

Copyright 2018, Informatica LLC, all rights reserved 1

Verifying Packet Loss Detection Tools

ABSTRACT
This report describes a procedure to verify the correct operation of tools intended to
detect and report packet loss.

INTRODUCTION
When using UDP-based protocols, a certain amount of loss is a fact of life. Most UDP
loss happens at one or more of three specific points: switch (egress queue), NIC (packet
buffers), or socket buffer.

Figure 1: UDP loss points

Switch loss: A switch can lose packets in its egress queue if multiple up-stream senders
are bursting data at a combined rate greater than the Ethernet link. For short bursts, the
egress queue simply holds the packets until they can be drained to the receiving host.
But if the incoming bursts are long enough (typically less than a second), the egress
queue can overflow, dropping packets. This is known as switch port oversubscription.

NIC loss: The host NIC works by receiving packets and transferring them into host
memory by DMA. The NIC itself has a fixed number of receive descriptors which basically
contain pointers to packet buffers in host memory. When packets are available, the NIC
interrupts the host CPU and the driver passes the packets through the IP stack and into
the socket buffer(s) for delivery to the applications. However, there are circumstances
where the Kernel can get overloaded, so that it cannot process received packets as fast
as they are coming in. If the packet buffers are all full and the NIC receives additional
packets, those packets will be dropped by the NIC.

Switch

Egress queue

Host

NIC

Packet Buffers

 Interrupt
IP Stack

Socket Buffer

Kernel User

 Application

Copyright 2018, Informatica LLC, all rights reserved 2

Socket buffer loss: The application (an Ultra Messaging context thread, for example) is
responsible for reading UDP datagrams out of the socket buffer. If the application is not
able to run fast enough, it might be unable to process datagrams as quickly as they are
entering the socket buffer. If this speed mismatch lasts long enough, the socket buffer
will become full and the kernel will drop newly received datagrams.

In almost all well-designed, well-provisioned systems, a small number of UDP packet
drops can be expected in the switch's egress queue. Ten packets per hour might be
considered acceptable by many users; others will work to drive the lost packet rates even
lower (it can be done). High rates of switch loss, or loss in the NIC or socket buffers,
generally represent a pathological overload condition which needs to be diagnosed and
treated. Even if the higher-level protocols are able to recover this "pathological" lost data,
these undesirable forms of loss cause latency, extra CPU load, can be a warning of larger
problems in the near future - unrecoverable loss.

There are a variety of treatment methodologies, depending on the type of loss. A detailed
discussion of those treatments is beyond the scope of this document. However, an
accurate diagnosis of the location of the loss is critical to selecting the proper treatment.
The tools used to detect and report loss must work reliably. Unfortunately, there are
many cases where the typical tools do not work properly.

For example, the "netstat -s" command is commonly used on Linux systems to detect
socket buffer loss (UDP receive errors). However, although Windows systems do have
the "netstat -s", it does not detect and report socket buffer overflow for Windows
versions prior to version 7. See Appendix 1: Common Tools for more information.

The main purpose of this document is to provide a procedure to verify that your loss
detection/reporting tools really do work. The general process is to force each form of
loss, and verify that the corresponding tool detects and reports that loss.

Once you have verified which of your loss detection tools work properly, you should
implement some form of continuous monitoring and storage of that information. If you
get loss in a production system and sample the counters after the fact, you don't know if
the non-zero counters are from the event that just happened, or if they are old. Sample
the tools every 5 or 10 minutes - you'll be glad you did.

Much of the information contained in this document has been learned through experience
with users. Please contribute to the quality of this document by sharing your experiences
when performing this procedure. In particular, we would like to know if anybody has
successfully detected socket buffer loss in Windows versions before 7, and switch loss in
Cisco 10-Gig NEXUS switches. Please send all of your experiences to
sford@informatica.com.

Copyright 2018, Informatica LLC, all rights reserved 3

BEFORE YOU START
The procedure makes use of the "mtools" programs "msend" and "mdump". These are
available free of charge at
https://community.informatica.com/solutions/informatica_mtools where you will find
pre-built packages for a variety of platforms, plus source code for both tools and
documentation. The tools make use of high-rate multicast streams, so please make sure
that your network can handle that kind of traffic.

1. Download the mtools package to each machine on which you want to verify the
loss diagnosis tools. Note that these tools are updated periodically, so a fresh
download should be done. There is no "installation procedure" for the tools (other
than decompressing them). They are provided as simple command-line
executables. Also note that for most platforms, only a 32-bit executable is
provided. But for Windows, both a 32-bit and a 64-bit is provided. This is because
32-bit programs have very poor UDP send performance on 64-bit Windows 2003.
(Win 2008 appears to fix this.)

2. Contact your network administrator and arrange a time that they can work with
you. They will need to allocate a multicast group (address) for you, and tell you
which network to use. During the procedure, they will also need to monitor the
switch port statistics and tell you if output drops happen.

3. Contact your host system administrator and arrange to be able to reconfigure the
host's NIC for flow control ON and OFF. During the procedure, you will need to
change that setting more than once. (On some Microsoft systems, the NIC driver
does not have a flow control option. Often, simply downloading the latest driver
fixes this.)

4. Determine which tools are supposed to detect and report loss at each of the
points: switch, NIC, and socket buffer. See Appendix 1: Common Tools for
suggested tools.

5. Gain access to two machines: the sender and the receiver. The receiver machine
will be the focus for verifying the loss detection tools. Determine the IP addresses
of the interfaces.

In the procedure that follows, you will use the mtools "msend" and "mdump" commands.
The "mdump" command should be run on the machine on which you wish to verify the
loss detection tools. The "msend" tool should be run on a separate machine ("sender
machine"), usually of the same operating system as the system under test.

Copyright 2018, Informatica LLC, all rights reserved 4

TEST 1: BASELINE
This test run verifies that the hardware and operating system are able to handle the traffic
generated by mtools. This test should run without any loss. If loss is detected during this
phase, then it will be very difficult to properly verify your loss detection tools.

Prep: make sure NIC flow control is turned OFF.

1. Use your loss detection tools to get current counts of all 3 forms of loss (switch,
NIC, socket buffer). Note those values.

2. On the system under test:
mdump -q MCAST_ADDR 12000 INTFC_ADDR

3. On the sender machine:
msend -5 MCAST_ADDR 12000 15 INTFC_ADDR

4. When the "msend" completes, use your loss detection tools to get new counts of
all 3 forms of loss. Compare these values with those taken in step 1.

RESULTS:

The test should run for just a few seconds. The "mdump" command should report zero
loss. The loss detection tools should also report zero loss at each of the three loss
points.

DISCUSSION:

The "msend -5" tool generates 50,000 messages of 800 bytes each in a single intense
burst. This should generate close to a full gigabit of bandwidth, but only for a few
seconds. A network utilization measurement tool which averages over a longer period of
time, like 5 seconds, will not report that level of network load. A properly configured
network and receiving system should have no trouble receiving all messages.

Note the use of port "12000" - this was chosen somewhat arbitrarily. Feel free to change
it if it conflicts with existing port usage. Also, the multicast TTL is set to "15". One might
think that "1" would be a safer setting, but it turns out that TTL=1 often places a heavy
load on switches. See
https://www.informatica.com/downloads/1568_high_perf_messaging_wp/Topics-in-
High-Performance-Messaging.htm#TTL-1-AND-CISCO-CPU-USAGE for additional detail.

Copyright 2018, Informatica LLC, all rights reserved 5

TEST 2: SOCKET BUFFER LOSS
This test run verifies that the socket buffer loss detection tool works. On Unix and
Windows version 7 and beyond, this consists of the "netstat -s" command, and the
counter is "UDP receive errors". Pre-7 Windows users are out of luck. This test should
have significant loss reported by both the "mdump" command and the loss detection tool.

Prep: make sure NIC flow control is turned OFF.

1. Use your loss detection tools to get current counts of all 3 forms of loss. Note
those values.

2. On the system under test:
mdump -q -p1000/5 MCAST_ADDR 12000 INTFC_ADDR

3. On the sender machine:
msend -5 -s2200 MCAST_ADDR 12000 15 INTFC_ADDR

4. When the "msend" completes, it may take up to 5 more seconds for the "mdump"
command to also complete. Use your loss detection tools to get new counts of all
3 forms of loss. Compare these values with those taken in step 1.

RESULTS:

The test should run for about 7 seconds. The "mdump" and socket buffer detection tools
should report significant loss, typically around to 90%. The NIC and switch tools should
report no loss.

DISCUSSION:

The "-p1000/5" option causes the "mdump" command to pause for 1000 milliseconds
between each of the first 5 messages read. Since the sending machine is sending
packets at full speed, this will fill the socket buffer to overflowing very quickly. After
those first 5 messages, "mdump" reads the rest of the messages at full speed. The "-
s2200" option on "msend" makes it pause for 2200 milliseconds before sending "mdump"
a "stat" command to report the loss statistics. This gives "mdump" time to read 2
messages, making room in the socket buffer for that "stat" command.

Copyright 2018, Informatica LLC, all rights reserved 6

TEST 3: NIC LOSS
This test run verifies that the NIC loss detection tool works. The correct tool varies by the
version of the OS and the driver, and some OS/drivers do not expose NIC loss statistics at
all. On some Unix systems, the command is "ifconfig INTFC_NAME" has a counter for
"receiver overrun". Some Unix systems use "netstat -Si INTFC_NAME". Some Unix
systems use "ethtool". Some Unix systems have NIC receiver discards/overrun available
in the "/proc" file system. Some Unix and Windows systems have a utility for reporting
NIC statistics supplied by the NIC vendor or system integrator.

Prep: make sure NIC flow control is turned OFF.

1. Use your loss detection tools to get current counts of all 3 forms of loss. Note
those values.

2. On the system under test run 15 copies of "mdump":
mdump -q MCAST_ADDR 12000 INTFC_ADDR

3. On the sender machine:
msend -5 MCAST_ADDR 12000 15 INTFC_ADDR

4. When the "msend" completes, use your loss detection tools to get new counts of
all 3 forms of loss. Compare these values with those taken in step 1.

RESULTS:

The test should run for just a few seconds. The "mdump" command and the NIC loss tool
should report significant loss. If by chance "mdump" reports no loss, try again with more
copies of "mdump" running.

The socket and switch detection tools should report zero loss.

DISCUSSION:

Running 15 copies of "mdump" will overload the kernel. Each message received will have
to be replicated 15 times in software by the kernel, and will be copied to the 15 sockets,
and then 15 processes need to be woken up. Even on a fast CPUs, this takes significantly
more time than "msend" takes sending messages. Thus, the kernel falls behind, the NIC
fills its packet buffers, and then drops packets.

Copyright 2018, Informatica LLC, all rights reserved 7

TEST 4: SWITCH LOSS
This test run verifies that the switch loss detection tool/method works. The vast majority
of switches on the market will accurately count drops at the output port, but it can
sometimes be a challenge to determine which counter is the right one. Typically the
switch does not count this kind of packet drop as an "error", since it is technically the
application's fault that the drops have to happen (switch port oversubscription). The
counter is normally called "output drops" or something like that. There is a report that
new 10-Gig Cisco NEXUS switches might not properly report output drops.

Prep: turn NIC flow control is turned ON. <-- Look! A change! :-)

1. Use your loss detection tools to get current counts of all 3 forms of loss. Note
those values.

2. On the system under test run 30 copies of "mdump":
mdump -q MCAST_ADDR 12000 INTFC_ADDR

3. On the sender machine:
msend -5 MCAST_ADDR 12000 15 INTFC_ADDR

4. When the "msend" completes, use your loss detection tools to get new counts of
all 3 forms of loss. Compare these values with those taken in step 1.

RESULTS:

The test should run for just a few seconds. The "mdump" command and the switch loss
tool should report significant loss. The socket and NIC detection tools should report zero
loss.

DISCUSSION:

As with test 3, running 15 copies of "mdump" will overload the kernel. However, with NIC
flow control turned on, the NIC will signal the switch to slow down its sending rate to
prevent NIC loss. Instead, the switch egress queue will fill and drop packets.

A network administrator should be able to quickly examine the proper switch port and tell
you that there are output drops. In this case, the "tool" is sometimes the telephone or an
IM screen to ask the administrator to check. One obvious problem with this approach is
that if loss is suspected in a production system, it is often too late to catch it "in the act".
Whenever possible, we recommend that the network administration group implement
some form of periodic sampling and archiving of critical systems' output ports. See
Appendix 1: Common Tools for suggestions.

Copyright 2018, Informatica LLC, all rights reserved 8

SOMETIMES, LIFE ISN'T FAIR
So, let's say that you discover that one of the loss detection tools doesn't work in your
environment. Worse yet, what if *two* tools don't work! If you have loss, how can you
treat it if you can't even identify where it is happening?

If only one tool doesn't work, then you can use the process of elimination. For example, if
a pre-7 Windows machine is getting packet loss, and the NIC and switch report no loss
(and you've proven that those tools work properly), then you can safely assume that the
loss is in the socket buffer. But what if you DO see loss in the NIC or switch? Can you
assume that there is no loss in the socket buffer? No, you can't. But at least you can try
to treat the NIC or switch loss. Once you eliminate those sources of loss, any remaining
loss would be in the socket buffer.

Ok, so what if both socket buffer and NIC loss are not directly detectable? All you have is
switch loss detection. Are you stuck? Not necessarily. Although I generally recommend
configuring NICs with flow control OFF, this would be a situation where it makes sense to
have it ON. This basically moves NIC loss into the switch. If you have a loss event and
the switch shows no loss, then you can be pretty sure it is in the socket buffer. But what
if the switch *does* show loss? How do you know if it is because of port
oversubscription v.s. kernel overload? You can't. But, if you can reproduce the loss
condition, you can experiment by turning flow control back OFF. Reproduce the loss and
check the switch again. If the switch still reports loss, you know it is real switch loss (port
oversubscription). If not, then it is NIC loss (kernel overload).

I always prefer to have all three tools working properly since I don't like to make
assumptions. But, you know the old saying: sometimes life isn't fair. We do the best we
can with the tools we have.

Copyright 2018, Informatica LLC, all rights reserved 9

APPENDIX 1: COMMON TOOLS
As described, these tools sometimes work, sometimes not. For Linux and Solaris, the socket
buffer tools seem to be very reliable (we have never seen it not work correctly). However, we have
seen many cases where the NIC tool does not work.

Linux

Socket buffer loss tool:
 netstat -s
(look for the UDP field "packet receive errors")

NIC loss tool:
 ifconfig eth0 <--- replace eth0 with correct NIC name
(look for "RX packets ... overruns:")

Alternate NIC loss tool; must be run as root:
 ethtool -s eth0 <--- replace eth0 with correct NIC name
(proper field name varies by NIC and driver)

Solaris-10

Socket buffer loss tool:
 kstat | grep udpInOverflows

NIC loss tool:
 kstat -n bge0 | grep norcvbuf <--- replace bge0 with correct NIC name

Windows

Socket buffer loss tool; Windows-7 (and beyond?):
 netstat -s
(look for the UDP field "receive errors")

NIC loss tool varies by the NIC and driver and is often a separate executable.

Cisco switch loss:

A possible Unix command that a network administrator could use is:

 snmpwalk -v 1 -c public SWITCH_ADDR IF-MIB::ifOutDiscards

Note that the above community string ("public") is probably not enabled; the network
administrator will know the appropriate value. Ideally, the network administrator would run that
command every 5 or 10 minutes, logging to a file, with a time stamp. If this log file could be
shared read-only to the project groups, they can time-correlate any unusual application event with
loss reported by the switch.

