
Informatica Ultra Messaging Persistence 
Edition (Version 6.7.1)

Concepts Guide 



Informatica Ultra Messaging Persistence Edition Concepts Guide

Version 6.7.1
August 2014

Copyright (c) 2004-2014 Informatica Corporation. All rights reserved.

This software and documentation contain proprietary information of Informatica Corporation and are provided under a license agreement containing restrictions on use 
and disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in 
any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica Corporation. This Software may be protected by U.S. 
and/or international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as 
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 
(ALT III), as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to us 
in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange, 
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica 
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging and 
Informatica Master Data Management are trademarks or registered trademarks of Informatica Corporation in the United States and in jurisdictions throughout the world. 
All other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights 
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights 
reserved.Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta 
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems 
Incorporated. All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All 
rights reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights 
reserved. Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights 
reserved. Copyright © Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. 
Copyright Cleo Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-
technologies GmbH. All rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © is International Business Machines Corporation. All rights 
reserved. Copyright © yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright (c) University of Toronto. All rights reserved. 
Copyright © Daniel Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All 
rights reserved. Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All 
rights reserved. Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright 
© EMC Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All 
rights reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright © 

Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha, 
Inc. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various versions 
of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or agreed to in 
writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 
implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software 
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License 
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any 
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California, 
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and 
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this 
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or 
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms 
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to 
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations 
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at 
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless 
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software are 
subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at 
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms 
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http:// asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/release/



license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/license-
agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/licence.html; 
http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/Consortium/Legal/
2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/license.html; http://
forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/software/tcltk/license.html, http://
www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/License; http://
www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/index.html; http://www.net-snmp.org/about/
license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt; http://www.schneier.com/blowfish.html; http://
www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/EaselJS/blob/master/src/easeljs/display/Bitmap.js; 
http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://jdbc.postgresql.org/license.html; http://
protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/LICENSE; http://web.mit.edu/Kerberos/krb5-
current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; and https://github.com/lyokato/libgeohash/blob/master/LICENSE.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and Distribution 
License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary Code License 
Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://opensource.org/
licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/licenses/artistic-
license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this 
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab. 
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject 
to terms of the MIT license.

This Software is protected by U.S. Patent Numbers 5,794,246; 6,014,670; 6,016,501; 6,029,178; 6,032,158; 6,035,307; 6,044,374; 6,092,086; 6,208,990; 6,339,775; 
6,640,226; 6,789,096; 6,823,373; 6,850,947; 6,895,471; 7,117,215; 7,162,643; 7,243,110; 7,254,590; 7,281,001; 7,421,458; 7,496,588; 7,523,121; 7,584,422; 
7,676,516; 7,720,842; 7,721,270; 7,774,791; 8,065,266; 8,150,803; 8,166,048; 8,166,071; 8,200,622; 8,224,873; 8,271,477; 8,327,419; 8,386,435; 8,392,460; 
8,453,159; 8,458,230; and RE44,478, International Patents and other Patents Pending.

DISCLAIMER: Informatica Corporation provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the 
implied warranties of noninfringement, merchantability, or use for a particular purpose. Informatica Corporation does not warrant that this software or documentation is 
error free. The information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and 
documentation is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software 
Corporation ("DataDirect") which are subject to the following terms and conditions:

1.THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, 
INCIDENTAL, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT 
INFORMED OF THE POSSIBILITIES OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT 
LIMITATION, BREACH OF CONTRACT, BREACH OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

This software and documentation contain proprietary information of Informatica Corporation and are provided under a license agreement containing restrictions on use 
and disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in 
any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica Corporation. This Software may be protected by U.S. 
and/or international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as 
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 
(ALT III), as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to us 
in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange, 
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica 
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging and 
Informatica Master Data Management are trademarks or registered trademarks of Informatica Corporation in the United States and in jurisdictions throughout the world. 
All other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights 
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights 
reserved.Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta 
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems 
Incorporated. All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All 
rights reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights 
reserved. Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights 
reserved. Copyright © Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. 
Copyright Cleo Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-
technologies GmbH. All rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © is International Business Machines Corporation. All rights 
reserved. Copyright © yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright (c) University of Toronto. All rights reserved. 
Copyright © Daniel Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All 
rights reserved. Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All 
rights reserved. Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright 
© EMC Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All 
rights reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright © 

Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha, 
Inc. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various versions 
of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or agreed to in 
writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 
implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.



This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software 
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License 
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any 
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California, 
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and 
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this 
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or 
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms 
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to 
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations 
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at 
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless 
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software are 
subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at 
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms 
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http:// asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/release/
license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/license-
agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/licence.html; 
http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/Consortium/Legal/
2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/license.html; http://
forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/software/tcltk/license.html, http://
www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/License; http://
www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/index.html; http://www.net-snmp.org/about/
license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt; http://www.schneier.com/blowfish.html; http://
www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/EaselJS/blob/master/src/easeljs/display/Bitmap.js; 
http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://jdbc.postgresql.org/license.html; http://
protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/LICENSE; http://web.mit.edu/Kerberos/krb5-
current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; and https://github.com/lyokato/libgeohash/blob/master/LICENSE.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and Distribution 
License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary Code License 
Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://opensource.org/
licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/licenses/artistic-
license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this 
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab. 
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject 
to terms of the MIT license.

This Software is protected by U.S. Patent Numbers 5,794,246; 6,014,670; 6,016,501; 6,029,178; 6,032,158; 6,035,307; 6,044,374; 6,092,086; 6,208,990; 6,339,775; 
6,640,226; 6,789,096; 6,823,373; 6,850,947; 6,895,471; 7,117,215; 7,162,643; 7,243,110; 7,254,590; 7,281,001; 7,421,458; 7,496,588; 7,523,121; 7,584,422; 
7,676,516; 7,720,842; 7,721,270; 7,774,791; 8,065,266; 8,150,803; 8,166,048; 8,166,071; 8,200,622; 8,224,873; 8,271,477; 8,327,419; 8,386,435; 8,392,460; 
8,453,159; 8,458,230; and RE44,478, International Patents and other Patents Pending.

DISCLAIMER: Informatica Corporation provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the 
implied warranties of noninfringement, merchantability, or use for a particular purpose. Informatica Corporation does not warrant that this software or documentation is 
error free. The information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and 
documentation is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating 
company of Progress Software Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE AND NON-INFRINGEMENT.



2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR 
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE 
OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES OF DAMAGES IN ADVANCE. THESE 
LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, 
BREACH OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

Part Number: UMP-CPT-67100-0001



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv
Informatica Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv

Informatica My Support Portal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv

Informatica Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv

Informatica Web Site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv

Informatica How-To Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv

Informatica Knowledge Base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v

Informatica Support YouTube Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v

Informatica Marketplace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v

Informatica Velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v

Informatica Global Customer Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1: Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Chapter 2: Fundamental Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Topic Structure and Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Persistence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Late Join. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Request/Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Transports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Multi-Transport Threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Event Delivery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Rate Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Operational Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Chapter 3:  UM Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Context Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Topic Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Source Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Message Properties Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Source Configuration and Transport Sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Zero Object Delivery (Source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Receiver Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Receiver Configuration and Transport Sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Wildcard Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Zero Object Delivery (ZOD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Event Queue Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Table of Contents        i



Transport Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Transport TCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Transport TCP-LB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Transport LBT-RU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Transport LBT-RM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Transport LBT-IPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Transport LBT-SMX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Transport LBT-RDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Chapter 4: Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Embedded Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Sequential Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Topic Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Multicast Topic Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

Topic Resolution Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

Store (context) Name Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Topic Resolution Configuration Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

Unicast Topic Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Message Batching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

Implicit Batching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

Adaptive Batching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

Intelligent Batching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

Explicit Batching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

Application Batching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Ordered Delivery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

Sequence Number Order, Fragments Reassembled (Default Mode). . . . . . . . . . . . . . . . . .  51

Arrival Order, Fragments Not Reassembled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

Arrival Order, Fragments Reassembled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

Loss Detection Using TSNIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Receiver Keepalive Using Sesssion Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 5: UMS Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
Using Late Join. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

Late Join Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

Late Join With UMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Late Join Options Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Using Default Late Join Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Specifying a Range of Messages to Retransmit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

Retransmitting Only Recent Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

Configuring Late Join for Large Numbers of Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Off-Transport Recovery (OTR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

OTR Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

ii        Table of Contents



OTR with Sequence Number Ordered Delivery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

OTR With UMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

OTR Options Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

Request/Response Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

Request Message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

Response Message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

TCP Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Example Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Self Describing Messaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Pre-Defined Messaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Typical PDM Usage Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

Getting Started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

Using the PDM API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

Migrating from SDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

Multicast Immediate Messaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

Temporary Transport Session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

Receiving Immediate Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

MIM Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

MIM Example Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

Performance Pluses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

Configuration Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

Hot Failover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

Implementing Hot Failover Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

Implementing Hot Failover Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Implementing Hot Failover Wildcard Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Java and .NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Using Hot Failover with UMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Hot Failover Intentional Gap Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Hot Failover Optional Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Using Hot Failover with Ordered Delivery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Hot Failover Across Multiple Contexts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Chapter 6: Manpage for lbmrd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
lbmrd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

Table of Contents        iii



Preface
This document introduces important fundamental design concepts behind Ultra Messaging high performance 
message streaming. Understanding these concepts is important to software developers designing and writing 
application code that uses the Ultra Messaging Application Programming Interface (API). For information 
about parallel persistence see The Ultra Messaging Guide for Persistence.

Informatica Resources

Informatica My Support Portal
As an Informatica customer, you can access the Informatica My Support Portal at 
http://mysupport.informatica.com.

The site contains product information, user group information, newsletters, access to the Informatica 
customer support case management system (ATLAS), the Informatica How-To Library, the Informatica 
Knowledge Base, Informatica Product Documentation, and access to the Informatica user community.

Informatica Documentation
The Informatica Documentation team takes every effort to create accurate, usable documentation. If you 
have questions, comments, or ideas about this documentation, contact the Informatica Documentation team 
through email at infa_documentation@informatica.com. We will use your feedback to improve our 
documentation. Let us know if we can contact you regarding your comments.

The Documentation team updates documentation as needed. To get the latest documentation for your 
product, navigate to Product Documentation from http://mysupport.informatica.com.

Informatica Web Site
You can access the Informatica corporate web site at http://www.informatica.com. The site contains 
information about Informatica, its background, upcoming events, and sales offices. You will also find product 
and partner information. The services area of the site includes important information about technical support, 
training and education, and implementation services.

Informatica How-To Library
As an Informatica customer, you can access the Informatica How-To Library at 
http://mysupport.informatica.com. The How-To Library is a collection of resources to help you learn more 
about Informatica products and features. It includes articles and interactive demonstrations that provide 

iv

http://mysupport.informatica.com
mailto:infa_documentation@informatica.com
http://mysupport.informatica.com
http://www.informatica.com
http://mysupport.informatica.com


solutions to common problems, compare features and behaviors, and guide you through performing specific 
real-world tasks.

Informatica Knowledge Base
As an Informatica customer, you can access the Informatica Knowledge Base at 
http://mysupport.informatica.com. Use the Knowledge Base to search for documented solutions to known 
technical issues about Informatica products. You can also find answers to frequently asked questions, 
technical white papers, and technical tips. If you have questions, comments, or ideas about the Knowledge 
Base, contact the Informatica Knowledge Base team through email at KB_Feedback@informatica.com.

Informatica Support YouTube Channel
You can access the Informatica Support YouTube channel at http://www.youtube.com/user/INFASupport. The 
Informatica Support YouTube channel includes videos about solutions that guide you through performing 
specific tasks. If you have questions, comments, or ideas about the Informatica Support YouTube channel, 
contact the Support YouTube team through email at supportvideos@informatica.com or send a tweet to 
@INFASupport.

Informatica Marketplace
The Informatica Marketplace is a forum where developers and partners can share solutions that augment, 
extend, or enhance data integration implementations. By leveraging any of the hundreds of solutions 
available on the Marketplace, you can improve your productivity and speed up time to implementation on 
your projects. You can access Informatica Marketplace at http://www.informaticamarketplace.com.

Informatica Velocity
You can access Informatica Velocity at http://mysupport.informatica.com. Developed from the real-world 
experience of hundreds of data management projects, Informatica Velocity represents the collective 
knowledge of our consultants who have worked with organizations from around the world to plan, develop, 
deploy, and maintain successful data management solutions. If you have questions, comments, or ideas 
about Informatica Velocity, contact Informatica Professional Services at ips@informatica.com.

Informatica Global Customer Support
You can contact a Customer Support Center by telephone or through the Online Support.

Online Support requires a user name and password. You can request a user name and password at 
http://mysupport.informatica.com.

The telephone numbers for Informatica Global Customer Support are available from the Informatica web site 
at http://www.informatica.com/us/services-and-training/support-services/global-support-centers/.

Preface        v

http://mysupport.informatica.com
mailto:KB_Feedback@informatica.com
http://www.youtube.com/user/INFASupport
mailto:supportvideos@informatica.com
http://www.informaticamarketplace.com
http://mysupport.informatica.com
mailto:ips@informatica.com
http://mysupport.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/


C H A P T E R  1

Overview
This chapter includes the following topic:

• Introduction, 1

Introduction
Ultra Messaging comprises a software layer, supplied in the form of a dynamic library (shared object), which 
provides applications with message delivery functionality that adds considerable value to the basic 
networking services contained in the host operating system. Ultra Messaging also includes a daemon that 
implements persistence capabilities. These components provide applications with message delivery 
functionality that adds considerable value to the basic networking services contained in the host operating 
system. Applications access Ultra Messaging features through the Ultra Messaging Application Programming 
Interface (API).

Ultra Messaging includes the following APIs: the UM C API, the UM Java API, and the UM .NET API . These 
APIs are very similar, and for the most part this document concentrates on the C API. The translation from C 
functions to Java or .NET methods should be reasonably straightforward; see the UM Quick Start Guide for 
sample applications in Java and .NET.

The three most important design goals of Ultra Messaging are to minimize message latency (the time that a 
given message spends "in transit"), maximize throughput, and insure delivery of all messages under a wide 
variety of operational and failure scenarios. Ultra Messaging achieves these goals by not duplicating services 
provided by the underlying network whenever possible. Instead of implementing special messaging servers 
and daemons to receive and re-transmit messages, Ultra Messaging routes messages primarily with the 
network infrastructure at wire speed. Placing little or nothing in between the sender and receiver is an 
important and unique design principle of Ultra Messaging.

1



C H A P T E R  2

Fundamental Concepts
This chapter includes the following topics:

• Overview, 2

• Topic Structure and Management, 2

• Persistence, 3

• Late Join, 3

• Request/Response, 3

• Transports, 4

• Event Delivery, 5

• Rate Controls, 6

• Operational Statistics, 6

Overview
A UM application can function either as a source or a receiver. A source application sends messages, and a 
receiver application receives them. (It is also common for an application to function as both source and 
receiver; we separate the concepts for organizational purposes.)

Topic Structure and Management
UM offers the Publish/Subscribe model for messaging ("Pub/Sub"), whereby one or more receiver programs 
express interest in a topic, and one or more source programs send to that topic. So, a topic can be thought of 
as a data stream that can have multiple producers and multiple consumers. One of the functions of the 
messaging layer is to make sure that all messages sent to a given topic are distributed to all receivers 
listening to that topic. UM does this through an automatic process known as topic resolution.

A topic is just an arbitrary string. For example:

Deals

Market/US/DJIA/Sym1

It is not unusual for an application system to have many thousands of topics, perhaps even more than a 
million, with each one carrying a very specific range of information (e.g. quotes for a single stock symbol).

2



It is also possible to configure receiving programs to match multiple topics using wildcards. UM uses powerful 
regular expression pattern matching to allow applications to match topics in a very flexible way. At the 
present time, messages cannot be sent to wildcarded topic names. See “Wildcard Receiver” on page 10.

Persistence
UMP - which contains the Ultra Messaging Streaming Edition (UMS) functionality - includes a component 
known as the persistent store, which provides stable storage (disk or memory) of message streams. UMP 
delivers a persisted message stream to receiving applications with no additional latency in the vast majority 
of cases. This offers the functionality of durable subscriptions and confirmed message delivery. Ultra 
Messaging streaming applications build and run with the UMP persistence feature without modification. See 
The Ultra Messaging Guide for Persistence for more information.

Late Join
In many applications, a new receiver may be interested in messages that were sent before it existed. UM 
provides a late join feature that allows a new receiver to join a group of others already listening to a source. 
Without the late join feature, the joining receiver would only receive messages sent after the time it joined. 
With late join, the source stores sent messages according to its Late Join configuration options so a joining 
receiver can receive any of these messages that were sent before it joined the group. See “Using Late 
Join” on page 54.

Request/Response
UM also offers a Request/Response messaging model. A sending application (the requester) sends a 
message to a topic. Every receiving application listening to that topic gets a copy of the request. One or more 
of those receiving applications (responder) can then send one or more responses back to the original 
requester. UM sends the request message via the normal pub/sub method, whereas UM delivers the 
response message directly to the requester.

An important aspect of UM's Request/Response model is that it allows the application to keep track of which 
request corresponds to a given response. Due to the asynchronous nature of UM requests, any number of 
requests can be outstanding, and as the responses come in, they can be matched to their corresponding 
requests.

Request/Response can be used in many ways and is often used during the initialization of UM receiver 
objects. When an application starts a receiver, it can issue a request on the topic the receiver is interested in. 
Source objects for the topic can respond and begin publishing data. This method prevents the UM source 
objects from publishing to a topic without subscribers.

Be careful not to be confused with the sending/receiving terminology. Any application can send a request, 
including one that creates and manages UM receiver objects. And any application can receive and respond 
to a request, including one that creates and manages UM source objects.

See “Request/Response Model” on page 62.

Persistence       3



Transports
A source application uses an UMS transport to send messages to a receiver application. A UM transport is 
built on top of a standard IP protocol. The different UM transport types have different tradeoffs in terms of 
latency, scalability, throughput, bandwidth sharing, and flexibility. The sending application chooses the 
transport type that is most appropriate for the data being sent, at the topic level. A programmer might choose 
different transport types for different topics within the same application.

A UM sending application can make use of very many topics (over a million). UM maps those topics onto a 
much smaller number of transport sessions. A transport session can be thought of as a specific instance of a 
transport type. A given transport session might carry a single topic, or might carry hundreds of thousands of 
topics. A receiving application may express interest in a small set of those topics, in which case UM will join 
the transport session, receiving messages for all topics carried on that transport session. UM will then 
discard any messages for topics that the application is not interested in. This user-space filtering does 
consume system resources (primarily CPU and bandwidth), and can be minimized by carefully mapping 
topics onto transport sessions according to receiving application interest.

When UM sets up a transport session and receives the first data over the live data stream, UM generates a 
BOS (Beginning Of Session) to all receivers that currently exist. When a receiver joins an active transport, 
this immediately generates a BOS event. When the last topic on a transport session concludes or when a 
transport path is broken in the network (also referred to as a TCP breakage), UM tears down the transport 
session and notifies all receivers with an EOS (End Of Session) event. There is no correlation between the 
deletion of a source by an application and when an EOS is received by a receiver, except if it is the last 
source sharing the transport.

Note: Non-multicast UM transport types can also use source-side filtering to decrease user-space filtering on 
the receiving side by doing the filtering on the sending side. However, while this might sound attractive at first 
glance, be aware that system resources consumed on the source side affect all receivers, and that the 
filtering for multiple receivers must be done serially, whereas letting the receivers do the filtering allows that 
filtering to be done in parallel, only affecting those receivers that need the filtering. 

See “Transport Objects” on page 12.

Multi-Transport Threads
Part of UM's design is a single threaded model for message data delivery which reduces latency in the 
receiving CPU. UM, however, also has the ability to distribute data delivery across multiple CPUs by using a 
receiving thread pool. Receivers created with the configuration option, use_transport_thread set to 1 use a 
thread from the thread pool instead of the context thread. The option, receive_thread_pool_size controls 
the pool size.

As receivers discover new sources through Topic Resolution, UM assigns the network sockets created for the 
receivers to receive data to either the context thread (default) or to a thread from the pool if 
use_transport_thread is set for the receiver. It is important to understand that thread assignment occurs at 
the socket level - not the transport level. Transports aggregated on to the same network socket use the same 
thread.

UM distributes data from different sockets to different threads allowing better process distribution and higher 
aggregate throughput. Distributing transports across threads also ensures that activity on each transport has 
no impact on transports assigned to other threads leading to lower latencies in some traffic patterns, e.g. 
heavy loss conditions.

The following lists restrictions to using multi-transport threads.

• Only LBT-RM, LBT-RU, TCP and TCP-LB transport types may be distributed to threads.

• Multi-Transport threads are not supported under sequential mode .

4       Chapter 2: Fundamental Concepts



• UM processes sources using the same transport socket, e.g. multicast address and port, on the same 
thread (regardless of the use_transport_thread setting. To leverage threading of different sources, 
assign each source to a different transport destination, e.g. multicast address/port.

• Hot failover sources using LBT-RM on the same topic must not be distributed across threads because 
they must share the same multicast address and port.

• Hot failover sources using other transport types may not be distributed across threads and must use the 
context thread.

• Each transport thread has its own Unicast Listener (request) port. Ultra Messaging recommends that you 
expand the range request_tcp_port_low - request_tcp_port_high to a larger range when using 
transport threads. When late join is occurring, UM creates a TCP connection from the transport thread to 
the source.

• Multi-transport threads are not recommended for use over the UM Router.

• Multi-Transport Threads do not support persistent stores (UMP) or persistent receivers

• Multi-Transport Threads are not compatible with UMDS Server or UMCache

Event Delivery
There are many different events that UM may want to deliver to the application. Many events carry data with 
them (e.g. received messages); some do not (e.g. end-of-stream events). Some examples of UM events:

1. A received message on a topic that the application has expressed interest in.

2. A timer expiring. Applications can schedule timers to expire in a desired number of milliseconds 
(although the OS may not deliver them with millisecond precision).

3. An application-managed file descriptor event. The application can register its own file descriptors with 
UM to be monitored for state changes (readable, writable, error, etc).

4. New source notification. UM can inform the application when sources are discovered by topic resolution.

5. Receiver loss. UM can inform the application when a data gap is detected that could not be recovered 
through the normal retransmission mechanism.

6. End of Stream. UM can inform a receiving application when a data stream (transport session) has 
terminated.

UM delivers events to the application by callbacks. The application explicitly gives UM a pointer to one of its 
functions to be the handler for a particular event, and UM calls that function to deliver the event, passing it 
the parameters that the application requires to process the event. In particular, the last parameter of each 
callback type is a client data pointer (clientdp). This pointer can be used at the application's discretion for any 
purpose. It's value is specified by the application when the callback function is identified to UM (typically 
when UM objects are created), and that same value is passed back to the application when the callback 
function is called.

There are two methods that UM can use to call the application callbacks: through context thread callback, or 
event queue dispatch.

In the context thread callback method (sometimes called direct callback), the UM context thread calls the 
application function directly. This offers the lowest latency, but imposes significant restrictions on the 
application function. See “Event Queue Object” on page 11.

The event queue dispatch of application callback introduces a dynamic buffer into which the UM context 
thread writes events. The application then uses a thread of its own to dispatch the buffered events. Thus, the 
application callback functions are called from the application thread, not directly from the context thread.

Event Delivery       5



With event queue dispatching, the use of the application thread to make the callback allows the application 
function to make full, unrestricted use of the UM API. It also allows parallel execution of UM processing and 
application processing, which can significantly improve throughput on multi-processor hardware. The 
dynamic buffering provides resilience between the rate of event generation and the rate of event consumption 
(e.g. message arrival rate v.s. message processing rate).

In addition, an UM event queue allows the application to be warned when the queue exceeds a threshold of 
event count or event latency. This allows the application to take corrective action if it is running too slow, 
such as throwing away all events older than a threshold, or all events that are below a given priority.

Rate Controls
For UDP-based transports (LBT-RU and LBT-RM), UM network stability is insured through the use of rate 
controls. Without rate controls, sources can send UDP data so fast that the network can be flooded. Using 
rate controls, the source's bandwidth usage is limited. If the source attempts to exceed its bandwidth 
allocation, it is slowed down.

Setting the rate controls properly requires some planning; see 
"Topics in High Performance Messaging, Group Rate Control" for details.

Operational Statistics
UM maintains a variety of transport-level statistics which gives a real-time snapshot of UM's internal handling. 
For example, it gives counts for transport messages transferred, bytes transferred, retransmissions 
requested, unrecoverable loss, etc.

The UM monitoring API provides framework to allow the convenient gathering and transmission of UM 
statistics to a central monitoring point. For more information, see the UM Operations Guide.

6       Chapter 2: Fundamental Concepts

http://vip.informatica.com/content/Downloads?docid=1568&=NA-Ongoing-2011Q1-JP-UM_Topics_in_High_Performance_WP_www


C H A P T E R  3

UM Objects
This chapter includes the following topics:

• Overview, 7

• Context Object, 7

• Topic Object, 8

• Source Object, 8

• Receiver Object, 10

• Event Queue Object, 11

• Transport Objects, 12

Overview
Many UM documents use the term object. Be aware that with the C API, they do not refer to formal objects as 
supported by C++ (i.e. class instances). The term is used here in an informal sense to denote an entity that 
can be created, used, and (usually) deleted, has functionality and data associated with it, and is managed 
through the API. The handle that is used to refer to an object is usually implemented as a pointer to a data 
structure (defined in lbm.h), but the internal structure of an object is said to be opaque, meaning that 
application code should not read or write the structure directly.

However, the UM Java JNI and C# .NET APIs are object oriented, with formal Java/C# objects. See the Java 
API documentation and .NET API documentation for more information.

Context Object
A UM context object conceptually is an environment in which UM runs. An application creates a context, 
typically during initialization, and uses it for most other UM operations. In the process of creating the context, 
UM normally starts an independent thread (the context thread) to do the necessary background processing 
such as the following.

• Topic resolution

• Enforce rate controls for sending messages

• Manage timers

• Manage state

7



• Implement UM protocols

• Manage transport sessions

You create a context with lbm_context_create(). Your application can give a context a name, which are 
optional but should be unique across your UM network. You can set a context name before calling 
lbm_context_create() in the following ways.

• If you are using XML UM configuration files, call lbm_context_attr_set_from_xml() or 
lbm_context_attr_create_from_xml() and set the name in the context_name parameter.

• If you are using plain text UM configuration files, call lbm_context_attr_setopt() and specify 
context_name as the optname and the context's name as the optval. Don't forget to set the optlen.

• Create a plain text UM configuration file with the option context_name set to the name of the context.

Context names are optional but should be unique within a process. UM does not enforce uniqueness, rather 
issues a log warning if it encounters duplicate context names. Application context names are only used to 
load template and individual option values within an XML UM configuration file.

One of the more important functions of a context is to hold configuration information that is of context scope. 
See the UM Configuration Guide for options that are of context scope.

Most UM applications create a single context. However, there are some specialized circumstances where an 
application would create multiple contexts. For example, with appropriate configuration options, two contexts 
can provide separate topic name spaces. Also, multiple contexts can be used to portion available bandwidth 
across topic sub-spaces (in effect allocating more bandwidth to high-priority topics).

Attention: Regardless of the number of contexts created by your application, a good practice is to keep them 
open throughout the life of your application. Do not close them until you close the application. 

Topic Object
A UM topic object is conceptually very simple; it is little more than a string (the topic name). However, UM 
uses the topic object to hold a variety of state information used by UM for internal processing. It is 
conceptually contained within a context. Topic objects must be bound to source or receiver objects.

A data source creates a topic by calling lbm_src_topic_alloc(). A data receiver doesn't explicitly create topic 
objects; UM does that as topics are discovered and cached. Instead, the receiving application calls 
lbm_rcv_topic_lookup() to find the topic object.

Unlike other objects, the topic object is not created or deleted by the application. UM creates, manages and 
deletes them internally as needed. However, the application does use them, so the API has functions that 
give the application access to them when needed (lbm_src_topic_alloc() and lbm_rcv_topic_lookup()).

Source Object
A UM source object is used to send messages to the topic that it is bound to. It is conceptually contained 
within a context.

You create a source object by calling lbm_src_create(). One of its parameters is a topic object that must 
have been previously allocated. A source object can be bound to only one topic. (A topic object, however, 
can be bound to many sources provided the sources exist in separate contexts.)

8       Chapter 3:  UM Objects



Message Properties Object
The message property object allows your application to insert named, typed metadata to topic messages and 
implement functionality that depends on the message properties. UM allows eight property types: boolean, 
byte, short, int, long, float, double, and string.

To use message properties, create a message properties object with lbm_msg_properties_create(). Then 
send topic messages with lbm_src_send_ex() (or LBMSource.send() in the Java API or .NET API) passing 
the message properties object through lbm_src_send_ex_info_t object. Set the 
LBM_SRC_SEND_EX_FLAG_PROPERTIES flag on the lbm_src_send_ex_info_t object to indicate that it 
includes properties.

Upon a receipt of a message with properties, your application can access the properties directly through the 
messages properties field, which is null if no properties are present. Individual property values can be 
retrieved directly by name, or you can iterate over the collection of properties to determine which properties 
are present at runtime.

To mitigate any performance impacts in the C API, reuse properties objects, lbm_src_send_ex_info_t 
objects and iterators whenever possible. Also limit the number of properties associated with a message. (UM 
sends the property name and additional indexing information with every message.) In the Java API or .NET 
API, also make use of the ZOD feature by calling Dispose() on each message before returning from the 
application callback. This allows property objects to be reused as well.

Note: The Message Properties Object does not support receivers using the arrival order without reassembly 
setting (option value = 0) of ordered_delivery . 

Message Properties Performance Considerations
Ultra Messaging sends property names on the wire with every message. To reduce bandwidth requirements, 
minimize the length and number of properties. When coding sources, consider the following sequence of 
guidelines:

1. Allocate a data structure to store message properties objects. This can be a thread-local structure if you 
use a relatively small number of threads, or a thread-safe pool of objects.

2. Before sending, retrieve a message properties object from the pool. If an object is not available, create a 
new object.

3. Set properties for the message.

4. Send the message using the appropriate API call, passing in the properties object.

5. After the send completes, clear the message properties object and return it to the pool.

When coding receivers in Java or .NET, call Dispose() on messages before returning from the application 
callback. This allows Ultra Messaging to internally recycle objects, and limits object allocation.

Source Configuration and Transport Sessions
As with contexts, a source holds configuration information that is of source scope. This includes network 
options, operational options and reliability options for LBT-RU and LBT-RM. For example, each source can 
use a different transport and would therefore configure a different network address to which to send topic 
messages. See the UM Configuration Guide for source configuration options.

As stated in “Transports” on page 4, many topics (and therefore sources) can be mapped to a single 
transport. Many of the configuration options for sources actually control or influence transport session 
activity. If many sources are sending topic messages over a single transport session (TCP, LBT-RU or LBT-
RM), UM only uses the configuration options for the first source assigned to the transport.

Source Object       9



For example, if the first source to use a LBT-RM transport session sets the 
transport_lbtrm_transmission_window_size to 24 MB and the second source sets the same option to 2 
MB, UMS assigns 24 MB to the transport session's transport_lbtrm_transmission_window_size .

The UM Configuration Guide identifies the source configuration options that may be ignored when UM 
assigns the source to an existing transport session. Log file warnings also appear when UM ignores source 
configuration options.

Zero Object Delivery (Source)
The Zero Object Delivery (ZOD) feature for Java and .NET lets sources deliver events to an application with 
no per-event object creation. (ZOD can also be utilized with context source events.) See “Zero Object 
Delivery (ZOD)” on page 11 for information on how to employ ZOD.

Receiver Object
A UM receiver object is used to receive messages from the topic that it is bound to. It is conceptually 
contained within a context. Messages are delivered to the application by an application callback function, 
specified when the receiver object is created.

You create a receiver object by calling lbm_rcv_create(). One of its parameters is a topic object that must 
have been previously looked up. A receiver object can be bound to only one topic. Multiple receiver objects 
can be created for the same topic.

Receiver Configuration and Transport Sessions
A receiver holds configuration information that is of receiver scope. This includes network options, 
operational options and reliability options for LBT-RU and LBT-RM. See the UM Configuration Guide for 
receiver configuration options.

As stated above in “Source Configuration and Transport Sessions” on page 9, many topics (and therefore 
receivers) can be mapped to a single transport. As with source configuration options, many receiver 
configuration options control or influence transport session activity. If many receivers are receiving topic 
messages over a single transport session (TCP, LBT-RU or LBT-RM), UM only uses the configuration options 
for the first receiver assigned to the transport.

For example, if the first receiver to use a LBT-RM transport session sets the 
transport_lbtrm_nak_generation_interval to 10 seconds and the second receiver sets the same option to 
2 seconds, UMS assigns 10 seconds to the transport session's 
transport_lbtrm_nak_generation_interval .

The UM Configuration Guide identifies the receiver configuration options that may be ignored when UM 
assigns the receiver to an existing transport session. Log file warnings also appear when UM ignores 
receiver configuration options.

Wildcard Receiver
You create a wildcard receiver object by calling lbm_wildcard_rcv_create(). Instead of a topic object, the 
caller supplies a pattern which UM uses to match multiple topics. Because the application does not explicitly 
lookup the topics, UM passes the topic attribute into lbm_wildcard_rcv_create() so that it can set options. 
Also, wildcard receivers have their own set of options, such as pattern type.

10       Chapter 3:  UM Objects



The wildcard pattern supplied for matching is a PCRE regular expression that Perl recognizes. See 
http://perldoc.perl.org/perlrequick.html for details about PCRE. See also the wildcard_receiver pattern_type 
option in the UM Configuration Guide.

Note: Ultra Messaging has deprecated two other wildcard receiver pattern types, regex POSIX extended 
regular expressions and appcb application callback, as of UM Version 6.1.

Be aware that some platforms may not support all of the regular expression wildcard types. For example, UM 
does not support the use of Unicode PCRE characters in wildcard receiver patterns on any system that 
communicates with a HP-UX or AIX system. See the Informatica Knowledge Base article, Platform-Specific 
Dependencies for details.

For an example of wildcard usage, see lbmwrcv.c

TIBCO™ SmartSockets™ users see the Informatica Knowledge Base article, Wildcard Topic Regular 
Expressions.

Zero Object Delivery (ZOD)
The Zero Object Delivery (ZOD) feature for Java and .NET lets receivers (and sources) deliver messages and 
events to an application with no per-message or per-event object creation. This facilitates source/receiver 
applications that would require little to no garbage collection at runtime, producing lower and more consistent 
message latencies.

To take advantage of this feature, you must call dispose() on a message to mark it as available for reuse. To 
access data from the message when using ZOD, you use a specific pair of LBMMessage-class methods (see 
below) to extract message data directly from the message, rather than the standard data() method. Using the 
latter method creates a byte array, and consequently, an object. It is the subsequent garbage collecting to 
recycle those objects that can affect performance.

For using ZOD, the LBMMessage class methods are:

• Java: dispose(), dataBuffer(), and dataLength()

• .NET: dispose(), dataPointer(), and length()

On the other hand, you may need to keep the message as an object for further use after callback. In this 
case, ZOD is not appropriate and you must call promote() on the message, and also you can use data() to 
extract message data.

For more details see the Java API Overview or the .Net LBMMessage Class description. This feature does 
not apply to the C API.

Event Queue Object
A UM event queue object is conceptually a managed data and control buffer. UM delivers events (including 
received messages) to your application by means of application callback functions. Without event queues, 
these callback functions are called from the UM context thread, which places the following restrictions on the 
application function being called:

1. The application function is not allowed to make certain API calls (mostly having to do with creating or 
deleting UM objects).

2. The application function must execute very quickly without blocking.

3. The application does not have control over when the callback executes. It can't prevent callbacks during 
critical sections of application code.

Event Queue Object       11

http://perldoc.perl.org/perlrequick.html


Some circumstances require the use of UM event queues. As mentioned above, if the receive callback needs 
to use UM functions that create or delete objects. Or if the receive callback performs operations that 
potentially block. You may also want to use an event queue if the receive callback is CPU intensive and can 
make good use of multiple CPU hardware. Not using an event queue provides the lowest latency, however, 
high message rates or extensive message processing can negate the low latency benefit if the context thread 
continually blocks.

Of course, your application can create its own queues, which can be bounded, blocking queues or 
unbounded, non-blocking queues. For transports that are flow-controlled, a bounded, blocking application 
queue preserves flow control in your messaging layer because the effect of a filled or blocked queue extends 
through the message path all the way to source. The speed of the application queue becomes the speed of 
the source.

UM event queues are unbounded, non-blocking queues and provide the following unique features.

1. Your application can set a queue size threshold with queue_size_warning and be warned when the 
queue contains too many messages.

2. Your application can set a delay threshold with queue_delay_warning and be warned when events have 
been in the queue for too long.

3. The application callback function has no UM API restrictions.

4. Your application can control exactly when UM delivers queued events with lbm_event_dispatch(). And 
you can have control return to your application either when specifically asked to do so (by calling 
lbm_event_dispatch_unblock()), or optionally when there are no events left to deliver.

5. Your application can take advantage of parallel processing on multiple processor hardware since UM 
processes asynchronously on a separate thread from your application's processing of received 
messages. By using multiple application threads to dispatch an event queue, or by using multiple event 
queues, each with its own dispatch thread, your application can further increase parallelism.

You create an UM event queue in the C API by calling lbm_event_queue_create(). In the Java API and 
the .NET API, use the LBMEventQueue class. An event queue object also holds configuration information that 
is of event queue scope. See Event Queue Options.

Transport Objects
This section discusses the following topics.

• “Transport TCP” on page 13

• “Transport TCP-LB” on page 13

• “Transport LBT-RU” on page 13

• “Transport LBT-RM” on page 14

• “Transport LBT-IPC” on page 15

• “Transport LBT-SMX” on page 21

• “Transport LBT-RDMA” on page 32

12       Chapter 3:  UM Objects



Transport TCP
The TCP UM transport uses normal TCP connections to send messages from sources to receivers. This is 
the default transport when it's not explicitly set. TCP is a good choice when:

1. Flow control is desired. For example, when one or more receivers cannot keep up, you wish to slow 
down the source. This is a "better late than never" philosophy.

2. Equal bandwidth sharing with other TCP traffic is desired. I.e. when it is desired that the source slow 
down when general network traffic becomes heavy.

3. There are few receivers listening to each topic. Multiple receivers for a topic requires multiple 
transmissions of each message, which places a scaling burden on the source machine and the network.

4. The application is not sensitive to latency. Use of TCP as a messaging transport can result in unbounded 
latency.

5. The messages must pass through a restrictive firewall which does not pass multicast traffic.

UM's TCP transport includes a Session ID. A UM source using the TCP transport generates a unique, 32-bit 
non-zero random Session ID for each TCP transport (IP:port) it uses. The source also includes the Session 
ID in its Topic Resolution advertisement (TIR). When a receiver resolves its topic and discovers the transport 
information, the receiver also obtains the transport's Session ID. The receiver sends a message to the source 
to confirm the Session ID.

The TCP Session ID enables multiple receivers for a topic to connect to a source across UM Router(s). In the 
event of a UM Router failure, UM establishes new topic routes which can cause cached Topic Resolution and 
transport information to be outdated. Receivers use this cached information to find sources. Session IDs add 
a unique identifier to the cached transport information. If a receiver tries to connect to a source with outdated 
transport information, the source recognizes an incorrect Session ID and disconnects the receiver. The 
receiver can then attempt to reconnect with different cached transport information.

You can turn off TCP Session IDs with the UM configuration option, transport_tcp_use_session_id .

Note: TCP transports may be distributed to receiving threads. See “Multi-Transport Threads” on page 4 for 
more information. 

Transport TCP-LB
The TCP-LB UMS transport is a variation on the TCP transport which adds latency-bounded behavior. The 
source is not flow-controlled as a result of network congestion or slow receivers. So, for applications that 
require a "better never than late" philosophy, TCP-LB can be a better choice.

However, latency cannot be controlled as tightly as with UDP-based transports (see below). In particular, 
latency can still be introduced because TCP-LB shares bandwidth equally with other TCP traffic. It also has 
the same scaling issues as TCP when multiple receivers are present for each topic.

Note: TCP-LB transports may be distributed to receiving threads. See “Multi-Transport Threads” on page 4 
for more information. 

Transport LBT-RU
The LBT-RU UMS transport adds reliable delivery to unicast UDP to send messages from sources to 
receivers. This provides greater flexibility in the control of latency. For example, the application can further 
limit latency by allowing the use of arrival order delivery. See the Knowledge Base article, FAQ: How do 
arrival-order delivery and in-order delivery affect latency? . Also, LBT-RU is less sensitive to overall network 
load; it uses source rate controls to limit its maximum send rate.

Since it is based on unicast addressing, LBT-RU can pass through most firewalls. However, it has the same 
scaling issues as TCP when multiple receivers are present for each topic.

Transport Objects       13



UM's LBT-RU transport includes a Session ID. A UM source using the LBT-RU transport generates a unique, 
32-bit non-zero random Session ID for each transport it uses. The source also includes the Session ID in its 
Topic Resolution advertisement (TIR). When a receiver resolves its topic and discovers the transport 
information, the receiver also obtains the transport's Session ID.

The LBT-RU Session ID enables multiple receivers for a topic to connect to a source across UM Router(s). In 
the event of a UM Router failure, UM establishes new topic routes which can cause cached Topic Resolution 
and transport information to be outdated. Receivers use this cached information to find sources. Session IDs 
add a unique identifier to the cached transport information. If a receiver tries to connect to a source with 
outdated transport information, the transport drops the received data and times out. The receiver can then 
attempt to reconnect with different cached transport information.

You can turn off LBT-RU Session IDs with the UM configuration option, transport_lbtru_use_session_id .

Note: LBT-RU can benefit from hardware acceleration. See Transport Acceleration Options in the UM 
configuration Guide for more information. 

Note: LBT-RU transports may be distributed to receiving threads. See “Multi-Transport Threads” on page 4 
for more information. 

Transport LBT-RM
The LBT-RM transport adds reliable multicast to UDP to send messages. This provides the maximum 
flexibility in the control of latency. In addition, LBT-RM can scale effectively to large numbers of receivers per 
topic using network hardware to duplicate messages only when necessary at wire speed. One limitation is 
that multicast is often blocked by firewalls.

LBT-RM is a UDP-based, reliable multicast protocol designed with the use of UM and its target applications 
specifically in mind. The protocol is very similar to PGM, but with changes to aid low latency messaging 
applications.

• Topic Mapping - Several topics may map onto the same LBT-RM session. Thus a multiplexing 
mechanism to LBT-RM is used to distinguish topic level concerns from LBT-RM session level concerns 
(such as retransmissions, etc.). Each message to a topic is given a sequence number in addition to the 
sequence number used at the LBT-RM session level for packet retransmission.

• Negative Acknowledgments (NAKs) - LBT-RM uses NAKs as PGM does. NAKs are unicast to the 
sender. For simplicity, LBT-RM uses a similar NAK state management approach as PGM specifies.

• Time Bounded Recovery - LBT-RM allows receivers to specify a maximum time to wait for a lost piece of 
data to be retransmitted. This allows a recovery time bound to be placed on data that has a definite 
lifetime of usefulness. If this time limit is exceeded and no retransmission has been seen, then the piece 
of data is marked as an unrecoverable loss and the application is informed. The data stream may continue 
and the unrecoverable loss will be ordered as a discrete event in the data stream just as a normal piece of 
data.

• Flexible Delivery Ordering - LBT-RM receivers have the option to have the data for an individual topic 
delivered "in order" or "arrival order". Messages delivered "in order" will arrive in sequence number order 
to the application. Thus loss may delay messages from being delivered until the loss is recovered or 
unrecoverable loss is determined. With "arrival-order" delivery, messages will arrive at the application as 
they are received by the LBT-RM session. Duplicates are ignored and lost messages will have the same 
recovery methods applied, but the ordering may not be preserved. Delivery order is a topic level concern. 
Thus loss of messages in one topic will not interfere or delay delivery of messages in another topic.

• Session State Advertisements - In PGM, SPM packets are used to advertise session state and to 
perform PGM router assist in the routers. For LBT-RM, these advertisements are only used when data is 
not flowing. Once data stops on a session, advertisements are sent with an exponential back-off (to a 
configurable maximum interval) so that the bandwidth taken up by the session is minimal.

14       Chapter 3:  UM Objects

http://www.ietf.org/rfc/rfc3208.txt


• Sender Rate Control - LBT-RM can control a sender's rate of injection of data into the network by use of 
a rate limiter. This rate is configurable and will back pressure the sender, not allowing the application to 
exceed the rate limit it has specified. In addition, LBT-RM senders have control over the rate of 
retransmissions separately from new data. This allows sending application to guarantee a minimum 
transmission rate even in the face of massive loss at some or all receivers.

• Low Latency Retransmissions - LBT-RM senders do not mandate the use of NCF packets as PGM 
does. Because low latency retransmissions is such an important feature, LBT-RM senders by default send 
retransmissions immediately upon receiving a NAK. After sending a retransmission, the sender ignores 
additional NAKs for the same data and does not repeatedly send NCFs. The oldest data being requested 
in NAKs has priority over newer data so that if retransmissions are rate controlled, then LBT-RM sends 
the most important retransmissions as fast as possible.

Note: LBT-RM can benefit from hardware acceleration. See Transport Acceleration Options in the UM 
configuration Guide for more information. 

Note: LBT-RM transports may be distributed to receiving threads. See “Multi-Transport Threads” on page 4 
for more information. 

Transport LBT-IPC
The LBT-IPC transport is an Interprocess Communication (IPC) UM transport that allows sources to publish 
topic messages to a shared memory area managed as a static ring buffer from which receivers can read topic 
messages. Message exchange takes place at memory access speed which can greatly improve throughput 
when sources and receivers can reside on the same host. LBT-IPC can be either source-paced or receiver-
paced.

The LBT-IPC transport uses a "lock free" design that eliminates calls to the Operating System and allows 
receivers quicker access to messages. An internal validation method enacted by receivers while reading 
messages from the Shared Memory Area ensures message data integrity. The validation method compares 
IPC header information at different times to ensure consistent, and therefore, valid message data. Sources 
can send individual messages or a batch of messages, each of which possesses an IPC header.

Restriction: Transport LBT-IPC is not supported on the OpenVMS® platform.

Transport Objects       15



LBT-IPC Shared Memory Area
The following diagram illustrates the Shared Memory Area used for LBT-IPC.

Figure 1. LBT-IPC Shared Memory Layout

Header

The Header contains information about the shared memory area resource.

• Shared Lock - shared receiver pool semaphore (mutex on Microsoft Windows) to ensure mutually 
exclusive access to the receiver pool.

• Version - LBT-IPC version number which is independent of any UM product version number.

• Buffer Length - size of shared memory area.

• Receiver Map Size - Number of entries available in the Receiver Pool which you configure with the source 
option, transport_lbtipc_maximum_receivers_per_transport .

• New Client Flag - set by the receiver after setting its Receiver Pool entry and before releasing the Shared 
Lock. Indicates to the source that a new receiver has joined the transport.

• Receiver Paced - Indicates if you've configured the transport for receiver-pacing.

16       Chapter 3:  UM Objects



• Old Message Start - pointer indicating messages that may be reclaimed.

• New Message Start - pointer indicating messages that may be read.

• New Message End - pointer indicating the end of messages that may be read, which may not be the same 
as the Old Message Start pointer.

Receiver Pool

The receiver pool is a collection of receiver connections maintained in the Shared Memory Area. The source 
reads this information if you've configured receiver-pacing to determine if a message can be reclaimed or to 
monitor a receiver. Each receiver is responsible for finding a free entry in the pool and marking it as used.

• In Use flag - set by receiver while holding the Shared Lock, which effectively indicates the receiver has 
joined the transport session. Using the Shared Lock ensures mutually exclusive access to the receiver 
connection pool.

• Oldest Message Start - set by receiver after reading a message. If you enable receiver-pacing the source 
reads it to determine if message memory can be reclaimed.

• Monitor Shared Lock - checked by the source to monitor a receiver (semaphore on Linux, event on 
Microsoft Windows).

• Signal Shared Lock - Set by source to notify receiver that new data has been written. (semaphore on 
Linux, mutex on Microsoft Windows) If you set transport_lbtipc_receiver_thread_behavior to 
busy_wait, the receiver sets this semaphore to zero and the source does not notify.

Source-to-Receivr Message Buffer

This area contains message data. You specify the size of the shared memory area with a source option, 
transport_lbtipc_transmission_window_size . The size of the shared memory area cannot exceed your 
platform's shared memory area maximum size. UM stores the memory size in the shared memory area's 
header. The Old Message Start and New Message Start point to positions in this buffer.

Sources and LBT-IPC
When you create a source with lbm_src_create() and you've set the transport option to IPC, UM creates a 
shared memory area object. UM assigns one of the transport IDs to this area specified with the UM context 
configuration options, transport_lbtipc_id_high and transport_lbtipc_id_low . You can also specify a 
shared memory location outside of this range with a source configuration option, transport_lbtipc_id , to 
prioritize certain topics, if needed.

UM names the shared memory area object according to the format, LBTIPC_%x_%d where %x is the 
hexadecimal Session ID and %d is the decimal Transport ID. Examples names are LBTIPC_42792ac_20000 or 
LBTIPC_66e7c8f6_20001. Receivers access a shared memory area with this object name to receive (read) 
topic messages.

Using the configuration option, transport_lbtipc_behavior , you can choose source-paced or receiver-
paced message transport. See Transport LBT-IPC Operation Options in the UM Configuration Guide.

Sending over LBT-IPC

To send on a topic (write to the shared memory area) the source writes to the Shared Memory Area starting 
at the Oldest Message Start position. It then increments each receiver's Signal Lock if the receiver has not 
set this to zero.

Receivers and LBT-IPC
Receivers operate identically to receivers for all other UM transports. A receiver can actually receive topic 
messages from a source sending on its topic over TCP, LBT-RU or LBT-RM and from a second source 

Transport Objects       17



sending on LBT-IPC with out any special configuration. The receiver learns what it needs to join the LBT-IPC 
session through the topic advertisement.

Topic Resolution and LBT-IPC

Topic resolution operates identically with LBT-IPC as other UM transports albeit with a new advertisement 
type, LBMIPC. Advertisements for LBT-IPC contain the Transport ID, Session ID and Host ID. Receivers 
obtain LBT-IPC advertisements in the normal manner (resolver cache, advertisements received on the 
multicast resolver address:port and responses to queries.) Advertisements for topics from LBT-IPC sources 
can reach receivers on different machines if they use the same topic resolution configuration, however, those 
receivers silently ignore those advertisements since they cannot join the IPC transport. See “Sending to Both 
Local and Remote Receivers” on page 19.

Receiver Pacing

Although receiver pacing is a source behavior option, some different things must happen on the receiving 
side to ensure that a source does not reclaim (overwrite) a message until all receivers have read it. When 
you use the default transport_lbtipc_behavior (source-paced), each receiver's Oldest Message Start 
position in the Shared Memory Area is private to each receiver. The source writes to the Shared Memory 
Area independently of receivers' reading. For receiver-pacing, however, all receivers share their Oldest 
Message Start position with the source. The source will not reclaim a message until all receivers have 
successfully read that message.

Receiver Monitoring

To ensure that a source does not wait on a receiver that is not running, the source monitors a receiver via the 
Monitor Shared Lock allocated to each receiving context. (This lock is in addition to the semaphore already 
allocated for signaling new data.) A new receiver takes and holds the Monitor Shared Lock and releases the 
resource when it dies. If the source is able to obtain the resource, it knows the receiver has died. The source 
then clears the receiver's In Use flag in it's Receiver Pool Connection.

Similarities with Other UM Transports
Although no actual network transport occurs, UM functions in much the same way as if you send packets 
across the network as with other UM transports.

• If you use a range of LBT-IPC transport IDs, UM assigns multiple topics sent by multiple sources to all the 
transport sessions in a round robin manner just like other UM transports.

• Transport sessions assume the configuration option values of the first source assigned to the transport 
session.

• Sources are subject to message batching.

Differences from Other UM Transports
• Unlike LBT-RM which uses a transmission window to specify a buffer size to retain messages in case they 

must be retransmitted, LBT-IPC uses the transmission window option to establish the size of the shared 
memory.

• LBT-IPC does not retransmit messages. Since LBT-IPC transport is essentially a memory write/read 
operation, messages should not be be lost in transit. However, if the shared memory area fills up, new 
messages overwrite old messages and the loss is absolute. No retransmission of old messages that have 
been overwritten occurs.

• Receivers also do not send NAKs when using LBT-IPC.

• LBT-IPC does not support Ordered Delivery options. However, if you set ordered_delivery 1 or -1 , 
LBT-IPC reassembles any large messages.

• LBT-IPC does not support Rate Control.

18       Chapter 3:  UM Objects



• LBT-IPC creates a separate receiver thread in the receiving context.

Sending to Both Local and Remote Receivers
A source application that wants to support both local and remote receivers should create two UM Contexts 
with different topic resolution configurations, one for IPC sends and one for sends to remote receivers. 
Separate contexts allows you to use the same topic for both IPC and network sources. If you simply created 
two source objects (one IPC, one say LBT-RM) in the same UM Context, you would have to use separate 
topics and suffer possible higher latency because the sending thread would be blocked for the duration of two 
send calls.

A UM source will never automatically use IPC when the receivers are local and a network transport for 
remote receivers because the discovery of a remote receiver would hurt the performance of local receivers. 
An application that wants transparent switching can implement it in a simple wrapper.

LBT-IPC Configuration Example
The following diagram illustrates how sources and receivers interact with the shared memory area used in the 
LBT-IPC transport.

Figure 2. Sending and Receiving with LBT-IPC

In the diagram above, 3 sources send (write) to two Shared Memory Areas while four receivers in two 
different contexts receive (read) from the areas. The assignment of sources to Shared Memory Areas 
demonstrate UM's round robin method. UM assigns the source sending on Topic A to Transport 20001, the 

Transport Objects       19



source sending on Topic B to Transport 20002 and the source sending on Topic C back to the top of the 
transport ID range, 20001.

The diagram also shows the UM configuration options that set up this scenario.

• The options transport_lbtipc_id_high and transport_lbtipc_id_low establish the range of Transport 
IDs between 20001 and 20002.

• The option transport_lbtipc sets the source's transport to LBT-IPC.

• The option transport_lbtipc_transmission_window_size sets the size of each Shared Memory Area to 
24 MB.

Required Authorities
LBT-IPC requires no special operating system authorities, except on Microsoft Windows Vista and Microsoft 
Windows Server 2008, which require Administrator privileges. In addition, on Microsoft Windows XP, 
applications must be started by the same user, however, the user is not required to have administrator 
privileges. In order for applications to communicate with a service, the service must use a user account that 
has Administrator privileges.

Host Resource Usage and Limits
LBT-IPC contexts and sources consume host resources as follows.

• Per Source - 1 shared memory segment, 1 shared lock (semaphore on Linux, mutex on Microsoft 
Windows)

• Per Receiving Context - 2 shared locks (semaphores on Linux, one event and one mutex on Microsoft 
Windows)

Across most operating system platforms, these resources have the following limits.

• 4096 shared memory segments, though some platforms use different limits

• 32,000 shared semaphores (128 shared semaphore sets * 250 semaphores per set)

Consult your operating system documentation for specific limits per type of resource. Resources may be 
displayed and reclaimed using the “LBT-IPC Resource Manager” on page 20. See also 
Managing LBT-IPC Host Resources.

LBT-IPC Resource Manager
Deleting an IPC source with lbm_src_delete() or deleting an IPC receiver with lbm_rcv_delete() reclaims 
the shared memory area and locks allocated by the IPC source or receiver. However, if a less than graceful 
exit from a process occurs, global resources remain allocated but unused. To address this possibility, the 
LBT-IPC Resource Manager maintains a resource allocation database with a record for each global resource 
(memory or semaphore) allocated or freed. You can use the LBT-IPC Resource Manager to discover and 
reclaim resources. See the three example outputs below.

Displaying Resources

$> lbtipc_resource_manager 
Displaying Resources (to reclaim you must type '-reclaim' exactly)

--Memory Resources--
 Memory resource: Process ID: 24441 SessionID: ab569cec XportID: 20001

--Semaphore Resources--
 Semaphore key: 0x68871d75
    Semaphore resource Index 0: reserved

20       Chapter 3:  UM Objects

https://communities.informatica.com/infakb/faq/5/Pages/80201.aspx


    Semaphore resource: Process ID: 24441 Sem Index: 1
    Semaphore resource: Process ID: 24436 Sem Index: 2 

Reclaiming Unused Resources

$> lbtipc_resource_manager -reclaim

Reclaiming Resources
 Process 24441 not found: reclaiming Memory resource (SessionID: ab569cec XPortID: 
20001)
 Process 24441 not found: reclaiming Semaphore resource: Key: 0x68871d75 Sem Index: 1
 Process 24436 not found: reclaiming Semaphore resource: Key: 0x68871d75 Sem Index: 2 

Discovering Resources in Use

$> lbtipc_resource_manager -reclaim

Reclaiming Resources
 Process 24441 still active! Memory resource not reclaimed (SessionID: ab569cec 
XPortID: 20001)
 Process 24441 still active! Semaphore resource not reclaimed (Key: 0x68871d75 Sem 
Index: 1)
 Process 24436 still active! Semaphore resource not reclaimed (Key: 0x68871d75 Sem 
Index: 2)

Transport LBT-SMX
The LBT-SMX (shared memory acceleration) transport is an Interprocess Communication (IPC) transport you 
can use for the lowest latency message streaming. LBT-SMX is faster than the LBT-IPC transport. Like LBT-
IPC, sources can publish topic messages to a shared memory area from which receivers can read topic 
messages. Unlike LBT-IPC, the native APIs for the LBT-SMX transport are not thread safe and do not 
support all UM features such as message batching or fragmentation.

You can use either the native LBT-SMX API calls, lbm_src_buff_acquire() and lbm_src_buffs_complete() 
to send over LBT-SMX or you can use lbm_src_send_*() API calls. The existing send APIs are thread safe 
with SMX, but they incur a synchronization overhead and thus are slower than the native LBT-SMX API calls.

LBT-SMX operates on the following Ultra Messaging 64-bit packages:

• SunOS-5.10-amd64

• Linux-glibc-2.5-x86_64

• Win2k-x86_64

The example applications, lbmlatping.* and lbmlatpong.* show how to use the native LBT-SMX API calls. 
The C API, Java API, and .NET API have identically named example applications. Other example 
applications can use the LBT-SMX transport with the use of a UM configuration file containing source 
transport lbtsmx. You cannot use LBT-SMX with example applications for features not supported by LBT-
SMX, such as lbmreq.*, lbmresp.*, lbmrcvq.* or lbmwrcvq.*.

The LBT-SMX configuration options are similar to the LBT-IPC transport options. See Transport LBT-SMX 
Operation Options in the UM Configuration Guide for a full explanation of these options.

You can use Automatic Monitoring, UM API retrieve/reset calls, and LBMMON APIs to access LBT-SMX 
source and receiver transport statistics. To increase performance, the LBT-SMX transport does not collect 
statistics by default. Set the UM configuration option, context 
transport_lbtsmx_message_statistics_enabled to 1 to enable the collection of transport statistics.

Transport Objects       21



Sources and LBT-SMX
When you create a source with lbm_src_create() and you've set the source's transport configuration option 
to LBT-SMX, UM creates a shared memory area object. UM assigns one of the transport IDs to this area from 
a range of transport IDs specified with the UM context configuration options, transport_lbtsmx_id_high and 
transport_lbtsmx_id_low . You can also specify a shared memory location inside or outside of this range 
with a source configuration option, transport_lbtsmx_id , to group certain topics in the same shared 
memory area, if needed. See Transport LBT-SMX Operation Options in the UM Configuration Guide.

Note: For every context created by your application, UM creates an additional shared memory area for 
control information. The name for these control information memory areas ends with the suffix, _0, which is 
the Transport ID.

UM names the shared memory area object according to the format, LBTSMX_%x_%d where %x is the 
hexadecimal Session ID and %d is the decimal Transport ID. Examples names are LBTSMX_42792ac_20000 or 
LBTSMX_66e7c8f6_20001. Receivers access a shared memory area with this object name to receive (read) 
topic messages.

Sending on a topic with the native LBT-SMX APIs requires the two API calls lbm_src_buff_acquire() and 
lbm_src_buffs_complete(). A third convenience API, lbm_src_buffs_complete_and_acquire(), combines 
a call to lbm_src_buffs_complete() followed by a call to lbm_src_buff_acquire() into one function call to 
eliminate the overhead of an additional function call.

Important: The native LBT-SMX APIs are not thread safe at the source object or LBT-SMX transport session 
levels for performance reasons. Applications that use the native API LBT-SMX calls for either the same 
source or a group of sources that map to the same LBT-SMX transport session must serialize the calls either 
directly in the application or through their own mutex.

Note: The native LBT-SMX APIs fail with an appropriate error message if a sending application uses them for 
a source configured to use a transport other than LBT-SMX.

Sending over LBT-SMX with Native APIs
Sending with LBT-SMX's native API is a two-step process.

1. The sending application first calls lbm_src_buff_acquire(), which returns a pointer into which the 
sending application writes the message data. 

The pointer points directly into the shared memory region. UM guarantees that the shared memory area 
has at least the value specified with the len parameter of contiguous bytes available for writing when 
lbm_src_buff_acquire() returns. If your application set the LBM_SRC_NONBLOCK flag with 
lbm_src_buff_acquire(), UM returns an LBM_EWOULDBLOCK error condition if the shared memory 
region does not have enough contiguous space available.

Because LBT-SMX does not support fragmentation, your application must limit message lengths to a 
maximum equal to the value of the source's configured transport_lbtsmx_datagram_max_size option 
minus 16 bytes for headers.

After the user acquires the pointer into shared memory and writes the message data, the application 
may call lbm_src_buff_acquire() repeatedly to send a batch of messages to the shared memory area. If 
your application writes multiple messages in this manner, sufficient space must exist in the shared 
memory area. lbm_src_buff_acquire() returns an error if the available shared memory space is less 
than the size of the next message.

2. The sending application calls one of the two following APIs. 

• lbm_src_buffs_complete(), which publishes the message or messages to all listening receivers.

• lbm_src_buffs_complete_and_acquire(), which publishes the message or messages to all listening 
receivers and returns another pointer.

22       Chapter 3:  UM Objects



Sending over LBT-SMX with Existing APIs
LBT-SMX supports lbm_src_send_* API calls. These API calls are fully thread-safe. The LBT-SMX feature 
restrictions still apply, however, when using lbm_src_send_* API calls. The lbm_src_send_ex_info_t 
argument to the lbm_src_send_ex() and lbm_src_sendv_ex() APIs must be NULL when using an LBT-SMX 
source, because LBT-SMX does not support any of the features that the lbm_src_send_ex_info_t parameter 
can enable. See “Differences Between LBT-SMX and Other UM Transports” on page 24

Since LBT-SMX does not support an implicit batcher or corresponding implicit batch timer, UM flushes all 
messages for all sends on LBT-SMX transports done with lbm_src_send_* APIs, which is similar to setting 
the LBM_MSG_FLUSH flag. LBT-SMX also supports the lbm_src_flush() API call, which behaves like a 
thread-safe version of lbm_src_buffs_complete().

Attention: Users should not use both the native LBT-SMX APIs and the lbm_src_send_* API calls in the 
same application. Users should choose one or the other type of API for consistency and to avoid thread 
safety problems.

The lbm_src_topic_alloc() API call generates log warnings if the given attributes specify an LBT-SMX 
transport and enable any of the features that LBT-SMX does not support. The lbm_src_topic_alloc() call 
succeeds, but UM does not enable the unsupported features indicated in the log warnings.

Other API functions that operate on lbm_src_t objects, such as lbm_src_create(), lbm_src_delete(), or 
lbm_src_topic_dump(), operate with LBT-SMX sources normally.

Because LBT-SMX does not support fragmentation, your application must limit message lengths to a 
maximum equal to the value of the source's configured transport_lbtsmx_datagram_max_size option minus 
16 bytes for headers. Any send API calls with a length parameter greater than this configured value fail.

Receivers and LBT-SMX
Receivers operate identically over LBT-SMX to receivers as all other UM transports. The msg->data pointer 
of a delivered lbm_msg_t object points directly into the shared memory region.

The lbm_msg_retain() API function operates differently for LBT-SMX. lbm_msg_retain() creates a full copy 
of the message in order to access the data outside the receiver callback.

Attention: You application should not pass the msg->data pointer to other threads or outside the receiver 
callback until your application has called lbm_msg_retain() on the message.

Caution: Any API calls documented as not safe to call from a context thread callback are also not safe to call 
from an LBT-SMX receiver thread.

Topic Resolution and LBT-SMX

Topic resolution operates identically with LBT-SMX as other UM transports albeit with the advertisement 
type, LBMSMX. Advertisements for LBT-SMX contain the Transport ID, Session ID, and Host ID. Receivers get 
LBT-SMX advertisements in the normal manner, either from the resolver cache, advertisements received on 
the multicast resolver address:port, or responses to queries.

Similarities Between LBT-SMX and Other UM Transports
Although no actual network transport occurs, UM functions in much the same way as if you send packets 
across the network as with other UM transports.

• If you use a range of LBT-SMX transport IDs, UM assigns multiple topics sent by multiple sources to all 
the transport sessions in a round robin manner just like other UM transports.

• Transport sessions assume the configuration option values of the first source assigned to the transport 
session.

Transport Objects       23



• Source applications and receiver applications based on any of the three available APIs can interoperate 
with each other. For example, sources created by a C sending application can send to receivers created 
by a Java receiving application.

Differences Between LBT-SMX and Other UM Transports
• Unlike LBT-RM which uses a transmission window to specify a buffer size to retain messages for 

retransmission, LBT-SMX uses the transmission window option to establish the size of the shared 
memory. LBT-SMX uses transmission window sizes that are powers of 2. You can set 
transport_lbtsmx_transmission_window_size to any value, but UM rounds the option value up to the 
nearest power of 2.

• The largest transmission window size for Java applications is 1 GB.

• LBT-SMX does not retransmit messages. Since LBT-SMX transport is a memory write-read operation, 
messages should not be lost in transit. No retransmission of old messages that have been overwritten 
occurs.

• Receivers do not send NAKs when using LBT-SMX.

You cannot use the following UM features with LBT-SMX:

• Arrival Order Delivery

• Late Join

• Off Transport Recovery

• Request and Response

• Multi-transport Threads

• Source-side Filtering

• Hot Failover

• Message Properties

• Application Headers

• Implicit and Explicit Message Batching

• Fragmentation and Reassembly

• Immediate Messaging

• Receiver thread behaviors other than "busy_wait"

• Sequential mode receiver threads

You cannot use LBT-SMX to send egress traffic from a UM Dynamic Router to a receiver on a different host 
or on the same host.

You cannot use LBT-SMX with following UM products:

• Ultra Messaging Persistence Edition

• Ultra Messaging Queuing Edition

• Ultra Messaging Desktop Services

• Ultra Messaging Cache

24       Chapter 3:  UM Objects



LBT-SMX Configuration Example
The following diagram illustrates how sources and receivers interact with the shared memory area used in the 
LBT-SMX transport.

Figure 3. Sending and Receiving with LBT-SMX

In the diagram above, three sources send (write) to two Shared Memory Areas while four receivers in two 
different contexts receive (read) from the areas. The assignment of sources to Shared Memory Areas 
demonstrate UM's round robin method. UM assigns the source sending on Topic A to Transport 30001, the 
source sending on Topic B to Transport 30002 and the source sending on Topic C back to the top of the 
transport ID range, 30001.

The diagram also shows the UM configuration options that set up this scenario.

• The options source transport_lbtsmx_id_high and source transport_lbtsmx_id_low establish the 
range of Transport IDs between 30001 and 30002.

• The option source transport lbtsmx sets the source's transport to LBT-SMX.

• The option source transport_lbtsmx_transmission_window_size sets the size of each Shared Memory 
Area to 33554432 bytes or 32 MB. This option's value must be a power of 2. If you configured the 
transmission window size to 25165824 bytes (24 MB) for example, UM logs a warning message and then 
rounds the value of this option up to the next power of 2 or 33554432 bytes or 32 MB.

Transport Objects       25



Java Code Examples for LBT-SMX
The Java code examples for LBT-SMX send and receive one million messages. Start the receiver example 
application before you start the source example application.

Java Source Example
import java.nio.ByteBuffer;
import com.latencybusters.lbm.*;

public class SimpleSrc {
    private LBMContext ctx;
    private LBMSource src;
    
    public static void main(String[] args) {
        try {
            SimpleSrc test = new SimpleSrc();
            test.sendMessages();
            System.out.println("Send Complete");
        } catch (LBMException ex) {
            System.err.println(ex.getMessage());
            ex.printStackTrace();
        }
    }

    public SimpleSrc() throws LBMException
    {
        ctx = new LBMContext();
        LBMSourceAttributes sattr = new LBMSourceAttributes();
        sattr.setValue("transport", "lbtsmx");
        LBMTopic top = ctx.allocTopic("SimpleSmx", sattr);
        src = ctx.createSource(top);
    }
    
    public void sendMessages() throws LBMException
    {
        /* Keep a reference to the source buffer, which does not change */
        final ByteBuffer srcBuffer = src.getMessagesBuffer();
        /* Sends will block waiting for receivers */
        final int flags = LBM.SRC_BLOCK;
        final int msgLength = 8;
        int pos;
        
        try { Thread.sleep(1000); } catch (Exception ex) { }
        for (long i = 0; i < 1000000; i++) {
            /* Acquire a position in the buffer */
            pos = src.acquireMessageBufferPosition(msgLength, flags);
            /* Place data at acquired position */
            srcBuffer.putLong(pos, i);
            /* Inform receivers data has been written */
            src.messageBuffersComplete();
        }
        try { Thread.sleep(1000); } catch (Exception ex) { }
        src.close();
        ctx.close();
    } 
} 

The source sends one million messages using the native LBT-SMX Java APIs. sendMessages() obtains a 
reference to the source's message buffer, which does not change for the life of the source. The call 
acquireMessageBufferPosition(int, int) contains the requested message length of 8 bytes. When this call 
returns, it gives an integer position into the previously obtained messages buffer, which is the position of the 
message data. UM guarantees that you can safely write the value of the counter i into the buffer at this 
position.

Java Receiver Example
import java.nio.ByteBuffer;
import com.latencybusters.lbm.*;

26       Chapter 3:  UM Objects



/* Extend LBMReceiver to avoid onReceive synchronization */
public class SimpleSmxRcv extends LBMReceiver 
{
    protected SimpleSmxRcv(LBMContext lbmctx, LBMTopic lbmtopic)
            throws LBMException {
        super(lbmctx, lbmtopic);
    }
    
    long lastReceivedValue = -1;
    /* Override LBMReceiver onReceive method */
    protected int onReceive(LBMMessage lbmmsg)
    {
        if (lbmmsg.type() == LBM.MSG_DATA) {
            /* New API gets byte buffer with position and limit set */
            ByteBuffer msgsBuffer = lbmmsg.getMessagesBuffer();
            /* Get the message data directly from the buffer */
            lastReceivedValue = msgsBuffer.getLong();
        }
        return 0;
    }

    public static void main(String[] args) {
        LBMContext ctx = null;
        SimpleSmxRcv rcv = null;
        
        try {
            ctx = new LBMContext();
            LBMTopic top = ctx.lookupTopic("SimpleSmx");
            rcv = new SimpleSmxRcv(ctx, top);
        } catch (LBMException ex) {
            System.out.println(ex.getMessage());
            ex.printStackTrace();
            System.exit(1);
        }
        
        while (rcv.lastReceivedValue < 999999) {
            try { Thread.sleep(250); } catch (Exception ex) {}
        }
        try {
            rcv.close();
            ctx.close();
            System.out.println("Last Received Value: " + rcv.lastReceivedValue);
        } catch (LBMException ex) {
            System.out.println(ex.getMessage());
            ex.printStackTrace();
        }
    }
}

The receiver reads messages from an LBT-SMX Source using the new API on LBMMessage. The example 
extends the LBMReceiver class so that you can overwrite the onReceive() method, which bypasses 
synchronization of multiple receiver callbacks. As a result, the addReceiver() and removeReceiver() 
methods do not work with this class, but we don't want them anyway. In the overridden onReceive() callback, 
we call getMessagesBuffer(), which returns a ByteBuffer view of the underlying transport. This allows the 
application to do zero copy reads directly from the memory that stores the message data. The returned 
ByteBuffer position and limit is set to the beginning and end of the message data. The message data does 
not start at position 0. The application reads a long out of the buffer, which is the same long that was placed 
by the source example.

Batching
public void sendMessages() throws LBMException
{
    ...
    for (long i = 0; i < 1000000; i += 2) {
        /* Acquire a position in the buffer */
        pos = src.acquireMessageBufferPosition(msgLength, flags);
        /* Place data at acquired position */

Transport Objects       27



        srcBuffer.putLong(pos, i);
        pos = src.acquireMessageBufferPosition(msgLength, flags);
        srcBuffer.putLong(pos, i+1);
        /* Inform receivers two messages have been written */
        src.messageBuffersComplete();
    }
    ...
}

You can implement a batching algorithm at the source by doing multiple acquires before calling complete. 
When receivers notice that there are new message available, they deliver all new messages in a single loop.

Blocking and Non-blocking Sends
public void sendMessages() throws LBMException
{
    ...
    /* Acquire will return -1 if need to wait for receivers */
    final int flags = LBM.SRC_NONBLOCK;
    ...    
    for (long i = 0; i < 1000000; i++) {
        /* Acquire a position in the buffer */
        pos = src.acquireMessageBufferPosition(msgLength, flags);
        while (pos == -1) {
            /* Implement a backoff algorithm here */
            try { Thread.sleep(1); } catch (Exception ex) { }
            pos = src.acquireMessageBufferPosition(msgLength, flags);
        }
        /* Place data at acquired position */
        srcBuffer.putLong(pos, i);
        /* Inform receivers data has been written */
        src.messageBuffersComplete();
    }
    ...
}

By default, acquireMessageBufferPosition() waits for receivers to catch up before it writes the requested 
number of bytes to the buffer. The resulting spin wait block happens only if you did not set the flags argument 
to LBM.SRC_NONBLOCK. If the flags argument sets the LBM.SRC_NONBLOCK value, then the function 
returns -1 if the call would have blocked. For performance reasons, acquireMessageBufferPosition() does 
not throw new LBMEWouldBlock exceptions like standard send APIs.

Complete and Acquire Function
public void sendMessages() throws LBMException
{
    ...
    for (long i = 0; i < 1000000; i++) {
        /* Mark previous acquires complete and reserve space */
        pos = src.messageBuffersCompleteAndAcquirePosition(msgLength, flags);
        /* Place data at acquired position */
        srcBuffer.putLong(pos, i);
    }
    /* final buffers complete after loop */
    src.messageBuffersComplete();
    ...
}

The function, messageBuffersCompleteAndAcquirePosition(), is a convenience function for the source 
and calls messageBuffersComplete() followed immediately by acquireMessageBufferPosition(), which 
reduces the number of method calls per message.

28       Chapter 3:  UM Objects



.NET Code Examples for LBT-SMX
The .NET code examples for LBT-SMX send and receive one million messages. Start the receiver example 
application before you start the source example application.

.NET Source Example
using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;
using System.Runtime.InteropServices;
using com.latencybusters.lbm;

namespace UltraMessagingApplication.SimpleSrc
{
    class SimpleSrc
    {
        LBMContext ctx;
        LBMSource src;

        static void Main(string[] args)
        {
            SimpleSrc test = new SimpleSrc();
            test.sendMessages();
            Console.WriteLine("Send Complete");
        }

        public SimpleSrc()
        {
            ctx = new LBMContext();
            LBMSourceAttributes sattr = new LBMSourceAttributes();
            sattr.setValue("transport", "lbtsmx");
            LBMTopic top = ctx.allocTopic("SimpleSmx", sattr);
            src = ctx.createSource(top);
        }

        private void sendMessages()
        {
            IntPtr writePtr;
            // Sends will block waiting for receivers
            int flags = LBM.SRC_BLOCK;
            uint msgLength = 8;

            Thread.Sleep(1000);

            for (long i = 0; i < 1000000; i++) {
                // Acquire a position in the buffer
                src.buffAcquire(out writePtr, msgLength, flags);
                // Place data at acquired position
                Marshal.WriteInt64(writePtr, i);
                // Inform receivers data has been written
                src.buffsComplete();
            }

            Thread.Sleep(1000);
            src.close();
            ctx.close();
        }
    }
}

You can access the shared memory region directly with the IntPtr structs. The src.buffAcquire() API 
modifies writePtr to point to the next available location in shared memory. When buffAcquire() returns, you 
can safely write to the writePtr location up to the length specified in buffAcquire(). The 
Marshal.WriteInt64() writes 8 bytes of data to the shared memory region. The call to buffsComplete() 
signals new data to connected receivers.

Transport Objects       29



.NET Receiver Example
using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;
using System.Runtime.InteropServices;
using com.latencybusters.lbm;

namespace UltraMessagingApplication.SimpleRcv
{
    class SimpleRcv
    {
        private LBMContext ctx;
        private LBMReceiver rcv;
        private long lastReceivedValue = -1;

        static void Main(string[] args)
        {
            SimpleRcv simpleRcv = new SimpleRcv();
            while (simpleRcv.lastReceivedValue < 999999) {
                Thread.Sleep(250);
            }
            simpleRcv.rcv.close();
            simpleRcv.ctx.close();
            Console.WriteLine("Last Received Value: {0}",
                               simpleRcv.lastReceivedValue);
        }

        public SimpleRcv()
        {
            ctx = new LBMContext();
            LBMTopic top = new LBMTopic(ctx, "SimpleSmx");
            rcv = new LBMReceiver(ctx, top, new LBMReceiverCallback(onReceive), null);
        }

        public int onReceive(Object obj, LBMMessage msg)
        {
            if (msg.type() == LBM.MSG_DATA) {
                // Read data out of shared memory
                lastReceivedValue = Marshal.ReadInt64(msg.dataPointerSafe());
            }
            // dispose the message so the LBMMessage object can be re-used
            msg.dispose();
            return 0;
        }
    }
}

The application calls the simpleRcv::onReceive callback after the source places new data in the shared 
memory region. The msg.dataPointerSafe() API returns an IntPtr to the data, which does not create any 
new objects. The Marshal.ReadInt64 API then reads data directly from the shared memory.

Batching
private void sendMessages()
{
    ...
    for (int i = 0; i < 1000000; i += 2) {
        // Acquire a position in the buffer
        src.buffAcquire(out writePtr, msgLength, flags);
        // Place data at acquired position
        Marshal.WriteInt32(writePtr, i);
        // Acquire a position in the buffer
        src.buffAcquire(out writePtr, msgLength, flags);
        // Place data at acquired position
        Marshal.WriteInt32(writePtr, i);
        // Inform receivers two messages has been written
        src.buffsComplete();
    }

30       Chapter 3:  UM Objects



    ...
}

You can implement a batching algorithm at the source by doing multiple acquires before calling complete. 
When receivers notice that new message are available, they deliver all new messages in a single loop.

Blocking and Non-blocking Sends
private void sendMessages()
{
    ...
    // buffAcquire will return -1 if need to wait for receivers
    int flags = LBM.SRC_NONBLOCK;
    ...
    for (long i = 0; i < 1000000; i++) {
        // Acquire a position in the buffer
        int rc = src.buffAcquire(out writePtr, msgLength, flags);
        while (rc == -1) {
            // Implement a backoff algorithm here
            Thread.Sleep(0);
            rc = src.buffAcquire(out writePtr, msgLength, flags);
        }
        // Place data at acquired position
        Marshal.WriteInt64(writePtr, i);
        // Inform receivers that a message has been written
        src.buffsComplete();
    }
    ...
}

By default, buffAcquire() waits for receivers to catch up before it writes the requested number of bytes to the 
buffer. The resulting spin wait block happens only if you did not set the flags argument to 
LBM.SRC_NONBLOCK. If the flags argument sets the LBM.SRC_NONBLOCK value, then the function 
returns -1 if the call would have blocked. For performance reasons, buffAcquire() does not throw new 
LBMEWouldBlock exceptions like standard send APIs.

Complete and Acquire Function
private void sendMessages()
{
    ...
    for (long i = 0; i < 1000000; i++) {
        // Acquire a position in the buffer
        src.buffsCompleteAndAcquire(out writePtr, msgLength, flags);
        // Place data at acquired position
        Marshal.WriteInt64(writePtr, i);
    }
    
    // final buffsComplete after loop
    src.buffsComplete();

    ...
}

The function, buffsCompleteAndAcquire(), is a convenience function for the source and calls 
buffsComplete() followed immediately by buffAcquire(), which reduces the number of method calls per 
message.

Reduce Synchronization Overhead
public SimpleRcv()
{
    ctx = new LBMContext();
    LBMReceiverAttributes rattr = new LBMReceiverAttributes();
    // Set the enableSingleReceiverCallback attribute to 'true'
    rattr.enableSingleReceiverCallback(true);
    LBMTopic top = new LBMTopic(ctx, "SimpleSmx", rattr);
    // With enableSingleReceiverCallback, a callback must be specified in the ver 
constructor.

Transport Objects       31



    rcv = new LBMReceiver(ctx, top, new LBMReceiverCallback(onReceive), null);
    // rcv.addReceiver and rcv.removeReceiver will result in log warnings.
}

Delivery latency to an LBMReceiver callback can be reduced with a single callback. Call 
LBMReceiverAttributes::enableSingleReceiverCallback on the attributes object used to create the 
LBMReceiver. The addReceiver() and removeReceiver() APIs become defunct, and your application calls 
the application receiver callback without any locks taken. The enableSingelReceiverCallback() API 
eliminates callback related synchronization overhead.

Note: In Java, inheriting from LBMReceiver and overriding the onReceive can achieve the same thing.

Increase Performance with unsafe Code Constructs
for (long i = 0; i < 1000000; i++) {
    // Acquire a position in the buffer
    src.buffAcquire(out writePtr, msgLength, flags);
    // Place data at acquired position
    unsafe {
        *((long*)(writePtr)) = i;
    }
    // Inform receivers data has been written
    src.buffsComplete();
}
public int onReceive(Object obj, LBMMessage msg)
{
    if (msg.type() == LBM.MSG_DATA) {
        unsafe {
            lastReceivedValue = *((long*)msg.dataPointer());
        }
    }
    // dispose the message so the object can be re-used
    msg.dispose();
    return 0;
}

Using .NET unsafe code constructs can increase performance. By manipulating pointers directly, you can 
eliminate calls to external APIs, resulting in lower latencies.

Transport LBT-RDMA
The LBT-RDMA transport is Remote Direct Memory Access (RDMA) UM transport that allows sources to 
publish topic messages to a shared memory area from which receivers can read topic messages. LBT-RDMA 
runs across InfiniBand and 10 Gigabit Ethernet hardware.

Note: Use of the LBT-RDMA transport requires the purchase and installation of the Ultra Messaging RDMA 
Transport Module. See your Ultra Messaging representative for licensing specifics. 

Restriction: Transport LBT-RDMA is supported on only the X86 Linux 64-bit platform.

When you create a source with lbm_src_create() and you've set the transport option to RDMA, UM creates 
a shared memory area object on the sending machine's Host Channel Adapter (HCA) card. UM assigns one 
of the RDMA transport ports to this area specified with the UM context configuration options, 
transport_lbtrdma_port_high and transport_lbtrdma_port_low . You can also specify a shared memory 
location outside of this range with a source configuration option, transport_lbtrdma_port , to prioritize 
certain topics, if needed.

When you create a receiver with lbm_rcv_create() for a topic being sent over LBT-RDMA, UM creates a 
shared memory area on the receiving machine's HCA card. The network hardware immediately copies any 
new data from the sending HCA to the receiving HCA. UM receivers monitor the receiving shared memory 
area for new topic messages. You configure receiver monitoring with 
transport_lbtrdma_receiver_thread_behavior .

32       Chapter 3:  UM Objects



LBT-RDMA Object Diagram
The following diagram illustrates how sources and receivers interact with the shared memory area used in the 
LBT-RDMA transport.

Figure 4. Sending and Receiving with LBT-RDMA

Similarities with Other UMS Transports
UM functions in much the same way as if you send packets across a traditional Ethernet network as with 
other UM transports.

• If you use a range of ports, UM assigns multiple topics that have been sent by multiple sources in a round 
robin manner to all the transport sessions configured my the port range.

• Transport sessions assume the configuration option values of the first source assigned to the transport 
session.

• Sources are subject to message batching.

• Topic resolution operates identically with LBT-RDMA as other UM transports albeit with a new 
advertisement type, LBMRDMA.

Differences from Other UMS Transports
• Unlike LBT-RM which uses a transmission window to specify a buffer size to retain messages in case they 

must be retransmitted, LBT-RDMA uses the transmission window option to establish the size of the 
shared memory.

• LBT-RDMA does not retransmit messages. Since LBT-RDMA transport is essentially a memory write/read 
operation, messages should not be lost in transit. However, if the shared memory area fills up, new 

Transport Objects       33



messages overwrite old messages, leading to unrecoverable transport loss. Note that a persisted stream 
with UMP or UMQ can provide off-transport recovery for unrecoverable transport loss. No retransmission 
of old messages that have been overwritten occurs.

• Receivers also do not send NAKs when using LBT-RDMA.

• LBT-RDMA is inherently ordered in its message delivery. If you set ordered_delivery to 0, then UM 
delivers message fragments individually in sequence number order, without reassembly.

• LBT-RDMA is source-paced but does not support Rate Control. If the source message rate exceeds the 
receiver's consumption rate, unrecoverable message loss eventually occurs.

• LBT-RDMA creates a separate receiver thread in the receiving context.

34       Chapter 3:  UM Objects



C H A P T E R  4

Architecture
This chapter includes the following topics:

• Overview, 35

• Embedded Mode, 35

• Sequential Mode, 35

• Topic Resolution, 36

• Message Batching, 47

• Ordered Delivery, 51

• Loss Detection Using TSNIs, 52

• Receiver Keepalive Using Sesssion Messages, 52

Overview
UM is designed to be a flexible architecture. Unlike many messaging systems, UM does not require an 
intermediate daemon to handle routing issues or protocol processing. This increases the performance of UM 
and returns valuable computation time and memory back to applications that would normally be consumed by 
messaging daemons.

Embedded Mode
When you create a context (lbm_context_create()) with the UM configuration option operational_mode set 
to embedded (the default), UM creates an independent thread, called the context thread, which handles timer 
and socket events, and does protocol-level processing, like retransmission of dropped packets.

Sequential Mode
When you create a context (lbm_context_create()) with the UM configuration option operational_mode set 
to sequential, the context thread is NOT created. It becomes the application's responsibility to donate a 
thread to UM by calling lbm_context_process_events() regularly, typically in a tight loop. Use Sequential 
mode for circumstances where your application wants control over the attributes of the context thread. For 

35



example, some applications raise the priority of the context thread so as to obtain more consistent latencies. 
In sequential mode, no separate thread is spawned when a context is created.

You enable Sequential mode with the following configuration option.

context operational_mode sequential
  

Topic Resolution
Topic resolution is the discovery of a topic's transport session information by a receiver to enable the receipt 
of topic messages. By default, UM relies on multicast requests and responses to resolve topics to transport 
sessions. (You can also use Unicast requests and responses, if needed.) UM receivers multicast their topic 
requests, or queries, to an IP multicast address and UDP port configured with the UM configuration options, 
resolver_multicast_address and resolver_multicast_port ). UM sources also multicast their 
advertisements and responses to receiver queries to the same multicast address and UDP port.

Topic Resolution occurs in the following phases:

• Initial Phase - Period that allows you to resolve a topic aggressively. Can be used to resolve all known 
topics before message sending begins. This phase can be configured to run differently from the defaults 
or completely disabled.

• Sustaining Phase - Period that allows new receivers to resolve a topic after the Initial Phase. Can also 
be the primary period of topic resolution if you disable the Initial Phase. This phase can also be configured 
to run differently from the defaults or completely disabled.

• Quiescent Phase - The "steady state" period during which a topic is resolved and UM uses no system 
resources for topic resolution.

36       Chapter 4: Architecture



Multicast Topic Resolution
The following diagram depicts the UM topic resolution using multicast.

Figure 5. Topic Resolution via Multicast

UM performs topic resolution automatically. Your application does not need to call any API functions to 
initiate topic resolution, however, you can influence topic resolution with “Topic Resolution Configuration 
Options” on page 43. Moreover, you can set configuration options for individual topics by using the 
lbm_*_attr_setopt() functions in your application. See “Assigning Different Configuration Options to 
Individual Topics” on page 44

Topic Resolution also occurs across UM Routers, which means between Topic Resolution Domains. A Topic 
Resolution Domain refers to all the UM contexts that use the same UM topic resolution configuration values, 
such as resolver_multicast_address and resolver_multicast_port . UM Routers automatically assign 
Topic Resolution Domain IDs and manage Topic resolution traffic across them. See the UM Router Guide for 
more information.

Note: Multicast topic resolution traffic can benefit from hardware acceleration. See Transport Acceleration 
Options in the UM Configuration Guide for more information. 

Topic Resolution       37



Restriction: Multicast Topic Resolution is not directly supported on the OpenVMS® platform. UM applications 
running on the OpenVMS® platform, however, can use multicast topic resolution running on a different 
platform, such as Microsoft Windows® or Linux.

Sources Advertise
UM sources help UM receivers discover transport information in the following ways.

• Advertise Active Topics - Each source advertises its active topic first upon its creation and subsequently 
according to the resolver_advertisement_*_interval configuration options for the Initial and Sustaining 
Phases. Sources advertise by sending a Topic Information Record (TIR). (You can prevent a source from 
sending an advertisement upon creation with resolver_send_initial_advertisement .)

• Respond to Topic Queries - Each source responds immediately to queries from receivers about its topic.

Both a topic advertisement and a query response contain the topic's transport session information. Based on 
the transport type, a receiver can join the appropriate multicast group (for LBT-RM), send a connection 
request (for LBT-RU), connect to the source (for TCP) or access a shared memory area (for LBT-IPC). The 
address and port information potentially contained within a TIR includes:

• For a TCP transport, the source address, TCP port and Session ID.

• For an LBT-RM transport, the unicast UDP port (to which NAKs are sent) and the UDP destination port.

• For an LBT-RU transport, the source address, UDP port and Session ID.

• For an LBT-IPC transport, the Host ID, LBT-IPC Session ID and Transport ID.

For an LBT-RDMA transport, the source address, RDMA port and Session ID.

See Resolver Operation Options in the UM Configuration Guide for more information.

Note: Any sources you configure to send to UMP stores by setting the ume_store configuration option, also 
include a UMP flag in their advertisements. This indicates that the receiver should request the source to send 
a Source Registration Information (SRI) record, which identifies the store or stores the receiver should 
register with. See Source and Receiver Registration with the Store in the UM Guide for Persistence for more 
information.

Receivers Query
Receivers can discover transport information in the following ways.

• Search advertisements collected in the resolver cache maintained by the UM context.

• Listen for source advertisements on the resolver_multicast_address:port.

• Send a topic query (TQR).

A new receiver queries for its topic according to the resolver_query_*_interval configuration options for 
the Initial and Sustaining Phases.

Note: The resolver_query_minimum_initial_interval actually begins after you call prior to creating the 
receiver. If you have disabled the Initial Phase for the topic's resolution, the 
resolver_query_sustaining_interval begins after you call lbm_rcv_topic_lookup(). 

A Topic Query Record (TQR) consists primarily of the topic string. Receivers continue querying on a topic 
until they discover the number of sources configured by resolution_number_of_sources_query_threshold . 
However the large default of this configuration option (10,000,000) allows a receiver to continue to query until 
both the initial and sustaining phase of topic resolution complete.

See Resolver Operation Options in the UM Configuration Guide for more information.

38       Chapter 4: Architecture



Wildcard Receivers
Wildcard receivers can discover transport information in the following ways.

• Search advertisements collected in the resolver cache maintained by the UM context.

• Listen for source advertisements on the resolver_multicast_address:port.

• Send a wildcard receiver topic query (WC-TQR).

UM implements only one phase of wildcard receiver queries, sending wildcard receiver queries according to 
wildcard receiver resolver_query_*_interval configuration options until the topic pattern has been queried 
for the resolver_query_minimum_duration . The wildcard receiver topic query (WC-TQR) contains the topic 
pattern and the pattern_type .

See Wildcard Receiver Options in the UM Configuration Guide for more information.

Topic Resolution Phases
The phases of topic resolution pertain to individual topics. Therefore if your system has 100 topics, 100 
different topic resolution advertisement and query phases may be running concurrently. This describes the 
three phases of Ultra Messaging topic resolution.

• “Initial Phase” on page 39

• “Sustaining Phase” on page 41

• “Quiescent Phase” on page 43

Initial Phase
The initial topic resolution phase for a topic is an aggressive phase that can be used to resolve all topics 
before sending any messages. During the initial phase, network traffic and CPU utilization might actually be 
higher. You can completely disable this phase, if desired. See Disabling Aspects of Topic Resolution in the 
UM Configuration Guide.

Advertising in the Initial Phase

For the initial phase default settings, the resolver issues the first advertisement as soon as the scheduler can 
process it. The resolver issues the second advertisement 10 ms later, or at the 
resolver_advertisement_minimum_initial_interval . For each subsequent advertisement, UM doubles 
the interval between advertisements. The source sends an advertisement at 20 ms, 40 ms, 80 ms, 160 ms, 
320 ms and finally at 500 ms, or the resolver_advertisement_maximum_initial_interval . These 8 
advertisements require a total of 1130 ms. The interval between advertisements remains at the maximum 500 
ms, resulting in 7 more advertisements before the total duration of the initial phase reaches 5000 ms, or the 

Topic Resolution       39



resolver_advertisement_minimum_initial_duration . This concludes the initial advertisement phase for 
the topic.

Figure 6. Initial Advertisement Phase

The initial phase for a topic can take longer than the resolver_advertisement_minimum_initial_duration 
if many topics are in resolution at the same time. The configuration options, 
resolver_initial_advertisements_per_second and resolver_initial_advertisement_bps enforce a rate 
limit on topic advertisements for the entire UM context. A large number of topics in resolution - in any phase - 
or long topic names may exceed these limits.

If a source advertising in the initial phase receives a topic query, it responds with a topic advertisement. UM 
recalculates the next advertisement interval from that point forward as if the advertisement was sent at the 
nearest interval.

Querying in the Initial Phase

Querying activity by receivers in the initial phase operates in similar fashion to advertising activity, although 
with different interval defaults. The resolver_query_minimum_initial_interval default is 20 ms. 
Subsequent intervals double in length until the interval reaches 200 ms, or the 

40       Chapter 4: Architecture



resolver_query_maximum_initial_interval . The query interval remains at 200 ms until the initial querying 
phase reaches 5000 ms, or the resolver_query_minimum_initial_duration .

Figure 7. Initial Query Phase

The initial query phase completes when it reaches the resolver_query_minimum_initial_duration . The 
initial query phase also has UM context-wide rate limit controls ( resolver_initial_queries_per_second 
and resolver_initial_query_bps ) that can result in the extension of a phase's duration in the case of a 
large number of topics or long topic names.

Sustaining Phase
The sustaining topic resolution phase follows the initial phase and can be a less active phase in which a new 
receiver resolves its topic. It can also act as the sole topic resolution phase if you disable the initial phase. 
The sustaining phase defaults use less network resources than the initial phase and can also be modified or 
disabled completely. See Disabling Aspects of Topic Resolution in the UM Configuration Guide.

Advertising in the Sustaining Phase

For the sustaining phase defaults, a source sends an advertisement every second 
( resolver_advertisement_sustain_interval ) for 1 minute 
( resolver_advertisement_minimum_sustain_duration ). When this duration expires, the sustaining phase 

Topic Resolution       41



of advertisement for a topic ends. If a source receives a topic query, the sustaining phase resumes for the 
topic and the source completes another duration of advertisements.

Figure 8. Sustaining Advertisement Phase

The sustaining advertisement phase has UM context-wide rate limit controls 
( resolver_sustain_advertisements_per_second and resolver_sustain_advertisement_bps ) that can 
result in the extension of a phase's duration in the case of a large number of topics or long topic names.

Querying in the Sustaining Phase

Default sustaining phase querying operates the same as advertising. Unresolved receivers query every 
second ( resolver_query_sustain_interval ) for 1 minute 
( resolver_query_minimum_sustain_duration ). When this duration expires, the sustaining phase of 
querying for a topic ends.

Figure 9. Sustaining Query Phase

42       Chapter 4: Architecture



Sustaining phase queries stop when one of the following events occurs.

• The receiver discovers multiple sources that equal resolution_number_of_sources_query_threshold .

• The sustaining query phase reaches the resolver_query_minimum_sustain_duration .

The sustaining query phase also has UM context-wide rate limit controls 
( resolver_sustain_queries_per_second and resolver_sustain_query_bps ) that can result in the 
extension of a phase's duration in the case of a large number of topics or long topic names.

Quiescent Phase
This phase is the absence of topic resolution activity for a given topic. It is possible that some topics may be 
in the quiescent phase at the same time other topics are in initial or sustaining phases of topic resolution. 
This phase ends if either of the following occurs.

• A new receiver sends a query.

• Your application calls lbm_context_topic_resolution_request() that provokes the sending of topic 
queries for any receiver or wildcard receiver in this state.

Store (context) Name Resolution
Topic resolution facilitates the resolution of store names to a DomainID:IPAddress:Port.

Topic Resolution resolves store (or context) names by sending context name queries and context name 
advertisements over the topic resolution channel. A store name resolves to the store's 
DomainID:IPAddress:Port. You configure the store's name and IPAddress:Port in the store's XML 
configuration file. See Identifying Persistent Stores in the UM Guide for Persistence for more information.

If you do not use UM Routers, the DomainID is zero. Otherwise, the DomainID represents the Topic 
Resolution Domain where the store resides. Stores can learn their DomainID by listening to Topic Resolution 
traffic. See the UM Router Guide for more information about Topic Resolution Domains.

Via the Topic Resolution channel, sources query for store names and stores respond with an advertisement 
when they see a query for their own store name. The advertisement contains the store's 
DomainID:IPAddress:Port.

For a new source configured to use a store names ( ume_store_name ), the resolver issues the first context 
name query as soon as the scheduler can process it. The resolver issues the second advertisement 100 ms 
later, or at the resolver_context_name_query_minimum_interval . For each subsequent query, UM 
doubles the interval between queries. The source sends a query at 200 ms, 400 ms, 800 ms and finally at 
1000 ms, or the resolver_context_name_query_maximum_interval . The interval between queries remains 
at the maximum 1000 ms until the total time querying for a store (context) name equals 
resolver_context_name_query_duration . The default for this duration is 0 (zero) which means the 
resolver continues to send queries until the name resolves. After a store name resolves, the resolver stops 
sending queries.

If a source sees advertisements from multiple stores with the same name, or a store sees an advertisement 
that matches its own store name, the source issues a warning log message. The source also issues an 
informational log message whenever it detects that a resolved store (context) name changes to a different 
DomainID:IPAddress:Port.

Topic Resolution Configuration Options
Refer to the UM Configuration Guide for specific information about Topic Resolution Configuration Options.

• Resolver Operation Options

Topic Resolution       43



• Multicast Resolver Network Options

• Unicast Resolver Network Options

• Wildcard Receiver Options

Assigning Different Configuration Options to Individual Topics
You can assign different configuration option values to individual topics by accessing the topic attribute table 
(lbm_*_topic_attr_t_stct) before creating the source, receiver or wildcard receiver.

Creating a Source with Different Topic Resolution Options

1. Call lbm_src_topic_attr_setopt() to set new option value

2. Call lbm_src_topic_alloc()
3. Call lbm_src_create()
Creating a Receiver with Different Topic Resolution Options

1. Call lbm_rcv_topic_attr_setopt() to set new option value

2. Call lbm_rcv_topic_lookup()
3. Call lbm_rcv_create()
Creating a Wildcard Receiver with Different Topic Resolution Options

1. Call lbm_wildcard_rcv_attr_setopt() to set new wildcard receiver option value

2. Call lbm_wildcard_rcv_create()

Multicast Network Options
Essentially, the _incoming and _outgoing versions of resolver_multicast_address/port provide more 
fine-grained control of topic resolution. By default, the resolver_multicast_address and 
resolver_multicast_port and the _incoming and _outgoing address and port are set to the same value. If 
you want your context to listen to a particular multicast address/port and send on another address/port, then 
you can set the _incoming and _outgoing configuration options to different values.

See Resolver Operation Options in the UM Configuration Guide for more information.

Unicast Topic Resolution
By default UM expects multicast connectivity between all sources and receivers. When only unicast 
connectivity is available, you may configure all sources and receivers to use unicast topic resolution. This 
requires that you run one or more UM unicast topic resolution daemon(s) ( Chapter 6, “Manpage for 
lbmrd” on page 89), which perform the same topic resolution activities as multicast topic resolution. You 
configure each instance of the unicast topic resolution daemon with resolver_unicast_daemon .

The lbmrd can run on any machine, including the source or receiver (enter lbmrd -h for instructions). Of 
course, sources will also have to select a transport protocol that uses unicast addressing (e.g. TCP, TCP-LB, 
or LBT-RU). The lbmrd maintains a table of clients (address and port pairs) from which it has received a topic 
resolution message, which can be any of the following.

• Topic Information Records (TIR) - also known as topic advertisements

• Topic Query Records (TQR)

• keepalive messages, which are only used in unicast topic resolution

44       Chapter 4: Architecture



After lbmrd receives a TQR or TIR, it forwards it to all known clients. If a client (i.e. source or receiver) is not 
sending either TIRs or TQRs, it sends a keepalive message to lbmrd according to the 
resolver_unicast_keepalive_interval . This registration with the lbmrd allows the client to receive 
advertisements or queries from lbmrd. lbmrd maintains no state about topics, only about clients.

Restriction: Unicast Topic Resolution is not supported on the OpenVMS® platform. UM applications running 
on the OpenVMS® platform, however, can use unicast topic resolution running on a different platform, such 
as Microsoft Windows® or Linux.

LBMRD with the UM Router Best Practice
If you're using the lbmrd for topic resolution across UM Routers, you may want all of your domains 
discovered and all routes to be known before creating any topics. If so, change the UM configuration option, 
resolver_unicast_force_alive , from the default setting to 1 so your contexts start sending keepalives to 
lbmrd immediately. This makes your startup process cleaner by allowing your contexts to discover the other 
Topic Resolution Domains and establish the best routes. The tradeoff is a little more network traffic every 5 
seconds.

Unicast Topic Information Records
Of all topic resolution messages, only the TIR contains address and port information. This tells a receiver 
how it can get the data being published. Based on the transport type, a receiver can join the appropriate 
multicast group (for LBT-RM), send a connection request (for LBT-RU), or connect to the source (for TCP).

The address and port information potentially contained within a TIR includes:

• For a TCP transport, the source address and TCP port.

• For an LBT-RM transport, the unicast UDP port (to which NAKs are sent) and the UDP destination port.

• For an LBT-RU transport, the source address and UDP port.

For unicast-based transports (TCP and LBT-RU), the TIR source address is 0.0.0.0, not the actual source 
address.

Topic resolution messages (whether received by the application via multicast, or by the unicast topic 
resolution daemon via unicast) are always UDP datagrams. They are received via a recvfrom() call, which 
also obtains the address and port from which the datagrams were received. If the address 0.0.0.0 
(INADDR_ANY) appears for one of the addresses, lbmrd replaces it with the address from which the 
datagram is received. The net effect is as if the actual source address had originally been put into the TIR.

Unicast Topic Resolution Resilience
Running multiple instances of lbmrd allows your applications to continue operation in the face of a lbmrd 
failure. Your applications' sources and receivers send topic resolution messages as usual, however, rather 
than sending every message to each lbmrd instance, UM directs messages to lbmrd instances in a round-
robin fashion. Since the lbmrd does not maintain any resolver state, as long as one lbmrd instance is 
running, UM continues to forward LBMR packets to all connected clients. UM switches to the next active 
lbmrd instance every 250-750 ms.

lbmrd Configuration File
This section presents the syntax of the lbmrd configuration file, which is an XML file. Descriptions of 
elements also appear below. See also Unicast Resolver Example Configuration in the UM Configuration 
Guide for an example lbmrd configuration file.

<?xml version="1.0" encoding="UTF-8" ?>
<lbmrd version="1.0">

Topic Resolution       45



    <domains>
     <domain name="domain-name-1">
         <network>network-specification</network>
     </domain>
     <domain name="domain-name-2">
         <network>network-specification</network>
     </domain>
    </domains>
    <transformations>
     <transform source="source-domain-name"
         destination="destination-domain-name">
         <rule>
          <match address="original-address" port="original-port"/>
          <replace address="replacement-address" port="replacement-port"/>
         </rule>
     </transform>
    </transformations>
</lbmrd>

<lbmrd> Element

The <lbmrd> element is the root element. It requires a single attribute, version, which defines the version of 
the DTD to be used. Currently, only version 1.0 is supported. The <lbmrd> element must contain a single 
<domains> element and a single <transformations> element.

<domains> Element

The <domains> element defines the set of network domains. The <domains> element may contain one or 
more <domain> elements. Each defines a separate domain.

<domain> Element Element

The <domain> element defines a single network domain. Each domain must be named via the name 
attribute. This name is referenced in <map> elements, which are discussed below. Each domain name must 
be unique. The <domain> element may contain one or more <network> elements.

<network> Element Element

The <network> element defines a single network specification which is to be considered part of the enclosing 
<domain>. The network specification must contain either an IP address, or a network specification in CIDR 
form.

<transformations> Element

The <transformations> element defines and contains the set of transformations to be applied to the TIRs. The 
<transformations> element contains one or more <transform> elements, described below.

<transformation> Element

The <transform> element defines a set of transformation tuples. Each tuple applies to a TIR sent from a 
specific network domain (specified using the source attribute), and destined for a specific network domain 
(specified using the destination attribute). The source and destination attributes must specify a network 
domain name as defined by the <domain> elements. The <transform> element contains one or more <rule> 
elements, described below.

<rule> Element

Each <rule> element is associated with the enclosing <transform> element, and completes the transformation 
tuple. The <rule> element must contain one <match> element, and one <replace> element, described below.

<match> Element

The <match> element defines the address and port to match within the TIR. The attributes address and port 
specify the address and port. address must specify a full IP address (a network specification is not 
permitted). port specifies the port in the TIR. To match any port, specify port="*" (which is the default).

46       Chapter 4: Architecture



<replace> Element

The <replace> element defines the address and port which are to replace those matched in the TIR. The 
attributes address and port specify the address and port. address must specify a full IP address (a network 
specification is not permitted). To leave the TIR port unchanged, specify port="*" (which is the default).

It is valid to specify port="*" for both <match> and <replace>. This effectively matches all ports for the given 
address and changes only the address. It is important to note that TIR addresses and ports are considered 
together. For example, the Ultra Messaging R for the Enterprise option in the TIR contains the source 
address and port, and the store address and port. When processing a transformation tuple, the source 
address and source port are considered (and transformed) together, and the store address and store port are 
considered (and transformed) together.

Unicast Topic Resolution Across Administrative Domains
If your network architecture includes remote or local LANs that use Network Address Translation (NAT), you 
can implement an lbmrd configuration file to translate IP addresses/ports across administrative domains. 
Without translation, lbmrd clients (sources and receivers) across NAT boundaries cannot connect to each 
other in response to topic advertisements due to NAT restrictions.

By default, topic advertisements forwarded by lbmrd contain the private (or inside) address/port of the 
source. Routers implementing NAT prevent connection to these private addresses from receivers outside the 
LAN.

The lbmrd configuration file allows lbmrd to insert a translation or outside address/port for the private 
address/port of the source in the topic advertisement. This outside or translation address must already be 
configured in the router's static NAT table. When the receiver attempts to connect to the source by using the 
source address/port in the topic advertisement, the NAT router automatically translates the outside address/
port to the private address/port, thereby allowing the connection.

Note: The Request/Response model and the Late Join feature work only with (lbmrd) across local LANs that 
use Network Address Translation (NAT) if you use the default value (0.0.0.0) for request_tcp_interface.

See the UM Configuration Guide for more information.

Message Batching
Batching many small messages into fewer network packets decreases the per-message CPU load, thereby 
increasing throughput. Let's say it costs 2 microseconds of CPU to fully process a message. If you process 
10 messages per second, you won't notice the load. If you process half a million messages per second, you 
saturate the CPU. So to achieve high message rates, you have to reduce the per-message CPU cost with 
some form of message batching. These per-message costs apply to both the sender and the receiver. 
However, the implementation of batching is almost exclusively the realm of the sender.

Many people are under the impression that while batching improves CPU load, it increases message latency. 
While it is true that there are circumstances where this can happen, it is also true that careful use of batching 
can result in small latency increases or none at all. In fact, there are circumstances where batching can 
actually reduce latency.

UM allows the following methods for batching messages.

• “Implicit Batching” on page 48 - the default behavior, batching messages for individual transport 
sessions.

Message Batching       47



• “Adaptive Batching” on page 49 - a convenience feature of UM that monitors sending activity and 
automatically determines the optimum time to flush the Implicit Batch buffer.

• “Intelligent Batching” on page 49 - a method that makes use of your application's knowledge of the 
messages it must send, clearing the Implicit Batching buffer when sending the only remaining message.

• “Explicit Batching” on page 50 - provides greater control to your application through lbm_src_send() 
message flags and also operates in conjunction with the Implicit Batching mechanism.

• “Application Batching” on page 50 - your application groups messages and sends them in a single 
batch.

Implicit Batching
UM automatically batches smaller messages into transport session datagrams. The implicit batching 
configuration options, implicit_batching_interval (default = 200 milliseconds) and 
implicit_batching_minimum_length (default = 2048 bytes) govern UM implicit message batching. Although 
these are source options, they actually apply to the transport session to which the source was assigned.

See Implicit Batching Options in the UM Configuration Guide.

See also “Source Configuration and Transport Sessions” on page 9.

UM establishes the implicit batching parameters when it creates the transport session. Any sources assigned 
to that transport session use the implicit batching limits set for that transport session, and the limits apply to 
any and all sources subsequently assigned to that transport session. This means that batched transport 
datagrams can contain messages on multiple topics. See “Explicit Batching” on page 50 for information 
about topic-level message batching.

Implicit Batching Operation
Implicit Batching buffers messages until:

• the buffer size exceeds the configured implicit_batching_minimum_length or

• the oldest message in the buffer has been in the buffer for implicit_batching_interval milliseconds.

When either condition is met, UM flushes the buffer, pushing the messages onto the network.

It may appear this design introduces significant latencies for low-rate topics. However, remember that Implicit 
Batching operates on a transport session basis. Typically many low-rate topics map to the same transport 
session, providing a high aggregate rate. The implicit_batching_interval option is a last resort to prevent 
messages from becoming stuck in the Implicit Batching buffer. If your UM deployment frequently uses the 
implicit_batching_interval to push out the data (i.e. if the entire transport session has periods of 
inactivity longer than the value of implicit_batching_interval (defaults to 200 ms), then either the implicit 
batching options need to be fine-tuned (reducing one or both), or you should consider an alternate form of 
batching. See “Intelligent Batching” on page 49.

The minimum value for the implicit_batching_interval is 3 milliseconds. The actual minimum amount of 
time that data stays in the buffer depends on your Operating System and its scheduling clock interval. For 
example, on a Solaris 8 machine, the actual time is approximately 20 milliseconds. On Microsoft Windows 
machines, the time is probably 16 milliseconds. On a Linux 2.6 kernel, the actual time is 3 milliseconds. 
Using a implicit_batching_interval value of 3 guarantees the minimum possible wait for whichever 
operating system you are using.

48       Chapter 4: Architecture



Implicit Batching Example
The following example demonstrates how the implicit_batching_minimum_length is actually a trigger or 
floor, for sending batched messages. It is sometimes misconstrued as a ceiling or upper limit.

  implicit_batching_minimum_length = 2000
        

1. The first send by your application puts 1900 bytes into the batching buffer, which is below the minimum, 
so UM holds it.

2. The second send fills the batching buffer to 3800 bytes, well over the minimum. UM sends it down to the 
transport layer, which builds a 3800-byte (plus overhead) datagram and sends it.

3. The Operating System fragments the datagram into packets independently of UM and reassembles them 
on the receiving end.

4. UM reads the datagram from the socket at the receiver.

5. UM parses out the two messages and delivers them to the appropriate topic levels, which deliver the 
data.

The proper setting of the implicit batching parameters often represents a tradeoff between latency and 
efficiency, where efficiency affects the highest throughput attainable. In general, a large minimum length 
setting increases efficiency and allows a higher peak message rate, but at low message rates a large 
minimum length can increase latency. A small minimum length can lower latency at low message rates, but 
does not allow the message rate to reach the same peak levels due to inefficiency. An intelligent use of 
implicit batching and application-level flushing can be used to implement an adaptive form of batching known 
as “Intelligent Batching” on page 49 which can provide low latency and high throughput with a single 
setting.

Adaptive Batching
Adaptive Batching is a convenience batching feature that attempts to send messages immediately during 
periods of low volume and automatically batch messages during periods of higher volume. The goal of 
Adaptive Batching is to automatically optimize throughput and latency by monitoring such things as the time 
between calls to lbm_src_send(), the time messages spend in the Implicit Batching queue, the Rate 
Controller queue, and other sending activities. With this information, Adaptive Batching determines if sending 
batched messages now or later produces the least latency.

Adaptive Batching will not satisfy everyone's requirements of throughput and latency. You only need to turn it 
on and determine if it produces satisfactory performance. If it does, you need do nothing more. If you are not 
satisfied with the results, simply turn it off.

You enable Adaptive Batching by setting implicit_batching_type to adaptive. When using Adaptive 
Batching, it is advisable to increase the implicit_batching_minimum_length option to a higher value.

Intelligent Batching
Intelligent Batching uses Implicit Batching along with your application's knowledge of the messages it must 
send. It is a form of dynamic adaptive batching that automatically adjusts for different message rates. 
Intelligent Batching can provide significant savings of CPU resources without adding any noticeable latency.

For example, your application might receive input events in a batch, and therefore know that it must produce 
a corresponding batch of output messages. Or the message producer works off of an input queue, and it can 
detect messages in the queue.

In any case, if the application knows that it has more messages to send without going to sleep, it simply does 
normal sends to UM, letting Implicit Batching send only when the buffer meets the 

Message Batching       49



implicit_batching_minimum_length threshold. However, when the application detects that it has no more 
messages to send after it sends the current message, it sets the FLUSH flag (LBM_MSG_FLUSH) when 
sending the message which instructs UM to flush the implicit batching buffer immediately by sending all 
messages to the transport layer. Refer to lbm_src_send() in the UMS API documentation ( UM C API, UM 
Java API or UM .NET API) for all the available send flags.

When using Intelligent Batching, it is usually advisable to increase the implicit_batching_minimum_length 
option to 10 times the size of the average message, to a maximum value of 8196. This tends to strike a good 
balance between batching length and flushing frequency, giving you low latencies across a wide variation of 
message rates.

Explicit Batching
UM allows you to batch messages for a particular topic with explicit batching. When your application sends a 
message (lbm_src_send()) it may flag the message as being the start of a batch 
(LBM_MSG_START_BATCH) or the end of a batch (LBM_MSG_END_BATCH). All messages sent between 
the start and end are grouped together. The flag used to indicate the end of a batch also signals UM to send 
the message immediately to the implicit batching buffer. At this point, “Implicit Batching” on page 48 
completes the batching operation. UM includes the start and end flags in the message so receivers can 
process the batched messages effectively.

Unlike Intelligent Batching which allows intermediate messages to trigger flushing according to the 
implicit_batching_minimum_length option, explicit batching holds all messages until the batch is 
completed. This feature is useful if you configure a relatively small implicit_batching_minimum_length and 
your application has a batch of messages to send that exceeds the implicit_batching_minimum_length. By 
releasing all the messages at once, Implicit Batching maximizes the size of the network datagrams.

Explicit Batching Example
The following example demonstrates explicit batching.

implicit_batching_minimum_length = 8000
        

1. Your application performs 10 sends of 100 bytes each as a single explicit batch.

2. At the 10th send (which completes the batch), UM delivers the 1000 bytes of messages to the implicit 
batch buffer.

3. Let's assume that the buffer already has 7899 bytes of data in it from other topics on the same transport 
session

4. UM adds the first 100-byte message to the buffer, bringing it to 7999.

5. UM adds the second 100-byte message, bringing it up to 8099 bytes, which exceeds 
implicit_batching_minimum_length but is below the 8192 maximum datagram size.

6. UM sends the 8099 bytes (plus overhead) datagram.

7. UM adds the third through tenth messages to the implicit batch buffer. These messages will be sent 
when either implicit_batching_minimum_length is again exceeded, or the 
implicit_batching_interval is met, or a message arrives in the buffer with the flush flag 
(LBM_MSG_FLUSH) set.

Application Batching
In all of the above situations, your application sends individual messages to UM and lets UM decide when to 
push the data onto the wire (often with application help). With application batching, your application buffers 

50       Chapter 4: Architecture



messages itself and sends a group of messages to UM with a single send. Thus, UM treats the send as a 
single message. On the receiving side, your application needs to know how to dissect the UM message into 
individual application messages.

This approach is most useful for Java or .NET applications where there is a higher per-message cost in 
delivering an UM message to the application. It can also be helpful when using an event queue to deliver 
received messages. This imposes a thread switch cost for each UM message. At low message rates, this 
extra overhead is not noticeable. However, at high message rates, application batching can significantly 
reduce CPU overhead.

Ordered Delivery
With the Ordered Delivery feature, a receiver's delivery controller can deliver messages to your application in 
sequence number order or arrival order. This feature can also reassemble fragmented messages or leave 
reassembly to the application. You can set Ordered Delivery via UM configuration option to one of three 
modes:

• Sequence Number Order, Fragments Reassembled

• Arrival Order, Fragments Not Reassembled

• Arrival Order, Fragments Reassembled

Sequence Number Order, Fragments Reassembled (Default 
Mode)

In this mode, a receiver's delivery controller delivers messages in sequence number order (the same order in 
which they are sent). This feature also guarantees reassembly of fragmented large messages. To enable 
sequence number ordered delivery, set the ordered_delivery configuration option as shown:

receiver ordered_delivery 1
Please note that ordered delivery can introduce latency when packets are lost.

Arrival Order, Fragments Not Reassembled
This mode allows messages to be delivered to the application in the order they are received. If a message is 
lost, UM will retransmit the message. In the meantime, any subsequent messages received are delivered 
immediately to the application, followed by the dropped packet when its retransmission is received. This 
mode guarantees the lowest latency.

With this mode, the receiver delivers messages larger than the transport's maximum datagram size as 
individual fragments. (See transport_*_datagram_max_size in the Ultra Messaging Configuration Guide.) The 
C API function, lbm_msg_retrieve_fragment_info() returns fragmentation information for the message you 
pass to it, and can be used to reassemble large messages. (In Java and .NET, LBMMessage provides 
methods to return the same fragment information.) Note that reassembly is not required for small messages.

To enable this no-reassemble arrival-order mode, set the following configuration option as shown:

receiver ordered_delivery 0
When developing message reassembly code, consider the following:

• Message fragments don't necessarily arrive in sequence number order.

• Some message fragments may never arrive (unrecoverable loss), so you must time out partial messages.

Ordered Delivery       51



Arrival Order, Fragments Reassembled
This mode delivers messages in the order they are received, except for fragmented messages, which UM 
reassembles before delivering to your application. Your application can then use the sequence_number field 
of lbm_msg_t objects to order or discard messages.

To enable this arrival-order-with-reassembly mode, set the following configuration option as shown:

receiver ordered_delivery -1

Loss Detection Using TSNIs
When a source enters a period during which it has no data traffic to send, that source issues timed Topic 
Sequence Number Info (TSNI) messages. The TSNI lets receivers know that the source is still active and 
also reminds receivers of the sequence number of the last message. This helps receivers become aware of 
any lost messages between TSNIs.

Sources send TSNIs over the same transport and on the same topic as normal data messages. You can set a 
time value of the TSNI interval with configuration option 
transport_topic_sequence_number_info_interval. You can also set a time value for the duration that the 
source sends contiguous TSNIs with configuration option 
transport_topic_sequence_number_info_active_threshold, after which time the source stops issuing 
TSNIs.

Receiver Keepalive Using Sesssion Messages
When an LBT-RM, LBT-RU, or LBT-IPC transport session enters a period during which it has no data traffic 
to send, UM issues timed Session Messages (SMs). For example, suppose all topics in a session stop 
sending data. One by one, they then send TSNIs, and if there is still no data to send, their TSNI periods 
eventually expire. After the last quiescent topic's TSNIs stop, UM begins transmitting SMs.

You can set time values for SM interval and duration with configuration options specific to their transport 
type.

52       Chapter 4: Architecture



Receiver Keepalive Using Sesssion Messages       53



C H A P T E R  5

UMS Features
This chapter includes the following topics:

• Using Late Join, 54

• Off-Transport Recovery (OTR), 60

• Request/Response Model, 62

• Self Describing Messaging, 64

• Pre-Defined Messaging, 65

• Multicast Immediate Messaging, 79

• Spectrum, 82

• Hot Failover, 83

Using Late Join
This section introduces the use of UM Late Join in default and specialized configurations. Specifically, this 
section on UM Late Join includes:

• “Late Join Overview” on page 54

• “Late Join With UMP” on page 56

• “Late Join Options Summary” on page 56

• “Using Default Late Join Options” on page 56

• “Specifying a Range of Messages to Retransmit” on page 57

• “Retransmitting Only Recent Messages” on page 58

• “Configuring Late Join for Large Numbers of Messages” on page 59

See the UM Configuration Guide for specific information about Late Join configuration options.

Note: If your application is running within a UM context with configuration option 
request_tcp_bind_request_port set to zero, then request port binding has been turned off, which also 
disables the Late Join feature. 

Late Join Overview
The Late Join feature enables newly created receivers to receive previously transmitted messages. Sources 
configured for Late Join maintain a retention buffer (not to be confused with a transport retransmission 
window), which holds transmitted messages for late-joining receivers.

54



A Late Join operation follows the following sequence:

1. A new receiver configured for Late Join with use_late_join completes topic resolution. Topic 
advertisements from the source contain a flag that indicates the source is configured for Late Join with 
late_join.

2. The new receiver sends a Late Join Initiation Request (LJIR) to request a previously transmitted 
messages. The receiver configuration option, retransmit_request_outstanding_maximum, determines 
the number of messages the receiver requests.

3. The source responds with a Late Join Information (LJI) message containing the sequence numbers for 
the retained messages that are available for retransmission.

4. The source unicasts the messages.

5. When “Configuring Late Join for Large Numbers of Messages” on page 59, the receiver issues 
additional requests, and the source retransmits these additional groups of older messages, oldest first.

Figure 10. Late Join Message Path

The source's retention buffer's is not pre-allocated and occupies an increasing amount of memory as the 
source sends messages and adds them to the buffer. If a retention buffer grows to a size equal to the value 
of the source configuration option, retransmit_retention_size_threshold, the source deletes older 
messages as it adds new ones. The source configuration option retransmit_retention_age_threshold, 
controls message deletion based on message age.

Note: UM uses control-structure overhead memory on a per-message basis for messages held in the 
retention buffer, in addition to the retention buffer's memory. Such memory usage can become significantly 
higher when retained messages are smaller in size, since more of them can then fit in the retention buffer. 

Attention: If you set the receiver configuration option ordered_delivery to 1, the receiver must deliver 
messages to your application in sequence number order. The receiver holds out-of-order messages in an 
ordered list cache until messages arrive to fill the sequence number gaps. If an out-of-order message arrives 
with a sequence number that creates a message gap greater than the value of 
retransmit_message_caching_proximity, the receiver creates a burst loss event and terminates the Late 
Join recovery operation. You can increase the value of the proximity option and restart the receiver, but a 

Using Late Join       55



burst loss is a significant event and you should investigate your network and message system components 
for failures.

Late Join With UMP
Late Join can be implemented in conjunction with UMP's persistent store feature, however in this 
configuration, it functions somewhat differently. After a late-Join-enabled receiver has been created, resolved 
a topic, and become registered with a store, it may then request older messages. The store unicasts the 
retransmission messages. If the store does not have these messages, it requests them of the source 
(assuming option retransmission-request-forwarding is enabled), thus initiating Late Join.

Late Join Options Summary
Following is a summary of Late join configuration options. Please refer to UM Configuration Guide for full 
descriptions of these options.

scope (object) option

  source   late_join 

  source   retransmit_retention_age_threshold 

  source   retransmit_retention_size_limit 

  source   retransmit_retention_size_threshold 

  receiver   use_late_join 

  receiver   
retransmit_initial_sequence_number_req
uest 

  receiver   retransmit_message_caching_proximity 

  receiver   retransmit_request_message_timeout 

  receiver   retransmit_request_interval 

  receiver   retransmit_request_maximum 

  receiver   retransmit_request_outstanding_maximum 

Using Default Late Join Options
To implement Late Join with default options, set the Late Join configuration options to activate the feature on 
both a source and receiver in the following manner.

1. Create a configuration file with source and receiver Late Join activation options set to 1. For example, 
file cfg1.cfg containing the two lines:

     source late_join 1
     receiver use_late_join 1
     

56       Chapter 5: UMS Features



2. Run an application that starts a Late-Join-enabled source. For example:

     lbmsrc -c cfg1.cfg -P 1000 topicName
     

3. Wait a few seconds, then run an application that starts a Late-Join-enabled receiver. For example:

     lbmrcv -c cfg1.cfg -v topicName
     

The output for each should closely resemble the following.

LBMSRC

     $ lbmsrc -c cfg1.cfg -P 1000 topicName
     LOG Level 5: NOTICE: Source "topicName" has no retention settings (1 message 
retained max)
     Sending 10000000 messages of size 25 bytes to topic [topicName]
     Receiver connect [TCP:10.29.3.77:34200]
     

LBMRCV

     $ lbmrcv -c cfg1.cfg -v topicName
     Immediate messaging target: TCP:10.29.3.77:4391
     [topicName][TCP:10.29.3.76:4371][2]-RX-, 25 bytes
     1.001 secs. 0.0009988 Kmsgs/sec. 0.1998 Kbps
     [topicName][TCP:10.29.3.76:4371][3], 25 bytes
     1.002 secs. 0.0009982 Kmsgs/sec. 0.1996 Kbps
     [topicName][TCP:10.29.3.76:4371][4], 25 bytes
     1.003 secs. 0.0009972 Kmsgs/sec. 0.1994 Kbps
     [topicName][TCP:10.29.3.76:4371][5], 25 bytes
     1.003 secs. 0.0009972 Kmsgs/sec. 0.1994 Kbps
     

Note that the source only retained 1 Late Join message (due to default retention settings) and that this 
message appears as a retransmit (-RX-). Also note that it is possible to sometimes receive 2 RX messages in 
this scenario (see “Retransmitting Only Recent Messages” on page 58.)

Specifying a Range of Messages to Retransmit
To receive more than one or two Late Join messages, increase the source's 
retransmit_retention_size_threshold from its default value of 0. Once the buffer exceeds this threshold, 
the source allows the next new message entering the retention buffer to bump out the oldest one. Note that 
this threshold's units are bytes (which includes a small overhead per message).

While the retention threshold endeavors to keep the buffer size close to its value, it does not set hard upper 
limit for retention buffer size. For this, the retransmit_retention_size_limit configuration option (also in 
bytes) sets this boundary.

Follow the steps below to demonstrate how a source can retain about 50MB of messages, but no more than 
60MB:

1. Create a second configuration file (cfg2.cfg) with the following options:

     source late_join 1
     source retransmit_retention_size_threshold 50000000
     source retransmit_retention_size_limit 60000000
     receiver use_late_join 1

2. Run lbmsrc -c cfg2.cfg -P 1000 topicName.

3. Wait a few seconds and run lbmrcv -c cfg2.cfg -v topicName.

Using Late Join       57



The output for each should closely resemble the following.

LBMSRC

     $ lbmsrc -c cfg2.cfg -P 1000 topicName
     Sending 10000000 messages of size 25 bytes to topic [topicName]
     Receiver connect [TCP:10.29.3.76:34444]
     

LBMRCV

     $ lbmrcv -c cfg2.cfg -v topicName
     Immediate messaging target: TCP:10.29.3.76:4391
     [topicName][TCP:10.29.3.77:4371][0]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][1]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][2]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][3]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][4]-RX-, 25 bytes
     1.002 secs. 0.004991 Kmsgs/sec. 0.9981 Kbps
     [topicName][TCP:10.29.3.77:4371][5], 25 bytes
     1.002 secs. 0.0009984 Kmsgs/sec. 0.1997 Kbps
     [topicName][TCP:10.29.3.77:4371][6], 25 bytes
     1.002 secs. 0.0009983 Kmsgs/sec. 0.1997 Kbps
     [topicName][TCP:10.29.3.77:4371][7], 25 bytes
     

Note that lbmrcv received live messages with sequence numbers 7, 6, and 5, and RX messages going from 4 
all the way back to Sequence Number 0.

Retransmitting Only Recent Messages
Thus far we have worked with only source late join settings, but suppose that you want to receive only the 
last 10 messages. To do this, configure the receiver option retransmit_request_maximum to set how many 
messages to request backwards from the latest message.

Follow the steps below to set this option to 10.

1. Add the following line to cfg2.cfg and rename it cfg3.cfg.

receiver retransmit_request_maximum 10
2. Run lbmsrc -c cfg3.cfg -P 1000 topicName.

3. Wait a few seconds and run lbmrcv -c cfg3.cfg -v topicName.

The output for each should closely resemble the following.

LBMSRC

     $ lbmsrc -c cfg3.cfg -P 1000 topicName
     Sending 10000000 messages of size 25 bytes to topic [topicName]
     Receiver connect [TCP:10.29.3.76:34448]
     

LBMRCV

     $ lbmrcv -c cfg3.cfg -v topicName
     Immediate messaging target: TCP:10.29.3.76:4391
     [topicName][TCP:10.29.3.77:4371][13]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][14]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][15]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][16]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][17]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][18]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][19]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][20]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][21]-RX-, 25 bytes

58       Chapter 5: UMS Features



     [topicName][TCP:10.29.3.77:4371][22]-RX-, 25 bytes
     [topicName][TCP:10.29.3.77:4371][23]-RX-, 25 bytes
     1.002 secs. 0.01097 Kmsgs/sec. 2.195 Kbps
     [topicName][TCP:10.29.3.77:4371][24], 25 bytes
     1.002 secs. 0.0009984 Kmsgs/sec. 0.1997 Kbps
     [topicName][TCP:10.29.3.77:4371][25], 25 bytes
     1.002 secs. 0.0009984 Kmsgs/sec. 0.1997 Kbps
     [topicName][TCP:10.29.3.77:4371][26], 25 bytes
     

Note that 11, not 10, retransmits were actually received. This can happen because network and timing 
circumstances may have one RX already in transit while the specific RX amount is being processed. (Hence, 
it is not possible to guarantee one and only one RX message for every possible Late Join recovery.)

Configuring Late Join for Large Numbers of Messages
Suppose you have a receiver that comes up at midday and must gracefully catch up on the large number of 
messages it has missed. The following discussion explains the relevant Late Join options and how to use 
them.

retransmit_request_outstanding_maximum (receiver)
When a receiver comes up and begins requesting Late Join messages, it does not simply request messages 
starting at Sequence Number 0 through 1000000. Rather, it requests the messages a little at a time, 
depending upon how option retransmit_request_outstanding_maximum is set. set. For example, when set 
to the default of 200, the receiver sends requests the first 200 messages (Sequence Number 0 - 199). Upon 
receiving Sequence Number 0, it then requests the next message (200), and so on, limiting the number of 
outstanding unfulfilled requests to 200.

Note that in some environments, the default of 200 messages may be too high and overwhelm receivers with 
RXs, which can cause loss in a live LBT-RM stream. However, in other situations higher values can increase 
the rate of RXs received.

retransmit_message_caching_proximity (receiver)
When sequence number delivery order is used, long recoveries of active sources can create receiver memory 
cache problems due to the processing of both new and retransmitted messages. This option provides a 
method to control caching and cache size during recovery.

It does this by comparing the option value (default 2147483647) to the difference between the newest (live) 
received sequence number and the latest received RX sequence number. If the difference is less than the 
option's value, the receiver caches incoming live new messages. Otherwise, new messages are dropped and 
not cached (with the assumption that they can be requested later as retransmissions).

For example, as shown in the figure below, a receiver may be receiving both live streaming messages (latest, 
#200) and catch-up retransmissions (latest, #100). The difference here is 100. If 
retransmit_message_caching_proximity is 75, the receiver caches the live messages and will deliver them 
when it is all caught up with the retransmissions. However, if this option is 150, streamed messages are 
dropped and later picked up again as a retransmission.

Using Late Join       59



The default value of this option is high enough to still encourage caching most of the time, and should be 
optimal for most receivers.

If your source streams faster than it retransmits, caching is beneficial, as it ensures new data is received only 
once, thus reducing recovery time. If the source retransmits faster than it streams, which is the optimal 
condition, you can lower the value of this option to use less memory during recovery, with little performance 
impact.

Off-Transport Recovery (OTR)
Off-Transport Recovery (OTR) is a lost-message-recovery feature that provides a level of hedging against the 
possibility of brief and incidental unrecoverable loss at the transport level or from a UM Router. This section 
describes the OTR feature.

OTR Overview
When a transport cannot recover lost messages, OTR engages and looks to the source for message 
recovery. It does this by accessing the source's retention buffer (used also by the Late Join feature) to re-
request messages that no longer exist in a transport's transmission window or other places such as a UMP 
store or redundant source.

OTR functions in a manner very similar to that of Late Join, but differs mainly in that it activates in message 
loss situations rather than following the creation of a receiver, and shares only the source late_join option 
setting.

Upon detecting loss, a receiver initiates OTR by sending repeated, spaced, OTR requests to the source, until 
it recovers lost messages or a timeout period elapses.

OTR operates independently from transport-level recovery mechanisms such as NAKs for LBT-RU or LBT-
RM. When you enable OTR for a receiver with use_otr, the otr_request_initial_delay period starts as 
soon as the delivery controller detects a sequence gap. If the gap is not resolved by the end of the delay 
interval, OTR recovery initiates. OTR recovery can occur before, during or after transport-level recovery 
attempts.

When a receiver initiates OTR, the intervals between OTR requests increases twofold after each request, 
until the maximum interval is reached (assuming the receiver is still waiting to receive the retransmission). 
You use configuration options otr_request_minimum_interval and otr_request_maximum_interval to set 
the initial (minimum) and maximum intervals, respectively.

The source retransmits lost messages to the recovered receiver via unicast.

60       Chapter 5: UMS Features



OTR with Sequence Number Ordered Delivery
When sequence number delivery order is used and a gap of missing messages occurs, a receiver buffers the 
new incoming messages while it attempts to recover the earlier missing ones. Long recoveries of actively 
streaming sources can cause excessive receiver cache memory growth due to the processing of both new 
and retransmitted messages. You can control caching and cache size during recovery with options 
otr_message_caching_threshold and retransmit_message_caching_proximity.

The option otr_message_caching_threshold sets the maximum number of messages a receiver can buffer. 
When the number of cached messages hits this threshold, new streamed messages are dropped and not 
cached, with the assumption that they can be requested later as retransmissions.

The retransmit_message_caching_proximity, which is also used by Late Join (see 
“retransmit_message_caching_proximity (receiver)” on page 59), turns off this caching if there are too many 
messages to buffer between the last delivered message and the currently streaming messages.

Both of these option thresholds must be satisfied before caching resumes.

OTR With UMP
You can implement OTR in conjunction with UMP's persistent store feature, however in this configuration, it 
functions somewhat differently. If an OTR-enabled receiver registered with a store detects a sequence gap in 
the live stream and that gap is not resolved by other means within the next otr_request_initial_delay 
period, the receiver requests those messages from the store(s). If the store does not have some of the 
requested messages, the receiver requests them from the source. Regardless of whether the messages are 
recovered from a store or from the source, OTR delivers all recovered messages with the LBM_MSG_OTR 
flag, unlike Late Join, which uses the LBM_MSG_RETRANSMIT flag.

OTR Options Summary
The following set of configuration options govern OTR functionality. Please refer to the Ultra Messaging 
Configuration Guide for full descriptions of these options. You can click the individual links below for each 
option's description.

scope (object) option

  source   late_join 

  source   retransmit_retention_age_threshold 

  source   retransmit_retention_size_limit 

  source   retransmit_retention_size_threshold 

  receiver   use_otr 

  receiver   otr_request_message_timeout 

  receiver   otr_request_initial_delay 

  receiver   otr_request_log_alert_cooldown 

  receiver   otr_request_maximum_interval 

Off-Transport Recovery (OTR)       61



scope (object) option

  receiver   otr_request_minimum_interval 

  receiver   otr_request_outstanding_maximum 

  receiver   otr_message_caching_threshold 

  receiver   retransmit_message_caching_proximity 

Request/Response Model
This section discusses the following topics.

• “Request Message” on page 62

• “Response Message” on page 62

• “TCP Management” on page 63

• “Configuration” on page 63

• “Example Applications” on page 63

Request Message
UM provides three ways to send a request message.

• lbm_send_request() to send a request to a topic via a source object. Uses the standard source-based 
transports (TCP, LBT-RM, LBT-RU).

• lbm_multicast_immediate_request() to send a request to a topic as a multicast immediate message. 
See “Multicast Immediate Messaging” on page 79.

• lbm_unicast_immediate_request() to send a request to a topic as a unicast immediate message. See 
“Multicast Immediate Messaging” on page 79.

The request function returns a request object and defines an application callback for responses that allows 
the receiving application to send a response directly to the requesting application via a special TCP 
connection instead of a normal data transport. The requesting application -- not UM -- determines how many 
responses it needs. Therefore, it must delete the request object when it no longer wants to receive responses 
by calling lbm_request_delete(). It discards any responses that arrive after the request object has been 
deleted.

Response Message
An application responds to an UM request message by calling lbm_send_response(). Contained within that 
request message's header is a response object, which serves as a return address to the requester. UM 
passes the response object to lbm_send_response(). Since the response object is part of the message 
header, it is deleted at the same time that the message is deleted. Therefore, if the sending of the response 
cannot be done within the responder's receive callback, the message must be retained and subsequently 
deleted.

62       Chapter 5: UMS Features



TCP Management
UM creates and manages the special TCP connections for responses, maintaining a list of active response 
connections . When an application sends a response, UM scans that list for an active connection to the 
destination. If it doesn't find a connection for the response, it creates a new connection and adds it to the list. 
After the lbm_send_response() function returns, UM schedules the response_tcp_deletion_timeout, 
which defaults to 2 seconds. If a second request comes in from the same application before the timer 
expires, the responding application simply uses the existing connection and restarts the deletion timer.

It is conceivable that a very large response could take more than the response_tcp_deletion_timeout 
default (2 seconds) to send to a slow-running receiver. In this case, UM automatically increases the deletion 
timer as needed to ensure the last message completes.

Configuration
See the UM Configuration Guide for the descriptions of the Request/Response configuration options.

• Request Network Options

• Request Operations Options

• Response Operation Options

Note: If your application is running within an UM context where the configuration option, 
request_tcp_bind_request_port has been set to zero, request port binding has been turned off, which also 
disables the Request/Response feature. 

Example Applications
UM includes two example applications that illustrate Request/Response.

• lbmreq.c - application that sends requests on a given topic (single source) and waits for responses. See 
also the Java example, lbmreq.java, and the .NET example, lbmreq.cs.

• lbmresp.c - application that waits for requests and sends responses back on a given topic (single 
receiver). See also the Java example, lbmresp.java, and the .NET example, lbmresp.cs.

We can demonstrate a series of 5 requests and responses with the following procedure.

1. Run lbmresp -v topicname
2. Run lbmreq -R 5 -v topicname
LBMREQ

Output for lbmreq should resemble the following.

$ lbmreq -R 5 -q topicname
Event queue in use
Using TCP port 4392 for responses
Delaying requests for 1000 milliseconds
Sending request 0
Starting event pump for 5 seconds.
Receiver connect [TCP:10.29.1.78:4958]
Done waiting for responses. 1 responses (25 bytes) received. Deleting request. Sending 
request 1
Starting event pump for 5 seconds.
Done waiting for responses. 1 responses (25 bytes) received. Deleting request. Sending 
request 2
Starting event pump for 5 seconds.
Done waiting for responses. 1 responses (25 bytes) received. Deleting request. Sending 
request 3
Starting event pump for 5 seconds.
Done waiting for responses. 1 responses (25 bytes) received. Deleting request. Sending 

Request/Response Model       63



request 4
Starting event pump for 5 seconds.
Done waiting for responses. 1 responses (25 bytes) received. Deleting request.
Quitting...
        

LBMRESP

Output for lbmresp should resemble the following.

$ lbmresp -v topicname
Request [topicname][TCP:10.29.1.78:14371][0], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
Request [topicname][TCP:10.29.1.78:14371][1], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
Request [topicname][TCP:10.29.1.78:14371][2], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
Request [topicname][TCP:10.29.1.78:14371][3], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
Request [topicname][TCP:10.29.1.78:14371][4], 25 bytes
Sending response. 1 responses of 25 bytes each (25 total bytes).
Done sending responses. Deleting response.
[topicname][TCP:10.29.1.78:14371], End of Transport Session
        

Self Describing Messaging
The UM Self-Describing Messaging (SDM) feature provides an API that simplifies the creation and use of 
messages by your applications. An SDM message contains one or more fields and each field consists of the 
following.

• A name

• A type

• A value

Each named field may appear only once in a message. If multiple fields of the same name and type are 
needed, array fields are available. A field in a nested message may have the same name as a field in the 
outer message.

SDM is particularly helpful for creating messages sent across platforms by simplifying the creation of data 
formats. SDM automatically performs platform-specific data translations, eliminating Endianess conflicts.

Using SDM also simplifies message maintenance because the message format or structure can be 
independent of the source and receiver applications. For example, if your receivers query SDM messages for 
particular fields and ignore the order of the fields within the message, a source can change the field order if 
necessary with no modification of the receivers needed.

Use the following links to access a complete reference of SDM functions, field types and message field 
operations.

• C Application Programmer's Interface — click on the Files tab at the top and select lbmsdm.h.

• Java Application Programmer's Interface — select com.latencybusters.lbm.sdm under Packages.

• .NET Application Programmer's Interface — select the com.latencybusters.lbm.sdm Namespace.

Restriction: The Self-Describing Messaging (SDM) feature is not supported on the OpenVMS® platform.

64       Chapter 5: UMS Features



Pre-Defined Messaging
The UM Pre-Defined Messaging (PDM) feature provides an API similar to the SDM API, but allows you to 
define messages once and then use the definition to create messages that may contain self-describing data. 
Eliminating the need to repeatedly send a message definition increases the speed of PDM over SDM. The 
ability to use arrays created in a different programming language also improves performance.

The PDM library lets you create, serialize, and deserialize messages using pre-defined knowledge about the 
possible fields that may be used. You can create a definition that a) describes the fields to be sent and 
received in a message, b) creates the corresponding message, and c) adds field values to the message. This 
approach offers several performance advantages over SDM, as the definition is known in advance. However, 
the usage pattern is slightly different than the SDM library, where fields are added directly to a message 
without any type of definition.

A PDM message contains one or more fields and each field consists of the following.

• A name

• A type

• A value

Each named field may appear only once in a message. If multiple fields of the same name and type are 
needed, array fields are available. A field in a nested message may have the same name as a field in the 
outer message.

See the C, Java, and .NET Application Programmer's Interfaces for complete references of PDM functions, 
field types and message field operations. The C API also has information and code samples about how to 
create definitions and messages, set field values in a message, set the value of array fields in a message, 
serialize, deserialize and dispose of messages, and fetch values from a message. See the following API 
documentation:

• C Application Programmer's Interface — click on the Files tab at the top and select lbmpdm.h.

• Java Application Programmer's Interface — select com.latencybusters.lbm.pdm under Packages.

• .NET Application Programmer's Interface — select the com.latencybusters.lbm.pdm Namespace.

Restriction: The Pre-Defined Messaging (PDM) feature is not supported on the OpenVMS® platform.

Typical PDM Usage Patterns
The typical PDM usage patterns can usually be broken down into two categories: sources (which need to 
serialize a message for sending) and receivers (which need to deserialize a message to extract field values). 
However, for optimum performance for both sources and receivers, first set up the definition and a single 
instance of the message only once during a setup or initialization phase, as in the following example 
workflow:

1. Create a definition and set its id and version.

2. Add field information to the definition to describe the types of fields to be in the message.

3. Create a single instance of a message based on the definition.

Set up a source to do the following:

1. Add field values to the message instance.

2. Serialize the message so that it can be sent.

Likewise, set up a receiver to do the following:

1. Deserialize the received bytes into the message instance.

Pre-Defined Messaging       65



2. Extract the field values from the message.

Getting Started
PDM APIs are provided in C, Java, and C#, however, the examples in this section are Java based.

PDM Code Example, Source
Translating the Typical PDM Usage Patterns to Java for a source produces the following:

private PDMDefinition defn;
private PDMMessage msg;
private PDMFieldInfo fldInfo100;
private PDMFieldInfo fldInfo101;
private PDMFieldInfo fldInfo102;

public void setupPDM() {
    //Create the definition with 3 fields and using int field names
    defn = new PDMDefinition(3, true);
    
    //Set the definition id and version
    defn.setId(1001);
    defn.setMsgVersMajor((byte)1);
    defn.setMsgVersMinor((byte)0);
    
    //Create information for a boolean, int32, and float fields (all required)
    fldInfo100 = defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
    fldInfo101 = defn.addFieldInfo(101, PDMFieldType.INT32, true);
    fldInfo102 = defn.addFieldInfo(102, PDMFieldType.FLOAT, true);
    
    //Finalize the definition and create the message
    defn.finalizeDef();
    msg = new PDMMessage(defn);
}

public void sourceUsePDM() {
    //Call the function to setup the definition and message
    setupPDM();
    
    //Example values for the message
    boolean fld100Val = true;
    int fld101Val = 7;
    float fld102Val = 3.14F;
    
    //Set each field value in the message
    msg.setFieldValue(fldInfo100, fld100Val);
    msg.setFieldValue(fldInfo101, fld101Val);
    msg.setFieldValue(fldInfo102, fld102Val);
    
    //Serialize the message to bytes
    byte[] buffer = msg.toBytes();
}
    

PDM Code Example, Receiver
Translating the Typical PDM Usage Patterns to Java for a receiver produces the following:

private PDMDefinition defn;
private PDMMessage msg;
private PDMFieldInfo fldInfo100;
private PDMFieldInfo fldInfo101;
private PDMFieldInfo fldInfo102;

public void setupPDM() {

66       Chapter 5: UMS Features



    //Create the definition with 3 fields and using int field names
    defn = new PDMDefinition(3, true);
    
    //Set the definition id and version
    defn.setId(1001);
    defn.setMsgVersMajor((byte)1);
    defn.setMsgVersMinor((byte)0);
    
    //Create information for a boolean, int32, and float field (all required)
    fldInfo100 = defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
    fldInfo101 = defn.addFieldInfo(101, PDMFieldType.INT32, true);
    fldInfo102 = defn.addFieldInfo(102, PDMFieldType.FLOAT, true);
    
    //Finalize the definition and create the message
    defn.finalizeDef();
    msg = new PDMMessage(defn);
}

public void receiverUsePDM(byte[] buffer) {
    //Call the function to setup the definition and message
    setupPDM();
    
    //Values to be retrieved from the message
    boolean fld100Val;
    int fld101Val;
    float fld102Val;
    
    //Deserialize the bytes into a message
    msg.parse(buffer);
    
    //Get each field value from the message
    fld100Val = msg.getFieldValueAsBoolean(fldInfo100);
    fld101Val = msg.getFieldValueAsInt32(fldInfo101);
    fld102Val = msg.getFieldValueAsFloat(fldInfo102);
}
    

PDM Code Example Notes
In the examples above, the setupPDM() function is called once to set up the PDM definition and message. It 
is identical in both the source and receiver cases and simply sets up a definition that contains three required 
fields with integer names (100, 101, 102). Once finalized, it can create a message that leverages its pre-
defined knowledge about these three required fields. The source example adds the three sample field values 
(a boolean, int32, and float) to the message, which is then serialized to a byte array. In the receiver example, 
the message parses a byte array into the message and then extracts the three field values.

Using the PDM API
The following code snippets expand upon the previous examples to demonstrate the usage of additional PDM 
functionality (but use "..." to eliminate redundant code).

Reusing the Message Object
Although the examples use a single message object (which provides performance benefits due to reduced 
message creation and garbage collection), it is not explicitly required to reuse a single instance. However, 
multiple threads should not access a single message instance.

Number of Fields
Although the number of fields above is initially set to 3 in the PDMDefinition constructor, if you add more 
fields to the definition with the addFieldInfo method, the definition grows to accommodate each field. Once 

Pre-Defined Messaging       67



the definition is finalized, you cannot add additional field information because the definition is now locked and 
ready for use in a message.

String Field Names
The examples above use integer field names in the setupPDM() function when creating the definition. You 
can also use string field names when setting up the definition. However, you still must use a FieldInfo object 
to set or get a field value from a message, regardless of field name type. Notice that false is passed to the 
PDMDefinition constructor to indicate string field names should be used. Also, the overloaded addFieldInfo 
function uses string field names (.Field100.) instead of the integer field names.

...
public void setupPDM() {
    //Create the definition with 3 fields and using string field names
    defn = new PDMDefinition(3, false);
    ...
    //Create information for a boolean, int32, and float field (all required)
fldInfo100 = defn.addFieldInfo("Field100", PDMFieldType.BOOLEAN, true);
    fldInfo101 = defn.addFieldInfo("Field101", PDMFieldType.INT32, true);
    fldInfo102 = defn.addFieldInfo("Field102", PDMFieldType.FLOAT, true);
    ...
}
...
    

Retrieving FieldInfo from the Definition
At times, it may be easier to lookup the FieldInfo from the definition using the integer name (or string name if 
used). This eliminates the need to store the reference to the FieldInfo when getting or setting a field value in 
a message, but it does incur a performance penalty due to the lookup in the definition to retrieve the 
FieldInfo. Notice that there are no longer FieldInfo objects being used when calling addFieldInfo and a 
lookup is being done for each call to msg.getFieldValueAs* to retrieve the FieldInfo by integer name.

private PDMDefinition defn;
private PDMMessage msg;

public void setupPDM() {
    ...
    //Create information for a boolean, int32, and float field (all required)
    defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
    defn.addFieldInfo(101, PDMFieldType.INT32, true);
    defn.addFieldInfo(102, PDMFieldType.FLOAT, true);
    ...
}

public void receiverUsePDM(byte[] buffer) {
    ...    
    //Get each field value from the message
    fld100Val = msg.getFieldValueAsBoolean(defn.getFieldInfo(100));
    fld101Val = msg.getFieldValueAsInt32(defn.getFieldInfo(101));
    fld102Val = msg.getFieldValueAsFloat(defn.getFieldInfo(102));
}

Required and Optional Fields
When adding field information to a definition, you can indicate that the field is optional and may not be set for 
every message that uses the definition. Do this by passing false as the third parameter to the addFieldInfo 
function. Using required fields (fixed-required fields specifically) produces the best performance when 
serializing and deserializing messages, but causes an exception if all required fields are not set before 
serializing the message. Optional fields allow the concept of sending "null" as a value for a field by simply not 
setting that field value on the source side before serializing the message. However, after parsing a message, 

68       Chapter 5: UMS Features



a receiver should check the isFieldValueSet function for an optional field before attempting to read the value 
from the field to avoid the exception mentioned above.

...
private PDMFieldInfo fldInfo103;
...
public void setupPDM() {
    ...
//Create information for a boolean, int32, and float field (all required)
    // as well as an optional int8 field
fldInfo100 = defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
    fldInfo101 = defn.addFieldInfo(101, PDMFieldType.INT32, true);
    fldInfo102 = defn.addFieldInfo(102, PDMFieldType.FLOAT, true);
    fldInfo103 = defn.addFieldInfo(103, PDMFieldType.INT8, false);
    ...
}

public void sourceUsePDM() {
    ...
    //Set each field value in the message
    // except do not set the optional field
    msg.setFieldValue(fldInfo100, fld100Val);
    msg.setFieldValue(fldInfo101, fld101Val);
    msg.setFieldValue(fldInfo102, fld102Val);
...
}
    

...
private PDMFieldInfo fldInfo103;
...
public void setupPDM() {
    ...
//Create information for a boolean, int32, and float field (all required)
    // as well as an optional int8 field
    fldInfo103 = defn.addFieldInfo(103, PDMFieldType.INT8, false);
    ...
}
public void receiverUsePDM(byte[] buffer) {
    ...
    byte fld103Val;
    ...
    
    if(msg.isFieldValueSet(fldInfo103)) {
        fld103Val = msg.getFieldValueAsInt8(fldInfo103);
    }
}
    

Fixed String and Fixed Unicode Field Types
A variable length string typically does not have the performance optimizations of fixed-required fields. 
However, by indicating "required", as well as the field type FIX_STRING or FIX_UNICODE and specifying an 
integer number of fixed characters, PDM sets aside an appropriate fixed amount of space in the message for 
that field and treats it as an optimized fixed-required field. Strings of a smaller length can still be set as the 
value for the field, but the message allocates the specified fixed number of bytes for the string. Specify 
unicode strings in the same manner (with FIX_UNICODE as the type) and in "UTF-8" format.

...
private PDMFieldInfo fldInfo104;
...
public void setupPDM() {
    ...
    fldInfo104 = defn.addFieldInfo(104, PDMFieldType.FIX_STRING, 12, true);
    ...
}

Pre-Defined Messaging       69



public void sourceUsePDM() {
    ...
    String fld104Val = "Hello World!";
    
    //Set each field value in the message
    // except do not set the optional field
    msg.setFieldValue(fldInfo100, fld100Val);
    msg.setFieldValue(fldInfo101, fld101Val);
    msg.setFieldValue(fldInfo102, fld102Val);
    msg.setFieldValue(fldInfo104, fld104Val);
...
}
    

...
private PDMFieldInfo fldInfo104;
...
public void setupPDM() {
    ...
    fldInfo104 = defn.addFieldInfo(104, PDMFieldType.FIX_STRING, 12, true);
    ...
}
public void receiverUsePDM(byte[] buffer) {
    ...
    String fld104Val;
    ...
        
    fld104Val = msg.getFieldValueAsString(fldInfo104);
}
    

Variable Field Types
The field types of STRING, UNICODE, BLOB, and MESSAGE are all variable length field types. They do not 
require a length to be specified when adding field info to the definition. You can use a BLOB field to store an 
arbitrary binary objects (in Java as an array of bytes) and a MESSAGE field to store a PDMMessage object, 
which enables "nesting" PDMMessages inside other PDMMessages. Creating and using a variable length 
string field is nearly identical to the previous fixed string example.

...
private PDMFieldInfo fldInfo105;
...
public void setupPDM() {
    ...
    fldInfo105 = defn.addFieldInfo(105, PDMFieldType.STRING, true);
    ...
}

public void sourceUsePDM() {
    ...
    String fld105Val = "variable length value";
    ...
    msg.setFieldValue(fldInfo105, fld105Val);
...
}
    

...
private PDMFieldInfo fldInfo105;
...
public void setupPDM() {
    ...
    fldInfo105 = defn.addFieldInfo(105, PDMFieldType.STRING, true);
    ...
}

70       Chapter 5: UMS Features



public void receiverUsePDM(byte[] buffer) {
    ...
    String fld105Val;
    ...
        
    fld105Val = msg.getFieldValueAsString(fldInfo105);
}
    

Retrieve the BLOB field values with the getFieldValueAsBlob function, and the MESSAGE field values with 
the getFieldValueAsMessage function.

Array Field Types
For each of the scalar field types (fixed and variable length), a corresponding array field type uses the 
convention *_ARR for the type name (ex: BOOLEAN_ARR, INT32_ARR, STRING_ARR, etc). This lets you 
set and get Java values such as an int[] or string[] directly into a single field. In addition, all of the array field 
types can specify a fixed number of elements for the size of the array when they are defined, or if not 
specified, behave as variable size arrays. Do this by passing an extra parameter to the addFieldInfo function 
of the definition.

To be treated as a fixed-required field, an array type field must be required as well as be specified as a fixed 
size array of fixed length elements. For instance, a required BOOLEAN_ARR field defined with a size of 3 
would be treated as a fixed-required field. Also, a required FIX_STRING_ARR field defined with a size of 5 
and fixed string length of 7 would be treated as a fixed-required field. However, neither a STRING_ARR field 
nor a BLOB_ARR field are treated as a fixed length field even if the size of the array is specified, since each 
element of the array can be variable in length. In the example below, field 106 and field 108 are both treated 
as fixed-required fields, but field 107 is not because it is a variable size array field type.

...
private PDMFieldInfo fldInfo106;
private PDMFieldInfo fldInfo107;
private PDMFieldInfo fldInfo108;
...
public void setupPDM() {
    ...    
    //Create information for a boolean, int32, and float field (all required)
    // as well as an optional int8 field
    ...
    //A required, fixed size array of 3 boolean elements
    fldInfo106 = defn.addFieldInfo(106, PDMFieldType.BOOLEAN_ARR, true, 3);
    //An optional, variable size array of int32 elements
    fldInfo107 = defn.addFieldInfo(107, PDMFieldType.INT32_ARR, false);
    //A required, fixed size array of 2 element which are each 5 character strings
    fldInfo108 = defn.addFieldInfo(108, PDMFieldType.FIX_STRING_ARR, 5, true, 2);
    ...
}

public void sourceUsePDM() {
...
    
    //Example values for the message
    ...
    boolean fld106Val[] = {true, false, true};
    int fld107Val[] = {1, 2, 3, 4, 5};
    String fld108Val[] = {"aaaaa", "bbbbb"};
    
    //Set each field value in the message
    ...
    msg.setFieldValue(fldInfo106, fld106Val);
    msg.setFieldValue(fldInfo107, fld107Val);
    msg.setFieldValue(fldInfo108, fld108Val);
    
    ...

Pre-Defined Messaging       71



}
    

...
private PDMFieldInfo fldInfo106;
private PDMFieldInfo fldInfo107;
private PDMFieldInfo fldInfo108;
...
public void setupPDM() {
    ...    
    //Create information for a boolean, int32, and float field (all required)
    // as well as an optional int8 field
    ...
    //A required, fixed size array of 3 boolean elements
    fldInfo106 = defn.addFieldInfo(106, PDMFieldType.BOOLEAN_ARR, true, 3);
    //An optional, variable size array of int32 elements
    fldInfo107 = defn.addFieldInfo(107, PDMFieldType.INT32_ARR, false);
    //A required, fixed size array of 2 element which are each 5 character strings
    fldInfo108 = defn.addFieldInfo(108, PDMFieldType.FIX_STRING_ARR, 5, true, 2);
    ...
}

public void receiverUsePDM(byte[] buffer) {
    ...
    
    //Values to be retrieved from the message
    ...
    boolean fld106Val[];
    int fld107Val[];
    String fld108Val[];
    
    //Deserialize the bytes into a message
    msg.parse(buffer);
    
    //Get each field value from the message
    ...
    fld106Val = msg.getFieldValueAsBooleanArray(fldInfo106);
    if(msg.isFieldValueSet(fldInfo107)) {
        fld107Val = msg.getFieldValueAsInt32Array(fldInfo107);
    }
    fld108Val = msg.getFieldValueAsStringArray(fldInfo108);
    
}
    

Definition Included In Message
Optionally, a PDM message can also include the definition when it is serialized to bytes. This enables 
receivers to parse a PDM message without having pre-defined knowledge of the message, although including 
the definition with the message affects message size and performance of message deserialization. Notice 
that the setIncludeDefinition function is called with an argument of true for a source that serializes the 
definition as part of the message.

private PDMDefinition defn;
private PDMMessage msg;

public void setupPDM() {
    //Create the definition with 3 fields and using int field names
    defn = new PDMDefinition(3, true);
        
    ...

    //Finalize the definition and create the message
    defn.finalizeDef();
    msg = new PDMMessage(defn);

//Set the flag to indicate that the definition should also be serialized

72       Chapter 5: UMS Features



    msg.setIncludeDefinition(true);
}

...
    

For a receiver, the setupPDM function does not need to set any flags for the message but rather should 
define a message without a definition, since we assume the source provides the definition. If a definition is 
set for a message, it will attempt to use that definition instead of the definition on the incoming message 
(unless the ids are different).

private PDMDefinition defn;
private PDMMessage msg;

public void setupPDM() {
    //Don.t define a definition

    //Create a message without a definition since the incoming message will have it

    msg = new PDMMessage();
}

...
    

The PDM Field Iterator
You can use the PDM Field Iterator to check all defined message fields to see if set, or to extract their values. 
You can extract a field value as an Object using this method, but due to the casting involved, we recommend 
you use the type specific get method to extract the exact value. Notice the use of field.isValueSet to check 
to see if the field value is set and the type specific get methods such as getBooleanValue and 
getFloatValue.

...

public void setupPDM() {
    //Create the definition with 3 fields and using int field names
    defn = new PDMDefinition(3, true);
    
    //Set the definition id and version
    defn.setId(1001);
    defn.setMsgVersMajor((byte)1);
    defn.setMsgVersMinor((byte)0);
    
    //Create information for a boolean, int32, and float field (all required)
    // as well as an optional int8 field
    fldInfo100 = defn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
    fldInfo101 = defn.addFieldInfo(101, PDMFieldType.INT32, true);
    fldInfo102 = defn.addFieldInfo(102, PDMFieldType.FLOAT, true);
    fldInfo103 = defn.addFieldInfo(103, PDMFieldType.INT8, false);
    fldInfo104 = defn.addFieldInfo(104, PDMFieldType.FIX_STRING, 12, true);
    fldInfo105 = defn.addFieldInfo(105, PDMFieldType.STRING, true);
    //A required, fixed size array of 3 boolean elements
    fldInfo106 = defn.addFieldInfo(106, PDMFieldType.BOOLEAN_ARR, true, 3);
    //An optional, variable size array of int32 elements
    fldInfo107 = defn.addFieldInfo(107, PDMFieldType.INT32_ARR, false);
    //A required, fixed size array of 2 element which are each 5 character strings
    fldInfo108 = defn.addFieldInfo(108, PDMFieldType.FIX_STRING_ARR, 5, true, 2);
    
    //Finalize the definition and create the message
    defn.finalizeDef();
    msg = new PDMMessage(defn);
}

public void receiveAndIterateMessage(byte[] buffer) {
    msg.parse(buffer);

Pre-Defined Messaging       73



    PDMFieldIterator iterator = msg.createFieldIterator();
    PDMField field = null;
    while(iterator.hasNext()) {
        field = iterator.next();
        System.out.println("Field set? " +field.isValueSet());
        switch(field.getIntName()) {
            case 100:
                boolean val100 = field.getBooleanValue();
                System.out.println(
                        "Field 100's value is: " + val100);
                break;
            case 101:
                int val101 = field.getInt32Value();
                System.out.println(
                        "Field 101's value is: " + val101);
                break;
            case 102:
                float val102 = field.getFloatValue(); 
                System.out.println(
                        "Field 102's value is: " + val102);
                break;
            default:
                //Casting to object is possible but not recommended
                Object value = field.getValue();
                int name = field.getIntName();
                System.out.println(
                        "Field " + name + "'s value is: " + value);
        }
    }
}
    

Sample Output (106, 107, 108 are array objects as expected):

Field set? true
Field 100's value is: true
Field set? true
Field 101's value is: 7
Field set? true
Field 102's value is: 3.14
Field set? false
Field 103's value is: null
Field set? true
Field 104's value is: Hello World!
Field set? true
Field 105's value is: Variable
Field set? true
Field 106's value is: [Z@527736bd
Field set? true
Field 107's value is: [I@10aadc97
Field set? true
Field 108's value is: [Ljava.lang.String;@4178460d
    

Using the Definition Cache
The PDM Definition Cache assists with storing and looking up definitions by their id and version. In some 
scenarios, it may not be desirable to maintain the references to the message and the definition from a setup 
phase by the application. A source could optionally create the definition during the setup phase and store it in 
the definition cache. At a later point in time, it could retrieve the definition from the cache and use it to create 
the message without needing to maintain any references to the objects.

public void createAndStoreDefinition() {
    PDMDefinition myDefn = new PDMDefinition(3, true);
    //Set the definition id and version
    myDefn.setId(2001);
    myDefn.setMsgVersMajor((byte)1);

74       Chapter 5: UMS Features



    myDefn.setMsgVersMinor((byte)0);
    
    //Create information for a boolean, int32, and float field (all required)
    myDefn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
    myDefn.addFieldInfo(101, PDMFieldType.INT32, true);
    myDefn.addFieldInfo(102, PDMFieldType.FLOAT, true);

    myDefn.finalizeDef();
    
    PDMDefinitionCache.getInstance().put(myDefn);
}

public void createMessageUsingCache() {
    PDMDefinition myFoundDefn = PDMDefinitionCache.getInstance().get(2001, 1, 0);
    if(myFoundDefn != null) {
        PDMMessage myMsg = new PDMMessage(myFoundDefn);
        //Get FieldInfo from defn and then set field values in myMsg
        //...
    }
}
    

A more advanced use of the PDM Definition Cache is by a receiver which may need to receive messages 
with different definitions and the definitions are not being included with the messages. The receiver can 
create the definitions in advance and then set a flag that allows automatic lookup into the definition cache 
when parsing a message (which is not on by default). Before receiving messages, the receiver should do 
something similar to createAndStoreDefinition (shown below) to set up definitions and put them in the 
definition cache. Then the flag to allow automatic lookup should be set as shown below in the call to 
setTryToLoadDefFromCache(true). This allows the PDMMessage to be created without a definition and still 
successfully parse a message by leveraging the definition cache.

public void createAndStoreDefinition() {
    PDMDefinition myDefn = new PDMDefinition(3, true);
    //Set the definition id and version
    myDefn.setId(2001);
    myDefn.setMsgVersMajor((byte)1);
    myDefn.setMsgVersMinor((byte)0);
    
    //Create information for a boolean, int32, and float field (all required)
    myDefn.addFieldInfo(100, PDMFieldType.BOOLEAN, true);
    myDefn.addFieldInfo(101, PDMFieldType.INT32, true);
    myDefn.addFieldInfo(102, PDMFieldType.FLOAT, true);
    
    myDefn.finalizeDef();
    
    PDMDefinitionCache.getInstance().put(myDefn);
    
    //Create and store other definitions
    //...
}

public void receiveKnownMessages(byte[] buffer) {
    PDMMessage myMsg = new PDMMessage();
    //Set the flag that enables messages to try
    // looking up the definition in the cache automatically
    // when parsing a byte buffer
    myMsg.setTryToLoadDefFromCache(true);
    myMsg.parse(buffer);
    
    if(myMsg.getDefinition().getId() == 2001 
            && myMsg.getDefinition().getMsgVersMajor() == 1
            && myMsg.getDefinition().getMsgVersMinor() == 0) {
        
        PDMDefinition myDefn = PDMDefinitionCache.getInstance().get(2001, 1, 0);
        PDMFieldInfo fldInfo100 = myDefn.getFieldInfo(100);
        PDMFieldInfo fldInfo101 = myDefn.getFieldInfo(101);
        PDMFieldInfo fldInfo102 = myDefn.getFieldInfo(102);
        

Pre-Defined Messaging       75



        boolean fld100Val;
        int fld101Val;
        float fld102Val;
        
        //Get each field value from the message
        fld100Val = myMsg.getFieldValueAsBoolean(fldInfo100);
        fld101Val = myMsg.getFieldValueAsInt32(fldInfo101);
        fld102Val = myMsg.getFieldValueAsFloat(fldInfo102);
        
        System.out.println(fld100Val + " " + fld101Val + " " + fld102Val);
    }
}
    

Migrating from SDM
Applications using SDM with a known set of message fields are good candidates for migrating from SDM to 
PDM. With SDM, the source typically adds fields to an SDM message without a definition. But, as shown 
above in the PDM examples, creating/adding a PDM definition before adding field values is fairly 
straightforward.

However, certain applications may be incapable of building a definition in advance due to the ad-hoc nature 
of their messaging needs, in which case a self-describing format like SDM may be preferred.

Simple Migration Example
The following source code shows a basic application that serializes and deserializes three fields using SDM 
and PDM. The setup method in both cases initializes the object instances so they can be reused by the 
source and receiver methods.

The goal of the sourceCreateMessageWith functions is to produce a byte array by setting field values in a 
message object. With SDM, actual Field classes are created, values are set, the Field classes are added to a 
Fields class, and then the Fields class is added to the SDMessage. With PDM, FieldInfo objects are created 
during the setup phase and then used to set specific values in the PDMMessage.

The goal of the receiverParseMessageWith functions is to produce a message object by parsing the byte 
array and then extract the field values from the message. With SDM, the specific field is located and casted 
to the correct field class before getting the field value. With PDM, the appropriate getFieldValueAs function 
is called with the corresponding FieldInfo object created during the setup phase to extract the field value.

public class Migration {
    
    //SDM Variables
    private LBMSDMessage srcSDMMsg;
    private LBMSDMessage rcvSDMMsg;
    
    //PDM Variables
    private PDMDefinition defn;
    private PDMFieldInfo fldInfo100;
    private PDMFieldInfo fldInfo101;
    private PDMFieldInfo fldInfo102;
    private PDMMessage srcPDMMsg;
    private PDMMessage rcvPDMMsg;
    

public static void main(String[] args) {
        Migration app = new Migration();
        System.out.println("Setting up PDM Definition and Message");
        app.setupPDM();
        System.out.println("Setting up SDM Messages");
        app.setupSDM();
        
        byte[] sdmBuffer;

76       Chapter 5: UMS Features



        sdmBuffer = app.sourceCreateMessageWithSDM();
        app.receiverParseMessageWithSDM(sdmBuffer);
        
        byte[] pdmBuffer;
        pdmBuffer = app.sourceCreateMessageWithPDM();
        app.receiverParseMessageWithPDM(pdmBuffer);
        
    }

    public void setupSDM() {
        rcvSDMMsg = new LBMSDMessage();
        srcSDMMsg = new LBMSDMessage();
    }
    
    public void setupPDM() {
        //Create the definition with 3 fields and using int field names
        defn = new PDMDefinition(3, false);
        
        //Set the definition id and version
        defn.setId(1001);
        defn.setMsgVersMajor((byte)1);
        defn.setMsgVersMinor((byte)0);
        
        //Create information for a boolean, int32, and float field (all required)
        // as well as an optional int8 field
        fldInfo100 = defn.addFieldInfo("Field100", PDMFieldType.INT8, true);
        fldInfo101 = defn.addFieldInfo("Field101", PDMFieldType.INT16, true);
        fldInfo102 = defn.addFieldInfo("Field102", PDMFieldType.INT32, true);
        
        //Finalize the definition and create the message
        defn.finalizeDef();
        srcPDMMsg = new PDMMessage(defn);
        rcvPDMMsg = new PDMMessage(defn);
    }
    
    public byte[] sourceCreateMessageWithSDM() {
        byte[] buffer = null;
        
        LBMSDMField fld100 = new LBMSDMFieldInt8("Field100", (byte)0x42);
        LBMSDMField fld101 = new LBMSDMFieldInt16("Field101", (short)0x1ead);
        LBMSDMField fld102 = new LBMSDMFieldInt32("Field102", 12345);
        LBMSDMFields fset = new LBMSDMFields();

        try {
            fset.add(fld100);
            fset.add(fld101);
            fset.add(fld102);
        } catch (LBMSDMException e) {
            System.out.println ( e );
        }
        
        
        srcSDMMsg.set(fset);
        try {
            buffer = srcSDMMsg.data();
        } catch (IndexOutOfBoundsException e) {
            System.out.println ( "SDM Exception occurred during build of message:" );
            System.out.println ( e.toString() );
        } catch (LBMSDMException e) {
            System.out.println ( e.toString() );
        }
        return buffer;
        
    }
    
    public byte[] sourceCreateMessageWithPDM() {
        //Set each field value in the message
        srcPDMMsg.setFieldValue(fldInfo100, (byte)0x42);
        srcPDMMsg.setFieldValue(fldInfo101, (short)0x1ead);
        srcPDMMsg.setFieldValue(fldInfo102, 12345);
        

Pre-Defined Messaging       77



        //Serialize the message to bytes
        byte[] buffer = srcPDMMsg.toBytes();
        return buffer;
    }
    
    public void receiverParseMessageWithSDM(byte[] buffer) {
        //Values to be retrieved from the message
        byte fld100Val;
        short fld101Val;
        int fld102Val;
        
        //Deserialize the bytes into a message
        try {
            rcvSDMMsg.parse(buffer);
        } catch (LBMSDMException e) {
            System.out.println(e.toString());
        }
        
        LBMSDMField fld100 = rcvSDMMsg.locate("Field100");
        LBMSDMField fld101 = rcvSDMMsg.locate("Field101");
        LBMSDMField fld102 = rcvSDMMsg.locate("Field102");
        
        //Get each field value from the message
        fld100Val = ((LBMSDMFieldInt8)fld100).get();
        fld101Val = ((LBMSDMFieldInt16)fld101).get();;
        fld102Val = ((LBMSDMFieldInt32)fld102).get();;
        
        
        System.out.println("SDM Results: Field100=" + fld100Val +
                ", Field101=" + fld101Val +
                ", Field102=" + fld102Val);
        
    }
    
    public void receiverParseMessageWithPDM(byte[] buffer) {        
        //Values to be retrieved from the message
        byte fld100Val;
        short fld101Val;
        int fld102Val;
        
        //Deserialize the bytes into a message
        rcvPDMMsg.parse(buffer);
        
        //Get each field value from the message
        fld100Val = rcvPDMMsg.getFieldValueAsInt8(fldInfo100);
        fld101Val = rcvPDMMsg.getFieldValueAsInt16(fldInfo101);
        fld102Val = rcvPDMMsg.getFieldValueAsInt32(fldInfo102);
        
        
        System.out.println("PDM Results: Field100=" + fld100Val +
                ", Field101=" + fld101Val +
                ", Field102=" + fld102Val);
        
    }
    
}
    

Notice that with sourceCreateMessageWithSDM function, the three fields (name and value) are created and 
added to the fset variable, which is then added to the SDM message. On the other hand, the 
sourceCreateMessageWithPDM function uses the FieldInfo object references to add the field values to the 
message for each of the three fields.

Also notice that the receiverParseMessageWithSDM requires a cast to the specific field class (like 
LBMSDMFieldInt8) once the field has been located. After the cast, calling the get method returns the 
expected value. On the other hand the receiverParseMessageWithPDM uses the FieldInfo object reference 
to directly retrieve the field value using the appropriate getFieldValueAs* method.

78       Chapter 5: UMS Features



SDM Raw Classes
Several SDM classes with Raw in their name could be used as the value when creating an LBMSDMField. 
For example, an LBMSDMRawBlob instance could be created from a byte array and then that the 
LBMSDMRawBlob could be used as the value to a LBMSDMFieldBlob as shown in the following example.

        byte[] blob = new byte[25];
        LBMSDMRawBlob rawSDMBlob = new LBMSDMRawBlob(blob);
        try {
            LBMSDMField fld103 = new LBMSDMFieldBlob("Field103",rawSDMBlob);
        } catch (LBMSDMException e1) {
            System.out.println(e1);
        }
    

The actual field named "Field103" is created in the try block using the rawSDMBlob variable which has been 
created to wrap the blob byte array. This field can be added to a LBMSDMFields object, which then uses it in 
a LBMSDMessage.

In PDM, there are no "Raw" classes that can be created. When setting the value for a field for a message, the 
appropriate variable type should be passed in as the value. For example, setting the field value for a BLOB 
field would mean simply passing the byte array directly in the setValue method as shown in the following 
code snippet since the field is defined as type BLOB.

private PDMFieldInfo fldInfo103;    

public void setupPDM() {
        ...
        fldInfo103 = defn.addFieldInfo("Field103", PDMFieldType.BLOB, true);
        ...
    }
...
        byte[] blob = new byte[25];
        srcPDMMsg.setFieldValue(fldInfo103, blob);
    

The PDM types of DECIMAL, TIMESTAMP, and MESSAGE expect a corresponding instance of 
PDMDecimal, PDMTimestamp, and PDMMessage as the field value when being set in the message so 
those types do require an instantiation instead of using a native Java type. For example, if "Field103" had 
been of type PDMFieldType.DECIMAL, the following code would be used to set the value.

PDMDecimal decimal = new PDMDecimal((long)2, (byte)32);
srcPDMMsg.setFieldValue(fldInfo103, decimal);
    

Multicast Immediate Messaging
As an alternative to the normal, source-based UM messaging model, Multicast Immediate Messaging (MIM) 
offers advantages to short-lived topics and applications that cannot tolerate a delay between source creation 
and the sending of the first message. See the Knowledge Base article, Avoiding or Minimizing Delay Before 
Sending for background on this delay and other head-loss mitigation techniques.

Multicast Immediate Messaging avoids delay by eliminating the topic resolution process. MIM accomplishes 
this by:

1. Configuring transport information into sending and receiving applications.

2. Including topic strings within each message.

Multicast Immediate Messaging       79



MIM is well-suited to applications where a small number of messages are sent to a topic. By eliminating topic 
resolution, MIM also reduces one of the causes of head-loss, defined as the loss of initial messages sent 
over a new transport session. Messages sent before topic resolution is complete will be lost.

MIM is typically not used for normal streaming data because messages are somewhat less efficiently handled 
than source-based messages. Inefficiencies derive from larger message sizes due to the inclusion of the 
topic name, and on the receiving side, the MIM delivery controller hashing of topic names to find receivers, 
which consumes some extra CPU. If you have a high-message-rate stream, you should use a source-based 
method and not MIM. If head-loss is a concern and delay before sending is not feasible, then consider using 
late join (although this replaces head-loss with some head latency).

Note: Multicast Immediate Messaging can benefit from hardware acceleration. See Transport Acceleration 
Options in the UM Configuration Guide for more information. 

Temporary Transport Session
MIM uses the same reliable multicast algorithms as LBT-RM. When a sending application sends a message 
with lbm_multicast_immediate_message(), MIM creates a temporary transport session. Note that no topic-
level source object is created.

MIM automatically deletes the temporary transport session after a period of inactivity defined by 
mim_src_deletion_timeout which defaults to 30 seconds. A subsequent send creates a new transport 
session. Due to the possibility of head-loss in the switch, it is recommended that sending applications use a 
long deletion timeout if they continue to use MIM after significant periods of inactivity.

MIM forces all topics across all sending applications to be concentrated onto a single multicast address to 
which ALL applications listen, even if they aren't interested in any of the topics. Thus, all topic filtering must 
happen in UM.

MIM can also be used to send an UM request message with lbm_multicast_immediate_request(). For 
example, an application can use MIM to request initialization information right when it starts up. MIM sends 
the response directly to the initializing application, avoiding the topic resolution delay inherent in the normal 
source-based lbm_send_request() function.

MIM Notifications
MIM notifications differ in the following ways from normal UM source-based sending.

• When a sending application's MIM transport session times out and is deleted, the receiving applications 
do not receive an EOS notification.

• Applications with a source notification callback are not informed of a MIM sender. Since source 
notification is basically a hook into the topic resolution system, this should not come as a surprise.

• MIM sending supports the non-blocking flag. However, it does not provide an 
LBM_SRC_EVENT_WAKEUP notification when the MIM session becomes writable again.

• MIM sends unrecoverable loss notifications to a context callback, not to a receiver callback. See “Loss 
Handling” on page 81.

Receiving Immediate Messages
MIM does not require any special type of receiver. It uses the topic-based publish/subscribe model so an 
application must still create a receiver for a topic to receive MIM messages.

Note: If needed, an application can send topic-less messages using MIM. A MIM sender passes in a NULL 
string instead of a topic name. The message goes out on the MIM multicast address and is received by all 
other receivers. A receiving application can use lbm_context_rcv_immediate_msgs() to set the callback 
procedure and delivery method for non-topic immediate messages. 

80       Chapter 5: UMS Features



Wildcard Receivers
When an application receives an immediate message, it's topic is hashed to see if there is at least one 
regular (non-wildcard) receiver object listening to the topic. If so, then MIM delivers the message data to the 
list of receivers.

However, if there are no regular receivers for that topic in the receive hash, MIM runs the message topic 
through all existing wildcard patterns and delivers matches to the appropriate wildcard receiver objects 
without creating sub-receivers. The next MIM message received for the same topic will again be run through 
all existing wildcard patterns. This can consume significant CPU resources since it is done on a per-message 
basis.

Loss Handling
The receiving application can set up a context callback to be notified of MIM unrecoverable loss 
(lbm_mim_unrecloss_function_cb). It is not possible to do this notification on a topic basis because the 
receiving UM has no way of knowing which topics were affected by the loss.

MIM Configuration
As of UM 3.1, MIM supports ordered delivery. As of UM 3.3.2, the MIM configuration option, 
mim_ordered_delivery defaults to ordered delivery.

See the UM Configuration Guide for the descriptions of the MIM configuration options.

• Multicast Immediate Messaging Network Options 

• Multicast Immediate Messaging Reliability Options 

• Multicast Immediate Messaging Operation Options 

Note: Setting mim_incoming_address to 0.0.0.0 turns off MIM.

MIM Example Applications
UM includes two example applications that illustrate MIM.

• lbmimsg.c - application that sends immediate messages as fast as it can to a given topic (single source). 
See also the Java example, lbmimsg.java and the .NET example, lbmimsg.cs.

• lbmireq.c - application that sends immediate requests to a given topic (single source) and waits for 
responses.

lbmimsg.c
We can demonstrate the default operation of Immediate Messaging with lbmimsg and lbmrcv.

1. Run lbmrcv -v topicName
2. Run lbmimsg topicName
The lbmrcv output should resemble the following.

Immediate messaging target: TCP:10.29.1.78:14391
1     secs.  0     Kmsgs/sec.  0     Kbps
1     secs.  0     Kmsgs/sec.  0     Kbps
1     secs.  0     Kmsgs/sec.  0     Kbps
[topicName][LBTRM:10.29.1.78:14390:644c8862:224.10.10.21:14401][0], 25 bytes
[topicName][LBTRM:10.29.1.78:14390:644c8862:224.10.10.21:14401][1], 25 bytes
[topicName][LBTRM:10.29.1.78:14390:644c8862:224.10.10.21:14401][2], 25 bytes
[topicName][LBTRM:10.29.1.78:14390:644c8862:224.10.10.21:14401][3], 25 bytes

Multicast Immediate Messaging       81



[topicName][LBTRM:10.29.1.78:14390:644c8862:224.10.10.21:14401][4], 25 bytes
[topicName][LBTRM:10.29.1.78:14390:644c8862:224.10.10.21:14401][5], 25 bytes
[topicName][LBTRM:10.29.1.78:14390:644c8862:224.10.10.21:14401][6], 25 bytes
  

Each line in the lbmrcv output is a message received, showing the topic name, transport type, receiver 
IP:Port, multicast address and message number.

lbmireq.c
Sending an UM request by MIM can be demonstrated with lbmireq and lbmrcv, which shows a single request 
being sent by lbmireq and received by lbmrcv. (lbmrcv sends no response.)

1. Run lbmrcv -v topicName
2. Run lbmireq topicName
lbmrcv

The lbmrcv output should resemble the following.

$ lbmrcv -v topicName
Immediate messaging target: TCP:10.29.1.78:14391
1     secs.  0     Kmsgs/sec.  0     Kbps
1     secs.  0     Kmsgs/sec.  0     Kbps
1     secs.  0     Kmsgs/sec.  0     Kbps
[topicName][LBTRM:10.29.1.78:14390:92100885:224.10.10.21:14401][0], Request
1     secs.  0     Kmsgs/sec.  0     Kbps
1     secs.  0     Kmsgs/sec.  0     Kbps
1     secs.  0     Kmsgs/sec.  0     Kbps
1     secs.  0     Kmsgs/sec.  0     Kbps
1     secs.  0     Kmsgs/sec.  0     Kbps
1     secs.  0     Kmsgs/sec.  0     Kbps
  

lbmireq

The lbmireq output should resemble the following.

$ lbmireq topicName
Using TCP port 4392 for responses
Sending 1 requests of size 25 bytes to target <> topic <topicName>
Sending request 0
Sent request 0. Pausing 5 seconds.
Done waiting for responses. 0 responses (0 bytes) received. Deleting request
Quitting...
Lingering for 5 seconds...
  

Spectrum
UM Spectrum, which refers to a "spectrum of channels", allows a source application to allocate any number 
of channels using lbm_src_channel_create() on which to send (lbm_src_send_ex()) different messages of 
the same topic. A receiving application can subscribe receivers to one or more channels with either 
lbm_rcv_subscribe_channel or lbm_wrcv_subscribe_channel. Since each channel requires a different 
receiver callback, the receiver application can achieve more granular filtering of messages. Moreover, 
messages are received in-order across channels since all messages are part of the same topic stream.

You can accomplish the same level of filtering with a topic space design that creates separate topics for each 
channel, however, UM cannot guarantee the delivery of messages from multiple sources/topics in any 

82       Chapter 5: UMS Features



particular order. Not only can UM Spectrum deliver the messages over many channels in the order they were 
sent by the source, but it also reduces topic resolution traffic since UM advertises only topics, not channels.

See also the C API documentation.

Performance Pluses
The use of separate callbacks for different channels improves filtering and also relieves the source 
application of the task of including filtering information in the message data.

Java and .NET performance also receives a boost because messages not of interest can be discarded before 
they transition to the Java or .NET level.

Configuration Options
Spectrum's default behavior delivers messages on any channels the receiver has subscribed to on the 
callbacks specified when subscribing, and all other messages on the receiver's default callback. This 
behavior can be changed with the following configuration options.

• null_channel_behavior - behavior for messages delivered with no channel information.

• unrecognized_channel_behavior - behavior for messages delivered with channel information but are on 
a channel for which the receiver has not registered interest.

• channel_map_tablesz - controls the size of the table used by a receiver to store channel subscriptions.

Hot Failover
UM Hot Failover (HF) lets you implement sender redundancy in your applications. You can create multiple HF 
senders in different UM contexts, or, for even greater resiliency, on separate machines. There is no hard limit 
to the number of HF sources, and different HF sources can use different transport types.

Hot Failover receivers filter out the duplicate messages and deliver one message to your application. Thus, 
sources can drop a few messages or even fail completely without causing message loss, as long as the HF 
receiver receives each message from at least one source.

Hot Failover       83



The following diagram displays Hot Failover operation.

In the figure above, HF sources send copies of Message X. An HF receiver delivers the first copy of Message 
X it receives to the application, and discards subsequent copies coming from the other sources.

Implementing Hot Failover Sources
You create Hot Failover sources with lbm_hf_src_create(). This returns a source object with internal state 
information that lets it send HF messages. You delete HF sources with the lbm_src_delete() function.

HF sources send HF messages via lbm_hf_src_send_ex() or lbm_hf_src_sendv_ex(). These functions take 
a sequence number, supplied via the exinfo object, that HF receivers use to identify the same message sent 
from different HF sources. The exinfo has an hf_sequence_number, with a flag 
(LBM_SRC_SEND_EX_FLAG_HF_32 or LBM_SRC_SEND_EX_FLAG_HF_64) that identifies whether it's a 32- or 64-bit 
number. Each HF source sends the same message content for a given sequence number, which must be 
coordinated by your application.

If the source needs to restart its sequence number to an earlier value (e.g. start of day; not needed for 
normal wraparound), delete and re-create the source and receiver objects. Without re-creating the objects, 
the receiver sees the smaller sequence number, assumes the data is duplicate, and discards it. In (and only 
in) cases where this cannot be done, use lbm_hf_src_send_rcv_reset().

Note: Your application must synchronize calling lbm_hf_src_send_ex() or lbm_hf_src_sendv_ex() with all 
threads sending on the same source. (One symptom of not doing so is messages appearing at the receiver 
as inside intentional gaps and being erroneously discarded.)

Please be aware that non-HF receivers created for an HF topic receive multiple copies of each message. We 
recommend you establish local conventions regarding the use of HF sources, such as including "HF" in the 
topic name.

For an example source application, see lbmhfsrc in the UM Examples Page.

84       Chapter 5: UMS Features



Implementing Hot Failover Receivers
You create HF receivers with lbm_hf_rcv_create(), and delete them using lbm_hf_rcv_delete() and 
lbm_hf_rcv_delete_ex().

Incoming messages have an hf_sequence_number field containing the sequence number, and a message 
flag (LBM_MSG_FLAG_HF_32 or LBM_MSG_FLAG_HF_64) noting the bit size.

Note: Previous UM versions used sequence_number for HF message identification. This field holds a 32-bit 
value and is still set for backwards compatibility, but if the HF sequence numbers are 64-bit lengths, this non-
HF sequence number is set to 0. Also, you can retrieve the original (non-HF) topic sequence number via 
lbm_msg_retrieve_original_sequence_number() or, in Java and .NET, via LBMMessage.osqn().

For the maximum time period to recover lost messages, the HF receiver uses the minimum of the LBT-RM 
and LBT-RU NAK generation intervals (transport_lbtrm_nak_generation_interval, 
transport_lbtru_nak_generation_interval). Each transport protocol is configured as normal, but the lost 
message recovery timer is the minimum of the two settings.

Some lbm_msg_t objects coming from HF receivers may be flagged as having "passed through" the HF 
receiver. This means that the message has not been ordered with other HF messages. These messages 
have the LBM_MSG_FLAG_HF_PASS_THROUGH flag set. UM flags messages sent from HF sources using 
lbm_src_send() in this manner, as do all non-HF sources. Also, UM flags EOS, no source notification, and 
requests in this manner as well.

For an example receiver application, see lbmhfrcv in the UM Examples Page.

Implementing Hot Failover Wildcard Receivers
To create an HF wildcard receiver, set option hf_receiver to 1, then create a wildcard receiver with 
lbm_wildcard_rcv_create(). This actually creates individual HF receivers on a per-topic basis, so that each 
topic can have its own set of HF sequence numbers. Once the HF wildcard receiver detects that all sources 
for a particular topic are gone it closes the individual topic HF receivers and discards the HF sequence 
information (unlike a standard HF receiver). You can extend or control the delete timeout period of individual 
HF receivers with option resolver_no_source_linger_timeout.

Java and .NET
For information on implement the HF feature in a Java application, go to UM Java API and see the 
documentation for classes LBMHotFailoverReceiver and LBMHotFailoverSource.

For information on implement the HF feature in a .NET application, go to UM .NET API and navigate to 
Namespaces -> com.latencybusters.lbm -> LBMHotFailoverReceiver and LBMHotFailoverSource.

Using Hot Failover with UMP
When implementing Hot Failover with UMP, you must consider the following impact on hardware resources:

• Additional storage space required for a UMP disk store

• Higher disk activity

• Higher network activity

• Increased application complexity regarding message filtering

Also note that you must enable UME explicit ACKs and Hot Failover duplicate delivery in each Hot Failover 
receiving application.

Hot Failover       85



For detailed information on using Hot Failover with UMP, see the Knowledge Base article FAQ: Is UMP 
compatible with Hot Failover? .

Hot Failover Intentional Gap Support
UM supports intentional gaps in HF message streams. Your HF sources can supply message sequence 
numbers with number gaps up to 1073741824. HF receivers automatically detect the gaps and consider any 
missing message sequence numbers as not sent and do not attempt recovery for these missing sequence 
numbers. See the following example.

HF source 1 sends message sequence numbers: 10, 11, 12, 13, 25, 26, 38
HF source 2 sends message sequence numbers: 10, 11, 12, 13, 25, 26, 38

HF receiver 1 receives message sequence numbers in order with no pause between any 
messages: 
                                            10, 11, 12, 13, 25, 26, 38
            

Hot Failover Optional Messages
Hot Failover sources can send optional messages that HF receivers can be configured to receive or not 
receive ( hf_optional_messages). HF receivers detect an optional message by checking lbm_msg_t.flags for 
LBM_MSG_FLAG_HF_OPTIONAL. HF sources indicate an optional message by passing 
LBM_SRC_SEND_EX_FLAG_HF_OPTIONAL in the lbm_src_send_ex_info_t.flags field to 
lbm_hf_src_send_ex() or lbm_hf_src_sendv_ex(). In the examples below, optional messages appear with 
an "o" after the sequence number.

HF source 1 sends message sequence numbers: 10, 11, 12, 13o, 14o, 15, 16o, 17o, 18o, 
19o, 20
HF source 2 sends message sequence numbers: 10, 11, 12, 13o, 14o, 15, 16o, 17o, 18o, 
19o, 20

HF receiver 1 receives:                     10, 11, 12, 13o, 14o, 15, 16o, 17o, 18o, 
19o, 20
HF receiver 2, configured to ignore optional messages, receives: 
                                            10, 11, 12,           15,                   
  20
            

Using Hot Failover with Ordered Delivery
An HF receiver takes some of its operating parameters directly from the receive topic attributes. The 
ordered_delivery setting indicates the ordering for the HF receiver. Please see “Ordered Delivery” on page 
51 for information on the different modes of delivery order.

Note: UM supports Arrival Order with HF only when all sources use the same transport type.

Hot Failover Across Multiple Contexts
If you have a receiving application on a multi-homed machine receiving HF messages from HF sources, you 
can set up the Hot Failover Across Contexts (HFX) feature. This involves setting up a separate UM context to 
receive HF messages over each NIC and then creating an HFX Object, which drops duplicate HF messages 
arriving over all contexts. Your receiving application then receives only one copy of each HF message. The 
HFX feature achieves the same effect across multiple contexts as the normal Hot Failover feature does within 
a single context.

86       Chapter 5: UMS Features



The following diagram displays Hot Failover operation across UM contexts.

For each context that receives HF messages, create one HFX Receiver per topic. Each HFX Receiver can be 
configured independently by passing in a UM Receiver attributes object during creation. A unique client data 
pointer can also be associated with each HFX Receiver. The HFX Object is a special Ultra Messaging object 
and does not live in any UM context.

Note: You never have to call lbm_topic_lookup() for a HFX Receiver. If you are creating HFX Receivers 
along with normal UM receivers for the same topic, do not interleave the calls. For example, call 
lbm_hfx_create() and lbm_hfx_rcv_create() for the topic. Then call lbm_topic_lookup() and 
lbm_rcv_create() for the topic to create the normal UM receivers. 

The following outlines the general procedure for HFX.

1. Create an HFX Object for every HF topic of interest with lbm_hfx_create(), passing in an attributes 
object created with lbm_hfx_attr_create() to specify any attributes desired.

2. Create a context for the first NIC receiving HF messages with lbm_context_create().

3. Create a HFX Receiver for every HF topic with lbm_hfx_rcv_create(), passing in UM Receive Topic 
Attributes.

4. Repeat steps 2 and 3 for all NICs receiving HF message

5. Receive messages. The HFX Object identifies and drops all duplicates, delivering messages through a 
single callback (and optional event queue) specified when you created the HFX Object.

Delete each HFX Receiver with lbm_hfx_rcv_delete() or lbm_hfx_rcv_delete_ex(). Delete the HFX Object 
with lbm_hfx_delete().

Note: When writing source-side HF applications for HFX, be aware that HFX receivers do not support 
hf_sequence, 64-bit sequence numbers, the lbm_hf_src_send_rcv_reset() function, or HF wildcard 
receivers. 

See also ...

• Hot Failover Operation Options for HFX Configuration Options.

Hot Failover       87



• LBMHFX*.java in UM Java API.

• LBMHFX*.cs in UM .NET API.

88       Chapter 5: UMS Features



C H A P T E R  6

Manpage for lbmrd
This chapter includes the following topic:

• lbmrd, 89

lbmrd
lbmrd [-a] [--activity] [-d] [--dump-dtd] [-h] [--help] [-i] [--interface] [-L] [--logfile] [-p] [--port] [-t] [--ttl] [-v] [--
validate] config-file

Description

Resolver services for UM messaging products are provided by lbmrd.

The -i and -p (or --interface and --port) options identify the network interface IP address and port that lbmrd 
opens to listen for unicast topic resolution traffic. The defaults are INADDR_ANY and 15380, respectively.

The -a and -t (or --activity and --ttl) options interact to detect and remove "dead" clients, i.e., UMS/UME client 
applications that are in the lbmrd active client list, but have stopped sending topic resolution queries, 
advertisements, or keepalives, usually due to early termination or looping. These are described in detail 
below.

Option -t describes the length of time (in seconds), during which no messages have been received from a 
given client, that will cause that client to be marked "dead" and removed from the active client list. Ultra 
Messaging recommends a value at least 5 seconds longer than the longest network outage you wish to 
tolerate.

Option -a describes a repeating time interval (in milliseconds) after which lbmrd checks for these "dead" 
clients. Ultra Messaging recommends a value not larger than -t * 1000.

NOTE: Even clients that send no topic resolution advertisements or queries will still send keepalive 
messages to lbmrd every 5 seconds. This value is hard-coded and not configurable.

The -s option sets the send socket buffer size in bytes .

The -r option sets the receive socket buffer size in bytes .

The output is written to a log file if either -L or --logfile is supplied.

The DTD used to validate a configuration file will be dumped to standard output with the -d or --dump-dtd 
option. After dumping the DTD, lbmrd exits immediately.

The configuration file will be validated against the DTD if either the -v or --validate options are given. After 
attempting validation, lbmrd exits immediately. The exit status will be 0 for a configuration file validated by the 
DTD and non-zero otherwise.

89



Command line help is available with -h or --help.

Exit Status

The exit status from lbmrd is 0 for success and some non-zero value for failure.

90       Chapter 6: Manpage for lbmrd


	Table of Contents
	Preface
	Informatica Resources
	Informatica My Support Portal
	Informatica Documentation
	Informatica Web Site
	Informatica How-To Library
	Informatica Knowledge Base
	Informatica Support YouTube Channel
	Informatica Marketplace
	Informatica Velocity
	Informatica Global Customer Support


	Chapter 1: Overview
	Introduction

	Chapter 2: Fundamental Concepts
	Overview
	Topic Structure and Management
	Persistence
	Late Join
	Request/Response
	Transports
	Multi-Transport Threads

	Event Delivery
	Rate Controls
	Operational Statistics

	Chapter 3: UM Objects
	Overview
	Context Object
	Topic Object
	Source Object
	Message Properties Object
	Source Configuration and Transport Sessions
	Zero Object Delivery (Source)

	Receiver Object
	Receiver Configuration and Transport Sessions
	Wildcard Receiver
	Zero Object Delivery (ZOD)

	Event Queue Object
	Transport Objects
	Transport TCP
	Transport TCP-LB
	Transport LBT-RU
	Transport LBT-RM
	Transport LBT-IPC
	Transport LBT-SMX
	Transport LBT-RDMA


	Chapter 4: Architecture
	Overview
	Embedded Mode
	Sequential Mode
	Topic Resolution
	Multicast Topic Resolution
	Topic Resolution Phases
	Store (context) Name Resolution
	Topic Resolution Configuration Options
	Unicast Topic Resolution

	Message Batching
	Implicit Batching
	Adaptive Batching
	Intelligent Batching
	Explicit Batching
	Application Batching

	Ordered Delivery
	Sequence Number Order, Fragments Reassembled (Default Mode)
	Arrival Order, Fragments Not Reassembled
	Arrival Order, Fragments Reassembled

	Loss Detection Using TSNIs
	Receiver Keepalive Using Sesssion Messages

	Chapter 5: UMS Features
	Using Late Join
	Late Join Overview
	Late Join With UMP
	Late Join Options Summary
	Using Default Late Join Options
	Specifying a Range of Messages to Retransmit
	Retransmitting Only Recent Messages
	Configuring Late Join for Large Numbers of Messages

	Off-Transport Recovery (OTR)
	OTR Overview
	OTR with Sequence Number Ordered Delivery
	OTR With UMP
	OTR Options Summary

	Request/Response Model
	Request Message
	Response Message
	TCP Management
	Configuration
	Example Applications

	Self Describing Messaging
	Pre-Defined Messaging
	Typical PDM Usage Patterns
	Getting Started
	Using the PDM API
	Migrating from SDM

	Multicast Immediate Messaging
	Temporary Transport Session
	Receiving Immediate Messages
	MIM Configuration
	MIM Example Applications

	Spectrum
	Performance Pluses
	Configuration Options

	Hot Failover
	Implementing Hot Failover Sources
	Implementing Hot Failover Receivers
	Implementing Hot Failover Wildcard Receivers
	Java and .NET
	Using Hot Failover with UMP
	Hot Failover Intentional Gap Support
	Hot Failover Optional Messages
	Using Hot Failover with Ordered Delivery
	Hot Failover Across Multiple Contexts


	Chapter 6: Manpage for lbmrd
	lbmrd


