be configured themselves. Because receivers learn about the store(s) a source is using
via topic resolution, the source needs to be available to receivers as long as the receivers may need them. However,
the source does not have to be actively sending data to do this.

7.1.4.1. Round-Robin Store Usage

Stores can be used in a Round-Robin fashion by a source during failover. A source provides UMP with a list of
stores to use. The first is the primary, the second is the secondary, the third is the tertiary, etc. The source uses a
single store at any one time. If the currently active store becomes unresponsive due to a crash or network disconnect,
UMP tries other stores in the list one by one until it finds a responsive store.

With round-robin store usage, inactive stores do not receive data from the source. Thus, a store that becomes the
active store will not have any data from the source. In this case, the source may be configured to retain messages and
stream those messages to the new store using Late Join (../Config/latejoinoptions.html#SOURCELATEJOIN).
Cascading failures of sources, stores and receivers may require using stores in a Quorum/Consensus fashion.

See also Sources Using Round-Robin Store Configuration.

7.1.4.2. Quorum/Consensus Store Usage

To provide the highest degree of resiliency in the face of failures, UMP provides the Quorum/Consensus failover
strategy which allows a source to provide UMP with a number of stores to be used at the same time. Multiple stores
can fail and UMP can continue operation unhindered. Moreover, Late Join is not needed as in Round-Robin.

Quorum/Consensus, also called QC, allows a source and the associated receivers to have their persisted state
maintained at several stores at the same time. Central to QC is the concept of a group of stores, which is a logical
grouping of stores that are intended to signify a single entity of resilience. Within the group, individual stores may
fail but for the group as a whole to be viable and provide resiliency, a quorum must be available. In UMP , a quorum
is a simple majority. For example, in a group of five stores, three stores are required to maintain a quorum. One or
two stores may fail and the group continues to provide resiliency. UMP requires a source to have a quorum of stores
available in the group in order to send messages. A group can consist of a single store.

QC also provides the ability to use multiple groups. As long as a single group maintains quorum, then UMP allows a
source to proceed. Groups are logical in nature and can be combined in any way imaginable, such as by store
location, store type, etc. In addition, QC provides the ability to specify backup stores within groups. Backups may be
used if or when a store in the group becomes unresponsive to the source. Quorum/Consensus allows a source many
different failure scenarios simply not available in other persistent messaging systems.

85

The Ultra Messaging® Guide for Persistence and Queuing

See also Sources Using Quorum/Consensus Store Configuration, Quorum/Consensus - Single Location Groups and
Quorum/Consensus - Mixed Location Groups.

7.2. Fault Recovery
Recovery from source and receiver failure is the real heart of UMP operation. For a source, this means continuing
operation from where it stopped. For a receiver, this means essentially the same thing, but with the retransmission of
missed messages. Application developers can easily leverage the information in UMP to make their applications
recover from failure in graceful ways.

Late Join (../Design/lbm-features.html#USING-LATE-JOIN) is the mechanism of UMP recovery as well as an UM
streaming feature. If Late Join is turned off on a source (late_join
(../Config/latejoinoptions.html#SOURCELATEJOIN)) or receiver (use_late_join
(../Config/latejoinoptions.html#RECEIVERUSELATEJOIN)), it also turns off UMP recovery. In order to control
Late Join behavior, UMP provides a mechanism for a receiver to control the low sequence number. See Recovery
Management.

Not all failures are recoverable. For application developers it usually pays in the long run to identify what types of
errors are non-recoverable and how best to handle them when possible. Such an exercise establishes the precise
boundaries of expected versus abnormal operating conditions.

Note: UMP does not acknowledge messages that are lost. If the store is unable to recover a lost message, any
receivers attempting to recover this message from the store will experience unrecoverable loss as well. Sources
can pay attention to any gaps in stability or confirmed delivery acknowledgements as these most likely represent
unrecoverable loss at the store or receivers, respectively.

This section discussed the following recovery topics.

• Source Recovery

• Receiver Recovery

7.2.1. Source Recovery

The following shows the basic steps of source recovery.

1. Re-register with the store.

2. Determine the highest sequence number that the store has from the source.

3. Resume sending with the next sequence number.

Because UMP allows you to stream messages and not wait until a message is stable at the persistent store before
sending the next message, the main task of source recovery is to determine what messages the persistent store(s)
have and what they don’t. Therefore, when a source re-registers with a store during recovery, the store tells the
source what sequence number it has as the most recent from the source. The registration event informs the
application of this sequence number. See Source Event Handler.

86

The Ultra Messaging® Guide for Persistence and Queuing

In addition, a mechanism exists (LBM_SRC_EVENT_SEQUENCE_NUMBER_INFO) that allows the application to know
the sequence number assigned to every piece of data it sends. The combination of registration and sequence number
information allows an application to know exactly what a store does have and what it does not and where it should
pick up sending. An application designed to stream data in this way should consider how best to maintain this
information.

When QC is in use, UMP uses the consensus of the group(s) to determine what sequence number to use in the first
message it will send. This is necessary as not all stores can be expected to be in total agreement about what was sent
in a distributed system. The application can configure the source with the
ume_consensus_sequence_number_behavior

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMECONSENSUSSEQUENCENUMBERBEHAVIOR
) to use the lowest sequence number of the latest group of sequence numbers seen from any store, the highest, or the
majority. In most cases, the majority, which is the default, makes the most sense as the consensus. The lowest is a
very conservative setting. And the highest is somewhat optimistic. Your application has the flexibility to handle this
in any way needed.

If streaming is not what an application desires due to complexity, then it is very simple to use the UMP events (UMP
and UMQ Events) delivered to the application to mimic the behavior of restricting a source to having only one
unstable message at a time.

7.2.2. Receiver Recovery

The following shows the basic steps of receiver recovery.

1. Re-register with the store.

2. Determine the low sequence number.

3. Request retransmission of messages starting with the low sequence number.

UMP provides extensive options for controlling how receivers handle recovery. By default, receivers want to restart
after the last piece of data that was consumed prior to failure or graceful suspension. Since UMP persists receiver
state at the store, receivers request this state from the store as part of re-registration and recovery.

The actual sequence number that a receiver uses as the first topic level message to resume reception with is called the
"low sequence number". UMP provides a means of modifying this sequence number if desired. An application can
decide to use the sequence number as is, to use an even older sequence number, to use a more recent sequence
number, or to simply use the most recent sequence number from the source. See Recovery Management and Setting
Callback Function to Set Recovery Sequence Number. This allows receivers great flexibility on a per source basis
when recovering. New receivers, receivers with no pre-existing registration, also have the same flexibility in
determining the sequence number to begin data reception.

Like sources, when QC is in use, UMP uses the consensus of the group(s) to determine the low sequence number.
And as with sources, this is necessary as not all stores can be expected to be in total agreement about what was
acknowledged. The application can configure the receiver with ume_consensus_sequence_number_behavior

(../Con-
fig/ultramessagingpersistenceoptions.html#RECEIVERUMECONSENSUSSEQUENCENUMBERBEHAVIOR) to
use the lowest sequence number of the latest group of sequence numbers seen from any store, the highest, or the
majority. In most cases, the majority, which is the default, makes the most sense as the consensus. The lowest is a
very conservative setting. And the highest is somewhat optimistic. In addition, this sequence number may be
modified by the application after the consensus is determined.

87

The Ultra Messaging® Guide for Persistence and Queuing

For QC, UMP load balances receiver retransmission requests among the available stores. In addition, if requests are
unanswered, retransmissions of the actual requests will use different stores. This means that as long as a single store
has a message, then it is possible for that message to be retransmitted to a requesting receiver.

Note: Receivers need to consider if the use of arrival order delivery is appropriate. See ordered_delivery

(../Config/majoroptions.html#RECEIVERORDEREDDELIVERY). UMP stores save the highest sequence number
acknowledged by a receiver. When receivers using arrival order delivery receive - and thereby acknowledge -
messages out of order, recovery problems may arise because stores will not have earlier messages not
acknowledged by the receiver.

8. Enabling Queuing
This section describes how to add queuing to a minimum UM source and receiver with the following.

• Starting Configuration

• Adding a Queue to a Source

• Sending to the Queue

• Receiving from the Queue

UMQ Prerequisite: You should understand basic Ultra Messaging concepts such as Sources and Receivers along
with the basic methods for configuring them.

The following table lists all source files used in this section. You can also find links to them in the appropriate task.
The files can also be found in the /doc/UME directory.

Object Filename
Source Application q-example-src.c

Receiver Application q-example-rcv.c

UMQ Configuration File q-example-config.xml

8.1. Starting Configuration
We begin with the minimal source and receiver used by the UM QuickStart Guide (../QuickStart/index.html). To
more easily demonstrate the UMQ features we are interested in, we have modified the QuickStart source and
receiver in the following ways.

• Modified the source to send 20 messages with a one second pause between each message.

• Modified the receiver to anticipate 20 messages instead of just one.

• Assigned the topic, UME Queue Example, to both the source and receiver.

• Modified the receiver to not exit on unexpected receiver events.

88

The Ultra Messaging® Guide for Persistence and Queuing

The last change allows us to better demonstrate basic operation and evolve our receiver slowly without having to
anticipate all the options that UMQ provides up front.

Note: Be sure to build q-example-src.c and q-example-rcv.c. Instructions for building them are at the beginning of
the source files.

8.2. Adding a Queue to a Source
To enable queuing, a source needs to be configured to use a queue by setting the umq_queue_name

(../Config/ultramessagingqueuingoptions.html#SOURCEUMQQUEUENAME) for the source. The following
q-example-src.c code sets the source’s queue to the queue_name established in the UMQ configuration file
(q-example-config.xml).

err = lbm_src_topic_attr_str_setopt(&attr, "umq_queue_name", queue_name);

Examining q-example-config.xml reveals that queue_name is set to Queue Training and listens on port 14567 for
registrations.

Let’s instantiate the queue with the following command.

$ umestored q-example-config.xml

8.3. Sending to the Queue
Further examination of q-example-config.xml shows that the Queue Training is configured for Serial Queue
Dissemination (SQD). In this model, sources send messages to topics as usual, but receivers interested in the topic
need not even be started because topic messages go to the Queue first.

Therefore we can take the next step and run the source with the following command.

$ q-example-src

The sample output below shows that the source sends 20 messages on the UME Queue Example topic.

tmont@agentmbp:/Volumes/source$./q-example-src
INFO: Host has multiple multicast-capable interfaces. Default multicast interface: [en1][192.168.0.41]
INFO: Source "UME Queue Example" Late Join not set, but UME store or UMQ queue specified. Setting Late Join.
Sent Message 01
Sent Message 02
Sent Message 03
Sent Message 04
Sent Message 05
Sent Message 06
Sent Message 07
Sent Message 08
Sent Message 09
Sent Message 10
Sent Message 11

89

The Ultra Messaging® Guide for Persistence and Queuing

Sent Message 12
Sent Message 13
Sent Message 14
Sent Message 15
Sent Message 16
Sent Message 17
Sent Message 18
Sent Message 19
Sent Message 20

8.4. Receiving from the Queue
At this point, only the Queue is running. The receiving application can start up at anytime and receive any messages
from the Queue on the topic it subscribes to.

tmont@agentmbp:/Volumes/source$./q-example-rcv
INFO: Host has multiple multicast-capable interfaces. Default multicast interface: [en1][192.168.0.41]
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 01’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 02’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 03’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 04’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 05’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 06’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 07’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 08’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 09’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 10’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 11’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 12’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 13’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 14’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 15’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 16’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 17’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 18’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 19’
Received 20 bytes on topic UME Queue Example: ’UME Queue Message 20’

9. Designing Queuing Applications
UMQ applications are much like UMP persistence applications, but with even fewer recovery concerns.

• First, UMQ receivers typically have no concept of recovery. In queuing semantics, the individual receiver has no
requirement to pick up where it left off. By default, the Queue assigns another receiver if the original receiver goes
away. However, you can also configure a queue to avoid reassignment or to never reassign.

90

The Ultra Messaging® Guide for Persistence and Queuing

• Secondly, sources either submit messages to queues or they don’t. Sources that fail before a queue can
acknowledge the messages as stable should simply resend the messages once recovered. In this regard, the same
recovery sequence for sources at a high level can be applied to UMQ sources. Thus recovery from failure for
applications is fairly straightforward.

9.1. Queue Registration IDs
Each context belonging to a UMQ source or receiver application registers with a queue. This registration uses a
Registration ID, which is not used in the same manner as with UMP persistent stores (which register sources and
receivers). UMQ Registration IDs identify individual contexts and not individual source and receiver objects. Also,
UMQ Registration IDs can (and should) vary per invocation. Applications can set the use of specific Registration
IDs with specific queues if they desire. But we recommend you let UMQ generate these Registration IDs or use
Queue Session IDs to generate/manage them.

UMQ directs the registration of contexts with queues internally. The following is a high level description of the
registration sequence.

• Context creates a source object with umq_queue_name

(../Config/ultramessagingqueuingoptions.html#SOURCEUMQQUEUENAME) set to the desired Queue.

• The context resolves the Queue using Queue Information Records (QIR) and Queue Query Records (QQR).

• The context generates a Registration ID randomly or uses one provided by your application from the
lbm_umq_queue_entry_t for the context.

• UMQ registers the context with the Queue by sending the Registration ID to be used to the Queue.

9.2. Queue Session IDs
Like UMP, you can use Session IDs to manage context registration IDs and receiver assignment IDs. The Session ID
is a 64-bit value that that identifies a receiving context and its set of receivers for a particular topic. A single Session
ID allows queues to correctly identify all receivers for a particular application.

With Session IDs, a receiver that fails can return with its original assignment ID and continue to receive queued
messages, and receive them in the correct order. In this scenario, with option message-reassignment-timeout

(see Options for a Topic’s ume-attributes Element) set to 0 (never reassign), the queue continues to send queued
messages to the same designated receiver in the designated order, even in the event of receiver failure and recovery.

To set the queue Session ID, set option umq_session_id

(../Config/ultramessagingqueuingoptions.html#CONTEXTUMQSESSIONID) to a unique value. Do not replicate
this value elsewhere, even for sending applications.

9.3. Message IDs
UMQ assigns each message a unique Message ID (lbm_umq_msgid_t), which is composed of the sending
application’s context Registration ID and a unique, incrementing stamp. These Message IDs must be unique for a
given queue, however, the application can use them for a variety of processing purposes.

91

The Ultra Messaging® Guide for Persistence and Queuing

9.4. Message Lifetimes and Reassignment
Because receivers may be assigned messages and have failures before they can consume a message (or fail while
consuming a message), queues use the following parameters to control how long a message should take to be
consumed.

• total lifetime

• reassignment timeout

• maximum reassignments

If the assigned receiver does not consume a message after the reassignment timeout expires, the queue reassigns the
message to another receiver provided the total lifetime has not expired.

A queue can reassign an unconsumed message repeatedly until either it reaches the maximum reassignments or the
total lifetime expires. The queue marks reassigned messages as having been re-assigned. Receivers may use this
re-assignment flag as a hint that they may want to treat the message differently.

The lifetime begins when the queue first assigns the message. When the total lifetime expires, the queue either
discards the message from the queue permanently or sends it to the Dead Letter Queue, if configured.

You can set a message lifetime in the following ways.

• For a Source - To set a message lifetime default for a particular source, set umq_msg_total_lifetime

(../Config/ultramessagingqueuingoptions.html#SOURCEUMQMSGTOTALLIFETIME) to the number of
milliseconds after which the message should not be assigned. Set message-reassignment-timeout and
message-max-reassignments in Options for an Application Set’s ume-attributes Element.

• For a Source Sending to ULB Receivers - Set the message lifetime default with
umq_ulb_application_set_message_lifetime

(../Config/ultramessagingqueuingoptions.html#SOURCEUMQULBAPPLICATIONSETMESSAGELIFETIME).
Set the reassignment timeout with umq_ulb_application_set_message_reassignment_timeout (../Con-
fig/ultramessagingqueuingoptions.html#SOURCEUMQULBAPPLICATIONSETMESSAGEREASSIGNMENTTIMEOUT).
Set the maximum reassignments with umq_ulb_application_set_message_max_reassignments (../Con-
fig/ultramessagingqueuingoptions.html#SOURCEUMQULBAPPLICATIONSETMESSAGEMAXREASSIGNMENTS).

• For a Queue Topic - Set the umestored Queue Topic attribute, message-total-lifetime, to the number of
milliseconds after which the message should not be assigned. Set message-reassignment-timeout and
message-max-reassignments in Options for a Queue Topic’s ume-attributes Element.

• For a particular message send - Use an extended send call, lbm_src_send_ex, that includes a pointer to
lbm_umq_msg_total_lifetime_info_t

(../API/structlbm__umq__msg__total__lifetime__info__t__stct.html) in lbm_src_send_ex_info_t. Set the
umq_msg_total_lifetime member to a lbm_umq_msg_total_lifetime_info_t structure and set the
lbm_umq_msg_total_lifetime_info_t.umq_msg_total_lifetime to override the total lifetime
configured via umq_msg_total_lifetime

(../Config/ultramessagingqueuingoptions.html#SOURCEUMQMSGTOTALLIFETIME).

• For MIM - To set a message lifetime default for Multicast Immediate Messages (MIM), set the message lifetime
option for the context, umq_msg_total_lifetime

(../Config/ultramessagingqueuingoptions.html#CONTEXTUMQMSGTOTALLIFETIME), to the number of
milliseconds after which the message should not be assigned.

92

The Ultra Messaging® Guide for Persistence and Queuing

A receiving application can pre-empt reassignment configurations by using lbm_msg_umq_reassign() for either
UMQ or ULB receivers. This function takes an lbm_msg_t and flags for arguments. With no flags set, the queue
reassigns the message. With the LBM_MSG_UMQ_REASSIGN_FLAG_DISCARD flag set, the queue discards the
message. The corresponding Java and .NET methods are LBMMessage.reassign().

10. Fault Tolerance
This section discusses the following.

• Configuring for Persistence and Recovery

• Proxy Sources

• Queue Redundancy

• Queue Failover

10.1. Configuring for Persistence and Recovery
Deployment decisions play a huge role in the success of any persistent system. Configuration in UMP has a number
of options that aid in performance, fault recovery, and overall system stability. It is not possible, or at least not wise,
to totally divorce configuration from application development for high performance systems. This is true not only for
persistent systems, but for practically all distributed systems. When designing systems, deployment considerations
need to be taken into account. This section discusses the following deployment considerations.

• Source Considerations

• Receiver Considerations

• Store Configuration Considerations

• UMP Configuration Examples

10.1.1. Source Considerations

Performance of sources is heavily impacted by:

• the release policy that the source uses

• streaming methods of the source

• the throughput and latency requirements of the data

Source release settings have a direct impact on memory usage. As messages are retained, they consume memory.
You reclaim memory when you release messages. Message stability, delivery confirmation and retention size all
interact to create your release policies. UMP provides a hard limit on the memory usage. When exceeded, a Forced
Reclamation event is delivered. Thus applications that anticipate forced reclamations can handle them appropriately.
See also Source Message Retention and Release.

93

The Ultra Messaging® Guide for Persistence and Queuing

How the source streams data has a direct impact on latency and throughput. One streaming method sets a maximum,
outstanding count of messages. Once reached, the source does not send any more until message stability notifications
come in to reduce the number of outstanding messages. The umesrc (../example/umesrc.c) example program uses
this mechanism to limit the speed of a source to something a store can handle comfortably. This also provides a
maximum bound on recovery that can simplify handling of streaming source recovery.

The throughput and latency requirements of the data are normal UM concerns. See Ultra Messaging Concepts
(../Design/index.html).

10.1.2. Receiver Considerations

In addition to the following, receiver performance shares the same considerations as receivers during normal
operation.

10.1.2.1. Acknowledgement Generation

Receivers in a persistence implementation of UMP send an a message consumption acknowledgement to stores and
the message source. Some applications may want to control this acknowledgement explicitly themselves. In this
case, ume_explicit_ack_only

(../Config/ultramessagingpersistenceoptions.html#RECEIVERUMEEXPLICITACKONLY) can be used.

10.1.2.2. Controlling Retransmission

Receivers in UMP during fault recovery are another matter entirely. Receivers send retransmission requests and
receive and process retransmissions. Control over this process is crucial when handling very long recoveries, such as
hundreds of thousands or millions of messages. A receiver only sends a certain number of retransmission requests at
a time.

This means that a receiver will not, unless configured to with retransmit_request_outstanding_maximum

(../Config/latejoinoptions.html#RECEIVERRETRANSMITREQUESTOUTSTANDINGMAXIMUM), request
everything at once. The value of the low sequence number (Receiver Recovery) has a direct impact on how many
requests need to be handled. A receiving application can decide to only handle the last X number of messages instead
of recovering them all using the option, retransmit_request_maximum

(../Config/latejoinoptions.html#RECEIVERRETRANSMITREQUESTMAXIMUM). The timeout used between
requests, if the retransmission does not arrive, is totally controllable with retransmit_request_interval

(../Config/latejoinoptions.html#RECEIVERRETRANSMITREQUESTINTERVAL). And the total time given to
recover all messages is also controllable.

10.1.2.3. Recovery Process

Theoretically, receivers can handle up to roughly 2 billion messages during recovery. This limit is implied from the
sequence number arithmetic and not from any other limitation. For recovery, the crucial limiting factor is how a
receiver processes and handles retransmissions which come in as fast as UMP can request them and a store can
retransmit them. This is perhaps much faster than an application can handle them. In this case, it is crucial to realize
that as recovery progresses, the source may still be transmitting new data. This data will be buffered until recovery is
complete and then handed to the application. It is prudent to understand application processing load when planning
on how much recovery is going to be needed and how it may need to be configured within UMP .

94

The Ultra Messaging® Guide for Persistence and Queuing

10.1.3. Store Configuration Considerations

UMP stores have numerous configuration options. See Configuration Reference for Umestored. This section presents
issues relating to these options.

10.1.3.1. Configuring Store Usage per Source

A store handles persisted state on a per topic per source basis. Based on the load of topics and sources, it may be
prudent to spread the topic space, or just source space, across stores as a way to handle large loads. As configuration
of store usage is per source, this is extremely easy to do. It is easy to spread CPU load via multi-threading as well as
hard disk usage across stores. A single store process can have a set of virtual stores within it, each with their own
thread.

10.1.3.2. Disk vs. Memory

As mentioned previously in UMP Stores, stores can be memory based or disk based. Disk stores also have the ability
to spread hard disk usage across multiple physical disks by using multiple virtual stores within a single store process.
This gives great flexibility on a per source basis for spreading data reception and persistent data load.

UMP stores provide settings for controlling memory usage and for caching messages for retransmission in memory
as well as on disk. See Options for a Topic’s ume-attributes Element. All messages in a store, whether in memory or
on disk, have some small memory state. This is roughly about 72 bytes per message. For very large caches of
messages, this can become non-trivial in size.

10.1.3.3. Activity Timeouts

UMP stores are NOT archives and are not designed for archival. Stores persist source and receiver state with the aim
of providing fault recovery. Central to this is the concept that a source or receiver has an activity timeout attached to
it. Once a source or receiver suspends operation or has a failure, it has a set time before the store will forget about it.
This activity timeout needs to be long enough to handle the recovery demands of sources and receivers. However, it
can not and should not be infinite. Each source takes up memory and disk space, therefore an appropriate timeout
should be chosen that meets the requirements of recovery, but is not excessively long so that the limited resources of
the store are exhausted.

10.1.4. UMP Configuration Examples

The following example configurations are offered to illustrate some of the many options available to configuring
UMP .

10.1.4.1. UMP Configuration with NAT/Firewall

Although the diagram, Normal Operation, demonstrates the typical message interaction in UMP , sources, receivers,
and stores may be arranged in almost limitless configurations. Some configurations make more sense than others for
certain situations. One of those situations involves a Network Address Translation configuration (NAT) and/or
Firewall. In such configurations, the source is the key element behind the NAT or Firewall. Although not the only
viable NAT/Firewall configuration for UMP , the figure below demonstrates one approach to such an arrangement.

95

The Ultra Messaging® Guide for Persistence and Queuing

Figure 17. UMP Configuration with NAT/Firewall

The lbmrd (29west Resolution Daemon) is an optional piece, but used in most situations where a NAT or Firewall is
involved. It provides unicast support for topic resolution. The lbmrd and the store are placed on the outside (or at
least are non-NATed or on a DMZ). Important characteristics of this configuration are:

• The LBMRD acts as a proxy for the topic resolution information.

• The store is accessible by the source and receiver directly.

In this situation, receivers and stores unicast control information back to the source, therefore the NAT or Firewall
router needs to port forward information back to the source.

10.1.4.2. Quorum/Consensus - Single Location Groups

Quorum/Consensus provides a huge set of options for store arrangements in UMP . Between backups and groups,
the number of viable approaches is practically limitless. Below are two approaches using single location groups and
multiple location groups.

In short, as long as one of the groups in the figure maintains quorum, then the source can continue. See Sources
Using Quorum/Consensus Store Configuration to view a UM configuration file for this example.

96

The Ultra Messaging® Guide for Persistence and Queuing

Figure 18. Quorum/Consensus - Single Location Groups

The above figure shows three groups arranged on a location basis. Each group is a single location. Just SOME
possible failure scenarios are:

• Failure of any 3 stores in Group 0

• Failure of any 1 store in Group 1

• Failure of any 2 stores in Group 2

• Failure of all stores in Group 0 and 1

• Failure of all stores in Group 1 and 2

• Failure of all stores in Group 0 and 2

10.1.4.3. Quorum/Consensus - Mixed Location Groups

Groups of stores can be configured across locations. Such an arrangement would ensure continued operation in the
event of a site-wide failure at any location.

97

The Ultra Messaging® Guide for Persistence and Queuing

Figure 19. Quorum/Consensus - Mixed Location Groups

The figure above shows two groups arranged in a mixed location manner. Essentially, one location can totally fail
and a source can continue sending because the other location has a group with a quorum. See below for an UM
configuration file for this example.

source ume_store 10.16.3.77:10313:101000:0
source ume_store 10.16.3.78:11313:110000:1
source ume_store 10.16.3.79:12313:120000:1
source ume_store 192.168.0.44:15313:150000:1
source ume_store 192.168.0.45:16313:160000:0
source ume_store 192.168.0.46:17313:170000:0

source ume_message_stability_notification 1
source ume_store_behavior qc

source ume_store_group 0:3
source ume_store_group 1:3

source ume_retention_intragroup_stability_behavior quorum
source ume_retention_intergroup_stability_behavior any

10.2. Proxy Sources
The Proxy Source capability allows you to configure stores to automatically continue sending the source’s topic
advertisements which contain store information used by new receivers. Without the store RegID, address and TCP
port contained in the source’s Topic Information Records (TIR), new receivers cannot register with the store or
request retransmissions. After the source returns, the store automatically stops acting as a proxy source.

Some other features of Proxy Sources include:

• Requires a Quorum/Consensus store configuration.

98

The Ultra Messaging® Guide for Persistence and Queuing

• Normal store failover operation also initiates a new proxy source.

• A store can be running more than one proxy source if more than one source has failed.

• A store can be running multiple proxy sources for the same topic.

10.2.1. How Proxy Sources Operate

The following sequence illustrates the life of a proxy source.

1. A source configured for Proxy Source sends to receivers and a group of Quorum/Consensus stores.

2. The source fails.

3. The source’s ume_activity_timeout

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEACTIVITYTIMEOUT) or the store’s
source-activity-timeout expires.

4. The Quorum/Consensus stores elect a single store to run the proxy source.

5. The elected store creates a proxy source and sends topic advertisements.

6. The failed source reappears.

7. The store deletes the proxy source and the original source resumes activity.

If the store running the proxy source fails, the other stores in the Quorum/Consensus group detect a source failure
again and elect a new store to initiate a proxy source.

If a loss of quorum occurs, the proxy source can continue to send advertisements, but cannot send messages until a
quorum is re-established.

10.2.2. Activity Timeout and State Lifetime Options

UMP provides activity and state lifetime timers for sources and receivers that operate in conjunction with the proxy
source option or independently. This section explains how these timers work together and how they work with proxy
sources.

The ume_activity_timeout

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEACTIVITYTIMEOUT) options determine how
long a source or receiver must be inactive before a store allows another source or receiver to register using that
RegID. This prevents a second source or receiver from stealing a RegID from an existing source or receiver. An
activity timeout can be configured for the source/receiver with the UM Configuration Option cited above or with a
topic’s ume-attribute configured in the umestored XML configuration file. The following diagram illustrates
the default activity timeout behavior, which uses source-state-lifetime in the umestored XML configuration
file. (See Options for a Topic’s ume-attributes Element.)

99

The Ultra Messaging® Guide for Persistence and Queuing

Figure 20. Source Activity Timeout Default

In addition to the activity timeout, you can also configure sources and receivers with a state lifetime timer using the
following options.

• (source) ume_state_lifetime

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMESTATELIFETIME)

• (receiver) ume_state_lifetime

(../Config/ultramessagingpersistenceoptions.html#RECEIVERUMESTATELIFETIME)

• The topic’s ume-attributes options, source-state-lifetime and receiver-state-lifetime. See Options
for a Topic’s ume-attributes Element.

The ume_state_lifetime (../Config/ultramessagingpersistenceoptions.html#SOURCEUMESTATELIFETIME),
when used in conjunction with the ume_activity_timeout

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEACTIVITYTIMEOUT) options, determines at
what point UMP removes the source or receiver state. UMP does not check the ume_state_lifetime

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMESTATELIFETIME) until
ume_activity_timeout

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEACTIVITYTIMEOUT) expires. The following
diagram illustrates this behavior.

100

The Ultra Messaging® Guide for Persistence and Queuing

Figure 21. Source or Receiver State Lifetime

If you have enabled the Proxy Source option, the Activity Timeout triggers the creation of the proxy source. The
following diagram illustrates this behavior.

101

The Ultra Messaging® Guide for Persistence and Queuing

Figure 22. Source Activity and State Timers with the Proxy Source Option

10.2.3. Enabling the Proxy Source Option

You must configure both the source and the stores to enable the Proxy Source option.

• Configure the source in a UM Configuration File with the source configuration option, ume_proxy_source

(../Config/ultramessagingpersistenceoptions.html#SOURCEUMEPROXYSOURCE).

• Configure the stores in the umestored XML configuration file with the Store Element Option,
allow-proxy-source. See Options for a Store’s ume-attributes Element for more information.

Note: Proxy sources operate with Session IDs as well as Reg IDs. See Managing RegIDs with Session IDs

102

The Ultra Messaging® Guide for Persistence and Queuing

10.3. Queue Redundancy
Queues can use the same Quorum/Consensus configuration as UMQ stores.

• Sources submit queue messages to each queue instance.

• You configure queue instances into groups using the Queue Groups Element of the queue’s umestored XML
configuration file. You can configure all queue instances for a queue in a single umestored XML configuration
file or a separate file for each instance.

• A message is considered stable once it has satisfied the stability requirements you configure with
umq_retention_*_stability_behavior (../Con-
fig/ultramessagingqueuingoptions.html#CONTEXTUMQRETENTIONINTERGROUPSTABILITYBEHAVIOR).

• Receivers send Consumption Reports to all queue instances so they all are aware of message reception status.

Figure 23 shows how multiple instances of a Queue can be configured and some of the communication between
contexts, sources, receivers and Queue instances.

Figure 23. Sample Configuration of Redundant Queues for Failover

103

The Ultra Messaging® Guide for Persistence and Queuing

• RegID - Application contexts register with the Queue using a RegID in order to send messages to the Queue or
receive messages from the Queue. See Queue Registration IDs and umq_queue_registration_id

(../Config/ultramessagingqueuingoptions.html#CONTEXTUMQQUEUEREGISTRATIONID).

• Queue Master - A Queue Instance that has been elected the master Queue. Only the master Queue sends messages
to receivers. The master sends Instance List Notifications (ILN) periodically to QSIs and registered contexts.

• Queue Slave Instance (QSI) - Slave Queue Instances initiated for Queue Failover. Should the master Queue fail,
any QSI can assume master Queue activities following election. Each QSI and the master Queue require a separate
UM Configuration File and umestored configuration.

• QIR (Queue Information Record) - Queue advertisement sent by the master Queue to registered contexts which
enable sources and receivers to resolve queue names to lists of queue instances (ILN). QIRs contain each queue
instances’ IP address, port, index, and group index as well as flags indicating if the instance is the Queue Election
Master, current master or Post Election Master. The QIR also contains versioning information for instances
partitioned due to previous failures.

• ILN (Instance List Notification) - List of active instances in the Queue used by instances to manage themselves.
For each instance the list contains the instance’s IP address, port, index, group index and flags indicating if the
instance is the Queue Election Master, current master or Post Election Master.

• CR (Consumption Report) - Indication sent to each Queue Instance that a message has been consumed.

10.3.1. Queue Master Election Process

Queue instances use an internal election process to determine a master queue responsible for making assignments
and handling any dissemination requirements. The master is also responsible for tracking queue instance liveness and
handling queue resolution duties. Those queue instances that are not the master (slaves) simply act as passive
observers of queue activities. Slaves may fail and come online without seriously impacting operations. When a
master fails, though, an election occurs. Once the election process establishes a new master, queue operation can
proceed.

A queue instance is elected master based on the three values shown below and presented in order of importance.

1. The QSI’s queue-management-election-bias configured in it’s umestored XML configuration file.

2. The QSI’s age computed from the number of messages received and submitted by the QSI. UMQ uses the QSI
age if all QSI bias values are equal.

3. An internal QSI index. UMQ uses the QSI index if all QSI bias and age values are equal.

UMQ’s default behavior assigns the same election bias to every QSI, which often results in the "oldest", active QSI
being elected the master queue. If you wish finer control of the election process, you can configure each Queue
Instance with an election bias. You could assign the higher election bias values to the Queue Instances you know are
running on the more powerful machines or those with the lowest latency. See Queue Management Options for a
Queue’s ume-attributes Element for more information.

The following summarizes the Queue Master Election Process.

1. A Queue Slave Instance (QSI) detects the loss of the master if the
queue_management_master_activity_timeout expires without any Instance Lists having been sent
during the timeout period.

2. The QSI that detected the loss of the master names itself Queue Election Master (QEM).

104

The Ultra Messaging® Guide for Persistence and Queuing

3. The QEM sends an Election Call to all QSIs, which also identifies itself as the new QEM.

4. All QSIs reply to the Election Call with their "instance vote" which contains their own election bias and "age".

5. The QEM selects the QSI with the highest election bias as the master. If two or more QSIs have the highest bias,
the QEM selects the "oldest" of the QSIs with the highest bias. The QSI with the most messages received and
submitted is considered the oldest. A third tie breaker is an internal QSI index.

6. The QEM sends out another ILN naming the elected QSI as the Post Election Master (PEM).

7. QSIs confirm receipt of the ILN.

8. QEM sends a Resume Operation message to the PEM.

9. The PEM resumes operation of the Queue (assigning messages to receivers, managing dissemination
requirements, tracking QSI health, handling queue resolution traffic) and sends a Instance List Notification
flagging itself as the current master.

10.4. Queue Failover
The following sections discuss various queue failover scenarios.

10.4.1. Failover from Loss of Quorum

If the loss of a QSI results in the loss of quorum, the master Queue stops advertising (QIR). As a result, sources lose
their registration and subsequent messages sent by the sources return an LBM_EUMENOREG event. (If a source is
connected to both a store and a queue, subsequent message sends return an LBM_ENO_QUEUE_REG event.) When
quorum is regained by the recovery of the lost QSI or the addition of a new QSI, the master Queue advertises again.
Sending and receiving UM contexts can then resolve the Queue again and re-register.

10.4.2. Failover from Loss of Master

If the master Queue fails, the following two events occur.

• Sources lose their registration and subsequent messages sent by the sources return an LBM_EUMENOREG event.
(If a source is connected to both a store and a queue, subsequent message sends return an
LBM_ENO_QUEUE_REG event.)

• The first QSI to detect the loss of the master calls an election. See Queue Master Election Process. After wards,
the new master Queue starts advertising, allowing sending and receiving UM contexts to resolve the Queue and
re-register.

If, due to a series of failures, a QSI notices that it has stored messages that the master queue never saw, it attempts to
resubmit them to the master queue. The master queue either accepts these when it determines that it never saw them,
or it rejects the resubmission attempt. If the master queue accepts the resubmit, it marks the message as a
resubmission when it assigns the message to a receiver, informing the receiver that it was resubmitted from a QSI.

105

The Ultra Messaging® Guide for Persistence and Queuing

10.4.3. Other Scenarios

If a receiver fails unexpectedly, the queue does not become aware of this until receiver-activity-timeout
expires. In the mean time, the queue continues to assign messages to the receiver until the receiver’s portion size is
met. When the message-reassignment-timeout expires, the queue reassigns the message to a different receiver
and sets the message’s reassigned flag to inform the receiving application that the message may have been seen by a
different receiver.

Receivers can call lbm_rcv_umq_deregister() or lbm_wildcard_rcv_umq_deregister() to gracefully
deregister from the queue. The queue does not assign any new messages to it.

10.4.4. Failover from Loss of Slave (QSI)

Assuming the master queue is running and assuming quorum has been maintained, QSIs coming and going have
little to no impact on queue operation. QSIs are largely passive bystanders. As QSIs come and go from the queue, the
master queue notifies the UM contexts registered with the queue via instance list notifications (ILN). These
notifications inform the contexts which QSI was added or removed.

11. Man Pages

umestored

Name
umestored — Persistent Store and Queue Daemon

Synopsis

umestored [-d] [--dump-dtd] [-f] [--detach] [-h] [--help] [-v] [--validate] configfile

Description
Persistent Store and Queue services are provided by umestored. A store configuration file is required.

The DTD used to validate a configuration file will be dumped to standard output with the -d or --dump-dtd. After
dumping the DTD, umestored exits instead of providing persistence services as usual.

The configuration file will be validated against the DTD if either the -v or --validate options are given. After
attempting validation, umestored exits instead of providing persistence services as usual. The exit status will be 0
for a configuration file validated by the DTD and non-zero otherwise.

106

The Ultra Messaging® Guide for Persistence and Queuing

Umestored normally remains attached to the controlling terminal and runs until interrupted. If the -f or --detach
options are given, umestored instead forks, detaches the child from the controlling terminal, and the parent exits
immediately.

Command line help is available with -h.

Usage Notes
When shutting down the UM Persistent Store or Queue daemon, use a SIGINT to trigger a clean shutdown, which
attempts to cleanly finish outstanding IO requests before shutting down. Two successive SIGINTs force an
immediate shutdown.

Exit Status
The exit status from umestored is 0 for success and some non-zero value for failure.

umestoreds

Name
umestoreds — Persistent Store and Queue Windows Service

Synopsis

umestoreds [-d] [--dump-dtd] [-h] [--help] [-s
action] [--service=action] [-v] [--validate] [configfile]

Description
Persistent Store and Queue services are provided by the umestoreds Windows Service. A store configuration file is
optional. If not present, the Registry will be consulted.

The DTD used to validate a configuration file will be dumped to standard output with the -d or --dump-dtd. After
dumping the DTD, umestoreds exits instead of providing persistence services as usual.

The configuration file will be validated against the DTD if either the -v or --validate options are given. After
attempting validation, umestoreds exits instead of providing persistence services as usual. The exit status will be 0
for a configuration file validated by the DTD and non-zero otherwise.

107

The Ultra Messaging® Guide for Persistence and Queuing

The -s install or --service=install options will install the service using the given configuration file. Once
installed, umestoreds exits. Once installed, the service may be stopped or started via the Windows Service Control
Panel.

The -s remove or --service=remove options will remove the service. Once removed, umestoreds exits.

The -s config or --service=config options will update the configuration file used with the service to be the
given configuration file. Once updated, umestoreds exits.

Command line help is available with -h.

Usage Notes
When installing the UM Persistent Store or Queue as a Microsoft® Windows® service, use only local disk devices
and fully qualified path names for all filenames. This is because Windows services run by default under a Local
System account, which has reduced privileges and is not allowed access to network devices.

Stopping the UM Persistent Store or Queue service triggers a clean shutdown, which attempts to cleanly finish
outstanding IO requests before shutting down.

Exit Status
The exit status from umestored is 0 for success and some non-zero value for failure.

umqsltool

Name
umqsltool — UMQ SINC Log Tool

Synopsis

umqsltool [options] sinclogfile1 [sinclogfile2]

Description
This command provides SINC log file tools that let you dump to text, compare two files, or trim events to reduce file
size (all without modifying the original log files).

The -t toolname or --tool=toolname invokes the desired tool. Toolname can be:

108

The Ultra Messaging® Guide for Persistence and Queuing

dump

Dumps the events from a SINC log file in a human-readable text format. Operates on a single SINC log file.

diff

Compares events in two SINC log files, noting any differences. Requires two SINC log files to be specified.

analyze

Analyzes a SINC log file for events that look suspicious. Operates on a single SINC log file.

prune

Trims a SINC log file down to the minimum number of events needed to preserve correct queue state. This can
sometimes dramatically reduce SINC log file size without any loss of state. SINC log files are not pruned during
normal operation due to performance considerations.

This tool operates on a single SINC log file, and outputs a new SINC log file in the same location and with the
same name as the original plus an added ".pruned.n" suffix (where n is a counter starting at 1). The original
SINC log file remains untouched. When pruning, we recommend to also specify the --config option, otherwise
some state information may be lost in the pruned output.

The -c configfile or --config=configfile uses the given umestored XML config file. Specifying the umestored XML
configuration file is optional, but can improve the accuracy of various tools, so its use is recommended.

The -h or --help displays this help and exits.

12. Configuration Reference for Umestored
The operating parameters for umestored come from an XML configuration file that must be supplied on the
command line. umestored contains a UM context and receivers that may be configured with default values through
a UM configuration file referenced in the XML configuration file. Default UM options my be overridden for each
configured store using the XML configuration file.

You configure umestored to instantiate stores or queues with the umestored XML configuration file which UM
reads at start up. This umestored XML configuration file has the following sections.

• Daemon section - holds administrative parameters for such things as the location of log files, the UM
Configuration File, etc.

• Stores section - holds parameters for any persistent stores and also the topics to be persisted.

• Queues section - holds parameters for the queues to be instantiated along with the topics it should accept and the
application set definitions which contain sets of receivers.

High Level Stores Configuration File.

<ume-store version="1.2">
<daemon>

Daemon configuration options

</daemon>

109

The Ultra Messaging® Guide for Persistence and Queuing

<stores>
<store attributes>

<topics>
<topic attributes>

<ume-attributes>
<option attributes/>

</ume-attributes>
</topic>

</topics>
</store>

</stores>
</ume-store>

High Level Stores and Queues Configuration File. The stores and queues sections are both optional, although, you
must specify at least one or the other.

<ume-store version="1.2">
<daemon>

Daemon configuration options

</daemon>
<stores>

<store attributes>
<topics>

<topic attributes>
<ume-attributes>

<option attributes/>
</ume-attributes>

</topic>
</topics>

</store>
</stores>
<queues>

<queue attributes>
<queue-groups>

<queue-group attributes/>
</queue-groups>
<ume-attributes>

<option attributes/>
</ume-attributes>
<indices>

<index attributes>
<ume-attributes>

<option attributes/>
</ume-attributes>

</index>
</indices>
<application-sets>

<application-set attributes>
<ume-attributes>

<option attributes/>
</ume-attributes>
<receiver-types>

110

The Ultra Messaging® Guide for Persistence and Queuing

<receiver-type attributes>
<ume-attributes>

<option attributes/>
</ume-attributes>
<index-rules attributes>

<rules>
</index-rules>

</receiver-type>
</receiver-types>

</application-set>
</application-sets>
<topics>

<topic attributes>
<ume-attributes>

<option attributes/>
</ume-attributes>
<application-sets>

</application-set attributes

</application-sets>
</topic>

</topics>
</queue>

</queues>
</ume-store>

This section discusses the following topics.

• Daemon Element

• Stores Element

• Topics Element

• Queues Element

• Queue Element

• Indices Element

• Application Sets Element

• QueueTopics Element

• Option Types for ume-attributes Elements

• umestored Configuration DTD

• Store Configuration Example

• Queue Configuration Example

111

The Ultra Messaging® Guide for Persistence and Queuing

12.1. Daemon Element
The following table presents child elements allowed in the daemon configuration section.

Tag Description Default Value
log Required. Pathname for log file. None--this is a required element.

pidfile Pathname for daemon process ID (pid)
file

No pidfile

uid User ID (uid) for daemon process (if
started as root)

Daemon retains starting uid

gid Group ID (gid) for daemon process (if
started as root)

Daemon retains starting gid

lbm-config Pathname for UM configuration file No config file; use UM defaults

lbm-license-file Pathname for UM license file License read from environment

web-monitor Address:port where web monitor
listens. Address of * listens on all
interfaces. Also has a single attribute,
permission, allowable values are
read-only and read-write. Using
read-only disables the text fields
and buttons on a Web Monitor "debug
page" that can only be enabled by
Informatica Support. Example:
<:web-monitor

permission="read-only">*:15304<:/web-monitor>

No web monitor

lbm-password-file Pathname for Queue Browser
authentication file.

rel-id/platform-id/bin/password.xml

12.2. Stores Element
The Stores Element is a container for individual store elements which define specific store instances. The below is an
example of a Stores Element.

<stores>
<store name="test-store-1" port="14567">

<ume-attributes> ... </ume-attributes>
<topics>

<topic pattern="quote*" type="PCRE">
<ume-attributes> ... </ume-attributes>

</topic>
<topic pattern="subject*" type="PCRE">

<ume-attributes> ... </ume-attributes>
</topic>

</topics>
</store>
<store name="test-store-2" port="14568">

112

The Ultra Messaging® Guide for Persistence and Queuing

<ume-attributes> ... </ume-attributes>
<topics>

<topic pattern="issue*" type="PCRE">
<ume-attributes> ... </ume-attributes>

</topic>
<topic pattern="topic*" type="PCRE">

<ume-attributes> ... </ume-attributes>
</topic>

</topics>
</store>

</stores>

12.2.1. Store Element

The Store Element contains information about an individual UMP store and has attributes, options and topics. See
the example below.

<store name="test-store-1" port="14567">
<ume-attributes> ... </ume-attributes>
<topics>

<topic pattern="quote*" type="PCRE">
<ume-attributes> ... </ume-attributes>

</topic>
<topic pattern="subject*" type="PCRE">

<ume-attributes> ... </ume-attributes>
</topic>

</topics>
</store>

The following table gives attributes for store elements.

Attribute Description Default Value
name Specifies the name for the store. None—this is a required attribute

port TCP port where umestored should
listen for this store.

None—this is a required attribute and
a valid (non-zero) port must be
specified.

interface Specifies the network interface over
which umestored accepts connection
requests for this store.

0.0.0.0 (INADDR_ANY)

12.2.1.1. Child Elements of the Store Element

The following table gives the child elements allowed in the store configuration section.

Child Element Description Default Value
topics A container for topic elements. See

Topics Element for more information.
None

113

The Ultra Messaging® Guide for Persistence and Queuing

Child Element Description Default Value
ume-attributes A container for option elements. See

Options for a Store’s ume-attributes
Element for more information.

None

12.2.1.2. Options for a Store’s ume-attributes Element

You can configure context (scope) options with a type attribute of lbm-context. UM passes such options through
the normal receiver and context configuration option setting mechanisms. See the UM Configuration Guide
(../Config/index.html) for details. Store options without a type attribute or those explicitly given a type attribute of
store simply configure the store itself.

The following table gives options allowed for a store element. Use the store Option Type for these options. A
Store’s ume-attributes Element can also accept the lbm-context Option Type. See Option Types for ume-attributes
Elements for more information.

Option Description Default Value
disk-cache-directory Pathname for disk store message cache

directory
umestored-cache

disk-state-directory Pathname for disk store state directory umestored-state

allow-proxy-source Allows the store to act as a proxy
source in case a registered source
terminates.

0 (Disable)

context-name Name of the store that can be used by
sources to refer to the store instead of
the address:request port. A store runs
in its own context, therefore a name
can used to represent the
address:request port. This name
facilitates UMP operation across the
UM Gateway. Restricted to 128
characters in length, and may contain
only alphanumeric characters,
hyphens, and underscores.

None.

retransmission-request-processing-rateSpecifies the number of retransmission
requests processed by a store per
second across all topics. The store
drops all retransmission requests that
exceed this value.

262144

12.2.2. Topics Element

The Topics element is a container element for all the topics persisted by the UMP store. It is one of the two child
elements of the Store Element. See the example below.

114

The Ultra Messaging® Guide for Persistence and Queuing

<topics>
<topic pattern="issue*" type="PCRE">

<ume-attributes> ... </ume-attributes>
</topic>
<topic pattern="topic*" type="PCRE">

<ume-attributes> ... </ume-attributes>
</topic>

</topics>

12.2.2.1. Topic Element

The Topic Element defines an individual topic persisted on the UMP store. The following table gives attributes for
the topic element.

Attribute Description Default Value
pattern Specifies a pattern used to select topics

for which a store provides persistence
services.

None—this is a required attribute

type Specifies the type of matching to be
performed on the pattern attribute.
A value of direct selects an exact
string match. A value of PCRE selects
a Perl Compatible Regular Expression
match. A value of regexp selects a
POSIX extended regular expression.
PCRE, or regexp.

direct

The Topic Element has one child element, ume-attributes, the options for which appear in Options for a Topic’s
ume-attributes Element.

12.2.2.1.1. Options for a Topic’s ume-attributes Element

The following table gives options allowed for a topic element. Use the store Option Type for these options. You
can also configure receiver (scope) options and source (scope) options in a Topic’s ume-attributes Element by using
the Option Types lbm-receiver and lbm-source, respectively. See Option Types for ume-attributes Elements for
more information.

Option Description Default Value
retransmission-request-forwardingIf enabled (value = 1), the store always

forwards retransmission requests to
sources and does not service any
requests itself. If disabled (value = 0),
the store services retransmission
requests for data it has, and forwards
requests to sources for data it does not
have.

0 (store services retransmission
requests)

115

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
repository-type Specifies how messages should be

retained by the store. A value of
no-cache does not retain messages,
only state information. A value of
memory retains messages only in the
(presumably volatile) main memory of
the store. A value of disk retains
messages to (presumably non-volatile)
disk storage as quickly as possible. In
addition, messages are cached in main
memory for a time as well. A value of
reduced-fd retains messages in disk
storage using significantly fewer File
Descriptors. Use of this repository
type may impact performance. (See
Persistent Store Architecture.) The
reduced-fd disk storage option is
not available on Microsoft Windows.

no-cache

repository-size-threshold For topics with a repository-type
of memory, disk or reduced-fd,
specifies the minimum number of
message bytes (includes payload,
headers, and store structure overhead)
retained for a topic. For RPP
repositories, this value only includes
message payload. For the disk or
reduced-fd repository type, this
value configures the size threshold of
the memory cache. (units: bytes)

25165824 (24 MB)

repository-size-limit For topics with a repository-type
of memory, disk or reduced-fd,
specifies the maximum number of
message bytes (includes payload,
headers, and store structure overhead)
retained for each source. For RPP
repositories, this value only includes
message payload. For the disk or
reduced-fd repository type, this
value configures the size of the
memory cache. (units: bytes)

50331648 (48 MB)

116

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
repository-age-threshold For topics with a repository-type

of memory, disk or reduced-fd,
specifies a message age threshold.
Younger messages will be retained.
Space used to store older messages
may be reclaimed. A value of 0 means
message age is not considered in
retention decisions. (units: seconds)

0

repository-disk-max-async-cbsFor topics with a repository-type
of disk or reduced-fd, specifies the
maximum number of outstanding
async I/O callbacks for reading and
writing messages to disk. (units: async
callbacks)

16 callbacks

repository-disk-max-write-async-cbsFor topics with a repository-type
of disk or reduced-fd, specifies the
maximum number of outstanding
async I/O callbacks for writing
messages to disk. Reducing this option
can improve throughput by batching
more fragments into a single write.
(units: async callbacks)

16 callbacks

repository-disk-max-read-async-cbsFor topics with a repository-type
of disk or reduced-fd, specifies the
maximum number of outstanding
async I/O callbacks for reading
messages from disk. Raising this value
can improve recovery rates. For topics
with a repository-type of
reduced-fd, Informatica
recommendeds a value of 200 times
the number of expected receivers per
topic. (units: async callbacks)

16 callbacks

repository-disk-file-size-limitFor topics with a repository-type
of disk or reduced-fd, specifies the
maximum amount of disk space that
will be used to store retained
messages. A minimum value of
196992 is enforced. (units: bytes)

104857600 (100 MB)

117

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
repository-disk-file-preallocateFor topics with a repository-type

of disk, If set to 1, UMP
pre-allocates a store’s cache files to
match their maximum size on disk (as
configured by
repository-disk-file-size-limit)
upon creation, as opposed to growing
to that size as the store receives new
messages. For ext3/4 and NTFS file
systems, this options creates a sparse
file, which does not allocate all of the
underlying data blocks. Advantages of
pre-allocation include better
performance on rotating disks due to
less file fragmentation, and knowing
that enough disk space exists for any
new source that registers.
Disadvantage is the time to create the
cache files, especially if many sources
register at once.

0 (zero) - do not pre-allocate

repository-disk-async-buffer-lengthFor topics with a repository-type
of disk or reduced-fd, specifies the
size of the buffers that will be used in
async I/O operations for reading and
writing messages to disk. A minimum
value of 65664 is enforced. (units:
bytes)

65664 (64 KB + 128)

repository-disk-message-checksumFor topics with a repository-type
of disk or reduced-fd, specifies
whether the messages saved to disk
should include a checksum field or not
for validation if the store is restarted.
(units: flag)

0 (disabled)

118

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
source-activity-timeout Establishes the period of time from a

source’s last activity to the release of
the source’s RegID. Stores return an
error to any new source requesting the
source’s RegID during this period. If
proxy sources are enabled (
ume_proxy_source (../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMEACTIVITYTIMEOUT))
the store does not release the source’s
RegID and UMP elects a proxy
source. If neither proxy sources nor
ume_state_lifetime (../Con-
fig/ultramessagingpersistenceoptions.html#RECEIVERUMESTATELIFETIME)
are configured, the store also deletes
the source’s state and cache. Can be
overridden by
ume_activity_timeout (../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMEACTIVITYTIMEOUT).
See also Proxy Sources. (units:
milliseconds)

30000 (30 seconds)

source-state-lifetime Establishes the period of time from a
source’s last activity to the deletion of
the source’s state and cache by the
store, regardless of whether a proxy
source has been created or not. You
can also configure
ume_state_lifetime (../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMESTATELIFETIME)
for the source. The store uses
whichever is shorter. See also Proxy
Sources. (units: milliseconds)

0 (zero)

receiver-activity-timeout Establishes the period of time from a
receiver’s last activity to the release of
the receiver’s RegID. Stores return an
error to any new request for the
receiver’s RegID during this period.
Can be overridden by
ume_activity_timeout (../Con-
fig/ultramessagingpersistenceoptions.html#RECEIVERUMEACTIVITYTIMEOUT).
See also Proxy Sources. (units:
milliseconds)

30000 (30 seconds)

119

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
receiver-state-lifetime Establishes the period of time from a

receiver’s last activity to the deletion
of the receiver’s state and cache by the
store. You can also configure
ume_state_lifetime (../Con-
fig/ultramessagingpersistenceoptions.html#RECEIVERUMESTATELIFETIME)
for the receiver. The store uses
whichever is shorter. See also Proxy
Sources. (units: milliseconds)

0 (zero)

source-check-interval Specifies how often a store will check
for activity of sources and receivers.
(units: milliseconds)

100 (100 milliseconds)

keepalive-interval Specifies how often a store will
generate keepalive traffic to sources
and receivers if there has been no
traffic required in the normal course of
operation. (units: milliseconds)

500 (500 milliseconds)

receiver-new-registration-rollbackSpecifies the number of stabilized
messages that a newly registered
receiver should consume. For example,
setting this to 10, "rolls back" the new
receiver’s starting message to the 10th
most recent message. This value must
be positive and less than 2147483648.
The recommended value of
2147483647 indicates that the rollback
should begin at the start of the stream.
A value of 0 indicates the store should
instruct the receivers to start with the
next new message from the source
known by the store. (units: messages)

0 (no recovery requested)

proxy-election-interval Specifies the interval, in milliseconds,
used when electing a proxy source.
When a source, which requested that a
proxy source be provided for it, has
been detected as no longer active, each
store eligible to provide a proxy source
for it waits for an amount of time
which is randomized in the range
[0.5*proxy-election_interval ..
1.5*proxy-election_interval].
If no other store has been elected to
serve as the proxy source, the store
declares itself as the proxy source.
(units: milliseconds)

5000 (5 seconds)

120

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
stability-ack-interval Specifies the maximum amount of

time that stability acknowledgments
will be batched before being sent to a
source. Batching stability ACKs can
increase throughput of UMP stores
(especially memory stores)
significantly, but introduces a delay
between when a message is actually
stable in the UMP store and when the
source is notified of message stability.
(units: milliseconds)

200 (200 milliseconds)

stability-ack-minimum-number Specifies the minimum number of
message stability acknowledgments
that must accumulate before a stability
ACK is sent to a source. With the
default value of 1, stability ACKs are
sent immediately as soon as messages
are stable. Increasing this value causes
stability ACKs to be batched, which
can increase throughput of UMP
stores (especially memory stores)
significantly, but introduces a delay
between when a message is actually
stable in the UMP store and when the
source is notified of message stability.
If using a stability ACK-based flight
size on a UMP source in combination
with this option, it is advisable to
make sure
stability-ack-minimum-number

is set less than or equal to the source’s
flight size. Otherwise, stability ACKs
will only be sent upon expiration of
the stability-ack-interval
timer, resulting in bursty stop-and-go
sending. (units: number of message
fragments)

1 (1 fragment)

121

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
repository-allow-receiver-paced-persistenceSpecifies if the repository allows

receiver-paced persistence (1) or a
source-paced persistence (0). The
source must enable or disable this
option with
ume_receiver_paced_persistence
(../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMERECEIVERPACEDPERSISTENCE),
but cannot enable it if this value is set
to 0.

0 (source-paced persistence)

repository-allow-ack-on-receptionSpecifies if the repository should
acknowledge to the source that it has
persisted a message as soon as the
repository receives it instead of when
it writes the message to disk. Set this
option to 1 to allow this behavior. The
source must also set this option with
ume_repository_ack_on_reception

(../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMEREPOSITORYACKONRECEPTION)
to enable this behavior, but cannot
enable it if this value is set to 0. For
memory stores, this option has no
effect. This option only applies to RPP
repositories
(repository-allow-receiver-paced-persistence
= 1).

0 (store acknowledges persistence
when the store writes the message to
disk)

repository-disk-write-delay For topics with a repository-type
of disk or reduced-fd, specifies the
maximum delay in milliseconds before
the repository persists a message to
disk. If the repository sets this option a
value other than the default, the source
can reconfigure this option with
ume_write_delay (../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMEWRITEDELAY)
to a lower or equal value, but cannot
increase it. (units: milliseconds)

0 milliseconds

122

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
source-flight-size-bytes-maximumSpecifies the maximum message

payload in bytes allowed to be inflight
(un-stabilized at a store and without
delivery confirmation) before a new
message send either blocks or triggers
a notification source event. UMP
monitors both this option and
ume_flight_size (../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMEFLIGHTSIZE).
If either threshold is met, the
configured blocking or notification
behavior executes. See
ume_flight_size_behavior

(../Con-
fig/ultramessagingpersistenceoptions.html#SOURCEUMEFLIGHTSIZEBEHAVIOR).
A source can reconfigure this option to
a value of less than or equal to this
value. This option only applies to RPP
repositories
(repository-allow-receiver-paced-persistence
= 1). (units: bytes)

4194304 bytes (4MB)

12.3. Queues Element
The Queues Element is a container element for all queues. An abbreviated queues section appears below.

<queues>
<queue name="Queue 1" interface=10.29.3.24" port="20555" group-index="0">

<queue-groups>
<queue-group index="0" size="5"/>
<queue-group index="1" size="1"/>

</queue-groups>
<ume-attributes> ... </ume-attributes>
<application-sets> ... </application-sets>
<topics> ... </topics>

</queue>
<queue name="Queue 2" interface=10.29.3.25" port="20555" group-index="0">

<queue-groups>
<queue-group index="0" size="5"/>
<queue-group index="1" size="1"/>

</queue-groups>
<ume-attributes> ... </ume-attributes>
<application-sets> ... </application-sets>
<topics> ... </topics>

</queue>

123

The Ultra Messaging® Guide for Persistence and Queuing

</queues>

12.3.1. Queue Element

The Queue Element defines a single queue. Each queue must have a unique name and a port. An interface,
group-index and group-size are optional. The following table gives attributes for a queue element.

Attribute Description Default Value
name Specifies the name for the queue. The

queue name is the prime method for
identifying the queue and must be
unique. UMQ uses it during queue
resolution, etc.

None—this is a required attribute

port TCP port where umestored should
listen for this queue. As with UMP
stores, UMQ access the queue during
registration and other operations with
the port.

None—this is a required attribute

interface Specifies the network interface over
which umestored accepts connection
requests for this queue.

0.0.0.0 (INADDR_ANY)

group-index A number that identifies this queue
instance’s queue group. See Queue
Redundancy for more information.

0 - Valid values range from 0 to 65535.

group-size The number of queue instances in this
queue’s group. You can use this
attribute to specify the number of
queue instances instead of the Queue
Groups Element if the queue consists
of only one group.

1 - Valid values range from 1 to 65535.

The Queue Element can be configured with the Queue Groups Element, Application Sets Element and QueueTopics
Element. The options for a Queue’s ume-attributes appear in the following sections.

• General Options for a Queue’s ume-attributes Element

• Message Storage Options for a Queue’s ume-attributes Element

• Queue Management Options for a Queue’s ume-attributes Element

• Queue Slave Instance (QSI) Options for a Queue’s ume-attributes Element

12.3.1.1. Queue Groups Element

The queue-groups element contains queue-group elements that define all the queue groups that make up the
queue. In the abbreviated Queues section shown in Queues Element, the queue element,

<queue name="Queue 1" interface=10.29.3.24" port="20555" group-index="0">

124

The Ultra Messaging® Guide for Persistence and Queuing

specifies Queue 1 as a Queue Instance in Group 0. The queue-groups element in the same sample specifies that
Queue 1 comprises two groups, Group 0, which has 5 queue instances and Group 1, which has 1 queue instance.

<queue-groups>
<queue-group index="0" size="5"/>
<queue-group index="1" size="1"/>

</queue-groups>

To completely configure Queue 1, you must specify 6 queue instances in either one umestored.xml file as
individual queue elements within the queues element or in separate umestored.xml files, one for each instance.
The Queue Element for all 6 queue instances would be the same except for the interface, port and
group-index because every instance of Queue 1 must have the same name. And all 6 queue instances would also
have the same queue-groups configured.

Attribute Description Default Value
index The queue’s redundancy group. See

Queue Redundancy for more
information.

0 - Valid values range from 0 to 65535.

size The number of queue instances in this
queue’s redundancy group.

1 - Valid values range from 1 to 65535.

12.3.1.2. General Options for a Queue’s ume-attributes Element

The table below displays the general options available for a Queue Element. Use the queue Option Type for these
options. A Queue’s ume-attributes Element can also accept Option Types lbm-receiver, lbm-context and
lbm-source. See Option Types for ume-attributes Elements for more information.

Option Description Default Value
control-topic-name The name of the queue’s control topic.

The queue sends all control
information for Parallel Queue
Dissemination (PQD) and Source
Dissemination (SD) to this topic.

UMQ-cntl:qname where qname is the
name of the queue.

queue-advertisement-interval The interval in milliseconds between
advertisements of the queue for queue
resolution.

1000 (1.0 seconds). Value must be
greater than 0.

forwarding-behavior How UMQ forwards messages in the
Serial Queue Dissemination (SQD)
and Parallel Queue Dissemination
(PQD) dissemination models. Valid
values are store-while-forward
and store-then-forward.

store-while-forward

125

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
dissemination-model The dissemination model used by the

queue. Valid values are:
serial-queue-dissemination,
SQD,
parallel-queue-dissemination,
PQD, source-dissemination, and
SD. See also Message Paths

SQD

sending-threads The number of threads used to send
control and data messages from the
queue.

1 (This must be greater than 0.)

context-check-interval The interval in milliseconds between
activity checks by the queue of a
source or receiver context. Each check
looks at the context as well as any
associated source and receiver activity.

1000 (1.0) seconds This must be
greater than 0.

context-activity-timeout The length of time a source or receiver
context may be inactive before the
queue disengages from the context.

30000 (30.0 seconds) This must be
greater than 0.

context-keepalive-interval The interval in milliseconds between
keepalives messages sent by the queue
to determine whether a source or
receiver context is alive or not.

1000 (1.0 seconds) This must be
greater than 0.

source-activity-timeout The length of time a source may be
inactive before the queue disengages
from the source.

30000 (30.0 seconds) This must be
greater than 0.

source-keepalive-interval The interval in milliseconds between
keepalives messages sent by the queue
to determine whether a source is alive
or not.

1000 (1.0 seconds) This must be
greater than 0.

rcr-save-timeout The maximum time in milliseconds
that the queue holds RCR information
for retransmission to receivers or other
queue instances.

30000 (30.0 seconds) This must be
greater than 0.

dead-letter-topic-prefix Prefix to be used for Dead Letter topic
name. UMQ creates a Dead Letter
topic name composed of this prefix,
the unconsumed message’s topic name
or string and the Application Set
name. See also Dead Letter Queue.

None.

126

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
dead-letter-topic-separator The separator UMQ uses between the

dead-letter-topic-prefix, topic
name or string and the Application Set
name when it constructs the Dead
Letter topic name. See also Dead
Letter Queue.

/ (forward slash)

allow-browsing Allow observer receivers to retrieve
lists of messages in the queue and to
retrieve specific messages. Allowing
browsing introduces some CPU and
memory overhead within the queue, so
if browsing support is not needed,
setting this to 0 may increase
performance.

1 (browsing enabled). This must be 0
or 1.

require-client-authenticationCertain actions (currently topic list,
message list, and message retrieve
actions by default) require greater
access permissions than a default
queue user is given. Normally, the
queue requires the client that is
requesting the queue to perform any of
those actions to pass a
once-per-session authentication
challenge by providing the username
and password credentials of a user
authorized to perform the requested
action. If the client fails the
authentication challenge, an error is
returned to the client by the queue and
the action is not performed. Turning
this option off causes the queue to
respond to such requests even if the
user fails the authentication challenge.
It is therefore NOT recommended to
turn this option off in production
environments, as it will make the
queue less secure, but it is provided for
convenience in functional test or
development environments where
security is not needed.

1 (authentication required). This must
be 0 or 1.

12.3.1.3. Message Storage Options for a Queue’s ume-attributes Element

UMQ provides 3 basic modes or operation for message storage.

127

The Ultra Messaging® Guide for Persistence and Queuing

• Memory Storage: UMQ stores messages and message state only in memory. A restarted umestored does not
resume any previous operation. In this configuration, sinc-data-filename, sinc-queue-swap-filename,
and sinc-log-filename are not set.

• Disk Storage, no Persistence: UMQ swaps messages and message state from memory to disk as needed to
maintain low memory overhead. A restarted umestored does not resume any previous operation. In this
configuration, sinc-data-filename and sinc-queue-swap-filename are set. The sinc-log-filename is
not set.

• Disk Storage, Persistence: UMQ swaps messages and message state from memory to disk as needed to maintain
low memory overhead. In addition, UMQ maintains a separate log file that contains all operations needed to
reconstruct state when UMQ restores umestored. In this configuration, sinc-data-filename,
sinc-queue-swap-filename, and sinc-log-filename are set.

Use the queue Option Type for these options. A Queue’s ume-attributes Element can also accept Option Types
lbm-receiver, lbm-context and lbm-source. See Option Types for ume-attributes Elements for more
information.

Option Description Default Value
sinc-data-filename The filename used to store message

data on disk.
None.

sinc-queue-swap-filename The filename used to store message
state for the queue.

None.

sinc-log-filename The filename used to contain the
queue log used to reconstruct state
upon restarts. You can use the
umqsltool utility to manage this file.

None.

sinc-max-size The storage area’s maximum size in
bytes. When exceeded, the queue
drops new messages until more space
room is available. For file-based
storage areas, the value of this option
is bytes on disk. For memory-based
storage, the value of this option is
bytes of memory.

104857600 bytes

sinc-data-swap-threshold The threshold, in bytes, where enough
message data causes the oldest and
least referred to messages to be
swapped to disk and removed from
memory.

104857600 bytes. This option must be
greater than 0.

sinc-block-swap-threshold The threshold, in blocks, where
enough message state information
causes the oldest and least referred to
information to be swapped to disk and
removed from memory. A block is
state for roughly 120 messages for the
same topic and Application Set and is
roughly 4KB in size.

128 blocks This option must be greater
than 0.

128

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
sinc-data-readahead The number of messages that are read

in ahead of the current point in an
Application Set’s queue position. This
helps to initiate asynchronous reads
ahead of the time when they are
needed for message assignment.

16

12.3.1.4. Queue Management Options for a Queue’s ume-attributes Element

The Queue Management options control how queue instances communicate regarding elections and how they
monitor each other.

Use the queue Option Type for these options. A Queue’s ume-attributes Element can also accept Option Types
lbm-receiver, lbm-context and lbm-source. See Option Types for ume-attributes Elements for more
information.

Option Description Default Value
queue-management-election-backoff-timeoutThe period of time, in milliseconds,

before the Queue Election Master
(QEM) recalls an election. This
backoff is initiated only if an error
occurs during the election operation or
multiple election calls appear. To
avoid livelock, the actual timeout
value used is in the range [0.5 *
timeout, 1.5 * timeout].

5000 (5.0 seconds) This option must
be greater than 0.

queue-management-election-biasThe bias used during elections to
determine the Post Election Master
(PEM). A higher value biases the
election to that queue instance.

0 - This option must be less than or
equal to 1000.

queue-management-election-call-intervalThe interval, in milliseconds, between
Election Calls by the Queue Election
Master (QEM) once an election is
called due to an unresponsive master.

500 (0.5 seconds) This option must be
greater than 0.

queue-management-election-call-timeoutThe period of time, in milliseconds,
that an election call can take. If the
Queue Election Master (QEM) can not
end the election early, then this
timeout signals the end of the election
and causes the QEM to generate a
New Instance List (NIL).

5000 (5.0 seconds) This option must
be greater than 0.

queue-management-join-request-intervalThe interval, in milliseconds, between
Join Requests sent by queues that start
up.

500 (0.5 seconds) This option must be
greater than 0.

129

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
queue-management-join-request-timeoutThe period of time, in milliseconds,

after which a starting queue instance
gives up on joining an existing queue
and starts its own and elects itself
master.

5000 (5.0 seconds) This option must
be greater than 0.

queue-management-master-activity-timeoutThe period of time, in milliseconds,
that a master must be active (by
sending Queue Management Instance
Lists) or be declared dead. A new
Queue Election Master (QEM) calls an
election after the expiration of this
period.

5000 (5.0 seconds) This option must
be greater than 0.

queue-management-master-check-intervalThe interval, in milliseconds, between
checks on the master by the slaves.

1000 (1.0 second) This option must be
greater than 0.

queue-management-new-instance-list-intervalThe interval, in milliseconds, at which
the Queue Election Master (QEM)
retransmits the New Instance List
(NIL) after an election call has been
completed.

200 (0.2 seconds) This option must be
greater than 0.

queue-management-new-instance-list-timeoutThe period, in milliseconds, by which
a Queue Election Master (QEM) must
receive confirmations of the New
Instance List (NIL) that it has sent out.
If insufficient confirmations come
back with this period expires, the
QEM calls a new election and resets
the timeout.

2000 (2.0 seconds) This option must
be greater than 0.

queue-management-resume-operation-intervalThe interval, in milliseconds, at which
a Queue Election Master (QEM) sends
a resume operation message to the new
master after the New Instance List
(NIL) has been confirmed.

200 (0.2 seconds)This option must be
greater than 0.

queue-management-resume-operation-timeoutThe timeout, in milliseconds, by which
a Queue Election Master (QEM) must
detect the resumption of operation
after the New Instance List (NIL) has
been confirmed. If resumption has not
occurred when this timeout expires,
the QEM calls a new election and
resets the timeout.

2000 (2.0 seconds) This option must
be greater than 0.

queue-management-slave-activity-timeoutThe period of time, in milliseconds,
that a slave must be unresponsive
before the master removes the slave
from the Queue Management Instance
List.

5000 (5.0 seconds) This option must
be greater than 0.

130

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
queue-management-slave-check-intervalThe interval, in milliseconds, between

checks of the slaves by the master.
This also controls how often the
master sends Queue Management
Instance List messages out to all the
slaves.

1000 (1.0 second) This option must be
greater than 0.

12.3.1.5. Queue Slave Instance (QSI) Options for a Queue’s ume-attributes Element

Queue Slave Instances (QSIs) receive assignment information from the master queue using the control topic. These
messages are called Receiver Control Records (RCR). If a queue instance misses an RCR, it can request it. The
options below control the operation of requesting RCRs.

The acronym, qrcrr, refers to Queue Receiver Control Records Request.

Use the queue Option Type for these options. A Queue’s ume-attributes Element can also accept Option Types
lbm-receiver, lbm-context and lbm-source. See Option Types for ume-attributes Elements for more
information.

Option Description Default Value
slave-qrcrr-generation-intervalThe timeout, in milliseconds, before

an RCR must be retransmitted before
UMQ abandons the request.

10000 (10.0 seconds) This option must
be greater than 0.

slave-qrcrr-interval The interval, in milliseconds, between
sending RCR retransmit requests.

200 (0.2 seconds) This option must be
greater than 0.

slave-qrcrr-outstanding-maximumThe maximum number of outstanding
Receiver Control Records (RCR) to
request at a single time.

100 This option must be greater than
0.

source-missing-message-timeoutControls the period of time that UMQ
instance tracks source messages that
are missed before abandoning them.

5000 (5.0 seconds) This option must
be greater than 0.

source-save-timeout The timeout, in milliseconds, that the
queue instance maintains historical
state for a source that has had all its
messages consumed.

600000 (10.0 minutes) This option
must be greater than 0.

12.3.2. Indices Element

The Indices element is a container element for a queue’s indices. (See Indexed Queuing.) Configuration of indices is
optional, however, specifically configured indices can have rules (allow or deny) applied to them on a per receiver
type basis. See Index Rules Element. Messages sent to the queue with a specifically configured index can be treated
with different attributes than a normal message or a message sent on a non specifically-configured index. In the
abbreviated sample below, Red Messages is an example of a named index, and Brown Messages is an example of a
ranged numeric index.

131

The Ultra Messaging® Guide for Persistence and Queuing

<indices>
<index name="Red Messages" type="named" value="red">

<ume-attributes> ... </ume-attributes>
</index>
<index name="Brown Messages" type="ranged" value="13, 44, 80-90">

<ume-attributes> ... </ume-attributes>
</index>

</indices>

12.3.3. Index Element

The Index element defines a single index and has three attributes, a name, type and value. See the following
examples:

<index name="Red Messages" type="named" value="red"> ... </index>
<index name="Brown Messages" type="ranged" value="4"> ... </index>
<index name="Yellow Messages" type="ranged" value="-10, 30-40, 90, 400-"> ... </index>

Attribute Description Default Value
name Name of the index that also

accompanies the message (
lbm_umq_index_info_t

(../API/structlbm__umq__index__info__t__stct.html)).
Can be a string or an unsigned 64-bit
integer.

None.

type An index type can be either the name
of a single index or a range of indices.
A named index is simply a string
literal no longer than 216 characters. A
ranged index can specify several
ranges of unsigned 64-bit integers at
once, or individual integers, separated
by commas. A dash (-) can be used to
indicate "and lower" or "and up".

None.

value Either the index’s string value (if a
named index) or the index’s range(s)
of 64-bit unsigned numbers (if a
ranged index).

None.

Note that negative ranged indices are not allowed; the "-10" value in the example Yellow Messages index is
shorthand for "0-10". The notation "400-" indicates "400 and up", "up" meaning up to the maximum 64-bit
unsigned integer, so it is shorthand for "400-18446744073709551615".

132

The Ultra Messaging® Guide for Persistence and Queuing

12.3.4. Options for an Index’s ume-attributes Element

Options for an index appear in the following table. Use the queue Option Type for these options. See Option Types
for ume-attributes Elements for more information.

Option Description Default Value
log-audit-trail Flag indicates whether or not the

Queue logs receiver activity
(assignments, consumption reports,
reassignments, etc.) to the umestored
log. Valid values are 0 (no logging) or
1.

0 (zero)

message-lifetime The maximum lifetime of a queue
message in milliseconds. A value of 0
(zero) configures no lifetime.

0 (zero)

message-reassignment-timeout The maximum amount of time,
starting from assignment, that a
message may remain unconsumed by
its assigned receiver before the Queue
reassigns it to another receiver. A
value of 0 (zero) configures the queue
to never reassign.

10000 (10.0 seconds)

message-max-reassignments The maximum number of
re-assignments allowed per message.
UMQ applies the initial assignment to
this maximum. The queue discards
messages that exceed this maximum.
Setting this option to 1 means that the
message will never be reassigned. A
value of 0 (zero) configures no
maximum.

0 (zero)

receiver-activity-timeout The length of time a receiver may be
inactive before the Queue disengages
from the receiver.

30000 (30.0 seconds) This must be
greater than 0.

receiver-keepalive-interval The interval in milliseconds between
keepalive messages sent by the Queue
to determine whether a receiver is
alive or not.

1000 (1.0 seconds) This must be
greater than 0.

12.3.5. Application Sets Element

The Application Sets element is a container element for every application set serviced by the queue. In the
abbreviated sample below, Set 1 is one application set and Set 2 is another application set. Receiver Type ID of 100
identifies receivers in Set 1 and Receiver Type ID of 200 identifies receivers in Set 2.

<application-sets>

133

The Ultra Messaging® Guide for Persistence and Queuing

<application-set name="Set 1">
<ume-attributes> ... </ume-attributes>
<receiver-types>

<receiver-type id="100">
<ume-attributes> ... </ume-attributes>

</receiver-type>
</receiver-types>

</application-set>
<application-set name="Set 2">

<receiver-types>
<receiver-type id="200"/>

</receiver-types>
</application-set>

</application-sets>

12.3.5.1. Application Set Element

The Application Set element defines an individual application set and has only one attribute, name, which identifies
the application set. Each application set also requires a Receiver Type. See Options for an Application Set’s
ume-attributes Element for application set options.

12.3.5.2. Options for an Application Set’s ume-attributes Element

Options for an application set appear in the following table. Use the queue Option Type for these options. See
Option Types for ume-attributes Elements for more information.

Option Description Default Value
log-audit-trail Flag indicates whether or not receiver

activity (assignments, consumption
reports, reassignments, etc.) are logged
to the umestored log. Valid values
are 0 (no logging) or 1.

0 (zero)

message-lifetime The maximum lifetime of a queue
message in milliseconds. A value of 0
(zero) configures no lifetime.

0 (zero)

message-reassignment-timeout The maximum amount of time,
starting from assignment, that a
message may remain unconsumed by
its assigned receiver before the queue
reassigns it to another receiver.

10000 (10.0 seconds)

134

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
message-max-reassignments The maximum number of

re-assignments allowed per message.
UMQ applies the initial assignment to
this maximum. The queue discards
messages that exceed this maximum.
Setting this option to 1 means that the
message will never be reassigned. A
value of 0 (zero) configures no
maximum.

0 (zero)

receiver-activity-timeout The length of time a receiver may be
inactive before the queue disengages
from the receiver.

30000 (30.0 seconds) This must be
greater than 0.

receiver-keepalive-interval The interval in milliseconds between
keepalive messages sent by the queue
to determine whether a receiver is
alive or not.

1000 (1.0 seconds) This must be
greater than 0.

discard-behavior Queue behavior for unconsumed
messages of the Application Set that
have exceeded their
message-lifetime. If set to
dead-letter, UMQ places
messages that exceed their
message-lifetime on the Dead
Letter Queue. If set to drop, UMQ
discards such unconsumed messages.
See also Dead Letter Queue.

drop

12.3.5.3. Receiver Types Element

The Receiver Types element is a container element for all the receiver types within the Application Set.

12.3.5.3.1. Receiver Type Element

The Receiver Type element defines an individual receiver type and has only one attribute, id, which identifies the
receiver type. A receiver type id is a 32-bit integer. See Options for a Receiver Type’s ume-attributes Element for
receiver type options.

12.3.5.3.2. Options for a Receiver Type’s ume-attributes Element

Options for a Receiver Type appear in the following table. Use the queue Option Type for these options. See Option
Types for ume-attributes Elements for more information.

Option Description Default Value

135

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
priority The priority assigned to the receiver

type when assigning messages. Lower
values have higher priority. This value
may be negative.

0 (zero)

portion The maximum number of messages in
flight for the receiver type.

1

12.3.5.3.3. Index Rules Element

The Index Rules Element is a container element for index rule elements that can allow or deny receivers of the
Receiver Type ID to process messages sent on specific configured indices. It contains one attribute, order, which
specifies the order in which the Queue applies the index rules. Additionally, the order attribute specifies the default
rule (allow or deny) to apply to an index for a particular receiver type if it is not specifically configured. Valid orders
are either "allow, deny" or "deny, allow".

• The Queue first applies rules of the first type specified in the order attribute.

• The Queue then applies rules of the second type specified and overrides any overlapping rules of the first type for
the indices in which they overlap.

• The Queue then applies the default rule to any indices not specifically configured.

The example below establishes the following rules for receivers with Receiver Type ID 100.

1. Allowed to process messages with any of the Red Messages indices.

2. Explicitly prohibited from being assigned messages with any of the Brown Messages indices.

3. Prohibited (via the default rule) from being assigned messages sent with any other indices that fall outside those
defined in either Red Messages or Brown Messages.

<receiver-type id="100">
<ume-attributes> ... </ume-attributes>
<index-rules order="allow, deny">

<index-allow name="Red Messages" />
<index-deny name="Brown Messages" />

</index-rules>
</receiver-type>

Note: The Index Rules Element is not available to ULB receivers.

136

The Ultra Messaging® Guide for Persistence and Queuing

12.3.6. QueueTopics Element

The Topics Element is a container element for all topics handled by the queue. In the abbreviated example below,
application set Set 1 is associated with the configured topic. Since the topic is a PCRE regular expression, any topic
message submitted to the queue that matches the pattern is sent to Set 1.

<topics>
<topic pattern="." type="PCRE">

<ume-attributes> ... </ume-attributes>
<application-sets>

<application-set name="Set 1"/>
</application-sets>

</topic>
</topics>

12.3.6.1. Queue Topic Element

The Topic Element for a queue uses the same attributes for store topics listed in Topic Element and must also specify
an Application Set that is configured in the Application Sets section. The options listed in Options for a Queue
Topic’s ume-attributes Element are also available.

12.3.6.2. Options for a Queue Topic’s ume-attributes Element

Options for a queue topic appear in the following table. Use the queue Option Type for these options. A Queue’s
ume-attributes Element can also accept Option Types lbm-receiver, lbm-context and lbm-source. See Option
Types for ume-attributes Elements for more information.

Option Description Default Value
message-management-check-intervalThe interval in milliseconds between

status checks of the outstanding
assignments for all assigned messages
on the topic. These checks are done for
lifetime and re-assignment.

1000 (1.0 seconds) This value must
not be 0.

topic-check-interval The interval in milliseconds between
checks for any sources and receivers of
the topic. If none exist, the queue
disengages from the topic.

5000 (5.0 seconds) This value must
not be 0.

rcr-save-timeout The maximum time in milliseconds
that the queue holds RCR information
for retransmission to receivers or other
queue instances.

30000 (30.0 seconds) This must be
greater than 0.

message-dissemination-hold-intervalThe interval in milliseconds between
dissemination of the same message to
multiple receivers.

10000 (10.0 seconds) This must be
greater than 0.

137

The Ultra Messaging® Guide for Persistence and Queuing

Option Description Default Value
dead-letter-topic Setting this option to 1 specifies this

topic as a Dead Letter Topic to be used
by UMQ to receive unconsumed
messages of the Queue. (The pattern
for this topic should match the
dead-letter-topic-prefix.) This
topic can only be configured with one
Application Set that has its
discard-behavior set to drop to
prevent the chaining of Dead Letter
Topics. See also Dead Letter Queue.

0 (zero)

message-total-lifetime Establishes the period of time from
when a queue enqueues a message
until the time the message cannot be
assigned or reassigned to a receiver.
The queue deletes the message upon
expiration of the lifetime. See also
Message Lifetimes.

0 (zero)

12.4. Option Types for ume-attributes Elements
All options configured for ume-attributes require an Option Type. The following table describes the five Option
Types.

Option Type Description Default Value
lbm-receiver Allows you to configure receiver

(scope) options that you usually
specify in a UM Configuration File or
set using lbm_*_attr_setopt().
This Option Type is appropriate for a
Topic Element’s ume-attributes
child element. For example, you could
turn off delivery of NAKs for a
particular Topic by including the
following within the Topic’s
ume-attributes element:
<option type="lbm-receiver"

name="transport_lbtrm_send_naks"

value="0"> .

None - this is a required attribute.

138

The Ultra Messaging® Guide for Persistence and Queuing

Option Type Description Default Value
lbm-context Allows you to configure context

(scope) options that you usually
specify in a UM Configuration File or
set using lbm_*_attr_setopt().
This Option Type is appropriate for a
Store Element’s ume-attributes
child element. For example, you could
increase the receiver socket buffer by
including the following within the
ume-attributes element:
<option type="lbm-context"

name="transport_lbtrm_receiver_socket_buffer"

value="1048576"> .

None - this is a required attribute.

lbm-source Allows you to configure source
(scope) options that you usually
specify in a UM Configuration File or
set using lbm_*_attr_setopt().
This Option Type is appropriate for a
Topic Element’s ume-attributes
child element. For example, you could
change the transport by including the
following within the
ume-attributes element:
<option type="lbm-source"

name="transport"

value="lbtru"> .

None - this is a required attribute.

store Use this option type for all options that
directly configure a store or repository
and appear in either a store or topic
ume-attributes element. For
example, <option type="store"

name="context-name"

value="remote-store"/> or
<option type="store"

name="repository-type"

value="disk"/>.

None - this is a required attribute.

queue Option type used for all
ume-attributes configured for the
queue element and its
application-set, receiver-type
and topic elements.

None - this is a required attribute.

139

The Ultra Messaging® Guide for Persistence and Queuing

12.5. umestored Configuration DTD
The DTD for version 1.2 of umestored appears below. See also the DTD revision table below.

DTD
Ver-
sion

Release Date Product Version Supported Features

1.0 Feb. 2007 UME 1.0 Persistent Stores

1.1 April 2010 UME 3.0.1 / UMQ 1.0 Persistent Stores, Queues and Ultra Load Balancing (ULB)

1.2 March 2011 UME 3.2 / UMQ 2.1 Persistent Stores, Queues, Ultra Load Balancing (ULB), Dead Letter
Queue, Indexed Queuing and Indexed ULB

<!ELEMENT ume-store (daemon, stores?, queues?)>
<!ATTLIST ume-store version CDATA #REQUIRED>
<!ELEMENT daemon (log | uid | pidfile | gid | lbm-config | lbm-license-file | web-monitor)*>
<!ELEMENT log (#PCDATA)>
<!ATTLIST log type CDATA #IMPLIED>
<!ATTLIST log xml:space (default | preserve) \"default\">
<!ELEMENT pidfile (#PCDATA)>
<!ATTLIST pidfile xml:space (default | preserve) \"default\">
<!ELEMENT uid (#PCDATA)>
<!ATTLIST uid xml:space (default | preserve) \"default\">
<!ELEMENT gid (#PCDATA)>
<!ATTLIST gid xml:space (default | preserve) \"default\">
<!ELEMENT lbm-config (#PCDATA)>
<!ATTLIST lbm-config xml:space (default | preserve) \"default\">
<!ELEMENT lbm-license-file (#PCDATA)>
<!ATTLIST lbm-license-file xml:space (default | preserve) \"default\">
<!ELEMENT web-monitor (#PCDATA)>
<!ATTLIST web-monitor xml:space (default | preserve) \"default\">
<!ATTLIST web-monitor permission CDATA #IMPLIED>
<!ELEMENT stores (store*)>
<!ELEMENT store (ume-attributes | topics)+>
<!ATTLIST store name CDATA #REQUIRED>
<!ATTLIST store interface CDATA #IMPLIED>
<!ATTLIST store port CDATA #REQUIRED>
<!ELEMENT topics (topic+)>
<!ELEMENT topic (ume-attributes | application-sets)*>
<!ATTLIST topic pattern CDATA #REQUIRED>
<!ATTLIST topic type (direct | PCRE | regexp) #IMPLIED>
<!ELEMENT ume-attributes (option+)>
<!ELEMENT option EMPTY>
<!ATTLIST option type (lbm-receiver | lbm-context | lbm-source | store | queue) #IMPLIED>
<!ATTLIST option name CDATA #REQUIRED>
<!ATTLIST option value CDATA #REQUIRED>
<!ELEMENT queues (queue*)>
<!ELEMENT queue (indices | application-sets | ume-attributes | topics | queue-groups)+>
<!ATTLIST queue name CDATA #REQUIRED>
<!ATTLIST queue interface CDATA #IMPLIED>
<!ATTLIST queue port CDATA #REQUIRED>
<!ATTLIST queue group-index CDATA #IMPLIED>

140

The Ultra Messaging® Guide for Persistence and Queuing

<!ATTLIST queue group-size CDATA #IMPLIED>
<!ELEMENT receiver-types (receiver-type+)>
<!ELEMENT indices (index+)>
<!ELEMENT index (ume-attributes)*>
<!ATTLIST index name CDATA #REQUIRED>
<!ATTLIST index type CDATA #IMPLIED>
<!ATTLIST index value CDATA #REQUIRED>
<!ELEMENT application-sets (application-set+)>
<!ELEMENT application-set (ume-attributes | receiver-types)*>
<!ATTLIST application-set name CDATA #REQUIRED>
<!ELEMENT receiver-type (ume-attributes*, index-rules?)>
<!ATTLIST receiver-type id CDATA #REQUIRED>
<!ELEMENT index-rules (index-allow | index-deny)*>
<!ATTLIST index-rules order CDATA #IMPLIED>
<!ELEMENT index-allow EMPTY>
<!ATTLIST index-allow name CDATA #REQUIRED>
<!ELEMENT index-deny EMPTY>
<!ATTLIST index-deny name CDATA #REQUIRED>
<!ELEMENT queue-groups (queue-group+)>
<!ELEMENT queue-group EMPTY>
<!ATTLIST queue-group index CDATA #REQUIRED>
<!ATTLIST queue-group size CDATA #REQUIRED>

12.6. Store Configuration Example
<?xml version="1.0"?>
<ume-store version="1.2">

<daemon>
<log>stored.log</log>
<pidfile>stored.pid</pidfile>
<web-monitor>*:15304</web-monitor>

</daemon>

<stores>
<store name="test-store" port="14567">

<ume-attributes>
<option type="store" name="disk-cache-directory" value="cache"/>
<option type="store" name="disk-state-directory" value="state"/>
<option type="store" name="context-name" value="remote-store"/>

</ume-attributes>
<topics>

<topic pattern="test*" type="PCRE">
<ume-attributes>

<option type="store" name="repository-type" value="disk"/>
<option type="store" name="repository-size-threshold" value="104857600"/>
<option type="store" name="repository-size-limit" value="209715200"/>
<option type="store" name="repository-disk-file-size-limit" value="1073741824"/>
<option type="store" name="source-activity-timeout" value="120000"/>
<option type="store" name="receiver-activity-timeout" value="120000"/>
<option type="store" name="retransmission-request-forwarding" value="0"/>

</ume-attributes>

141

The Ultra Messaging® Guide for Persistence and Queuing

</topic>
</topics>

</store>
</stores>

</ume-store>

12.7. Queue Configuration Example
<?xml version="1.0" encoding="UTF-8"?>
<ume-store version="1.2">

<daemon>
<log>/tmp/qlog.txt</log>
<lbm-license-file>/home/.ume_license</lbm-license-file>
<lbm-config>/home/queues/lbm-config.cfg</lbm-config>
<web-monitor>*:20395</web-monitor>

</daemon>
<queues>

<queue name="sample_queue" port="20555" group-index="0">
<queue-groups>

<queue-group index="0" size="5"/>
<queue-group index="1" size="1"/>

</queue-groups>
<ume-attributes>

<option type="queue" name="dissemination-model" value="SQD"/>
<option type="queue" name="sinc-data-filename" value="/tmp/sample_queue_1-sd"/>
<option type="queue" name="sinc-queue-swap-filename" value="/tmp/sample_queue_1-sqs"/>
<option type="queue" name="sinc-log-filename" value="/tmp/sample_queue_1-sl"/>
<option type="queue" name="sinc-max-size" value="25000000"/>
<option type="queue" name="sending-threads" value="1"/>
<option type="queue" name="sinc-block-swap-threshold" value="100000"/>
<option type="queue" name="source-missing-message-timeout" value="5000"/>
<option type="lbm-source" name="transport" value="lbtrm"/>

</ume-attributes>
<application-sets>

<application-set name="Set 1">
<ume-attributes>

<option type="queue" name="log-audit-trail" value="0"/>
<option type="queue" name="message-lifetime" value="6000"/>
<option type="queue" name="message-reassignment-timeout" value="2000"/>
<option type="queue" name="message-max-reassignments" value="10"/>

</ume-attributes>
<receiver-types>

<receiver-type id="100">
<ume-attributes>

<option type="queue" name="priority" value="1"/>
<option type="queue" name="portion" value="10"/>

</ume-attributes>
</receiver-type>
<receiver-type id="101">

<ume-attributes>
<option type="queue" name="priority" value="100"/>

142

The Ultra Messaging® Guide for Persistence and Queuing

<option type="queue" name="portion" value="10"/>
</ume-attributes>

</receiver-type>
</receiver-types>

</application-set>
<application-set name="Set 2">

<ume-attributes>
<option type="queue" name="log-audit-trail" value="0"/>
<option type="queue" name="message-lifetime" value="6000"/>
<option type="queue" name="message-reassignment-timeout" value="2000"/>
<option type="queue" name="message-max-reassignments" value="10"/>

</ume-attributes>
<receiver-types>

<receiver-type id="200">
<ume-attributes>

<option type="queue" name="priority" value="1"/>
<option type="queue" name="portion" value="10"/>

</ume-attributes>
</receiver-type>
<receiver-type id="201">

<ume-attributes>
<option type="queue" name="priority" value="100"/>
<option type="queue" name="portion" value="10"/>

</ume-attributes>
</receiver-type>

</receiver-types>
</application-set>

</application-sets>
<topics>

<topic pattern="testA" type="PCRE">
<application-sets>

<application-set name="Set 1"/>
</application-sets>

</topic>
<topic pattern="testB" type="PCRE">

<application-sets>
<application-set name="Set 2"/>

</application-sets>
</topic>
<topic pattern="testC" type="PCRE">

<application-sets>
<application-set name="Set 1"/>
<application-set name="Set 2"/>

</application-sets>
</topic>

</topics>
</queue>

</queues>
</ume-store>

143

The Ultra Messaging® Guide for Persistence and Queuing

13. Ultra Messaging Web Monitor
The built-in web monitor (configured in the umestored XML configuration file) is a rich source of information about
the health of a UM stores and queues. This section contains a page-by-page guide to reading and interpreting the
output of a UM web monitor, with just a couple example sources and one receiver using a single store. This section
discusses the following topics.

• Ultra Messaging Web Monitor Index Page

• Persistent Stores Page

• Store Page

• Source Page

• Receiver Page

• Queue Page

• Queue Topic Page

13.1. Ultra Messaging Web Monitor Index Page
The web monitor’s index page tells what build of UM is running.

Figure 24. UM Web Monitor Index Page

Click on the link, Stores, to see the Persistent Stores Page.

13.2. Persistent Stores Page

Figure 25. Persistent Stores Page

This page shows all the stores configured under the umestored process. If you had 5 stores configured, they would
be numbered Store 0 through Store 4. Our example has only one store configured, ume-test-store. Click on the
link, ume-test-store, to see the Store Page.

144

The Ultra Messaging® Guide for Persistence and Queuing

13.3. Store Page

Figure 26. Persistent Stores Page

This page shows the following information about the store.

Item Description
Interface This store is listening on all interfaces (0.0.0.0) on port 41394

Cache Dir Pathname for disk store message cache directory. This would be configured as a store
attribute in the store’s XML configuration file. <option type="store"

name="disk-cache-directory" value="cache/" />

State Dir Pathname for disk store state directory. This would be configured as a store attribute in the
store’s XML configuration file. <option type="store"

name="disk-state-directory" value="state/" />

Configured
Retransmission Request
Processing Rate

Current value for the store’s retransmission-request-processing-rate setting.

Retransmission Request
Received Rate

Number of retransmission requests received per second.

Retransmission Request
Service Rate

Number of retransmission requests serviced per second.

Retransmission Request
Drop Rate

Number of retransmission requests dropped per second. Requests are dropped if the rate
of retransmission requests exceeds the configured retransmission request rate.

Retransmission Request
Total Dropped

The number of retransmission requests since the time the store was started.

Patterns Specifies the wildcard pattern used to select topics for which a store will provide
persistence services. This would be configured as a topic attribute in the store’s XML
configuration file. <topic pattern="test*" type="PCRE">

Topics Displays the topic name and Registration IDs of the two sources publishing on the topic,
2369562861 and 3131255877.

You can review information about the sources publishing on the topic by clicking on Registration ID displayed. The
Source Page appears.

13.4. Source Page

Figure 27. UM Web Monitor Source Page

145

The Ultra Messaging® Guide for Persistence and Queuing

The following table explains the information found in the title of the Source Page.

Source Page Title Description
2504558780 The source’s registration ID.

10.29.3.42.14392 The IP address and port of the source’s UM configuration
option, request_tcp_port.

3958260924 The source’s transport session index.

1161732811 The source’s topic index within the transport session,
3958260924.

The transport session and topic indices are useful for debugging purposes when combined with a Wireshark capture,
but are otherwise not relevant here. The following table provides descriptions of the items in the source page.

Source Page Item Description
Topic test is the source’s topic string.

Last Activity 09:19:39.501350 is the timestamp when the store last heard from the source, including
keepalives sent by UM

Repository disk is the type of repository.

Receiver Paced
Persistence

Setting for Receiver-paced Persistence (RPP), which is a repository option both the
repositrory and source must enable. A value of 0 means RPP is not enabled and the
repository is using the default Source-paced Resistence. A value of 1 means RPP is
enabled.

Message Map: 104 104 is the total number of message fragments the store has for this source, both on disk
and in memory. These are UM-level fragments, not IP-level fragments. UM messages are
fragmented into roughly 8 kilobyte chunks for UDP-based protocols (LBT-RM and
LBT-RU) and into roughly 64 kilobyte chunks for LBT-TCP. The majority of application
messages tend to be well under the fragment boundaries, so the value after "Message
Map" could be used as a rough estimate of the number of messages in the store from this
particular source. It’s at least a strict upper bound.

Window: [0, 0, 67] The first 0 is the trailing sequence number, which is the oldest sequence number in the
store for this source. In most cases, this starts at 0 and stays there for a while, but
especially with UME 2.0 where stores can come and go, that may not be the case. It
would also move if you, for example, hit a disk file size limit and had to throw out some
old messages.

The second 0 is the
trailing sequence
number for messages in
memory, so it is the oldest
sequence number still in
memory. Typically, you
might have more sequence
numbers on disk than you
do in memory, or possibly
the same number.

146

The Ultra Messaging® Guide for Persistence and Queuing

Source Page Item Description
The third number, 67, is
the leading sequence
number, which is the
highest sequence number
in the store.
NOTE: For a memory
store, the first and second
values would always be
the same (the oldest
sequence number in
memory is the oldest in the
store), so only two values
are displayed; the trailing
sequence number and the
leading sequence number.
These are sequence
numbers of message
fragments; there’s usually
just one fragment per
message, but there could
be more than one.

Memory: 7176 / 52428800
/ 104857600

First number, 7176, is the number of bytes of messages (which includes headers and a bit
of store overhead) in memory.

The second number,
52428800, is the
repository-size-threshold

topic option found in the
store’s XML configuration
file.
The third number,
104857600, is the
repository-size-limit

setting.
You would expect the
number of bytes in
memory to be under the
threshold most of the time,
but it could spike above it
before going back down if
the store is really busy
momentarily. It should
never go above the limit.

Age Threshold: 0 0 is the repository-age-threshold setting.

Sync: [c2f, c2f, c2f] Pertains to disk or reduced-fd repositories only. Sync format is: sync_complete_sqn,
sync_sqn, contig_sqn

147

The Ultra Messaging® Guide for Persistence and Queuing

Source Page Item Description
sync_complete_sqn, c2f
Most recent sequence
number that the Operating
System has confirmed
persisting to disk.
sync_sqn, c2f Most recent
sequence number for
which the store has
initiated persisting to disk,
but the Operating System
has not confirmed
completion of persistence.
contig_sqn, c2f Most
recent sequence number
that along with the
trail_sqn, creates a range
of sequence numbers with
no sequence number gaps.
For example, if
trail_sqn = 0 and the
store has persisted all
eleven messages with
sequence numbers 0
through 10, contig_sqn
would equal 10.
contig_sqn would also
be 10 if a receiver declared
message sequence number
7 unrecoverably lost.
contig_sqn would be 6 if
message sequence number
7 was not persisted, but
not declared lost.

In progress: 0 / 0 Pertains to disk or reduced-fd repositories only. In progress format is:
num_ios_pending / num_read_ios_pending

num_ios_pending, 0
Number of disk writes the
store has submitted to the
Operation System. A disk
write refers to the store
persisting a message to
disk.

148

The Ultra Messaging® Guide for Persistence and Queuing

Source Page Item Description
The
num_read_ios_pending,
0 Number of disk reads
that the store has
submitted to the Operating
System. A disk read, for
example, results from an
application retransmission
request.

Offsets: 0 / 190320 /
4294967296

Pertains to disk or reduced-fd repositories only. Offsets format is: start_offset,
offset, max_offset

start_offset, 0 The
relative location of the first
message, trail_sqn, in
the disk. start_offset
is 0 for a reduced-fd
repository.
The offset, 190320 The
relative location of where
the message, contig_sqn
plus one will be written.
offset represents the size
of the repository on disk
for a reduced-fd
repository.
max_offset, 4294967296
The maximum size of the
cache file. max_offset is
the maximum repository
size on disk for a
reduced-fd repository.

Active ULBs: 0 high 0 ULB stands for Unrecoverable Loss Burst. A little extra work is required to keep cache
files consistent when the store gets an unrecoverable loss burst, because unrecoverable
loss bursts are delivered all at once for lots of messages, rather than one at a time like
normal unrecoverable loss messages.

Active ULB is the number
of unrecoverable loss burst
events the store is dealing
with at the moment. It’ll
go to zero after the ULB
has been resolved.

149

The Ultra Messaging® Guide for Persistence and Queuing

Source Page Item Description
The high number (0) is the
highest sequence number
reported among any
unrecoverable loss burst
event, and is not reset after
the ULB is handled; it
increments throughout the
process life of the store.
WARNING: If you see
any number other than 0
here, the store is losing
large numbers of
messages, and they are
likely not being persisted.

Loss: 0 ULBs 0 These values are counters for number of unrecoverable loss messages (Loss) and for
number of unrecoverable burst loss messages (ULB). These start at 0 when the store starts
up and aren’t reset until the store exits. They don’t include any loss events that were
persisted to disk from a previous run, only new loss events since the store started. There
are cases with UME 2.0 where one individual store could legitimately report some
unrecoverable loss, or maybe even unrecoverable loss bursts.

WARNING: If you see
any number other than 0
for either of these
counters, you should
investigate.

Drops: 0 / 0 If the store is nearing the repository-size-limit and gets another message, the store
will intentionally drop a message. A drop requires a bit of work on the store’s part.

The first 0 is the number
of active drops, which are
drops that are currently
being worked on.
The second 0 is the total
number of drops that have
happened for this store
since it was started. Some
people want a low
repository-size-limit

and therefore lots of
intentional drops can
occur. Some don’t want to
drop any message the
whole day - so the
interpretation of the values
is up to you.

150

The Ultra Messaging® Guide for Persistence and Queuing

Source Page Item Description
LBM Stats These represent transport-level statistics for the underlying receivers in the store for the

source. The example shown is for a TCP source, so not too many stats are available (stats
for a TCP source are less important from a monitoring perspective).

Statistics for an LBT-RM
or LBT-RU source,
however, show number of
NAKs sent, which is
important. Ideally, the
number of NAKs sent
should be 0. A few NAKs
from a store throughout
the day is not an
emergency. It can be,
however, an early warning
sign of more severe
problems, and should be
taken seriously.
If you see a non-zero
number of NAKs here,
take a look at the overall
network load the store’s
machine is attempting to
handle, particularly in very
busy periods and spikes; it
may be too much.

Receivers Registration IDs for the receivers listening on the source’s topic. You can review
information about the receivers listening on the topic by clicking on Registration ID. The
Receiver Page appears.

13.5. Receiver Page

Figure 28. UM Web Monitor Receiver Page

The following table explains the information found in the title of the Receiver Page.

Receiver Page Title Description
2504558781 The receiver’s registration ID.

10.29.3.42.14393 The IP address and port of the source’s UM configuration
option, request_tcp_port.

1510613393 The receiver’s transport session index.

151

The Ultra Messaging® Guide for Persistence and Queuing

Receiver Page Title Description
1161732811 The source’s topic index within the transport session,

1510613393.

The receiver page shows the following information.

Receiver Page Item Description
Topic The topic that the receiver is listening on.

Last Activity 09:09:35.981110 is the timestamp of when the store last heard from the receiver,
including keepalives sent by UM.

Source RegID Registration ID of the source publishing on the topic. Click on the Registration ID link to
display the Source Page.

Source Session ID The Session ID of the Source sending messages on the topic.

ACK c93 is the last message sequence number the receiver acknowledged.

13.6. Queue Page

Figure 29. Queue Page

This page shows the following information about Queue 0, which is named Queue 1. The queue name is an
attribute of the Queue Element in the Queue’s XML configuration file. <queue name="Queue 1" port="4567"

group-index="0">

Item Description
Interface This queue is listening on all interfaces (0.0.0.0) on port 4567

Queue ID Identification given to this queue by UMQ .

Sending Threads Number of threads configured for this queue to send control and data messages. This
would be configured as a Queue Element option in the queue’s XML configuration file.
<option type="queue" name="sending-threads" value="1/" />

Sending Threads(s) Queue
Size

The number of messages waiting to be sent to receivers in the pool of sending threads.
This could be data and control messages for Parallel Queue Dissemination (PQD), data
messages only for Serial Queue Dissemination (SQD) or control messages only for
Source Dissemination (SD).

Registered Contexts Number of application contexts registered with this queue.

Retransmit Requests Message Requests: Number of requests for data message retransmission.

Queue RCR Requests:
Number of requests for the
retransmission of control
information.

152

The Ultra Messaging® Guide for Persistence and Queuing

Item Description
Dropped Requests:
Number of retransmission
requests dropped by
Queue 1.

Patterns Specifies the wildcard patterns used to select topics for which a queue will accept data
messages. This would be configured as a topic attribute in the queue’s XML configuration
file. <topic pattern="." type="PCRE">

Topics Displays the RCR Index (697157a5) and topic name (a.b) of the topic(s) configured for
this queue.

You can review information about the Queue’s topics and application sets by clicking on the topic’s RCR Index,
697157a5). The Queue Topic Page appears.

13.7. Queue Topic Page

Figure 30. Queue Topic Page

This page shows the following information about the queue topic, a.b. This topic’s RCR Index is 697157a5.

Item Description
Queue The Queue Name for which this topic is configured. It is also a link back to the Queue

Page for this queue.

Application Sets Queue 1 has 2 Application Sets configured.

Consumed Messages Total number of messages consumed by all Application Sets.

Reassignments Number of messages that have been reassigned.

Topic RCR Requests Number of requests for the retransmission of control information regarding this topic.

Saved RCRs Number of Receiver Control Records save due to retransmissions. You configure how
long the queue saves RCRs a Queue Element attribute in the queue’s XML configuration
file. <option type="queue" name="rcr-save-timeout" value="30000"/>.

Application Set Set 2 is the name of this Application Set.

Enqueued Messages:
Number of messages
currently held in Queue 1
for Set 2.
Currently Assigned:
Number of messages
currently assigned to a
receiver in this
Application Set.

153

The Ultra Messaging® Guide for Persistence and Queuing

Item Description
Currently Reassigning:
Number of messages
waiting to be reassigned to
receivers.
Consumed Messages:
Number of messages
consumed by receivers in
this Application Set.
Reassignments: Number
of messages that have
been reassigned to another
receiver in this
Application Set.
Discarded Messages:
Number of messages
assigned to receivers in
this Application Set that
have been discarded.

Receivers Number of receivers (1) configured for this Application Set. Specific information for each
receiver appears in the table below this item.

ID: The Assignment ID
given to this receiver by
the queue.
Address: The address and
port of the receiver.
Portion: This receiver’s
portion size that you
configure as a Receiver
Type attribute in the
queue’s XML
configuration file.
<option

type="queue"

name="portion"

value="1"/>.
Priority: This receiver’s
priority that you configure
as a Receiver Type
attribute in the queue’s
XML configuration file.
<option

type="queue"

name="priority"

value="1"/>.

154

The Ultra Messaging® Guide for Persistence and Queuing

Item Description
Outstanding: Number of
assigned messages for
which the queue has not
yet received Consumption
Reports.
Last Active: A timestamp
indicating the last activity
for the receiver.
Consumed: Total
messages consumed by
this receiver. The total for
this column should match
the Consumed Messages
value for the Application
Set.

Assigned The number of messages currently assigned to all receivers for the Application Set. For
each assigned message, the Message ID and Assignment ID for the receiver assigned the
message appears. In addition, the Reassign and Discard links allow you to reassign or
discard the individual message.

155

