
Informatica Ultra Messaging Persistence
Edition (Version 6.7.1)

Configuration Guide

Informatica Ultra Messaging Persistence Edition Configuration Guide

Version 6.7.1
August 2014

Copyright (c) 2009-2014 Informatica Corporation. All rights reserved.

This software and documentation contain proprietary information of Informatica Corporation and are provided under a license agreement containing restrictions on use
and disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in
any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica Corporation. This Software may be protected by U.S.
and/or international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14
(ALT III), as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to us
in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange,
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging and
Informatica Master Data Management are trademarks or registered trademarks of Informatica Corporation in the United States and in jurisdictions throughout the world.
All other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved.Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems
Incorporated. All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All
rights reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights
reserved. Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights
reserved. Copyright © Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved.
Copyright Cleo Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-
technologies GmbH. All rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © is International Business Machines Corporation. All rights
reserved. Copyright © yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright (c) University of Toronto. All rights reserved.
Copyright © Daniel Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All
rights reserved. Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All
rights reserved. Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright
© EMC Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All
rights reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©

Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various versions
of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or agreed to in
writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software are
subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http:// asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/release/

license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/license-
agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/licence.html;
http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/Consortium/Legal/
2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/license.html; http://
forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/software/tcltk/license.html, http://
www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/License; http://
www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/index.html; http://www.net-snmp.org/about/
license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt; http://www.schneier.com/blowfish.html; http://
www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/EaselJS/blob/master/src/easeljs/display/Bitmap.js;
http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://jdbc.postgresql.org/license.html; http://
protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/LICENSE; http://web.mit.edu/Kerberos/krb5-
current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; and https://github.com/lyokato/libgeohash/blob/master/LICENSE.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and Distribution
License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary Code License
Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://opensource.org/
licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/licenses/artistic-
license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

This Software is protected by U.S. Patent Numbers 5,794,246; 6,014,670; 6,016,501; 6,029,178; 6,032,158; 6,035,307; 6,044,374; 6,092,086; 6,208,990; 6,339,775;
6,640,226; 6,789,096; 6,823,373; 6,850,947; 6,895,471; 7,117,215; 7,162,643; 7,243,110; 7,254,590; 7,281,001; 7,421,458; 7,496,588; 7,523,121; 7,584,422;
7,676,516; 7,720,842; 7,721,270; 7,774,791; 8,065,266; 8,150,803; 8,166,048; 8,166,071; 8,200,622; 8,224,873; 8,271,477; 8,327,419; 8,386,435; 8,392,460;
8,453,159; 8,458,230; and RE44,478, International Patents and other Patents Pending.

DISCLAIMER: Informatica Corporation provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the
implied warranties of noninfringement, merchantability, or use for a particular purpose. Informatica Corporation does not warrant that this software or documentation is
error free. The information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and
documentation is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1.THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT
INFORMED OF THE POSSIBILITIES OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT
LIMITATION, BREACH OF CONTRACT, BREACH OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

Part Number: UMP-CFG-67100-0001

Table of Contents

Preface . xiv
Informatica Resources. xiv

Informatica My Support Portal. xiv

Informatica Documentation. xiv

Informatica Web Site. xiv

Informatica How-To Library. xiv

Informatica Knowledge Base. xv

Informatica Support YouTube Channel. xv

Informatica Marketplace. xv

Informatica Velocity. xv

Informatica Global Customer Support. xv

Chapter 1: Configuring Ultra Messaging Options. 1
Overview. 1

Assignment Methods. 1

Assignment Flow. 2

Definitions. 3

Which Method Should I Use?. 3

Configuration Files. 4

Plain Text Configuration Files. 4

Reading Plain Text Configuration Files. 4

Plain Text Configuration File Format. 5

XML Configuration Files. 5

Reading XML Configuration Files. 5

Using XML Configuration Files With a UM Application. 6

XML Configuration File Format. 7

Merging Multiple XML Configuration Files. 7

XML Configuration File Elements. 8

Sample XML Configuration File. 25

XML Configuration File DTD. 27

Configuration File Restrictions. 29

Attributes Objects. 29

Creating An Attributes Object. 30

Setting an Option from a Binary Value. 30

Setting an Option from a String Value. 31

Getting an Option as a Binary Value. 32

Getting an Option as a String Value. 33

Deleting an Attributes Object. 33

Restrictions. 34

Modifying Current Attributes. 34

Table of Contents i

Setting An Option from a Binary Value. 34

Setting An Option from a String Value. 35

Restrictions. 35

Retrieving Current Option Values. 35

Getting An Option as a Binary Value. 36

Getting An Option as a String Value. 36

Chapter 2: Example Configuration Scenarios. 37
Highest Throughput. 37

Lowest Latency. 37

Creating Multicast Sources. 38

Disabling Aspects of Topic Resolution . 39

Disabling Topic Advertisements. 39

Disabling Receiver Topic Queries. 39

Disabling Wildcard Topic Queries. 39

Disabling Store (Context) Name Queries. 40

Disabling All But the Minimum Topic Resolution Traffic. 40

Re-establish Pre-4.0 Topic Resolution. 40

Unicast Resolver. 40

Configure Previous Port Defaults. 41

Configure New Port Defaults. 41

Interrelated Configuration Options. 42

Preventing NAK Storms with NAK Interval Options. 42

Preventing Tail Loss With TSNI and NAK Interval Options. 43

Preventing IPC Receiver Deafness With Keepalive Options. 43

Preventing Erroneous LBT-RM/LBT-RU Session Timeouts. 44

Preventing Errors Due to Bad Multicast Address Ranges. 44

Preventing Store or Queue Timeouts. 45

Preventing ULB Timeouts. 45

Preventing Unicast Resolver Daemon Timeouts. 46

Preventing Undetected Late Join Loss. 46

Preventing Undetected Loss. 47

Chapter 3: Common Tasks. 49
Configuring Multi-Homed Hosts. 49

Traversing a Firewall. 49

Running Multiple Applications. 50

Chapter 4: Reference. 51
Introduction. 52

Case Sensitivity. 52

Specifying Interfaces. 52

Socket Buffer Sizes. 52

ii Table of Contents

Reference Entry Format. 53

Network Compatibility Mode. 53

Major Options. 58

compatibility_include_pre_um_6_0_behavior (context) . 58

context_event_function (context) . 58

context_name (context) . 59

fd_management_type (context) . 59

message_selector (receiver) . 60

network_compatibility_mode (context) . 60

operational_mode (context) . 61

ordered_delivery (receiver) . 61

rcv_sync_cache (receiver) . 62

rcv_sync_cache_timeout (receiver) . 63

receive_thread_pool_size (context) . 63

receiver_callback_service_time_enabled (context). 63

resolver_source_notification_function (context) . 64

source_cost_evaluation_function (context) . 64

source_event_function (context) . 64

source_includes_topic_index (context) . 65

transport (source) . 65

transport_demux_tablesz (receiver) . 66

transport_session_multiple_sending_threads (context) . 66

transport_source_side_filtering_behavior (source) . 67

transport_topic_sequence_number_info_active_threshold (source) 67

transport_topic_sequence_number_info_interval (source) . 67

transport_topic_sequence_number_info_request_interval (receiver). 68

transport_topic_sequence_number_info_request_maximum (receiver). 68

use_extended_reclaim_notifications (source) . 69

use_transport_thread (receiver) . 69

Resolver Operation Options. 69

Minimum Values for Advertisement and Query Intervals. 70

disable_extended_topic_resolution_message_options (context) . 70

resolution_no_source_notification_threshold (receiver) . 71

resolution_number_of_sources_query_threshold (receiver) . 71

resolver_advertisement_maximum_initial_interval (source) . 72

resolver_advertisement_minimum_initial_duration (source) . 72

resolver_advertisement_minimum_initial_interval (source) . 72

resolver_advertisement_minimum_sustain_duration (source) . 73

resolver_advertisement_send_immediate_response (source) . 73

resolver_advertisement_sustain_interval (source) . 73

resolver_cache (context) . 74

resolver_context_name_activity_timeout (context). 74

Table of Contents iii

resolver_context_name_query_duration (context). 74

resolver_context_name_query_maximum_interval (context). 75

resolver_context_name_query_minimum_interval (context). 75

resolver_datagram_max_size (context) . 76

resolver_domain_id_active_propagation_timeout (context). 76

resolver_initial_advertisement_bps (context) . 77

resolver_initial_advertisements_per_second (context) . 78

resolver_initial_queries_per_second (context) . 78

resolver_initial_query_bps (context) . 78

resolver_query_maximum_initial_interval (receiver) . 79

resolver_query_minimum_initial_duration (receiver) . 79

resolver_query_minimum_initial_interval (receiver) . 79

resolver_query_minimum_sustain_duration (receiver) . 80

resolver_query_sustain_interval (receiver) . 80

resolver_receiver_map_tablesz (context) . 80

resolver_send_initial_advertisement (source) . 81

resolver_source_map_tablesz (context) . 81

resolver_string_hash_function (context) . 81

resolver_string_hash_function_ex (context) . 82

resolver_sustain_advertisement_bps (context) . 83

resolver_sustain_advertisements_per_second (context) . 83

resolver_sustain_queries_per_second (context) . 83

resolver_sustain_query_bps (context) . 84

resolver_unicast_activity_timeout (context) . 84

resolver_unicast_change_interval (context) . 84

resolver_unicast_check_interval (context) . 85

resolver_unicast_force_alive (context) . 85

resolver_unicast_ignore_unknown_source (context). 86

resolver_unicast_keepalive_interval (context) . 86

Multicast Resolver Network Options. 87

resolver_multicast_address (context) . 87

resolver_multicast_incoming_address (context) . 87

resolver_multicast_incoming_port (context) . 88

resolver_multicast_interface (context) . 88

resolver_multicast_outgoing_address (context) . 88

resolver_multicast_outgoing_port (context) . 89

resolver_multicast_port (context) . 89

resolver_multicast_receiver_socket_buffer (context) . 89

resolver_multicast_ttl (context) . 90

Unicast Resolver Network Options. 91

resolver_unicast_daemon (context) . 91

resolver_unicast_interface (context) . 92

iv Table of Contents

resolver_unicast_port_high (context) . 93

resolver_unicast_port_low (context) . 93

resolver_unicast_receiver_socket_buffer (context) . 93

Transport TCP Network Options. 94

transport_tcp_interface (receiver) . 94

transport_tcp_interface (source) . 95

transport_tcp_maximum_ports (context) . 95

transport_tcp_port (source) . 95

transport_tcp_port_high (context) . 96

transport_tcp_port_low (context) . 96

Transport TCP Operation Options. 96

transport_session_maximum_buffer (source) . 96

transport_tcp_activity_method (receiver) . 97

transport_tcp_activity_timeout (receiver) . 97

transport_tcp_activity_timeout (source). 98

transport_tcp_coalesce_threshold (source) . 98

transport_tcp_datagram_max_size (context) . 98

transport_tcp_exclusiveaddr (source) . 99

transport_tcp_listen_backlog (source) . 99

transport_tcp_multiple_receiver_behavior (source) . 99

transport_tcp_multiple_receiver_send_order (source) . 100

transport_tcp_nodelay (source) . 101

transport_tcp_receiver_socket_buffer (context) . 101

transport_tcp_reuseaddr (source) . 101

transport_tcp_sender_socket_buffer (source) . 102

transport_tcp_use_session_id (source). 102

Transport LBT-RM Network Options. 103

transport_lbtrm_destination_port (source) . 104

transport_lbtrm_multicast_address (source) . 104

transport_lbtrm_multicast_address_high (context) . 104

transport_lbtrm_multicast_address_low (context) . 104

transport_lbtrm_source_port_high (context) . 105

transport_lbtrm_source_port_low (context) . 105

Transport LBT-RM Reliability Options. 105

LBT-RM Datagram Loss Resulting in Unrecovered Message Loss. 105

LBT-RM Source Ignoring NAKs for Efficiency. 106

LBT-RM Receiver Suppressing NAK Generation. 107

transport_lbtrm_ignore_interval (source) . 108

transport_lbtrm_nak_backoff_interval (receiver) . 108

transport_lbtrm_nak_generation_interval (receiver) . 109

transport_lbtrm_nak_initial_backoff_interval (receiver) . 109

transport_lbtrm_nak_suppress_interval (receiver) . 110

Table of Contents v

transport_lbtrm_receiver_socket_buffer (context) . 110

transport_lbtrm_send_naks (receiver) . 110

transport_lbtrm_source_socket_buffer (context) . 111

transport_lbtrm_transmission_window_limit (source) . 111

transport_lbtrm_transmission_window_size (source) . 112

Transport LBT-RM Operation Options. 112

transport_lbtrm_activity_timeout (receiver) . 113

transport_lbtrm_coalesce_threshold (source) . 114

transport_lbtrm_data_rate_limit (context) . 114

transport_lbtrm_datagram_max_size (context) . 114

transport_lbtrm_preactivity_timeout (receiver) . 115

transport_lbtrm_rate_interval (context) . 115

transport_lbtrm_retransmit_rate_limit (context) . 116

transport_lbtrm_sm_maximum_interval (source) . 116

transport_lbtrm_sm_minimum_interval (source) . 117

transport_lbtrm_tgsz (source) . 117

Transport LBT-RU Network Options. 118

transport_lbtru_interface (receiver) . 119

transport_lbtru_interface (source) . 119

transport_lbtru_maximum_ports (context) . 119

transport_lbtru_port (source) . 120

transport_lbtru_port_high (context) . 120

transport_lbtru_port_high (receiver) . 120

transport_lbtru_port_low (context) . 121

transport_lbtru_port_low (receiver) . 121

Transport LBT-RU Reliability Options. 121

transport_lbtru_ignore_interval (source) . 121

transport_lbtru_nak_backoff_interval (receiver) . 122

transport_lbtru_nak_generation_interval (receiver) . 122

transport_lbtru_nak_suppress_interval (receiver) . 122

transport_lbtru_receiver_socket_buffer (context) . 123

transport_lbtru_source_socket_buffer (context) . 123

transport_lbtru_transmission_window_limit (source) . 123

transport_lbtru_transmission_window_size (source) . 124

Transport LBT-RU Operation Options. 124

transport_lbtru_acknowledgement_interval (receiver) . 125

transport_lbtru_activity_timeout (receiver) . 125

transport_lbtru_client_activity_timeout (source) . 126

transport_lbtru_client_map_size (source) . 126

transport_lbtru_coalesce_threshold (source) . 127

transport_lbtru_connect_interval (receiver) . 127

transport_lbtru_data_rate_limit (context) . 127

vi Table of Contents

transport_lbtru_datagram_max_size (context) . 128

transport_lbtru_maximum_connect_attempts (receiver) . 128

transport_lbtru_rate_interval (context) . 128

transport_lbtru_retransmit_rate_limit (context) . 129

transport_lbtru_sm_maximum_interval (source) . 129

transport_lbtru_sm_minimum_interval (source) . 130

transport_lbtru_use_session_id (source) . 130

Transport LBT-IPC Operation Options. 131

transport_lbtipc_activity_timeout (receiver) . 131

transport_lbtipc_behavior (source) . 132

transport_lbtipc_datagram_max_size (context) . 132

transport_lbtipc_id (source) . 133

transport_lbtipc_id_high (context) . 133

transport_lbtipc_id_low (context) . 133

transport_lbtipc_maximum_receivers_per_transport (source) . 134

transport_lbtipc_receiver_operational_mode (context) . 134

transport_lbtipc_receiver_thread_behavior (context) . 135

transport_lbtipc_sm_interval (source) . 135

transport_lbtipc_transmission_window_size (source) . 135

Transport LBT-SMX Operation Options. 136

transport_lbtsmx_activity_timeout (receiver). 136

transport_lbtsmx_datagram_max_size (source). 137

transport_lbtsmx_id (source). 137

transport_lbtsmx_id_high (context). 138

transport_lbtsmx_id_low (context). 138

transport_lbtsmx_maximum_receivers_per_transport (source). 138

transport_lbtsmx_message_statistics_enabled (context). 139

transport_lbtsmx_sm_interval (source). 139

transport_lbtsmx_transmission_window_size (source). 139

Transport LBT-RDMA Operation Options. 140

transport_lbtrdma_datagram_max_size (context) . 140

transport_lbtrdma_interface (source) . 140

transport_lbtrdma_maximum_ports (context) . 141

transport_lbtrdma_port (source) . 141

transport_lbtrdma_port_high (context) . 142

transport_lbtrdma_port_low (context) . 142

transport_lbtrdma_receiver_thread_behavior (context) . 142

transport_lbtrdma_transmission_window_size (source) . 143

Transport Acceleration Options. 143

Myricom® Datagram Bypass Layer (DBL™). 143

Solarflare® Onload. 144

UD Acceleration for Mellanox® Hardware Interfaces. 144

Table of Contents vii

resolver_ud_acceleration (context) . 145

ud_acceleration (context) . 145

onload_acceleration_stack_name (receiver). 146

onload_acceleration_stack_name (source). 146

Multicast Immediate Messaging Network Options. 147

mim_address (context) . 147

mim_destination_port (context) . 147

mim_incoming_address (context) . 148

mim_incoming_destination_port (context) . 148

mim_outgoing_address (context) . 148

mim_outgoing_destination_port (context) . 148

Multicast Immediate Messaging Reliability Options. 149

mim_ignore_interval (context) . 149

mim_nak_backoff_interval (context) . 149

mim_nak_generation_interval (context) . 150

mim_nak_initial_backoff_interval (context) . 150

mim_nak_suppress_interval (context) . 150

mim_send_naks (context) . 151

mim_transmission_window_limit (context) . 151

mim_transmission_window_size (context) . 151

Multicast Immediate Messaging Operation Options. 152

immediate_message_receiver_function (context) . 152

immediate_message_topic_receiver_function (context) . 152

mim_activity_timeout (context) . 153

mim_delivery_control_activity_check_interval (context) . 153

mim_delivery_control_activity_timeout (context) . 153

mim_delivery_control_order_tablesz (context) . 154

mim_implicit_batching_interval (context) . 154

mim_implicit_batching_minimum_length (context) . 154

mim_ordered_delivery (context) . 154

mim_sm_maximum_interval (context) . 155

mim_sm_minimum_interval (context) . 155

mim_sqn_window_increment (context) . 156

mim_sqn_window_size (context) . 156

mim_src_deletion_timeout (context) . 156

mim_tgsz (context) . 157

mim_unrecoverable_loss_function (context) . 157

Late Join Options. 157

Late Join Recovery. 157

late_join (source) . 158

late_join_info_request_interval (receiver). 159

late_join_info_request_maximum (receiver). 159

viii Table of Contents

retransmit_initial_sequence_number_request (receiver) . 159

retransmit_message_caching_proximity (receiver) . 160

retransmit_request_interval (receiver) . 160

retransmit_request_maximum (receiver) . 161

retransmit_request_message_timeout (receiver) . 161

retransmit_request_outstanding_maximum (receiver) . 161

retransmit_retention_age_threshold (source) . 162

retransmit_retention_size_limit (source) . 162

retransmit_retention_size_threshold (source) . 162

use_late_join (receiver) . 163

Off-Transport Recovery Options. 163

otr_request_initial_delay (receiver) . 163

otr_request_log_alert_cooldown (receiver) . 163

otr_request_maximum_interval (receiver) . 164

otr_message_caching_threshold (receiver) . 164

otr_request_message_timeout (receiver) . 165

otr_request_minimum_interval (receiver) . 165

otr_request_outstanding_maximum (receiver) . 165

use_otr (receiver) . 166

Request Network Options. 166

request_tcp_bind_request_port (context) . 166

request_tcp_interface (context) . 167

request_tcp_port (context) . 167

request_tcp_port_high (context) . 167

request_tcp_port_low (context) . 168

Request Operation Options. 168

request_tcp_exclusiveaddr (context) . 168

request_tcp_listen_backlog (context) . 169

request_tcp_reuseaddr (context) . 169

Response Operation Options. 169

response_session_maximum_buffer (context) . 169

response_session_sender_socket_buffer (context) . 170

response_tcp_deletion_timeout (context) . 170

response_tcp_interface (context) . 170

response_tcp_nodelay (context) . 171

Implicit Batching Options. 171

implicit_batching_interval (source) . 171

implicit_batching_minimum_length (source) . 171

implicit_batching_type (source) . 172

Delivery Control Options. 172

channel_map_tablesz (receiver) . 174

delivery_control_loss_check_interval (receiver) . 174

Table of Contents ix

delivery_control_loss_tablesz (receiver) . 175

delivery_control_maximum_burst_loss (receiver) . 175

delivery_control_maximum_total_map_entries (context) . 175

delivery_control_message_batching (context). 176

delivery_control_order_tablesz (receiver) . 176

mim_delivery_control_loss_check_interval (context) . 177

null_channel_behavior (receiver) . 177

source_notification_function (receiver) . 177

unrecognized_channel_behavior (receiver) . 178

Wildcard Receiver Options. 178

pattern_callback (wildcard_receiver) . 178

pattern_type (wildcard_receiver) . 179

receiver_create_callback (wildcard_receiver) . 179

receiver_delete_callback (wildcard_receiver) . 180

resolver_no_source_linger_timeout (wildcard_receiver) . 180

resolver_query_maximum_interval (wildcard_receiver) . 180

resolver_query_minimum_duration (wildcard_receiver) . 181

resolver_query_minimum_interval (wildcard_receiver) . 181

resolver_wildcard_queries_per_second (context) . 181

resolver_wildcard_query_bps (context) . 182

resolver_wildcard_receiver_map_tablesz (context) . 182

Event Queue Options. 182

event_queue_name (event_queue) . 182

queue_age_enabled (event_queue) . 183

queue_cancellation_callbacks_enabled (event_queue) . 183

queue_count_enabled (event_queue) . 183

queue_delay_warning (event_queue) . 184

queue_enqueue_notification (event_queue) . 184

queue_objects_purged_on_close (event_queue) . 184

queue_service_time_enabled (event_queue) . 185

queue_size_warning (event_queue) . 185

Ultra Messaging Persistence Options. 186

ume_ack_batching_interval (context) . 186

ume_activity_timeout (receiver) . 186

ume_activity_timeout (source) . 186

ume_allow_confirmed_delivery (receiver) . 187

ume_application_outstanding_maximum (receiver). 187

ume_confirmed_delivery_notification (source) . 188

ume_consensus_sequence_number_behavior (receiver) . 189

ume_consensus_sequence_number_behavior (source) . 190

ume_explicit_ack_only (receiver) . 190

ume_flight_size (source) . 191

x Table of Contents

ume_flight_size_behavior (source) . 191

ume_flight_size_bytes (source) . 191

ume_force_reclaim_function (source) . 192

ume_late_join (source) . 192

ume_message_stability_lifetime (source). 193

ume_message_stability_notification (source) . 193

ume_message_stability_timeout (source). 194

ume_proxy_source (source) . 194

ume_receiver_liveness_interval (context) . 195

ume_receiver_paced_persistence (receiver) . 195

ume_receiver_paced_persistence (source) . 196

ume_recovery_sequence_number_info_function (receiver) . 196

ume_registration_extended_function (receiver) . 196

ume_registration_function (receiver) . 197

ume_registration_interval (receiver) . 197

ume_registration_interval (source) . 197

ume_repository_ack_on_reception (source) . 198

ume_repository_disk_file_size_limit (source) . 198

ume_repository_size_limit (source) . 199

ume_repository_size_threshold (source) . 199

ume_retention_intergroup_stability_behavior (source) . 200

ume_retention_intragroup_stability_behavior (source) . 201

ume_retention_size_limit (source) . 201

ume_retention_size_threshold (source) . 202

ume_retention_unique_confirmations (source) . 202

ume_retransmit_request_generation_interval (receiver) . 203

ume_retransmit_request_interval (receiver) . 203

ume_retransmit_request_maximum (receiver) . 203

ume_retransmit_request_outstanding_maximum (receiver) . 204

ume_session_id (context) . 204

ume_session_id (receiver) . 204

ume_session_id (source) . 205

ume_source_liveness_timeout (context) . 205

ume_sri_flush_sri_request_response (source). 206

ume_sri_immediate_sri_request_response (source). 206

ume_sri_inter_sri_interval (source). 206

ume_sri_max_number_of_sri_per_update (source). 207

ume_sri_request_interval (receiver). 207

ume_sri_request_maximum (receiver). 207

ume_sri_request_response_latency (source). 208

ume_state_lifetime (receiver) . 208

ume_state_lifetime (source) . 208

Table of Contents xi

ume_store (source) . 209

ume_store_activity_timeout (source) . 209

ume_store_behavior (source) . 210

ume_store_check_interval (source) . 210

ume_store_group (source) . 210

ume_store_name (source) . 211

ume_use_ack_batching (receiver) . 211

ume_use_late_join (receiver) . 212

ume_use_store (receiver) . 212

ume_user_receiver_registration_id (context) . 212

ume_write_delay (source) . 213

Hot Failover Operation Options. 213

delivery_control_loss_check_interval (hfx) . 213

delivery_control_max_delay (hfx) . 214

delivery_control_maximum_burst_loss (hfx) . 214

delivery_control_maximum_total_map_entries (hfx) . 214

duplicate_delivery (hfx) . 215

hf_duplicate_delivery (receiver) . 215

hf_optional_messages (receiver) . 216

hf_receiver (wildcard_receiver) . 216

ordered_delivery (hfx) . 216

Automatic Monitoring Options. 217

monitor_appid (context) . 217

monitor_appid (event_queue) . 218

monitor_interval (context) . 218

monitor_interval (event_queue) . 218

monitor_interval (receiver). 219

monitor_interval (wildcard_receiver). 219

monitor_transport (context) . 220

monitor_transport (event_queue) . 220

monitor_transport_opts (context) . 221

monitor_transport_opts (event_queue) . 221

Deprecated Options. 221

dbl_lbtrm_acceleration (context) . 221

dbl_lbtru_acceleration (context) . 222

dbl_mim_acceleration (context) . 222

dbl_resolver_acceleration (context) . 222

otr_request_duration (receiver) . 223

resolver_active_source_interval (context) . 223

resolver_active_threshold (context) . 224

resolver_context_advertisement_interval (context) . 224

resolver_maximum_advertisements (context) . 224

xii Table of Contents

resolver_query_interval (context) . 225

resolver_maximum_queries (context) . 225

resolver_query_max_interval (wildcard_receiver) . 225

resolver_unicast_address (context) . 226

resolver_unicast_destination_port (context) . 226

resolver_unicast_port (context) . 227

retransmit_message_map_tablesz (source) . 227

retransmit_request_generation_interval (receiver) . 227

transport_datagram_max_size (context) . 228

transport_lbtipc_acknowledgement_interval (receiver) . 228

transport_lbtipc_client_activity_timeout (source) . 228

ume_message_map_tablesz (source) . 229

ume_primary_store_address (source) . 229

ume_primary_store_port (source) . 230

ume_registration_id (source) . 230

ume_secondary_store_address (source) . 230

ume_secondary_store_port (source) . 231

ume_tertiary_store_address (source) . 231

ume_tertiary_store_port (source) . 231

UMS Port Values. 232

UMS UDP Port Values. 232

UMS TCP Port Values. 233

UMS Multicast Group Values. 233

UMS Timer Interval Values. 234

Options That May Be Set During Operation. 238

Options (Callbacks) That Cannot Be Set From a UM Configuration File. 239

Index. 241

Table of Contents xiii

Preface
The Ultra Messaging Configuration Guide is written for Ultra Messaging administrators and application
developers. It describes Ultra Messaging core configuration options and how to set them. This guide
assumes that you are familiar with Ultra Messaging concepts.

Informatica Resources

Informatica My Support Portal
As an Informatica customer, you can access the Informatica My Support Portal at
http://mysupport.informatica.com.

The site contains product information, user group information, newsletters, access to the Informatica
customer support case management system (ATLAS), the Informatica How-To Library, the Informatica
Knowledge Base, Informatica Product Documentation, and access to the Informatica user community.

Informatica Documentation
The Informatica Documentation team takes every effort to create accurate, usable documentation. If you
have questions, comments, or ideas about this documentation, contact the Informatica Documentation team
through email at infa_documentation@informatica.com. We will use your feedback to improve our
documentation. Let us know if we can contact you regarding your comments.

The Documentation team updates documentation as needed. To get the latest documentation for your
product, navigate to Product Documentation from http://mysupport.informatica.com.

Informatica Web Site
You can access the Informatica corporate web site at http://www.informatica.com. The site contains
information about Informatica, its background, upcoming events, and sales offices. You will also find product
and partner information. The services area of the site includes important information about technical support,
training and education, and implementation services.

Informatica How-To Library
As an Informatica customer, you can access the Informatica How-To Library at
http://mysupport.informatica.com. The How-To Library is a collection of resources to help you learn more
about Informatica products and features. It includes articles and interactive demonstrations that provide

xiv

http://mysupport.informatica.com
mailto:infa_documentation@informatica.com
http://mysupport.informatica.com
http://www.informatica.com
http://mysupport.informatica.com

solutions to common problems, compare features and behaviors, and guide you through performing specific
real-world tasks.

Informatica Knowledge Base
As an Informatica customer, you can access the Informatica Knowledge Base at
http://mysupport.informatica.com. Use the Knowledge Base to search for documented solutions to known
technical issues about Informatica products. You can also find answers to frequently asked questions,
technical white papers, and technical tips. If you have questions, comments, or ideas about the Knowledge
Base, contact the Informatica Knowledge Base team through email at KB_Feedback@informatica.com.

Informatica Support YouTube Channel
You can access the Informatica Support YouTube channel at http://www.youtube.com/user/INFASupport. The
Informatica Support YouTube channel includes videos about solutions that guide you through performing
specific tasks. If you have questions, comments, or ideas about the Informatica Support YouTube channel,
contact the Support YouTube team through email at supportvideos@informatica.com or send a tweet to
@INFASupport.

Informatica Marketplace
The Informatica Marketplace is a forum where developers and partners can share solutions that augment,
extend, or enhance data integration implementations. By leveraging any of the hundreds of solutions
available on the Marketplace, you can improve your productivity and speed up time to implementation on
your projects. You can access Informatica Marketplace at http://www.informaticamarketplace.com.

Informatica Velocity
You can access Informatica Velocity at http://mysupport.informatica.com. Developed from the real-world
experience of hundreds of data management projects, Informatica Velocity represents the collective
knowledge of our consultants who have worked with organizations from around the world to plan, develop,
deploy, and maintain successful data management solutions. If you have questions, comments, or ideas
about Informatica Velocity, contact Informatica Professional Services at ips@informatica.com.

Informatica Global Customer Support
You can contact a Customer Support Center by telephone or through the Online Support.

Online Support requires a user name and password. You can request a user name and password at
http://mysupport.informatica.com.

The telephone numbers for Informatica Global Customer Support are available from the Informatica web site
at http://www.informatica.com/us/services-and-training/support-services/global-support-centers/.

Preface xv

http://mysupport.informatica.com
mailto:KB_Feedback@informatica.com
http://www.youtube.com/user/INFASupport
mailto:supportvideos@informatica.com
http://www.informaticamarketplace.com
http://mysupport.informatica.com
mailto:ips@informatica.com
http://mysupport.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/

C H A P T E R 1

Configuring Ultra Messaging
Options

This chapter includes the following topics:

• Overview, 1

• Plain Text Configuration Files, 4

• XML Configuration Files, 5

• Configuration File Restrictions, 29

• Attributes Objects, 29

• Modifying Current Attributes, 34

• Retrieving Current Option Values, 35

Overview
For Ultra Messaging applications, you can set a variety of operational options to customize the application's
behavior or performance. You assign values to these options in configuration files or by using function calls.
You can assign option values to objects upon or after object creation. Within an object, the implemented
option values are referred to as attributes.

Ultra Messaging uses intelligent default values for configuration options, enabling applications to run "out of
the box." However, expect to customize Ultra Messaging options to optimize your operating environment. You
can use different ways to configure option default and customized value assignments.

Assignment Methods
You can use the following ways to set attributes with configuration options:

XML configuration files

customized defaults in an XML-formatted file, used during object creation

plain text configuration files

customized defaults in a text file, used during object creation

attributes objects

application-specific option values used during object creation

1

function calls with lbm[...]setopt()
used after object creation

The following image shows the different ways Ultra Messaging stores and assigns option values before,
during, and after primitive object creation. Primitive objects are sources, receivers, wildcard receivers, event
queues, contexts, or HFX objects. The ultimate result is a primitive object with the assigned values residing in
current attributes.

Figure 1. Attributes value assignment methods

The initial default attributes is the set of factory defaults in Ultra Messaging. Ultra Messaging modifies
selected options in the plain text configuration file, and then stores these values in current default attributes.
The current default attributes is the starting point for all created primitive objects.

An instantiated primitive object uses values from current default attributes, the XML config table, and
thecustom attributes object, and then holds the results in current attributes.

An XML configuration file can pass its setting to an object being created either by directly populating the XML
config table, or by creating a custom attributes object.

Assignment Flow
The above diagram implies, but does not fully explain, the flow of attribute value assignment that UM
performs when an application creates a primitive object. This flow is described below, and is important in
understanding how and when default values are overridden:

1. If applicable, copy plain text configuration file values to current default attributes.

2. Start creating object.

3. Custom attributes object(s) created/populated (if applicable).

4. If lbm_*_create() has a NULL attr, copy current default attributes into current attributes. Otherwise,
copy custom attributes object values into current attributes.

2 Chapter 1: Configuring Ultra Messaging Options

5. Read applicable options from the XML config table into the current attributes. Do not overwrite options
set with lbm_config(), or lbm_*_attr_setopt(), which were tagged when modified.

6. Finish object creation.

7. current attributes can be changed further (only certain options) via lbm_*_setopt().

Definitions
Before discussing how UM options can be set, some terminology is in order.

• Option - A single configuration item that controls some aspect of UM operation. An option typically
resides in a configuration file, but can also be assigned a value via a function call. We use options to
assign values to an object's attributes.

• Attribute - An operational characteristic of an object. An attribute's value is set by an option, hence, there
is a one-to-one correspondence between options and attributes. (Note: This use of the term "attribute" is
unrelated to, and not to be confused with, "attribute" in XML syntax. In this document, we refer to the latter
as "XML attribute".)

• XML attribute - See above. In XML syntax, XML attributes are parameters for XML elements.

• Custom attributes object A UM object that contains custom attribute values (set by options) for a
specific UM object. Separate (and multiple) sets of attributes can exist for each application, though only
one can be used when creating a primitive object.

• Initial default attributes - The default attributes values built into UM. UM and your applications use these
if you have not set any options for the attributes.

• Primitive object - Specifically, an object that is a source, receiver, wildcard receiver, event queue,
context, or HFX object.

• Configuration file - This comes in two types: XML and plain text. Configuration files contain assigned
values for options, but the different types are read/copied at different times during the creation of an
object.

• XML config table - Contains option values that are read from the XML configuration file.

• Current default attributes - The attributes values used to create an object in the absence of custom
attributes values.

• Current attributes - The attribute values for an instantiated UM object that control the current operation
of that object.

• Scope - The type of object to which an option can apply. Possible scopes are context, source, receiver,
wildcard_receiver, event_queue, and hfx.

Which Method Should I Use?
For the four basic assignment methods listed above, following are some scenarios where specific methods
are selected.

• To change a default option value and apply it to all objects you create, call lbm_config() for one or
more configuration files. For example, to use LBT-RM rather than TCP for all sources, create a plain text
configuration file containing

source transport LBTRM
and pass its file name to lbm_config().

Note: The C API offers functions lbm_*_attr_create_default() to change a current default value back to
the initial (factory) default value. No such corresponding method exists for the Java or .NET APIs.

Overview 3

• To customize specific options before an object is created for a specific object instance, use a custom
attributes object. Also, you can assign XML data to the XML config table directly from your application via
lbm_config_xml_string().

• To create sets of custom values to be used when creating primitive objects, call lbm_config_xml_file()
and specify an XML configuration file. This is useful for setting specific default options on a per-topic or
per-context basis, which cannot be done with a plain text configuration file. For an example where a
sending application uses specific options and values, create an XML configuration file with the
application's name (optional) that specifies those options and values. Then pass the XML file name and
application name to lbm_config_xml_file().

• To change an option after an object is created, modify the current attributes for the object. (Note that
many options cannot be changed after an object has been created.)

These methods can be used in combination. Figure 1 on page 2 illustrates the relationships between
attributes and the various UM API function calls that affect them.

Configuration Files
There are two types of UM Configuration files:

• “Plain Text Configuration Files” on page 4

• “XML Configuration Files” on page 5

You can read Configuration files either by function call, or automatically upon application launch by specifying
a file name in an environment variable. See Attributes value assignment methods and “Assignment Flow” on
page 2 for details on how these options replace or override default values.

Plain Text Configuration Files
The plain text configuration file, when invoked, writes option values into UM's current default attributes.
These are then read and used in the creation of all objects.

See Chapter 2, “Example Configuration Scenarios” on page 37 for example configuration files.

Reading Plain Text Configuration Files
There are two ways to read a plain text configuration file to set values in current default attributes.

• API function lbm_config() - You can call the function multiple times with different file names to set
configuration options in phases.

When you create UM objects (such as a context or receiver), UM sets attributes for that object using the
current default attributes. Hence, you must call lbm_config() before creating objects (lbm_*_create()).

• Environment variable LBM_DEFAULT_CONFIG_FILE - reads configuration file when your application is
started. You can set this variable to a full pathname or a URL; for example:

export LBM_DEFAULT_CONFIG_FILE=/home/lbm/lbtrm.cfg
(You can still use the lbm_config() function on a different file to make additional changes.)

4 Chapter 1: Configuring Ultra Messaging Options

Plain Text Configuration File Format
A plain text configuration file contains lines that each take the form

 scope_keyword option_name option_value

where

scope_keyword - the scope to which the option applies,

option_name - the predefined name for the option, and

option_value - the new value to be assigned to that option.

Allowable values for these parameters are given throughout the rest of this document. Any text following a
hash character # (also known as a pound sign, number sign, or octothorpe) is interpreted as comment text
and is ignored.

For example:

Set transport_tcp_port_low to 4901
context transport_tcp_port_low 4901
And set transport_tcp_port_high to 4920
context transport_tcp_port_high 4920

Note: For plain text configuration files, do not enclose any fields in double quotation marks (").

XML Configuration Files
XML configuration files let you address many different applications and operating requirements, removing the
need to programmatically set and reset options for them. A single XML file can contain options for multiple
applications. Moreover, for a single application, you can configure multiple named contexts, event queues,
etc., with different values for the same options.

See Chapter 2, “Example Configuration Scenarios” on page 37 Chapter 2, “Example Configuration
Scenarios” on page 37 for example configuration files.

Reading XML Configuration Files
There are multiple ways to read an XML configuration file to assign values while creating a primitive object.

API function lbm_config_xml_file()

reads an XML configuration file into XML config table. Call this before the primitive create function. This
does not change the current default attributes. Use a file path, or a URL beginning with http:// or
ftp://.

API function lbm_config_xml_string()

populates the XML config table directly from your application. Call this before the primitive create
function. This does not change the current default attributes.

XML Configuration Files 5

API function lbm_*_attr_create_from_XML()

creates a custom attributes object containing the values from an XML configuration file. The values can
then be applied to a primitive object being created by calling function lbm_*_create() and specifying this
custom attributes object in the second parameter.

Environment variable LBM_XML_CONFIG_FILENAME
reads the file into the XML config table. These settings are then available to all applications when they
start. Use a file path, or a URL beginning with http:// or ftp://.

Environment variable LBM_XML_CONFIG_APPNAME
reads options for a specific application from the LBM_XML_CONFIG_FILENAME variable's filename. This
initiates the specified application's configuration; set this environment variable for every application.

Environment variable LBM_UMM_INFO

initiates UMM Daemon to read options for an application and user from the LBM_XML_CONFIG_FILENAME
variable's filename. Set this variable for every application/user combination, in the following format:

export LBM_UMM_INFO=application_name:user_name:password@ip:port
Note: Since you can use these API functions and environment variables without the UMM Daemon, you
cannot set a username or password.

Using XML Configuration Files With a UM Application
The following procedure describes a general approach to implementing XML configuration files.

1. Create an XML configuration file using an XML editor or text editor. Just for this example, name the file,
UM_CONFIG.XML.

2. Insert any desired templates in the <templates> element to hold configuration option values shared by
multiple applications or primitive UM objects (context, source, receiver, wildcard receiver or event
queue). You can create and apply multiple templates to applications and primitive UM objects, however,
if the same option appears in multiple templates, the option value in the last template overrides the
option value in the previous template. See “<templates>” on page 12.

3. Insert an <application> element for your UM application in the <applications> element and include
any relevant templates created in the previous step. Just for this example, name the application,
SENDAPP. See “<applications>” on page 13.

4. Within the <Contexts> element, configure the application's <Context> element and context options. And
since our example application, SENDAPP is a sending application, also configure its Source options. (If
this was a receiving application, you would configure Receiver or Wildcard Receiver options. If your
application creates multiple Contexts, enter multiple <Context> elements within the Contexts element,
inserting the appropriate source, receiver or wildcard receiver options. See “<contexts>” on page 14.

5. Configure the applications Event Queue options. See “<event-queues>” on page 21

6. Save the XML configuration file, UM_CONFIG.XML, and load it onto the machine where the application
(SENDAPP) runs.

7. Set the following environment variables on the machine where SENDAPP runs.

• Set LBM_XML_CONFIG_FILENAME to UM_CONFIG.XML.

• Set LBM_XML_CONFIG_APPNAME to SENDAPP.

• Optionally, you could also use lbm_config_xml_file(UM_CONFIG.XML,SENDAPP) in the SENDAPP
source.

8. Start SENDAPP.

6 Chapter 1: Configuring Ultra Messaging Options

XML Configuration File Format
An XML Configuration File follows standard XML conventions. Element declarations or a pointer to a DTD file
are not needed, as these are handled by UM.

An XML configuration file generally comprises two primary elements: templates and applications.
Organized and contained within these are option value assignments. Applications containers let you set
options for specific applications. To provide more global control over applications, or to simply reduce
repetition, you can create templates to hold option settings that are to be used in one or more different
applications.

XML configuration files use the high-level structure shown in the following example. This example includes
only some container elements, and no options.

<um-configuration version="1.0">
 <templates>
 <template name="SENDING">
 <options type="source">
 </options>
 <options type="context">
 </options>
 </template>
 </templates>
 <applications>
 <application name="SENDING-TOPIC1">
 <contexts>
 <context name="SENDING-LBTRM">
 <sources>
 <topic topicname="TOPIC1">
 <options type="source">
 </options>
 </topic>
 </sources>
 </context>
 </contexts>
 <event-queues>
 <event-queue/>
 <event-queue name="EQ-1"/>
 </event-queues>
 </application>
 </applications>
</um-configuration>

Merging Multiple XML Configuration Files
For UM XML configuration files and UMP store daemon XML configuration files you can use the XInclude
mechanism to merge multiple configuration files.

To include an external file, use the following syntax:

<xi:include xmlns:xi=http://www.w3.org/2003/XInclude" href="filename.xml" />
Files to be included must be formatted such that all elements are enclosed in a single container element, as
shown in the following examples:

Example 1

<ume-attributes>
 <option type="store" name="allow-proxy-source" value="1"/>
 <option type="lbm-context" name="resolver_multicast_address“ value="239.255.38.0" />
 <option type="lbm-context" name="resolver_multicast_port" value="19999" />
</ume-attributes>

XML Configuration Files 7

Example 2

<topics>
 <topic pattern="." type="PCRE">
 <ume-attributes>
 <option type="store" name="repository-type" value="disk"/>
 <option type="store" name="retransmission-request-forwarding“ value="0"/>
 </ume-attributes>
 </topic>
</topics>

XML Configuration File Elements
Following are descriptions of the XML configuration file elements.

• “<um-configuration>” on page 8

• “<license>” on page 9

• “<options>” on page 10

• “<option>” on page 10

• “<allow>” on page 11

• “<deny>” on page 12

• “<templates>” on page 12

• “<template>” on page 13

• “<applications>” on page 13

• “<application>” on page 14

• “<contexts>” on page 14

• “<context>” on page 15

• “<sources>” on page 16

• “<topic>” on page 17

• “<receivers>” on page 18

• “<wildcard-receivers>” on page 19

• “<wildcard-receiver>” on page 20

• “<event-queues>” on page 21

• “<event-queue>” on page 22

• “<hfxs>” on page 23

• “<application-data>” on page 24

See also “Sample XML Configuration File” on page 25 and “XML Configuration File DTD” on page 27.

<um-configuration>
Description The <um-configuration> element is a required container for all UM configuration options
residing in the XML configuration file. This is the top-level element.

ParentsNone.

Children

• “<templates>” on page 12

• “<applications>” on page 13

• “<license>” on page 9

8 Chapter 1: Configuring Ultra Messaging Options

XML Attributes:

XML Attribute Description Default Value

version The version of the DTD. none

Example:

<um-configuration version="1.0">
 <applications>
 <application>
 . . .
 . . .
 </application>
 </applications>
</um-configuration>

<license>

Description The <license> element identifies the UM product license, either as the license key or as a
pointer to a license file, as an alternative to setting it in an environment variable.

Parents “<um-configuration>” on page 8

Children. None.

XML Attributes:

XML Attribute Description Default Value

format The format for the license element
data. filename points to the file
containing the license key. string
identifies the data as the license
key itself.

string

xml:space How whitespace is handled.
default trims leading and trailing
whitespace (e.g., tabs, spaces,
linefeeds, etc.), and compresses
multiple whitespace characters into
a single space character.
preserve preserves the
whitespace exactly as read.

default

Example:

<um-configuration>
 <license format=filename>
 path/license-file-name
 </license>
 <applications>
 <application>
 . . .

XML Configuration Files 9

<options>
Description The <options> element is a container element for individual options. You specify the primitive
object in the attribute type.

Parents

• “<template>” on page 13

• “<context>” on page 15

• “<topic>” on page 17

• “<wildcard-receiver>” on page 20

• “<event-queue>” on page 22

Children

• “<option>” on page 10

• “<application-data>” on page 24

XML Attributes:

XML Attribute Description Default Value

type The type of primitive object, which
can be event-queue, context,
source, receiver, wildcard-
receiver, or hfx).

None

Example:

 <options type="context">
 <option/>
 . . .
 <application-data/>
 </options>

<option>

Description The <option> element corresponds to any UM configuration option.

Parents

Children “<deny>” on page 12

• “<options>” on page 10

• “<allow>” on page 11

10 Chapter 1: Configuring Ultra Messaging Options

XML Attributes:

XML Attribute Description Default Value

name Name of the UM configuration
option. See Reference for all
options.

N/A

default-value The value you are setting for this
option.

The default value for the option.

order Permit or restrict particular option
values. Valid values are
deny,allow (deny what you
specify, allow everything else) or
allow,deny (allow what you
specify, deny everything else). If
using this XML attribute, follow this
element with “<allow>” on page 11
or “<deny>” on page 12 elements
as needed. See also “Sample XML
Configuration File” on page 25.

deny,allow

Examples:

To permit any application to choose any transport method except LBT-RU, configure the following in a
template included in sending applications.

 <option default-value="tcp" name="transport" order="deny,allow">
 <deny>LBTRU</deny>
 </option>

To restrict any application to only the LBT-RM or LBR-RU transport method, configure the following in a
template included in sending applications.

 <option default-value="tcp" name="transport" order="allow,deny">
 <allow>LBTRU</allow>
 <allow>LBTRM</allow>
 </option>

<allow>

Description Use the <allow> element with “<option>” on page 10 to set a condition for that option to permit
only a certain subset of possible default value values for the option. See also “Using the Order and Rule
XML Attributes” on page 26.

Parents “<option>” on page 10

Children. None.

XML Configuration Files 11

XML Attributes:

XML Attribute Description Default Value

xml:space How whitespace is handled.
default trims leading and trailing
whitespace (e.g., tabs, spaces,
linefeeds, etc.), and compresses
multiple whitespace characters into
a single space character.
preserve preserves the
whitespace exactly as read.

default

Example:

 <option default-value="tcp" name="transport" order="allow,deny">
 <allow>LBTRU</allow>
 <allow>LBTRM</allow>
 </option>

<deny>

Description Use the <deny> element with “<option>” on page 10 to set a condition for that option that restricts
certain (otherwise) possible default value values from being used by the option. See also “Using the Order
and Rule XML Attributes” on page 26.

Parents “<option>” on page 10

Children. None.

XML Attributes:

XML Attribute Description Default Value

xml:space How whitespace is handled.
default trims leading and trailing
whitespace (e.g., tabs, spaces,
linefeeds, etc.), and compresses
multiple whitespace characters into
a single space character.
preserve preserves the
whitespace exactly as read.

default

Example:

 <option default-value="tcp" name="transport" order="deny,allow">
 <deny>LBTRU</deny>
 </option>

<templates>
Description The <templates> element is a container element for all templates that contain configuration
options that can be used in other templates or applications. A template can be very specific, such as
configuring options only for LBT-RM sources, or more comprehensive, configuring common options for your
applications.

12 Chapter 1: Configuring Ultra Messaging Options

Insert any desired templates in the <templates> element to hold configuration option values shared by
multiple applications or primitive objects. You can create and apply multiple templates to applications and
primitive UM objects in a comma separated value (CSV) format. However, if the same option appears in
multiple templates, the option value in the last or lower-level template overrides the option value in the
previous or higher-level template.

Parents “<um-configuration>” on page 8

Children “<template>” on page 13

XML Attributes: None.

Example:

 <templates>
 <template name="SENDING">
 <options/>
 </template>
 </templates>

<template>

Description The <template> element is a container for one uniquely named set of options.

Parents “<templates>” on page 12

Children “<options>” on page 10

XML Attributes:

XML Attribute Description Default Value

name Name of the configuration
template, which can be referenced
elsewhere in this XML configuration
file to assign to other configuration
elements. Multiple templates can
be specified in a comma separated
value (CSV) format.

None

Example:

 <templates>
 <template name="SENDING",name="SENDING-LBTRM">
 <options/>
 </template>
 </templates>

<applications>
Description The <application> element is a container element for all applications configured in the XML
configuration file. UM lets you configure one or more applications.

Parents “<um-configuration>” on page 8

Children “<application>” on page 14

XML Attributes: None.

XML Configuration Files 13

Example:

 <applications>
 <application name="SENDING-IXCM-LBTRM" template="SENDING">
 <contexts/>
 <event-queues/>
 <application-data/>
 </application>
 </applications>

<application>

Description The application element contains option values for all object elements within a single, uniquely
named, application.

Parents “<applications>” on page 13

Children

• “<application-data>” on page 24

• “<contexts>” on page 14

• “<event-queues>” on page 21

• “<hfxs>” on page 23

XML Attributes:

XML Attribute Description Default Value

name Name of the application. Used as
an optional parameter for
lbm_config_from_xml(). If a
name is not supplied, this must be
the only occurrence of this element
in the XML configuration file.

None

template Name of the configuration template
to use for the application.

None

Example:

 <applications>
 <application name="SENDING-IXCM-LBTRM" template="SENDING">
 <application-data/>
 <contexts/>
 <event-queues/>
 </application>
 <application name="SENDING-IXCM-TCP" template="SENDING">
 <application-data/>
 <contexts/>
 <event-queues/>
 </applications>

<contexts>
Description The <contexts> element is a container element for all UM contexts configured for an application.
UM lets you create one or more contexts for an application.

Parents “<application>” on page 14

Children “<context>” on page 15.

14 Chapter 1: Configuring Ultra Messaging Options

XML Attributes:

XML Attribute Description Default Value

template Name of the configuration template
to apply to each individual context
object configured within this
element. Multiple templates can be
applied by specifying them in a
comma-separated-value manner,
i.e., "SENDING1,SENDING2".
Can be overridden by a different
template configured for an
individual context.

None

order Establishes the permission
semantic for each individual
context configured within this
element. Valid values are
deny,allow (deny what you
specify, allow everything else) or
allow,deny (allow what you
specify, deny everything else).
Works in conjunction with the
“<context>” on page 15 XML
attribute, rule.

deny,allow

Example:

 <applications>
 <application>
 <contexts template="SENDING" order="deny,allow">
 <context name="SENDING-95" template="SENDING-LBTRM" rule="allow">
 <sources/>
 <receivers/>
 <wildcard-receivers/>
 <options/>
 </context>
 </contexts>
 <event-queues/>
 <application-data/>
 </application>
 </applications>

<context>

Description The <context> element contains option values for a single context, organized into its child
elements.

Important: Setting the name attribute in this element does not actually name a context. A context name must
be established when you create the context. See the name description in the table below.

Parents “<contexts>” on page 14

Children

• “<sources>” on page 16

• “<receivers>” on page 18

• “<wildcard-receivers>” on page 19

• “<options>” on page 10

XML Configuration Files 15

XML Attributes:

XML Attribute Description Default Value

name Name of the context. UM only
applies an XML configuration using
this name to contexts that match
this context name. Setting this XML
name attribute does not name the
context, but provides the ability to
map previously created context
attributes to this XML element. You
can configure an automatic
monitoring context by setting
name=29west_statistics_co
ntext .

None

template Name of the configuration template
to use for the context object's
options.

None

rule Permits or restricts the creation of
the context object. If
rule="deny", the context object
errors upon creation.

allow

Example:

 <applications>
 <application>
 <contexts template="SENDING" order="deny,allow">
 <context name="SENDING-95" template="SENDING-LBTRM" rule="allow">
 <sources/>
 <receivers/>
 <wildcard-receivers/>
 <options/>
 </context>
 </contexts>
 </application>
 </applications>

<sources>
Description The <sources> element is a container for all UM sources configured for an application. UM lets
you create one or more sources for an application.

Parents “<context>” on page 15

Children “<topic>” on page 17

16 Chapter 1: Configuring Ultra Messaging Options

XML Attributes:

XML Attribute Description Default Value

template Name of the configuration template
to apply to each individual source
object configured within this
element. Multiple templates can by
applied by specifying them in a
comma-separated-value manner,
i.e., "SENDING1,SENDING2".
Can be overridden by a different
template configured for an
individual source.

None

order Establishes the permission
semantic for each individual source
configured within this element.
Valid values are deny,allow
(deny what you specify, allow
everything else) or allow,deny
(allow what you specify, deny
everything else). Works in
conjunction with the “<topic>” on
page 17 XML attribute rule.

deny,allow

Example:

 <applications>
 <application>
 <contexts>
 <context>
 <sources template="SENDING" order="deny,allow">
 <topic topicname="ICXM" template="SENDING-LBTRM" rule="allow"/>
 </sources>
 <receivers/>
 <wildcard-receivers/>
 <options/>
 </context>
 </contexts>
 <event-queues/>
 <application-data/>
 </application>
 </applications>

<topic>

Description The <topic> element contains option values for a single source or receiver.

Parents .

• “<hfxs>” on page 23

• “<receivers>” on page 18

• “<sources>” on page 16

Children “<options>” on page 10.

XML Configuration Files 17

XML Attributes:

XML Attribute Description Default Value

topicname The topic string for the topic that
the source sends or the receiver
accepts. Used as a parameter for
lbm_src_topic_alloc(),
lbm_rcv_topic_lookup(),
lbm_src_attr_create_from_
xml(),
lbm_src_attr_set_from_xml
(),
lbm_rcv_attr_create_from_
xml() and
lbm_rcv_attr_set_from_xml
(). Do not use with the pattern
attribute.

None

template Name of the configuration template
to use for this topic's source or
receiver options.

None

rule Permits or restricts the creation of
the source or receiver object. If
rule="deny", the object errors
upon creation.

allow

pattern Identify the set of options for this
topic with a topic string pattern.
Any source created with a topic
string that matches this pattern
receives the configured option
values. Do not use with the
topicname attribute.

None

Example:

<applications>
<application name="Sending">
 <contexts order="deny,allow">
 <context rule="allow" template="Sending-LBTRM">
 <sources order="deny,allow">
 <topic rule="allow" topicname="IXCM">
 <options type="source">
 <option default-value="224.12.5.101"
name="transport_lbtrm_multicast_address"/>
 </options>
 </topic>
 </sources>
 </context>
 </contexts>
</application>
</applications>

<receivers>
Description The <receivers> element is a container element for all UM receivers configured for an
application. You can create one or more receivers for an application.

Parents “<context>” on page 15

18 Chapter 1: Configuring Ultra Messaging Options

Children “<topic>” on page 17

XML Attributes:

XML Attribute Description Default Value

template Name of the configuration template
to apply to each individual receiver
object configured within this
element. You can apply multiple
templates by specifying them in a
comma-separated-value manner,
e.g.,
"RECEIVING1,RECEIVING2".

None

order Establishes the permission
semantic for each individual
receiver configured within this
element. Valid values are
deny,allow (deny what you
specify, allow everything else) or
allow,deny (allow what you
specify, deny everything else).
Works in conjunction with the
“<topic>” on page 17 XML attribute
rule.

deny,allow

Example:

 <applications>
 <application>
 <contexts>
 <context>
 <sources/>
 <receivers template="RECEIVING" order="deny,allow">
 <topic topicname="ICXM" template="RECEIVING" rule="allow"/>
 </receivers>
 <wildcard-receivers/>
 <options/>
 </context>
 <event-queues/>
 <application-data/>
 </application>
 </applications>

<wildcard-receivers>
Description The <wildcard-receivers> element is a container element for all UM wildcard receivers configured
for an application. UM lets you create one or more wildcard receivers for an application.

Parents “<context>” on page 15

Children “<wildcard-receiver>” on page 20.

XML Configuration Files 19

XML Attributes:

XML Attribute Description Default Value

template Name of the configuration template
to apply to each individual wildcard
receiver object configured within
this element. Multiple templates
can by applied by specifying them
in a comma-separated-value
manner, i.e.,
"RECEIVING1,RECEIVING2".
Can be overridden by a different
template configured for an
individual wildcard receiver.

None

order Establishes the permission
semantic for each individual
wildcard receiver configured within
this element. Valid values are
deny,allow (deny what you
specify, allow everything else) or
allow,deny (allow what you
specify, deny everything else).
Works in conjunction with the
“<wildcard-receiver>” on page 20
XML attribute rule.

deny,allow

Example:

 <applications>
 <application>
 <contexts>
 <context>
 <sources>
 <receivers/>
 <wildcard-receivers template="RECEIVING" order="deny,allow">
 <wildcard-receiver template="RECEIVING-LBTRM" rule="allow" pattern="I*M"
pattern-type="pcre"/>
 </wildcard-receivers>
 <options/>
 </context>
 <event-queues/>
 <application-data/>
 </application>
 </applications>

<wildcard-receiver>

Description The <wildcard-receiver> element contains option values for a single wildcard receiver.

Parents “<wildcard-receivers>” on page 19.

Children “<options>” on page 10.

20 Chapter 1: Configuring Ultra Messaging Options

XML Attributes:

XML Attribute Description Default Value

template Name of the configuration template
to use for the wildcard receiver
object's options.

None

rule Permits or restricts the creation of
the wildcard receiver object. If
rule="deny", the object errors
upon creation.

allow

pattern The wildcard receiver topic string
pattern for this wildcard receiver
object.

None

pattern-type The type of pattern matching to use
for the wildcard receiver object.
Valid values are pcre, regex or
application-callback.

pcre

Example:

 <applications>
 <application>
 <contexts>
 <context>
 <wildcard-receivers template="RECEIVING" order="deny,allow">
 <wildcard-receiver template="RECEIVING-LBTRM" rule="allow" pattern="I*M"
pattern-type="pcre"/>
 </wildcard-receivers>
 </context>
 </application>
 </applications>

<event-queues>
Description The <event-queues> Element is a container element for all UM event queues configured for an
application. UM lets you create one or more event queues for an application.

Parents “<application>” on page 14.

Children “<event-queue>” on page 22.

XML Configuration Files 21

XML Attributes:

XML Attribute Description Default Value

template Name of the configuration template
to apply to each individual event
queue object configured within this
element. You can apply multiple
templates specifying them in a
comma-separated-value manner,
e.g., "EVQ-1,EVQ-2". A template
applied to an individual event
queue will override an <event-
queues>-level template.

None

order Establishes the permission
semantic for each individual event
queue configured within this
element. Valid values are
deny,allow (deny what you
specify, allow everything else) or
allow,deny (allow what you
specify, deny everything else).
Works in conjunction with the
“<event-queue>” on page 22 XML
attribute, rule.

deny,allow

Example:

 <applications>
 <application>
 <contexts/>
 <event-queues template="RECEIVING" order="deny,allow">
 <event-queue name="EVQ-1" template="SENDING-LBTRM" rule="allow"/>
 </event-queues>
 <application-data/>
 </application>
 </applications>

<event-queue>

Description The <event-queue> element contains option values for a single event queue.

Parents “<event-queues>” on page 21.

Children “<options>” on page 10.

22 Chapter 1: Configuring Ultra Messaging Options

XML Attributes:

XML Attribute Description Default Value

name Name of the event queue. Used as
a parameter for
lbm_event_queue_attr_cre
ate_from_xml() and
lbm_event_queue_attr_set_
from_xml().

None

template Name of the configuration template
to use for the event queue object's
options.

None

rule Permits or restricts the creation of
the event queue object. If
rule="deny", the object errors
upon creation.

allow

Example:

 <applications>
 <application>
 <contexts/>
 <event-queues template="RECEIVING" order="deny,allow">
 <event-queue name="EVQ-1" template="SENDING-LBTRM" rule="allow"/>
 </event-queues>
 <application-data/>
 </application>
 </applications>

<hfxs>
Description The <hfxs> element is a container for all UM HFX objects configured for an application. Within
the <hfxs> element, options are organized by topic.

Parents “<application>” on page 14

Children “<topic>” on page 17

XML Configuration Files 23

XML Attributes:

XML Attribute Description Default Value

template Name of the configuration template
to apply to each individual HFX
object configured within this
element. Multiple templates can by
applied by specifying them in a
comma-separated-value manner,
i.e., "SENDING1,SENDING2".
Can be overridden by a different
template configured for an
individual HFX object.

None

order Establishes the permission
semantic for each individual HFX
object configured within this
element. Valid values are
deny,allow (deny what you
specify, allow everything else) or
allow,deny (allow what you
specify, deny everything else).
Works in conjunction with the
“<topic>” on page 17 XML attribute,
rule.

deny,allow

Example:

 <applications>
 <application>
 <hfxs template="SENDING" order="deny,allow">
 <topic topicname="ICXM" template="SENDING-LBTRM" rule="allow"/>
 </hfxs>
 </application>
 </applications>

<application-data>
Description The <application-data> element is a free-form text comment field that you can use to store
application-specific or options-group-specific metadata. When defined at the options level, this content
overrides <application-data> elements defined at the application level.

Your application can retrieve this data via the lbm_*_attr_getopt() and lbm_*_attr_str_getopt() API
functions under the option name application_data. You can also programmatically set it using the
equivalent *_setopt() APIs. The application_data option is defined for all option scopes.

Also, you can set or retrieve this value at runtime via the *_getopt() and *_setopt() functions defined for the
following types:

• lbm_context_t
• lbm_src_t
• lbm_rcv_t
• lbm_wildcard_rcv_t
• lbm_event_queue_t
• lbm_hfx_t

24 Chapter 1: Configuring Ultra Messaging Options

Parents . .

• “<application>” on page 14

• “<options>” on page 10

Children. None.

XML Attributes:

XML Attribute Description Default Value

xml:space How whitespace is handled.
default trims leading and trailing
whitespace (e.g., tabs, spaces,
linefeeds, etc.), and compresses
multiple whitespace characters into
a single space character.
preserve preserves the
whitespace exactly as read.

default

Example:

 <applications>
 <application name="SENDING-IXCM-LBTRM" template="SENDING">
 <application-data>
 SENDING-IXCM-LBTRM options application data string
 <application-data/>
 <contexts/>
 <options type="context">
 <option/>
 . . .
 <application-data>
 context options application data string
 <application-data/>
 </options>
 <event-queues/>
 </application>
 </applications>

Sample XML Configuration File
A sample XML configuration file appears below and has the following notable aspects.

• Contains object attributes for a UM context and source.

• Application name is Sending.

• Uses a template of attributes also called Sending-LBTRM.

• The template, Sending-LBTRM, uses the order attribute for the fd_management_type to allow all file
descriptor types except DEVPOLL. However the Sending-LBTRM application further restricts the file
descriptor types to exclude EPOLL in addition to DEVPOLL.

<um-configuration version="1.0">
<templates>
<template name="Sending-LBTRM">
 <options type="source">
 <option default-value="0" name="late_join"/>
 <option default-value="500" name="resolver_advertisement_maximum_initial_interval"/>
 <option default-value="5000"
name="resolver_advertisement_minimum_initial_duration"/>
 <option default-value="10" name="resolver_advertisement_minimum_initial_interval"/>

XML Configuration Files 25

 <option default-value="60" name="resolver_advertisement_minimum_sustain_duration"/>
 <option default-value="1000" name="resolver_advertisement_sustain_interval"/>
 <option default-value="lbtrm" name="transport"/>
 <option default-value="14400" name="transport_lbtrm_destination_port"/>
 <option default-value="0.0.0.0" name="transport_lbtrm_multicast_address"/>
 </options>
 <options type="context">
 <option default-value="wsaeventselect" name="fd_management_type" order="deny,allow">
 <deny>wincompport</deny>
 </option>
 <option default-value="5000" name="mim_delivery_control_activity_check_interval"/>
 <option default-value="60000" name="mim_delivery_control_activity_timeout"/>
 <option default-value="6000" name="mim_delivery_control_loss_check_interval"/>
 <option default-value="2000000" name="resolver_initial_advertisement_bps"/>
 <option default-value="2000" name="resolver_initial_advertisements_per_second"/>
 <option default-value="2000" name="resolver_initial_queries_per_second"/>
 <option default-value="2000000" name="resolver_initial_query_bps"/>
 </options>
</template>
</templates>
<applications>
<application name="Sending">
 <contexts order="deny,allow">
 <context rule="allow" template="Sending-LBTRM">
 <sources order="deny,allow">
 <topic rule="allow" topicname="IXCM">
 <options type="source">
 <option default-value="1" name="late_join"/>
 <option default-value="lbtrm" name="transport"/>
 <option default-value="14488" name="transport_lbtrm_destination_port"/>
 <option default-value="224.12.5.101"
name="transport_lbtrm_multicast_address"/>
 </options>
 </topic>
 </sources>
 <receivers order="deny,allow"/>
 <wildcard-receivers order="deny,allow"/>
 <options type="context">
 <option default-value="224.9.10.11" name="resolver_multicast_address"/>
 <option default-value="224.9.10.11" name="resolver_multicast_incoming_address"/>
 <option default-value="12965" name="resolver_multicast_incoming_port"/>
 <option default-value="224.9.10.11" name="resolver_multicast_outgoing_address"/>
 <option default-value="12965" name="resolver_multicast_outgoing_port"/>
 <option default-value="12965" name="resolver_multicast_port"/>
 <option default-value="224.9.10.12" name="resolver_multicast_interface"/>
 <option default-value="0" name="resolver_multicast_receiver_socket_buffer"/>
 <option default-value="wsaeventselect" name="fd_management_type"
order="deny,allow">
 <deny>wincompport</deny>
 </option>
 </options>
 </context>
 </contexts>
 <event-queues order="deny,allow">
 <event-queue rule="allow">
 <options type="event-queue">
 <option default-value="lbm" name="monitor_transport"/>
 <option default-value="" name="monitor_appid"/>
 </options>
 </event-queue>
 </event-queues>
</application>
</applications>
</um-configuration>

Using the Order and Rule XML Attributes
The order and rule XML attributes combine to enable you to permit or restrict the creation of primitive UM
objects. The container elements such as the “<contexts>” on page 14, “<sources>” on page 16,

26 Chapter 1: Configuring Ultra Messaging Options

“<receivers>” on page 18, etc. have the order attribute. The single object elements, such as the
“<context>” on page 15, “<topic>” on page 17, etc., have the rule attribute. The default for both attributes
allows creation of all objects. You can however, exert some administrative control over your applications by
allowing the creation of only certain objects.

You can vary the order attribute values to suit whether permission or restriction is more prevalent. In the
example below, only a single topic needs to be restricted, so we use the default values for the order attribute
with only a single topic restricted with a rule="deny" attribute.

 <sources order="deny,allow">
 <topic topicname="CDEF" rule="deny"/>
 <!-- all other source topics allowed -->
 </sources>

In contrast, the following example requires the creation of only a single receiver topic object, so you can
change the order attribute to allow,deny, which restricts the creation of all receiver topic objects except the
one allowed.

 <receivers order="allow,deny">
 <topic topicname="AARM" rule="allow"/>
 <!-- all other receive topics denied -->
 </receivers>

You can also combine topic names with topic patterns. In the example below, we set the order attribute to
the default. Topic ISM is denied with its order attribute. Topics IRM and SRM satisfy both their own allow rules
and the pattern *R* deny rule. So when you allocate a source topic with lbm_src_topic_alloc(), UM accepts
the rule that matches the order attribute default, which is allow.

 <sources order="deny,allow">
 <topic topicname="ISM" rule="deny"/>
 <topic topicname="IRM" rule="allow"/>
 <topic pattern="*R*" rule="deny"/>
 <topic topicname="SRM" rule="allow"/>
 </sources>

As a result of the above configuration, UM allows the creation of source topic objects IRM and SRM, and all
other topics, except those that match the pattern *R*.

XML Configuration File DTD
The XML configuration file DTD is integrated into UM and appears below.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT um-configuration (license | templates | applications)*>
<!ATTLIST um-configuration version CDATA #REQUIRED>

<!ELEMENT license (#PCDATA)>
<!ATTLIST license format (filename | string) "string">
<!ATTLIST license xml:space (default | preserve) "default">

<!ELEMENT templates (template*)>

<!ELEMENT template (options+)>
<!ATTLIST template name CDATA #REQUIRED>

<!ELEMENT options (option | application-data)*>
<!ATTLIST options type (event-queue | context | source | receiver | wildcard-receiver |
hfx) #IMPLIED>

XML Configuration Files 27

<!ELEMENT option (allow | deny)*>
<!ATTLIST option name CDATA #REQUIRED>
<!ATTLIST option default-value CDATA #IMPLIED>
<!ATTLIST option order CDATA #IMPLIED>

<!ELEMENT application-data (#PCDATA)>
<!ATTLIST application-data xml:space (default | preserve) "default">

<!ELEMENT allow (#PCDATA)>
<!ATTLIST allow xml:space (default | preserve) "default">

<!ELEMENT deny (#PCDATA)>
<!ATTLIST deny xml:space (default | preserve) "default">

<!ELEMENT applications (application*)>

<!ELEMENT application (contexts | event-queues | hfxs | application-data)+>
<!ATTLIST application name CDATA #IMPLIED>
<!ATTLIST application template CDATA #IMPLIED>

<!ELEMENT contexts (context*)>
<!ATTLIST contexts template CDATA #IMPLIED>
<!ATTLIST contexts order CDATA #IMPLIED>

<!ELEMENT event-queues (event-queue*)>
<!ATTLIST event-queues template CDATA #IMPLIED>
<!ATTLIST event-queues order CDATA #IMPLIED>

<!ELEMENT hfxs (topic*)>
<!ATTLIST hfxs template CDATA #IMPLIED>
<!ATTLIST hfxs order CDATA #IMPLIED>

<!ELEMENT event-queue (options*)>
<!ATTLIST event-queue name CDATA #IMPLIED>
<!ATTLIST event-queue template CDATA #IMPLIED>
<!ATTLIST event-queue rule (allow | deny) "allow">

<!ELEMENT context (sources | receivers | wildcard-receivers | options)+>
<!ATTLIST context name CDATA #IMPLIED>
<!ATTLIST context template CDATA #IMPLIED>
<!ATTLIST context rule (allow | deny) "allow">

<!ELEMENT sources (topic*)>
<!ATTLIST sources template CDATA #IMPLIED>
<!ATTLIST sources order CDATA #IMPLIED>

<!ELEMENT receivers (topic*)>
<!ATTLIST receivers template CDATA #IMPLIED>
<!ATTLIST receivers order CDATA #IMPLIED>

<!ELEMENT wildcard-receivers (wildcard-receiver*)>
<!ATTLIST wildcard-receivers template CDATA #IMPLIED>
<!ATTLIST wildcard-receivers order CDATA #IMPLIED>

<!ELEMENT topic (options*)>
<!ATTLIST topic template CDATA #IMPLIED>
<!ATTLIST topic rule (allow | deny) "allow">
<!ATTLIST topic pattern CDATA #IMPLIED>
<!ATTLIST topic topicname CDATA #IMPLIED>

<!ELEMENT wildcard-receiver (options*)>
<!ATTLIST wildcard-receiver template CDATA #IMPLIED>
<!ATTLIST wildcard-receiver rule (allow | deny) "allow">
<!ATTLIST wildcard-receiver pattern CDATA #IMPLIED>
<!ATTLIST wildcard-receiver pattern-type (pcre | regex | application-callback) #IMPLIED>

28 Chapter 1: Configuring Ultra Messaging Options

Configuration File Restrictions
The only options that you cannot set via configuration file are those that require function pointers as their
value. Some examples include context resolver_source_notification_function and wildcard_receiver
pattern_callback. you can set these options via only API functions. See “Options (Callbacks) That Cannot
Be Set From a UM Configuration File” on page 239 for a list of these options.

Attributes Objects
Many UM primitive objects have a corresponding attributes object, which lets you create custom attributes.
From here you can set options specific to an object (but different from default option settings) prior to creating
that object. The following table lists the UM primitive objects and corresponding attributes objects.

Table 1. UM Objects and Corresponding Attributes Objects

UM object Corresponding Attributes Object(s)

lbm_context_t lbm_context_attr_t

lbm_topic_t lbm_src_topic_attr_t,
lbm_rcv_topic_attr_t

lbm_wildcard_rcv_t lbm_wildcard_rcv_attr_t

lbm_event_queue_t lbm_event_queue_attr_t

lbm_hfx_t lbm_hfx_attr_t

You call API functions to create attributes objects and set, retrieve, or delete their values. These function
names are based on the attributes object name and are shown in the following table, using the context object
as an example. See the C API for all context attribute functions.

Table 2. UM API Functions For Working With lbm_context_attr_t Attributes Objects

Action UM API function

Create lbm_context_attr_create()

Set Option from Binary Value lbm_context_attr_setopt()

Set Option from String Value lbm_context_attr_str_setopt()

Get Option as Binary Value lbm_context_attr_getopt()

Get Option as String Value lbm_context_attr_str_getopt()

Delete lbm_context_attr_delete()

For other object types, replace context with event_queue, hfx, rcv_topic, src_topic, or
wildcard_rcv.

Configuration File Restrictions 29

The following sections describe in detail the use of these UM API functions. The functions related to
lbm_context_attr_t objects are used for the purpose of illustration, but the instructions (if not the specifics)
apply to all UM attributes objects.

Creating An Attributes Object
In the following example, the call to lbm_context_attr_create() creates the custom attributes object, and
initializes each attribute from the current default values. Subsequent calls to lbm_context_attr_setopt() or
lbm_context_attr_str_setopt() modify only the attributes object values.

lbm_context_attr_t * attrib;
int rc;
int errnum;
const char * errmsg;

rc = lbm_context_attr_create(&attrib);
if (rc != 0)
{
 errnum = lbm_errnum();
 errmsg = lbm_errmsg();
 fprintf(stderr, "Error %d returned from lbm_context_attr_create(), %s\n",
 errnum, errmsg);
}

This example also illustrates the proper way to determine the success or failure of an UM API call. Most UM
API calls return 0 to indicate success, and -1 to indicate failure. To retrieve the specific UM error code for the
failure, call lbm_errnum(). To retrieve a text string describing the error code, call lbm_errmsg().

Setting an Option from a Binary Value
For an option of type other than "string", call lbm_context_attr_setopt() to set its value. (See the C API
reference for details on this function.) The final two parameters in the function are a pointer to a variable
containing the option value, and a pointer to a variable of type size_t that contains the correct length of the
option value variable.

UM options are of three general types that:

• accept values in a well-defined range (Examples include context transport_tcp_port_low and context
transport_tcp_port_high. Each requires a value which corresponds to a valid TCP port number.)

• accept values from an enumerated set, (For example, context operational_mode. Manifest constants are
provided in lbm.h for each permitted value. In the case of context operational_mode, those constants
are LBM_CTX_ATTR_OP_EMBEDDED and LBM_CTX_ATTR_OP_SEQUENTIAL.)

• act as switches, enabling or disabling a particular feature (For example, context resolver_cache. The set
of allowed values is limited to 0 (indicating off, no, false, or disabled), and 1, indicating on, yes, true, or
enabled.)

The example code below sets four options. First, we set the operational mode to sequential. Then we set the
transport TCP port low and high values to 4901 and 4920, respectively. Finally, we tell UM that our
application will not be using multiple sending threads per transport session.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;
unsigned short int optval;
size_t optlen;

/* Set the operational_mode */
optlen = sizeof(optval);
optval = LBM_CTX_ATTR_OP_SEQUENTIAL;
rc = lbm_context_attr_setopt(attrib, "operational_mode", &optval, optlen);

30 Chapter 1: Configuring Ultra Messaging Options

if (rc != 0)
{
 /* Handle error */
}

/* Set transport_tcp_port_low */
optlen = sizeof(optval);
optval = 4901;
rc = lbm_context_attr_setopt(attrib, "transport_tcp_port_low", &optval, optlen);
if (rc != 0)
{
 /* Handle error */
}

/* Set transport_tcp_port_high */
optlen = sizeof(optval);
optval = 4920;
rc = lbm_context_attr_setopt(attrib, "transport_tcp_port_high", &optval, optlen);
if (rc != 0)
{
 /* Handle error */
}

/* Set transport_session_multiple_sending_threads */
optlen = sizeof(optval);
optval = 0;
rc = lbm_context_attr_setopt(attrib, "transport_session_multiple_sending_threads",
 &optval, optlen);
if (rc != 0)
{
 /* Handle error */
}

Setting an Option from a String Value
Setting an option from a string value effectively does the same thing that setting an option from a binary
value does. However, the option value is passed as a null-terminated string, rather than as value and length
pointers. UM uses this mechanism to process options in a configuration file. Thus, the format used for option
values must match the format you would use in a configuration file.

In the following example, as before, we set the operational mode to sequential. Then we set the transport
TCP port low and high values to 4901 and 4920, respectively. Finally, we tell UM that our application will not
be using multiple sending threads per transport session.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;

/* Set the operational_mode */
rc = lbm_context_attr_str_setopt(attrib, "operational_mode", "sequential");
if (rc != 0)
{
 /* Handle error */
}

/* Set transport_tcp_port_low */
rc = lbm_context_attr_str_setopt(attrib, "transport_tcp_port_low", "4901");
if (rc != 0)
{
 /* Handle error */
}

/* Set transport_tcp_port_high */
rc = lbm_context_attr_str_setopt(attrib, "transport_tcp_port_high", "4920");
if (rc != 0)
{
 /* Handle error */
}

Attributes Objects 31

/* Set transport_session_multiple_sending_threads */
rc = lbm_context_attr_str_setopt(attrib, "transport_session_multiple_sending_threads",
 "0");
if (rc != 0)
{
 /* Handle error */
}

Getting an Option as a Binary Value
Getting an option as a binary value is very similar to setting an option from a binary value: it requires
knowledge of not only the option name, but its type as well. The final two parameters in the call to
lbm_context_attr_getopt() are a pointer to a variable to receive the current option value, and a pointer to a
variable of type size_t which contains the length of the option value variable. This length must be correct for
the specified option.

In the example code below, we set the option values for operational mode, the transport TCP port low and
high values, and retrieve multiple sending threads.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;
unsigned short int optval;
size_t optlen;

/* Get the operational_mode */
optlen = sizeof(optval);
rc = lbm_context_attr_getopt(attrib, "operational_mode", &optval, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval now contains LBM_CTX_ATTR_OP_EMBEDDED or LBM_CTX_ATTR_OP_SEQUENTIAL */

/* Get transport_tcp_port_low */
optlen = sizeof(optval);
rc = lbm_context_attr_getopt(attrib, "transport_tcp_port_low", &optval, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval now contains the value of transport_tcp_port_low, which should be 4901 */

/* Get transport_tcp_port_high */
optlen = sizeof(optval);
rc = lbm_context_attr_getopt(attrib, "transport_tcp_port_high", &optval, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval now contains the value of transport_tcp_port_high, which should be 4920 */

/* Get transport_session_multiple_sending_threads */
optlen = sizeof(optval);
rc = lbm_context_attr_getopt(attrib, "transport_session_multiple_sending_threads",
 &optval, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval now contains the value of transport_session_multiple_sending_threads,
 which should be 0. */

32 Chapter 1: Configuring Ultra Messaging Options

Getting an Option as a String Value
Getting an option as a string value effectively does the same thing that getting an option as a binary value
does. However, the option value is returned as a null-terminated string, just as you would specify the option
value in a configuration file. The final two parameters in the call to lbm_context_attr_str_getopt() are a
pointer to a string variable to receive the current option value, and a pointer to a variable of type size_t which
contains the maximum size of the option value string variable.

In the example code below, the option values for operational mode, the transport TCP port low and high
values, and multiple sending threads are retrieved.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;
char optval_string[256];

/* Get the operational_mode */
optlen = sizeof(optval_string);
rc = lbm_context_attr_str_getopt(attrib, "operational_mode", optval_string, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval_string now contains either "embedded" or "sequential" */

/* Get transport_tcp_port_low */
optlen = sizeof(optval_string);
rc = lbm_context_attr_str_getopt(attrib, "transport_tcp_port_low",
 optval_string, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval_string now contains the string value of transport_tcp_port_low,
 which should be "4901" */

/* Get transport_tcp_port_high */
optlen = sizeof(optval_string);
rc = lbm_context_attr_str_getopt(attrib, "transport_tcp_port_high",
 optval_string, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval_string now contains the string value of transport_tcp_port_high,
 which should be "4920" */

/* Get transport_session_multiple_sending_threads */
optlen = sizeof(optval_string);
rc = lbm_context_attr_str_getopt(attrib, "transport_session_multiple_sending_threads",
 optval_string, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval_string now contains the value of transport_session_multiple_sending_threads,
 which should be "0". */

Deleting an Attributes Object
Once the attributes object is no longer needed, it should be deleted.

lbm_context_attr_t * attrib; /* Must have already been created */
int rc;

rc = lbm_context_attr_delete(attrib);
if (rc != 0)

Attributes Objects 33

{
 /* Handle error */
}

Restrictions
There are no restrictions on setting options via attributes objects. Any option which can be set via a
configuration file, can also be set via an attributes object. In addition, attributes objects allow setting certain
options (such as function pointers) which cannot be set with a configuration file.

Modifying Current Attributes
A few options within an UM object's current attributes can be set after the object is created. UM API functions
supporting such actions operate on the object itself, rather than on an attributes object. In addition to
modifying the current attributes, the value of options from the current attributes can be fetched.

The UM objects which support these actions are lbm_src_t, lbm_rcv_t, lbm_context_t, and
lbm_event_queue_t. For each such object, there are corresponding API functions to set an option from a
binary value, set an option from a string value, get an option as a binary value, and get an option as a string
value. These function names are based on the object name, suffixed with _setopt(), _str_setopt(),
_getopt(), and _str_getopt(). As an illustration of this convention, the API functions for working with
lbm_event_queue_t objects are shown in the following table.

Table 3. UM API Functions For Working With lbm_event_queue_t Objects

Action UM API function

Set Option from a Binary Value lbm_event_queue_setopt()

Set Option from a String Value lbm_event_queue_str_setopt()

The following sections describe in detail the use of these UM API functions. The functions related to
lbm_event_queue_t objects are used for the purpose of illustration, but the instructions (if not the specifics)
apply to all such UM objects.

Setting An Option from a Binary Value
Setting an option from a binary value requires knowledge of not only the option name, but its type and
allowable values as well. The final two parameters in the call to lbm_event_queue_setopt() are a pointer to
a variable which contains the option value to be set, and a pointer to a variable of type size_t which contains
the length of the option value variable. This length must be correct for the specified option.

In the example code below, we set the queue size warning to 5000 events.

unsigned long int optval;
size_t optlen;
lbm_event_queue_t evq; /* must be previously created */
int rc;

/* Set the queue size warning */
optlen = sizeof(optval);
optval = 5000;
rc = lbm_event_queue_setopt(&evq, "queue_size_warning", &optval, &optlen);

34 Chapter 1: Configuring Ultra Messaging Options

if (rc != 0)
{
 /* Handle error */
}

Setting An Option from a String Value
Setting an option from a string value effectively does the same thing that setting an option from a binary
value does. However, the option value is passed as a null-terminated string, rather than as value and length
pointers. This is similar to the mechanism used by UM to process options in a configuration file. Thus, the
format used for option values must match the format you would use in a configuration file.

As before, we set the queue size warning to 5000 events.

lbm_event_queue_t evq; /* must be previously created */
int rc;

/* Set the queue size warning */
rc = lbm_event_queue_setopt(&evq, "queue_size_warning", "5000");
if (rc != 0)
{
 /* Handle error */
}

Restrictions
Modifying the current attributes of an object allows only a very limited subset of options to be set or retrieved.
Consult subsequent sections of this document to determine if a particular option can be specified.

Retrieving Current Option Values
Most UM objects allow their current attributes' option values to be retrieved during operation. UM API
functions supporting such actions operate on the object itself.

The UM objects which support these actions are lbm_src_t, lbm_rcv_t, lbm_context_t, and
lbm_event_queue_t. For each such object, there are corresponding API functions to get an option as a
binary value, and get an option as a string value. These function names are based on the object name,
suffixed with _getopt(), and _str_getopt(). As an illustration of this convention, the API functions for working
with lbm_event_queue_t objects are shown in the following table.

Table 4. UM API Functions For Retrieving Option Values from lbm_event_queue_t Objects

Action UM API function

Get Option as a Binary Value lbm_event_queue_getopt()

Get Option as a String Value lbm_event_queue_str_getopt()

The following sections describe in detail the use of these UM API functions. The functions related to
lbm_event_queue_t objects are used for the purpose of illustration, but the instructions (if not the specifics)
apply to all such UM objects.

Retrieving Current Option Values 35

Getting An Option as a Binary Value
Getting an option as a binary value is very similar to setting an option from a binary value: it requires
knowledge of not only the option name, but its type as well. The final two parameters in the call to
lbm_event_queue_getopt() are a pointer to a variable to receive the current option value, and a pointer to a
variable of type size_t which contains the length of the option value variable. This length must be correct for
the specified option.

In the example code below, the option value for the queue size warning is retrieved.

unsigned long int optval;
size_t optlen;
lbm_event_queue_t evq; /* must be previously created */
int rc;

/* Get the queue size warning value */
optlen = sizeof(optval);
rc = lbm_event_queue_getopt(&evq, "queue_size_warning", &optval, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval now contains the value of queue_size_warning, which should be 5000 */

Getting An Option as a String Value
Getting an option as a string value effectively does the same thing that getting an option as a binary value
does. However, the option value is returned as a null-terminated string, just as you would specify the option
value in a configuration file. The final two parameters in the call to lbm_event_queue_str_getopt() are a
pointer to a string variable to receive the current option value, and a pointer to a variable of type size_t which
contains the maximum size of the option value string variable.

In the example code below, the option value for the queue size warning is retrieved.

char optval_string[256];
size_t optlen;
lbm_event_queue_t evq; /* must be previously created */
int rc;

/* Get the queue size warning value */
optlen = sizeof(optval_string);
rc = lbm_event_queue_str_getopt(&evq, "queue_size_warning", optval_string, &optlen);
if (rc != 0)
{
 /* Handle error */
}
/* optval now contains the value of queue_size_warning, which should be "5000" */

36 Chapter 1: Configuring Ultra Messaging Options

C H A P T E R 2

Example Configuration Scenarios
This chapter includes the following topics:

• Highest Throughput, 37

• Lowest Latency, 37

• Creating Multicast Sources, 38

• Disabling Aspects of Topic Resolution , 39

• Unicast Resolver, 40

• Configure Previous Port Defaults, 41

• Configure New Port Defaults, 41

• Interrelated Configuration Options, 42

Highest Throughput
The following configuration option tunes UMS for the highest possible throughput.

#
LBM can be configured to make efficient use of CPU time, leading
to the highest-possible throughput (bytes per second or messages
per second). This may come at the expense of latency at low
message rates. The following line configures LBM to accumulate
8KB of messages (or for wait implicit_batching_interval) before sending.
#
source implicit_batching_minimum_length 8192

Lowest Latency
This is an example configuration that favors low latency at the expense of higher CPU utilization and
potentially lower throughput.

#
Latency can be reduced at the expense of network efficiency and
system CPU time by adjusting implicit batching parameters. The
default parameters hold messages for up to 200 milliseconds or until
2048 bytes are waiting to go. The lowest possible latency is
obtained by setting the minimum batching length to 1 byte, which
effectively disables the implicit batching feature. For example:
#

37

context mim_implicit_batching_minimum_length 1
source implicit_batching_minimum_length 1
#
Latency can be kept to a minimum with UM by writing receiving
applications that can accept messages in the order they arrive.
See https://communities.informatica.com/infakb/faq/5/Pages/80043.aspx and
http://www.29West.Com/docs/THPM/tcp-latency.html#TCP-RECEIVER-SIDE-LATENCY
for more information. Here's how to use arrival-order delivery:
#
receiver ordered_delivery 0
#
Disable Nagel's algorithm (batching) for TCP responses to eliminate
queuing latency when sending only single responses.
#
context response_tcp_nodelay 1
#
If you are running a LAN environment with under 100 machines, you can
drastically improve your recovery related latencies without significant
additional network overhead by using the following UM loss
recovery parameter. See https://communities.informatica.com/infakb/faq/5/Pages/
80070.aspx
for additional information about this and other recovery parameters.
#
receiver transport_lbtrm_nak_backoff_interval 10
#
Use of a zero value for the following parameter sends an immediate NAK upon
loss detection, which can further reduce repair latency. (Immediate NAKs do
not elicit an NCF by the source.) It is critical you understand the implications
of this feature and we recommend that you contact http://29west.com/support to
learn more before enabling it.
#
receiver transport_lbtrm_nak_initial_backoff_interval 0
#

Creating Multicast Sources
This is an example configuration file that changes the default transport to reliable multicast so all sources
created send messages over LBT-RM.

#
UM can be configured to create sources using the LBT-RM reliable
multicast protocol instead of the default TCP.
#
source transport LBT-RM
#
Stable and reliable operation with multicast requires careful
setting of rate control limits. See
http://www.29west.com/docs/THPM/thpm.html#GROUP-RATE-CONTROL
for background information.
#
It's generally best to start with small limits and gradually
increase them after testing indicates that they can be safely
sustained on your network.
#
The following example limits (new) data to 10 Mbps and retransmissions
to 1 Mbps (10%). Note that when changing the data rate limit, the
limit retransmission limit should be changed as well. A good value
for most purposes is between 2% and 10% of the data rate limit, with
a lower limit of 1,000,000.

#
context transport_lbtrm_data_rate_limit 10000000
context transport_lbtrm_retransmit_rate_limit 1000000

38 Chapter 2: Example Configuration Scenarios

Disabling Aspects of Topic Resolution
If you need to reduce the amount of Topic Resolution traffic on your network, use the following Configuration
options and values in a Ultra Messaging Configuration file.

Note: Ultra Messaging does not recommend disabling both advertisements and queries because topics may
not resolve at all.

Disabling Topic Advertisements
You can disable topic advertisements in the Initial Phase, Sustaining Phase or both phases of topic
resolution.

Disabling Initial Phase Advertisements
Use one or both of the following options to disable topic advertisements in only the Initial Phase.

source resolver_advertisement_minimum_initial_interval 0
source resolver_advertisement_maximum_initial_interval 0

Disabling Sustaining Phase Advertisements
Use the following option to disable topic advertisements in only the Sustaining Phase.

source resolver_advertisement_sustain_interval 0

Disabling Receiver Topic Queries
You can disable the querying of topics by receivers in the Initial Phase, Sustaining Phase or both phases of
topic resolution.

Disabling Initial Phase Queries
Use one or both of the following options to disable topic queries in only the Initial Phase.

receiver resolver_query_minimum_initial_interval 0
receiver resolver_query_maximum_initial_interval 0

Disabling Sustaining Phase Queries
Use one or both of the following options to disable topic queries in only the Sustaining Phase.

receiver resolver_query_sustain_interval 0
receiver resolution_number_of_sources_query_threshold 0

Disabling Wildcard Topic Queries
Use one or both of the following options to disable topic queries by wildcard receivers.

wildcard_receiver resolver_query_minimum_interval 0
wildcard_receiver resolver_query_maximum_interval 0

Disabling Aspects of Topic Resolution 39

Disabling Store (Context) Name Queries
Use one or both of the following options to disable context name queries by sources.

resolver_context_name_query_maximum_interval 0
resolver_context_name_query_minimum_interval 0

Disabling All But the Minimum Topic Resolution Traffic
A minimalist approach to topic resolution can take different forms based on you requirements. One approach
is to disable all traffic except for queries in the sustaining phase. Add the following settings to your Ultra
Messaging configuration file to implement this approach.

source resolver_advertisement_minimum_initial_interval 0
source resolver_advertisement_sustain_interval 0
receiver resolver_query_minimum_initial_interval 0
receiver resolution_number_of_sources_query_threshold 1
wildcard_receiver resolver_query_minimum_interval 0

Re-establish Pre-4.0 Topic Resolution
Ultra Messaging topic resolution prior to LBM Version 4.0 did not have resolution phases. To implement
pre-4.0 topic resolution, include the following configuration option changes in your Ultra Messaging
configuration file.

----- Disable Advertisements in 4.0 Initial Phase
source resolver_advertisement_minimum_initial_interval 0

----- Re-establish pre-4.0 Advertisement Behavior
source resolver_advertisement_minimum_sustain_duration 0
context resolver_sustain_advertisement_bps 0

----- Disable Queries in 4.0 Initial Phase
receiver resolver_query_minimum_initial_interval 0

----- Re-establish pre-4.0 Query Behavior
receiver resolver_query_sustain_interval 100
receiver resolver_query_minimum_sustain_duration 0
context resolver_sustain_query_bps 0
receiver resolution_number_of_sources_query_threshold 1

----- Re-establish pre-4.0 Wildcard Query Behavior
wildcard_receiver resolver_query_minimum_interval 0

Unicast Resolver
To use the unicast resolver, use a configuration file like the following example:

#
Topic resolution can be configured to use unicast traffic with an
LBM resolver daemon (lbmrd) instead of the default which uses multicast.
Be sure to insert the IP address of your lbmrd below.
#
context resolver_unicast_daemon 127.0.0.1:15380

40 Chapter 2: Example Configuration Scenarios

Configure Previous Port Defaults
To use the previous default ports (prior to LBM 3.3 and UME 2.0), the following configuration file may be
used.

context mim_destination_port 4401
context mim_incoming_destination_port 4401
context mim_outgoing_destination_port 4401
context resolver_multicast_incoming_port 2965
context resolver_multicast_outgoing_port 2965
context resolver_multicast_port 2965
context resolver_unicast_destination_port 5380
context resolver_unicast_port_high 4406
context resolver_unicast_port_low 4402
source transport_lbtrm_destination_port 4400
context transport_lbtrm_source_port_high 4399
context transport_lbtrm_source_port_low 4390
context transport_lbtru_port_high 4389
receiver transport_lbtru_port_high 4379
context transport_lbtru_port_low 4380
receiver transport_lbtru_port_low 4360
context request_tcp_port_high 4395
context request_tcp_port_low 4391
context transport_tcp_port_high 4390
context transport_tcp_port_low 4371
source ume_primary_store_port 4567
source ume_secondary_store_port 4567
source ume_tertiary_store_port 4567

Note: Alternatively, UMS/UMP will use the original port settings with the definition of the
"LBM_USE_ORIG_DEFAULT_PORTS" environment variable (value not pertinent).

Configure New Port Defaults
In the unusual case that you must run older versions of Ultra Messaging (less than LBM 3.3 / UME 2.0) on
certain machine(s) and need these older version to work with the machines running the current versions of
UMS and UMP, you can use the following configuration file for the older versions to synchronize port usage
between old and current versions.

context mim_destination_port 14401
context mim_incoming_destination_port 14401
context mim_outgoing_destination_port 14401
context resolver_multicast_incoming_port 12965
context resolver_multicast_outgoing_port 12965
context resolver_multicast_port 12965
context resolver_unicast_destination_port 15380
context resolver_unicast_port_high 14406
context resolver_unicast_port_low 14402
source transport_lbtrm_destination_port 14400
context transport_lbtrm_source_port_high 14399
context transport_lbtrm_source_port_low 14390
context transport_lbtru_port_high 14389
receiver transport_lbtru_port_high 14379
context transport_lbtru_port_low 14380
receiver transport_lbtru_port_low 14360
context request_tcp_port_high 14395
context request_tcp_port_low 14391
context transport_tcp_port_high 14390
context transport_tcp_port_low 14371
source ume_primary_store_port 14567

Configure Previous Port Defaults 41

source ume_secondary_store_port 14567
source ume_tertiary_store_port 14567

Interrelated Configuration Options
Some Ultra Messaging configuration options are related in ways that might not be immediately apparent.
Changing the value for one option without adjusting its related option can cause problems such as NAK
storms, tail loss, etc. This section identifies these relationships and recommends a best practice for setting
the interrelated options.

The following sections discuss configuration option relationships.

• “Preventing NAK Storms with NAK Interval Options” on page 42

• “Preventing Tail Loss With TSNI and NAK Interval Options” on page 43

• “Preventing IPC Receiver Deafness With Keepalive Options” on page 43

• “Preventing Erroneous LBT-RM/LBT-RU Session Timeouts” on page 44

• “Preventing Errors Due to Bad Multicast Address Ranges” on page 44

• “Preventing Store or Queue Timeouts” on page 45

• “Preventing ULB Timeouts” on page 45

• “Preventing Unicast Resolver Daemon Timeouts” on page 46

• “Preventing Undetected Late Join Loss” on page 46

• “Preventing Undetected Late Join Loss” on page 46

Preventing NAK Storms with NAK Interval Options
The NAK generation interval should be sufficiently longer than the NAK backoff interval so that the source,
after receiving the first NAK from a receiver, has time to retransmit the missing datagram and prevent a NAK
storm from all receivers. LBTRM, LBTRU, and MIM all use NAK generation and backoff intervals. The NAK
behavior for all transports is the same.

Interrelated Options:

• transport_lbtrm_nak_backoff_interval
• transport_lbtrm_nak_generation_interval
• transport_lbtru_nak_backoff_interval
• transport_lbtru_nak_generation_interval
• mim_nak_backoff_interval
• mim_nak_generation_interval
Recommendation:

• Set the NAK generation interval to at least 2x the NAK backoff interval.

For more, see also

• “Transport LBT-RM Reliability Options” on page 105

• “Transport LBT-RU Reliability Options” on page 121

• “Multicast Immediate Messaging Reliability Options” on page 149

42 Chapter 2: Example Configuration Scenarios

Example:

#
+--+
| To avoid NAK storms, set NAK generation interval to at least 2x the |
| NAK backoff interval. |
+--+
#
receiver transport_lbtrm_nak_backoff_interval 200
receiver transport_lbtrm_nak_generation_interval 10000

Preventing Tail Loss With TSNI and NAK Interval Options
Tail loss refers to the situation when a receiver (subscriber) does not receive the last few messages sent by a
source (publisher) before the source exits. A TSNI active threshold that is too small relative to the TSNI
and/or NAK generation interval may cause tail loss, especially with ordered delivery.

Interrelated Options:

• transport_topic_sequence_number_info_active_threshold
• transport_topic_sequence_number_info_interval
• transport_lbtrm_nak_generation_interval
• transport_lbtru_nak_generation_interval
Recommendation:

• set the TSNI active threshold to at least 4x the topic sequence number info interval (TSNI) plus the NAK
generation interval.

For more, see

• “Transport LBT-RM Reliability Options” on page 105

• “Transport LBT-RU Reliability Options” on page 121

Example:

#
+---+
| To avoid tail loss, set transport_topic_sequence_number_info_active_threshold |
| to at least the sum of 4x the topic sequence number interval plus the NAK |
| generation interval. |
| NOTE: resolver_active_threshold is in seconds. |
+---+
#
source transport_topic_sequence_number_info_interval 2000
receiver transport_lbtrm_nak_generation_interval 10000
source transport_topic_sequence_number_info_active_threshold 60

Preventing IPC Receiver Deafness With Keepalive Options
With an LBT-IPC transport, an activity timeout that is too small relative to the session message interval may
cause receiver deafness. If a timeout is too short, the keepalive messages might not be received in time to
prevent the receiver from being deleted or disconnecting because the source appears to be gone.

Interrelated Options:

• transport_lbtipc_activity_timeout
• transport_lbtipc_sm_interval
Recommendations:

• set the activity timeout to at least 2x the session message interval

Interrelated Configuration Options 43

For more, see “Transport LBT-IPC Operation Options” on page 131.

Example:

#
+--+
| To avoid receiver deafness: |
| - set client activity timeout to at least 2x the acknowledgement interval. |
| - set activity timeout to at least 2x the session message interval. |
+--+
#
receiver transport_lbtipc_activity_timeout 60000
source transport_lbtipc_sm_interval 10000

Preventing Erroneous LBT-RM/LBT-RU Session Timeouts
An LBT-RM or LBT-RU receiver-side quiescent timeout may delete a transport session that a source is still
active on. This can happen if the timeout is too short relative to the source's interval between session
messages (which serve as a session keepalive).

Interrelated Options:

• transport_lbtrm_activity_timeout
• transport_lbtrm_sm_maximum_interval
• transport_lbtru_activity_timeout
• transport_lbtru_sm_maximum_interval
Recommendations:

• set the receiver LBT-RM or LBT-RU activity timeout to at least 3x the source session message maximum
interval

For more, see “Transport LBT-RM Operation Options” on page 112 or “Transport LBT-RU Operation
Options” on page 124.

Example:

#
+--+
| To avoid erroneous session timeouts, set receiver transport activity |
| timeout to at least 3x the source session message maximum interval. |
+--+
#
receiver transport_lbtrm_activity_timeout 60000
source transport_lbtrm_sm_maximum_interval 10000
receiver transport_lbtru_activity_timeout 60000
source transport_lbtru_sm_maximum_interval 10000

Preventing Errors Due to Bad Multicast Address Ranges
Sometimes it is easy to accidentally reverse the low and high values for LBT-RM multicast addresses, which
actually creates a very large range. Aside from excluding intended addresses, this can cause error
conditions.

Interrelated Options:

• transport_lbtrm_multicast_address_low
• transport_lbtrm_multicast_address_high
Recommendations:

• ensure that the intended low and high values for LBT-RM multicast addresses are not reversed

44 Chapter 2: Example Configuration Scenarios

For more, see “Transport LBT-RM Network Options” on page 103.

Example:

#
+--+
| To avoid incorrect LBT-RM multicast address ranges, ensure that you have not |
| reversed the low and high values. |
+--+
#
context transport_lbtrm_multicast_address_low 224.10.10.10
context transport_lbtrm_multicast_address_high 224.10.10.14

Preventing Store or Queue Timeouts
Note: These interrelations apply only to the Ultra Messaging Persistence or Ultra Messaging Queuing
Edition.

A store or queue may be erroneously declared unresponsive if its activity timeout expires before it has had
adequate opportunity to verify it is still active via activity check intervals.

Interrelated Options:

• ume_store_activity_timeout
• ume_store_check_interval
• umq_queue_activity_timeout
• umq_queue_check_interval
Recommendations:

• set the store or queue activity timeout to at least 5x the activity check interval

For more, see Ultra Messaging Persistence Options and/or (if using UM Queuing Edition), the UM
Configuration Guide, 4.30. Ultra Messaging Queuing Options.

Example:

#
+--+
| To avoid erroneous store or queue activity timeouts, set the activity |
| timeout to at least 5x the activity check interval. |
+--+
#
source ume_store_activity_timeout 3000
source ume_store_check_interval 500
context umq_queue_activity_timeout 3000
context umq_queue_check_interval 500

Preventing ULB Timeouts
Note: These interrelations apply only to the Ultra Messaging Queuing Edition.

A ULB source or receiver may be erroneously declared unresponsive if its activity timeout expires before it
has had adequate opportunities to attempt to re-register via activity check intervals if the source appears to
be inactive. It is also possible for sources to attempt to reassign messages that have already been
processed.

Interrelated Options:

• umq_ulb_source_activity_timeout
• umq_ulb_source_check_interval

Interrelated Configuration Options 45

• umq_ulb_application_set_message_reassignment_timeout
• umq_ulb_application_set_receiver_activity_timeout
• umq_ulb_check_interval
Recommendations:

• set the ULB source activity timeout to at least 5x the ULB source activity check interval

• set the ULB application set message reassignment timeout to at least 5x the ULB check interval

• set the ULB receiver activity timeout to at least 5x the ULB check interval

For more (if using UM Queuing Edition), see the UM Configuration Guide, 4.30. Ultra Messaging Queuing
Options.

Example:

#
+--+
| To avoid erroneous ULB source, receiver or application set message activity |
| timeouts, set the activity timeout to at least 5x the activity check |
| interval. |
+--+
#
receiver umq_ulb_source_activity_timeout 10000
receiver umq_ulb_source_check_interval 1000
source umq_ulb_application_set_message_reassignment_timeout 50000
source umq_ulb_application_set_receiver_activity_timeout 10000
source umq_ulb_check_interval 1000

Preventing Unicast Resolver Daemon Timeouts
A unicast resolver daemon may be erroneously declared inactive if its activity timeout expires before it has
had adequate opportunity to verify that it is still alive.

Interrelated Options:

• resolver_unicast_activity_timeout
• resolver_unicast_check_interval
Recommendations:

• Set the unicast resolver daemon activity timeout to at least 5x the activity check interval. Or, if activity
notification is not desired, set both options to 0.

For more, see “Resolver Operation Options” on page 69 Resolver Operation Options.

Example:

#
+--+
| To avoid erroneous unicast resolver daemon timeouts, set the activity |
| timeout to at least 5x the activity check interval. |
+--+
#
context resolver_unicast_activity_timeout 1000
context resolver_unicast_check_interval 200

Preventing Undetected Late Join Loss
If during a Late Join operation, a transport times out while a receiver is requesting retransmission of missing
messages, this can cause lost messages to go undetected and likely become unrecoverable.

46 Chapter 2: Example Configuration Scenarios

Interrelated Options:

• retransmit_request_generation_interval
• transport_tcp_activity_timeout
• transport_lbtrm_activity_timeout
• transport_lbtru_activity_timeout
• transport_lbtipc_activity_timeout
Recommendations:

• set the Late Join retransmit request interval to a value less than its transport's activity timeout value

For more, see “Late Join Options” on page 157 and also the applicable Transport LBT-RU Operation Options
section.

Example:

#
+--+
| To avoid a transport inactivity timeout while requesting Late Join |
| retransmissions, set the Late Join retransmit request interval to a value |
| less than its transport's activity timeout. |
+--+
#
receiver retransmit_request_generation_interval 10000
receiver transport_lbtrm_activity_timeout 60000

Preventing Undetected Loss
It is possible that an unrecoverable loss due to unsatisfied NAKs or a transport activity timeout may go
unreported if the delivery controller loss check is disabled or has too long an interval. For UMP stores, the
loss check interval must be enabled. Two options (three, if using LBT-RM) are interrelated and must be set
according to the guidelines below.

Interrelated Options:

• delivery_control_loss_check_interval
• transport_lbtrm_activity_timeout
• transport_lbtrm_nak_generation_interval
• transport_lbtru_activity_timeout
Recommendations:

• For LBT-RM, set the transport activity timeout to value greater than the sum of the delivery control loss
check interval and the NAK generation interval. Also, set the NAK generation interval to at least 4x the
delivery control loss check interval.

• for LBT-RU, set the transport activity timeout to value greater than the delivery control loss check interval

• for UMP, always enable and set accordingly the delivery control loss check interval when configuring a
store

For more, see Delivery Control Options.

Example:

#
+--+
| To avoid undetected or unreported loss, set NAK generation to 4x the delivery|
| control check interval, and ensure that these two combined are less than the |
| transport activity timeout |

Interrelated Configuration Options 47

+--+
#
receiver delivery_control_loss_check_interval 2500
receiver transport_lbtrm_activity_timeout 60000
receiver transport_lbtrm_nak_generation_interval 10000

48 Chapter 2: Example Configuration Scenarios

C H A P T E R 3

Common Tasks
This chapter includes the following topics:

• Configuring Multi-Homed Hosts, 49

• Traversing a Firewall, 49

• Running Multiple Applications, 50

Configuring Multi-Homed Hosts
By default, UM will select the first multicast-capable, non-loopback interface for multicast topic resolution. If
you are fortunate, on a multi-homed host, the correct interface will be selected. However, this fortuitous
selection should not be relied upon. Moving the interface card to a different slot, a change in the operating
system kernel, and numerous other factors can lead to a different ordering of interfaces as reported by the
operating system. This in turn can lead UM to a select a different interface after the change.

It is strongly recommended that the actual interface be specified. The “ resolver_multicast_interface
(context) ” on page 88 option allows you to explicitly specify the multicast interface. Note that this also
changes the interface for LBT-RM and multicast immediate messaging.

Other options of interest include

• “ resolver_unicast_interface (context) ” on page 92 when using the unicast resolver

• “ request_tcp_interface (context) ” on page 167 when using the request/response messaging

• “ transport_lbtru_interface (receiver) ” on page 119 and “ transport_tcp_interface (receiver) ” on page 94
for receivers

• “ transport_lbtru_interface (source) ” on page 119 and “ transport_tcp_interface (source) ” on page 95
for sources

Traversing a Firewall
To use UM across a firewall, several port options may need to be changed. The options of interest include:

Multicast resolver: “ resolver_multicast_port (context) ” on page 89.

Unicast resolver:

• “ resolver_unicast_port (context) ” on page 227

49

• “ resolver_unicast_port_low (context) ” on page 93

• “ resolver_unicast_port_high (context) ” on page 93

• “ resolver_unicast_destination_port (context) ” on page 226

TCP transport:

• “ transport_tcp_port_low (context) ” on page 96 for contexts

• “ transport_tcp_port_high (context) ” on page 96 for contexts

• “ transport_tcp_port (source) ” on page 95 for sources

LBT-RM transport:

• “ transport_lbtrm_source_port_low (context) ” on page 105 for contexts

• “ transport_lbtrm_source_port_high (context) ” on page 105 for contexts

• “ transport_lbtrm_destination_port (source) ” on page 104

LBT-RU transport:

• “ transport_lbtru_port_low (context) ” on page 121 for contexts

• “ transport_lbtru_port_high (context) ” on page 120 for contexts

• “ transport_lbtru_port (source) ” on page 120 for sources

• “ transport_lbtru_port_low (receiver) ” on page 121 for receivers

• “ transport_lbtru_port_high (receiver) ” on page 120 for receivers

Multicast immediate messaging:

• “ mim_destination_port (context) ” on page 147

• “ mim_incoming_destination_port (context) ” on page 148

• “ mim_outgoing_destination_port (context) ” on page 148

Requests:

• “ request_tcp_port (context) ” on page 167

• “ request_tcp_port_low (context) ” on page 168

• “ request_tcp_port_high (context) ” on page 167

In addition, since machines acting as a firewall are often multi-homed as well, consult the section on
“Configuring Multi-Homed Hosts” on page 49 for additional considerations.

Running Multiple Applications
If you are running multiple UM applications on the same machine, using the same (or the default)
configuration, you may encounter problems due to the way UM allocates and uses ports. The
UM Knowledgebase contains an article on Address and Port Usage which explains how to handle this
situation.

50 Chapter 3: Common Tasks

https://communities.informatica.com/infakb/kbexternal/default.aspx

C H A P T E R 4

Reference
This chapter includes the following topics:

• Introduction, 52

• Major Options, 58

• Resolver Operation Options, 69

• Multicast Resolver Network Options, 87

• Unicast Resolver Network Options, 91

• Transport TCP Network Options, 94

• Transport TCP Operation Options, 96

• Transport LBT-RM Network Options, 103

• Transport LBT-RM Reliability Options, 105

• Transport LBT-RM Operation Options, 112

• Transport LBT-RU Network Options, 118

• Transport LBT-RU Reliability Options, 121

• Transport LBT-RU Operation Options, 124

• Transport LBT-IPC Operation Options, 131

• Transport LBT-SMX Operation Options, 136

• Transport LBT-RDMA Operation Options, 140

• Transport Acceleration Options, 143

• Multicast Immediate Messaging Network Options, 147

• Multicast Immediate Messaging Reliability Options, 149

• Multicast Immediate Messaging Operation Options, 152

• Late Join Options, 157

• Off-Transport Recovery Options, 163

• Request Network Options, 166

• Request Operation Options, 168

• Response Operation Options, 169

• Implicit Batching Options, 171

• Delivery Control Options, 172

• Wildcard Receiver Options, 178

• Event Queue Options, 182

• Ultra Messaging Persistence Options, 186

51

• Hot Failover Operation Options, 213

• Automatic Monitoring Options, 217

• Deprecated Options, 221

• UMS Port Values, 232

• UMS Multicast Group Values, 233

• UMS Timer Interval Values, 234

• Options That May Be Set During Operation, 238

• Options (Callbacks) That Cannot Be Set From a UM Configuration File, 239

Introduction

Case Sensitivity
All Ultra Messaging scope, option, and value strings are case-insensitive. Thus, any of context, CONTEXT,
and Context are recognized as specifying the "context" scope.

Specifying Interfaces
The *_interface options require a network interface, usually supplied as a string (from a config file via
lbm_config() or in source code via *_attr_str_setopt()), the syntax used for network interface specifications
is:

 a.b.c.d/num

where num is the number of leading 1 bits in the netmask. If the /num is omitted, it defaults to 32 (netmask
255.255.255.255), which means that it must be an exact match for the interface's IP address. However,
if /num is supplied, it tells Ultra Messaging to find an interface within that network. This makes it easier to
share a configuration file between many (possibly multi-homed) machines on the same network. For
example:

context resolver_unicast_interface 192.168.0.0/24
specifies a netmask of 255.255.255.0 and would match the interface 192.168.0.3 on one host, and
192.168.0.251 on another host. You can also set network interfaces by name. When setting a configuration
option's interface by name, you must use quotes, as illustrated below.

context resolver_unicast_interface "interfacename"

Socket Buffer Sizes
When specifying send or receive socket buffer sizes, keep the following platform-specific information in mind.

• Linux

The kernel value net.core.rmem_max dictates the highest value allowed for a receive socket. The kernel
value net.core.wmem_max dictates the highest value allowed for a sending socket. Increase these
values to increase the amount of buffering allowed.

52 Chapter 4: Reference

• Windows

Windows should allow socket buffer sizes to be set very high if needed without requiring registry changes.

See our whitepaper Topics in High Performance Messaging for background and guidelines on UDP buffer
sizing.

Reference Entry Format
This section describes the format of each option reference entry.

Each entry begins with a brief description of the option. Following the description is a series of items that
defines permissible usage and describes the values for the option.

• Scope

Defines the scope to which the option applies.

• Type

Defines the data type of the option. The type is required for calls to the *_setopt() and *_getopt() API
functions.

• Units

Defines the units in which the option value is expressed. This item is optional.

• Default value

For range-valued options, indicates the base default value for the option.

• Byte order

For options whose value is an IP address or port, defines the byte ordering (Host or Network) expected by
the API for *_setopt() calls, and returned by the API for *_getopt() calls.

• May be set during operation

If an option may be set during operation, it is so indicated here.

Next, for enumerated-valued options with limited specific choices, a table details the permissible String
Value (configuration file), Integer Value (programmatic attribute setting), and a Description of each choice
that includes default value designations.

Alternately, for switch-valued options (0 or 1), a table describes the meaning of each of the two possible
values. The default value is noted within the description.

Network Compatibility Mode
This section lists the values for the “ network_compatibility_mode (context) ” on page 60 option, that
attempts to maintain wire-level backwards compatibility with older releases by blocking the sending of some
(though possibly not all) newer message header types. An application using an older UM release typically
logs a warning message when receiving an unknown message header type that did not yet exist in that older
release. In a mixed UM version environment, Informatica recommends that your applications filter these
unknown message header warning log messages. This option should only be used if such filtering is
undesired or not possible.

Note that this option does not change any internal behaviors. It merely prevents the sending new message
header types which disables any new functionality that relies on the new message header types for both old

Introduction 53

http://vip.informatica.com/content/Downloads?docid=1568&=NA-Ongoing-2011Q1-JP-UM_Topics_in_High_Performance_WP_www

and new applications. Other than the warning log message for an application using an earlier release, new
message header types do not cause any harm.

String Value Integer Value Description

default LBM_CTX_ATTR_NET_COMPAT_
MODE_DEFAULT

Network compatibility mode is
disabled. UM sends all new
message header types.

LBM_3.6 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_3_6

Block any message headers that
only an LBM 3.6 or newer
application would understand.

LBM_3.6.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_3_6_1

Block any message headers that
only an LBM 3.6.1 or newer
application would understand.

LBM_3.6.2 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_3_6_2

Block any message headers that
only an LBM 3.6.2 or newer
application would understand.

LBM_3.6.5 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_3_6_5

Block any message headers that
only an LBM 3.6.5 or newer
application would understand.

LBM_4.0 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_0

Block any message headers that
only an LBM 4.0 or newer
application would understand.

LBM_4.0.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_0_1

Block any message headers that
only an LBM 4.0.1 or newer
application would understand.

LBM_4.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_1

Block any message headers that
only an LBM 4.1 or newer
application would understand.

LBM_4.1.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_1_1

Block any message headers that
only an LBM 4.1.1 or newer
application would understand.

LBM_4.1.2 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_1_2

Block any message headers that
only an LBM 4.1.1 or newer
application would understand.

LBM_4.1.3 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_1_3

Block any message headers that
only an LBM 4.1.1 or newer
application would understand.

LBM_4.2.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_2_1

Block any message headers that
only an LBM 4.2.1 or newer
application would understand.

LBM_4.2.2 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_2_2

Block any message headers that
only an LBM 4.2.2 or newer
application would understand.

54 Chapter 4: Reference

String Value Integer Value Description

LBM_4.2.3 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_2_3

Block any message headers that
only an LBM 4.2.3 or newer
application would understand.

LBM_4.2.4 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_2_4

Block any message headers that
only an LBM 4.2.4 or newer
application would understand.

LBM_4.2.5 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_2_5

Block any message headers that
only an LBM 4.2.5 or newer
application would understand.

LBM_4.2.6 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_2_6

Block any message headers that
only an LBM 4.2.6 or newer
application would understand.

LBM_4.2.7 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_2_7

Block any message headers that
only an LBM 4.2.7 or newer
application would understand.

LBM_4.2.8 LBM_CTX_ATTR_NET_COMPAT_
MODE_LBM_4_2_8

Block any message headers that
only an LBM 4.2.8 or newer
application would understand.

UME_3.0 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_0

Block any message headers that
only an UME 3.0 or newer
application would understand.

UME_3.0.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_0_1

Block any message headers that
only an UME 3.0.1 or newer
application would understand.

UME_3.0.2 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_0_2

Block any message headers that
only an UME 3.0.2 or newer
application would understand.

UME_3.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_1

Block any message headers that
only an UME 3.1 or newer
application would understand.

UME_3.1.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_1_1

Block any message headers that
only an UME 3.1.1 or newer
application would understand.

UME_3.1.2 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_1_2

Block any message headers that
only an UME 3.1.2 or newer
application would understand.

UME_3.1.3 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_1_3

Block any message headers that
only an UME 3.1.3 or newer
application would understand.

UME_3.2.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_2_1

Block any message headers that
only an UME 3.2.1 or newer
application would understand.

Introduction 55

String Value Integer Value Description

UME_3.2.2 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_2_2

Block any message headers that
only an UME 3.2.2 or newer
application would understand.

UME_3.2.3 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_2_3

Block any message headers that
only an UME 3.2.3 or newer
application would understand.

UME_3.2.4 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_2_4

Block any message headers that
only an UME 3.2.4 or newer
application would understand.

UME_3.2.5 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_2_5

Block any message headers that
only an UME 3.2.5 or newer
application would understand.

UME_3.2.6 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_2_6

Block any message headers that
only an UME 3.2.6 or newer
application would understand.

UME_3.2.7 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_2_7

Block any message headers that
only an UME 3.2.7 or newer
application would understand.

UME_3.2.8 LBM_CTX_ATTR_NET_COMPAT_
MODE_UME_3_2_8

Block any message headers that
only an UME 3.2.8 or newer
application would understand.

UMQ_1.0 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_1_0

Block any message headers that
only an UMQ 1.0 or newer
application would understand.

UMQ_1.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_1_1

Block any message headers that
only an UMQ 1.1 or newer
application would understand.

UMQ_1.1.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_1_1_1

Block any message headers that
only an UMQ 1.1.1 or newer
application would understand.

UMQ_2.0 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_0

Block any message headers that
only an UMQ 2.0 or newer
application would understand.

UMQ_2.0.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_0_1

Block any message headers that
only an UMQ 2.0.1 or newer
application would understand.

UMQ_2.1.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_1_1

Block any message headers that
only an UMQ 2.1.1 or newer
application would understand.

UMQ_2.1.3 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_1_3

Block any message headers that
only an UMQ 2.1.3 or newer
application would understand.

56 Chapter 4: Reference

String Value Integer Value Description

UMQ_2.1.4 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_1_4

Block any message headers that
only an UMQ 2.1.4 or newer
application would understand.

UMQ_2.1.5 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_1_5

Block any message headers that
only an UMQ 2.1.5 or newer
application would understand.

UMQ_2.1.6 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_1_6

Block any message headers that
only an UMQ 2.1.6 or newer
application would understand.

UMQ_2.1.7 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_1_7

Block any message headers that
only an UMQ 2.1.7 or newer
application would understand.

UMQ_2.1.8 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_1_8

Block any message headers that
only an UMQ 2.1.8 or newer
application would understand.

UMQ_2.1.9 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_1_9

Block any message headers that
only an UMQ 2.1.9 or newer
application would understand.

UMQ_2.1.10 LBM_CTX_ATTR_NET_COMPAT_
MODE_UMQ_2_1_10

Block any message headers that
only an UMQ 2.1.10 or newer
application would understand.

UM_5.0 LBM_CTX_ATTR_NET_COMPAT_
MODE_UM_5_0

Block any message headers that
only an UM 5.0 or newer
application would understand.

UM_5.0.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UM_5_0_1

Block any message headers that
only an UM 5.0.1 or newer
application would understand.

UM_5.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UM_5_1

Block any message headers that
only an UM 5.1 or newer
application would understand.

UM_5.1.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UM_5_1_1

Block any message headers that
only an UM 5.1.1 or newer
application would understand.

UM_5.1.2 LBM_CTX_ATTR_NET_COMPAT_
MODE_UM_5_1_2

Block any message headers that
only an UM 5.1.2 or newer
application would understand.

UM_5.2 LBM_CTX_ATTR_NET_COMPAT_
MODE_UM_5_2

Block any message headers that
only an UM 5.2 or newer
application would understand.

Introduction 57

String Value Integer Value Description

UM_5.2.1 LBM_CTX_ATTR_NET_COMPAT_
MODE_UM_5_2_1

Block any message headers that
only an UM 5.2.1 or newer
application would understand.

UM_5.2.2 LBM_CTX_ATTR_NET_COMPAT_
MODE_UM_5_2_2

Block any message headers that
only an UM 5.2.2 or newer
application would understand.

Major Options
Options in this group have a major impact on the operation of Ultra Messaging. Most UM application
developers will need to be aware of the default values of these options or perhaps override them.

compatibility_include_pre_um_6_0_behavior (context)
Enable Ultra Messaging 6.x applications to inter-operate with pre-6.0 applications. Enabling this option
increases overhead data on the wire and slightly changes some operational behaviors of UMP sources.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.7

Value Description

"1" (Integer value
as a string.)

Inter-operate with pre-6.0 applications.

"0" (Integer value
as a string.)

Disable Inter-operation with pre-6.0 applcations. Default for all.

context_event_function (context)
Callback function (and associated client data pointer) that is called when a context event occurs. This
callback may be called inline or from an event queue, if one is given. If called inline, the callback function
used should not block or it will block the context thread processing. A value of NULL for the callback turns off
the callback being called.

Scope: context

Type: string

58 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMQ 1.0.

context_name (context)
The name of the context, limited to 128 alphanumeric characters, hyphens or underscores.

Scope: context

Type: string

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.3/UMP 3.3/UMQ 2.3.

fd_management_type (context)
Define the mechanism UM uses for socket file descriptor (FD) management. For more information, search on
"file descriptors" in the Informatica Knowledge Base.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

poll LBM_CTX_ATTR_FDTYPE_
POLL

FD management uses poll(). Unix
only.

select LBM_CTX_ATTR_FDTYPE_
SELECT

FD management uses select().
Default for Unix. Unix only.

epoll LBM_CTX_ATTR_FDTYPE_
EPOLL

FD management uses epoll().
Linux kernel 2.6 or later only.

devpoll LBM_CTX_ATTR_FDTYPE_
DEVPOLL

FD management uses the /dev/
poll driver. Solaris 8 or later only.

kqueue LBM_CTX_ATTR_FDTYPE_
KQUEUE

FD management uses the BSD
kqueue notification system. Mac
OS X only.

Major Options 59

https://communities.informatica.com/infakb/kbexternal/default.aspx/

String value Integer value Description

wsaeventselect LBM_CTX_ATTR_FDTYPE_
WSAEV

FD management uses
WSAEventSelect() and
WaitForMultipleObjects().
Creates a limit of 64 file
descriptors. Default for Windows.
Windows only.

wincompport LBM_CTX_ATTR_FDTYPE_
WINCPORT

FD management uses Windows
completion ports and completion
routines. Disables the 64 file
descriptor limit set by
WSAEventSelect(). Windows
XP or later only.

message_selector (receiver)
Enables UM to pass a message selector string to any receiver. The value must be an expression that
conforms to JMS message selector syntax as defined in the Oracle JMS specification. For a UM receiver
used with UMP, please see Native Applications in the Ultra Messaging JMS Guide.

Scope: receiver

Type: string

Default value: NULL

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMQ 5.3.

network_compatibility_mode (context)
This option attempts to maintain wire-level backwards compatibility with older releases by blocking the
sending of some (though possibly not all) newer message header types. See “Network Compatibility
Mode” on page 53 for more information and option values.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2/UMQ 2.1.

60 Chapter 4: Reference

operational_mode (context)
The mode in which UM operates to process events. Refer to Embedded and Sequential Mode in the Ultra
Messaging Concepts Guide for additional information.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

embedded LBM_CTX_ATTR_OP_EMB
EDDED

A thread is spawned within UM to
handle processing of events (timers
and socket events). Default for all.

sequential LBM_CTX_ATTR_OP_SEQ
UENTIAL

The application is responsible for
calling
lbm_context_process_even
ts() to process events. Sequential
mode does not support Multi-
Transport Threads.

ordered_delivery (receiver)
For LBT-RM, LBT-RU, TCP-LB or LBT-IPC transport sessions only. (This option also applies to TCP when
using Late Join because the Late Join messages are not part of the TCP message stream.) Indicates whether
or not the topic should have its data delivered in order and reassembled. The default value guarantees
ordering and reassembly of large messages. Reassembly of large messages is optional. Changing this option
from the default value to a value of 0 (zero) results in messages being delivered as soon as they arrive.
Value -1 allows arrival order delivery after the reassembly of large messages. See also Ordered Delivery in

Major Options 61

the Ultra Messaging Concepts Guide for more information about large message fragmentation and
reassembly.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

"1" (Integer value as a
string.)

1 UM delivers topic messages to a
receiver in-order and reassembles
large messages. Default for all.

"0" (Integer value as a
string.)

0 UM delivers topic messages to a
receiver as they arrive and may be
out of order. Duplicate delivery is
possible. UM delivers large
messages as individual fragments
of less than the maximum
datagram size for the transport in
use.

"-1" (Integer value as a
string.)

-1 UM delivers topic messages to a
receiver as they arrive and may be
out of order. Duplicate delivery is
possible. However, UM
reassembles large messages. Your
application can use the
sequence_number field of
lbm_msg_t objects to order or
discard messages.

rcv_sync_cache (receiver)
Ultra Messaging Cache only - a valid cache address (such as TCP:192.168.5.11:4567) in the standard form
of TCP:address:port enables a UM receiver to use UMCache to receive a snapshot of larger, multiple-field
messages stored by UMCache. Receiving applications can then become synchronized with the live stream of
messages sent on the receiver's topic. address is the IP address of the machine where the UMCache runs
and port is the configured port where the cache request handler listens.

Scope: receiver

Type: umcache_reqlib_request_info_t

Default value: NULL

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0/UMP 5.0/UMQ 5.0

62 Chapter 4: Reference

rcv_sync_cache_timeout (receiver)
Ultra Messaging Cache only - The maximum time period that a UM receiver waits for a snapshot message
from the UMCache .

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 2000 (2 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0/UMP 5.0/UMQ 5.0

receive_thread_pool_size (context)
For LBT-RM, LBT-RU, or TCP-LB transport sessions only. Defines the maximum number of threads available
for transports (excluding the context thread). See Multi-Transport Threads in the Ultra Messaging Concepts
Guide.

Scope: context

Type: int

Default value: 4

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1.

receiver_callback_service_time_enabled (context)
Indicates if UM collects receiver callback statistics, which provide the maximum, mean and minimum time in
microseconds required to complete wildcard, hot-failover, and regular receiver callbacks.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.5

Value Description

1 UM collects receiver callback statistics.

0 UM collects receiver callback statistics. Default for all.

Major Options 63

resolver_source_notification_function (context)
Callback function (and associated client data pointer) that is called when a new source is seen for any topic.
This callback is called directly in line and does not use the event queue. Therefore the callback function used
should not block or it will block the context thread processing. A value of NULL for the callback turns off the
callback being called.

Scope: context

Type: lbm_src_notify_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

source_cost_evaluation_function (context)
Callback function that you can use in the lbm_src_cost_function_cb() to evaluate or determine the cost of
a message path. The UM Router evaluates the cost of any new topic it detects. The callback supplied with
this option can affect the cost of topics to bias the UM Router toward certain message paths. A value of
NULL for the callback turns off the callback being called. See also Applications Can Also Set the Topic Cost
in the UM Dynamic Routing Guide.

Scope: context

Type: lbm_src_cost_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in UMS 5.0/UMP 5.0/UMQ 5.0

source_event_function (context)
Callback function (and associated client data pointer) that is called when a context source event (such as a
multicast immediate mode source wakeup event) occurs. This callback may be called inline or from an event
queue, if one is given. If called inline, the callback function used should not block or it will block the context
thread processing. A value of NULL for the callback turns off the callback being called.

Scope: context

Type: lbm_context_src_event_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

64 Chapter 4: Reference

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in LBM 3.4/UME 2.1.

source_includes_topic_index (context)
Determines whether the topic index is included in the source string generated for messages and new source
notifications.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0.

Value Description

1 Indicates the topic index should be included in the source string. Default for all.

0 Indicates the topic index should not be included.

transport (source)
The transport type to be used for created sources.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

tcp LBM_SRC_TOPIC_ATTR_T
RANSPORT_TCP

TCP over IPv4 Default for all.

lbtrm, lbt-rm LBM_SRC_TOPIC_ATTR_T
RANSPORT_LBTRM

UDP-based reliable multicast with
unicast NAKs

lbtru, lbt-ru LBM_SRC_TOPIC_ATTR_T
RANSPORT_LBTRU

UDP-based reliable unicast with
unicast NAKs

lbtipc, lbt-ipc LBM_SRC_TOPIC_ATTR_T
RANSPORT_LBTIPC

InterProcess Communication
between processes on the same
host using a shared memory area.

Major Options 65

String value Integer value Description

lbtsmx, lbt-smx LBM_SRC_TOPIC_ATTR_T
RANSPORT_LBTSMX

Shared Memory Acceleration.
Modified InterProcess
Communication transport between
processes on the same host using
a shared memory area. Restricted
to streaming applications.

lbtrdma, lbt-rdma LBM_SRC_TOPIC_ATTR_T
RANSPORT_LBTRDMA

Voltaire™ InfiniBand Remote Direct
Memory Access transport between
hosts using a shared memory area.

transport_demux_tablesz (receiver)
Specifies the size of the table used for storing receiver delivery controllers used by UM for message delivery.
Must be a power of two (1, 2, 4, 8, 16, etc.). If not a power of two, UM generates a log warning and uses the
next highest power of two. For most use cases with low to moderate numbers of topics per transport session,
the default suffices. For large numbers of topics and in cases where the lowest latency is desired, set the
option to the next highest power of two for the number of topics expected on the transport session.

Scope: receiver

Type: size_t

Default value: 1

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2.

transport_session_multiple_sending_threads (context)
Flag that indicates the application intends to use multiple sending threads per transport session.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Indicates the application does intend to use multiple sending threads per transport session
and that UM should make that assumption. Default for all.

0 Indicates the application does not intend to use multiple sending threads per transport
session and that UM should make that assumption.

66 Chapter 4: Reference

transport_source_side_filtering_behavior (source)
The filtering behavior desired when TCP and LBT-RU clients are connected. Any other value besides none
requires that the clients send unicast messages to the source. These control messages are sent to the TCP
request port of the senders context and processed internally. This option affects the transport session
underlying the source rather than the source itself. Refer to Source Configuration and Transport Sessions for
additional information.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

none LBM_SRC_TOPIC_ATTR_S
SF_NONE

The source sends all data to all
clients regardless of the topics they
are listening to. Default for all.

inclusion LBM_SRC_TOPIC_ATTR_S
SF_INCLUSION

The source sends only that data to
a client that the client specifically
requests.

transport_topic_sequence_number_info_active_threshold (source)
Duration in seconds that an inactive source sends contiguous Topic Sequence Number Info (TSNI)
messages. (Inactive sources send TSNI messages according to the
“ transport_topic_sequence_number_info_interval (source) ” on page 67.) A value of 0 indicates that
sources continue sending TSNIs until data messages resume, with no timeout. See also “Interrelated
Configuration Options” on page 42.

Scope: source

Type: lbm_ulong_t

Units: seconds

Default value: 60

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

transport_topic_sequence_number_info_interval (source)
The interval between Topic Sequence Number Info (TSNI) messages that a source sends. TSNI messages
are enabled on all transports except LBT-SMX, and they carry the topic sequence number of the latest
message sent by the source. The interval is also a source inactivity threshold. In other words, a source does
not send TSNIs during normal data transmission, but once the source is inactive for as long as this interval, it

Major Options 67

starts sending TSNI messages. A value of 0 turns off TSNI messages for the source. See also “Interrelated
Configuration Options” on page 42.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 5000 (5 second)

When to Set: Can only be set during object initialization.

transport_topic_sequence_number_info_request_interval
(receiver)

The interval at which the receiver requests a Topic Sequence Number Information Record (TSNI) from the
source. Controlling these requests helps reduce receiver start-up traffic on your network.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

Version This option was implemented in UMP 6.0

transport_topic_sequence_number_info_request_maximum
(receiver)

The maximum number of requests the receiver issues for a Topic Sequence Number Information Record
(TSNI) from the source. If the receiver has not received an TSNI after this number of requests, it stops
requesting.

Scope: source

Type: lbm_ulong_t

Default value: 60

When to Set: Can only be set during object initialization.

Version This option was implemented in UMP 6.0

68 Chapter 4: Reference

use_extended_reclaim_notifications (source)
Specifies which reclaim notification your application receives. The expanded notification,
LBM_SRC_EVENT_UME_MESSAGE_RECLAIMED_EX, contains a flag,
LBM_SRC_EVENT_UME_MESSAGE_RECLAIMED_EX_FLAG_FORCED that UMP sets if the reclamation is
a forced reclaim.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.

Value Description

1 Indicates your application receives the expanded reclaim notification. Default for all.

0 Indicates your application receives the standard reclaim notification that is identical to the
expanded notification but without the "Forced" flag.

use_transport_thread (receiver)
For LBT-RM, LBT-RU, or TCP-LB transport sessions only. Determines whether UM uses a thread from the
receiver thread pool to process message data or if it uses the context thread, which is the default. See Multi-
Transport Threads in the Ultra Messaging Concepts Guide.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1.

String value Integer value Description

"1" (Integer value as a
string.)

1 UM uses a thread from the
receiver thread pool.

"0" (Integer value as a
string.)

0 UM uses the context thread to
process message data. Default for
all.

Resolver Operation Options
See Topic Resolution in the UM Concepts Guide for more information.

Resolver Operation Options 69

The following topic resolution options have been deprecated in LBM Version 4.0.

• resolver_active_source_interval
• resolver_active_threshold
• resolver_maximum_advertisements
• resolver_maximum_queries
• resolver_query_interval
See “Re-establish Pre-4.0 Topic Resolution” on page 40 for option values that configure the topic resolution
used in LBM Version 3.6 and prior versions. You should also comment out or remove from your Ultra
Messaging Configuration file the deprecated configuration options shown above.

Minimum Values for Advertisement and Query Intervals
These intervals have the following effective minimal values.

• 10 ms for Initial Phase Advertisements

• 20 ms for Initial Phase Queries

• 30 ms Wildcard Queries

• 100 ms for Sustaining Phase Advertisements and Queries

• 100 ms for Context Name Queries

These effective minimums exist because the internal timer that schedules advertisements and queries fires at
the stated interval, i.e., every 10 ms for Initial Phase Advertisements, every 20 ms for Initial Phase Queries,
etc. If you set the option's value below the minimum, after the initial advertisement or query at 0 ms, the
resolver schedules the second advertisement or query at the first timer "tick", which is the minimum.
Subsequent advertisements or queries can only be issued at the next timer "tick". If you increase this option
from the default to a value that is not a multiple of the minimum, the resolver maintains the rate you establish
as an average over subsequent "ticks".

As an example, If you set “ resolver_advertisement_sustain_interval (source) ” on page 73 or
“ resolver_query_sustain_interval (receiver) ” on page 80 at 10 ms, the resolver schedules the second
advertisement or query after the initial (0 ms) at the first timer "tick", which is 100 ms. Subsequent
advertisements or queries can only be issued at the next timer "tick" (every 100 ms). If you increase either
option from the default to 1.25 seconds, for example and not a multiple of 100 ms, the resolver maintains the
rate you establish as an average over subsequent "ticks". That is, the second advertisement or query goes
out at the 1300 ms "tick". The resolver tracks the tardiness of this advertisement (50 ms) and adjusts the next
advertisement or query, which goes out at 2500 ms, giving an average of 1250 ms or 1.25 seconds.

disable_extended_topic_resolution_message_options (context)
This is a topic resolution compatibility option that, when set to 1, lets LBM 4.0 (or later) installations work with
LBM 3.5.3 / UME 2.2.4 (or earlier) installations. If you do not have early-version installations in the network,
leave this option at 0.

Scope: context

Type: int

70 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Value Description

1 Enable compatibility with earlier-version installations (and disable some message structure
features).

0 Normal current-version compatibility. Strongly recommended. Default for all.

resolution_no_source_notification_threshold (receiver)
The threshold for the number of unanswered topic resolution queries before UM delivers a
LBM_MSG_NO_SOURCE_NOTIFICATION for the topic. The receiver does not stop querying after the
delivery of this notification. A value of 0 indicates no notifications will be sent.

Scope: receiver

Type: lbm_ulong_t

Units: Number of queries

Default value: 0 (do not notify)

When to Set: May be set during operation.

resolution_number_of_sources_query_threshold (receiver)
The threshold for the number of sources a topic must have before topic resolution queries are not sent. A
value of zero results in no topic resolution queries being generated. See also “Disabling Aspects of Topic
Resolution ” on page 39.

Scope: receiver

Type: lbm_ulong_t

Units: Number of sources

Default value: 10000000 (10 million)

When to Set: May be set during operation.

Resolver Operation Options 71

resolver_advertisement_maximum_initial_interval (source)
The longest - and last - interval in the initial phase of topic advertisement. A value of 0 disables the initial
phase of advertisement. See also “Disabling Aspects of Topic Resolution ” on page 39.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_advertisement_minimum_initial_duration (source)
The duration of the initial phase of topic advertisement. A value of 0 guarantees that the initial phase of
advertisement never completes.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 5000 (5 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_advertisement_minimum_initial_interval (source)
Interval between the first topic advertisement sent upon creation of the source and the second advertisement
sent by the source. A value of 0 disables the initial phase of advertisement. See also “Disabling Aspects of
Topic Resolution ” on page 39. This option has an effective minimum of 10 ms. See “Minimum Values for
Advertisement and Query Intervals” on page 70.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 10 (0.01 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

72 Chapter 4: Reference

resolver_advertisement_minimum_sustain_duration (source)
The duration of the sustaining phase of topic advertisement. A value of 0 guarantees that the sustaining
phase of advertising never completes.

Scope: source

Type: lbm_ulong_t

Units: seconds

Default value: 60 (1 minute)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_advertisement_send_immediate_response (source)
Allows you to disable the normal immediate response to queries and wildcard queries. Sources normally send
topic advertisements (TIR) immediately in response to topic queries (TQR) for a local topic or wildcard
queries (WC-TQR) with a pattern that matches a local topic. If you configure sources to delay sending
advertisements, UM delays advertisements by the limits defined by the advertisement rate limiter options,
resolver_*_bps and resolver_*_per_second.

Scope: source

Type: lbm_uint_t

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2/UMQ 2.1

Value Description

1 Sources immediately send advertisements (TIR) in response to topic queries (TQR) or
wildcard queries (WC-TQR). Default for all.

0 Sources delay sending advertisements (TIR) in response to topic queries (TQR) or
wildcard queries (WC-TQR).

resolver_advertisement_sustain_interval (source)
Interval between sending topic advertisements in the sustaining phase of topic advertisement. A value of 0
disables the sustaining phase of advertisement. See also “Disabling Aspects of Topic Resolution ” on page
39. This option has an effective minimum of 100 ms. See “Minimum Values for Advertisement and Query
Intervals” on page 70.

Scope: source

Type: lbm_ulong_t

Resolver Operation Options 73

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_cache (context)
Whether or not to enable the resolver cache to hold topic resolution information. Disabling the resolver cache
uses less memory. Note that if you disable the resolver cache, source notification occurs for only topics with
UM receivers already created.

To use wildcard receivers, you must enable the resolver cache.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Topic resolution information will be cached. Default for all.

0 Do not cache topic resolution information.

resolver_context_name_activity_timeout (context)
Period of inactivity before a context name is declared unresolved.

The minimum amount of time without any context name resolution traffic that must pass before UM declares
a resolved context name unresolved. Context name resolution traffic is defined as the reception of context
name advertisements and/or unicast control traffic from the resolved context.

Scope: source

Type: lbm_uint64_t

Units: milliseconds

Default value: 60000 (60 seconds)

When to Set: Can only be set during object initialization.

Version This option was implemented in UM 6.0.

resolver_context_name_query_duration (context)
Maximum period of time UM sends context name queries.

74 Chapter 4: Reference

The maximum duration for which UM sends context name queries for a given context name. UM sends
queries until the context name resolves. A value of 0 means queries have no time limit and UM continues to
query until the context name resolves.

Scope: receiver

Type: lbm_uint64_t

Units: milliseconds

Default value: 0 (Query for as long as unresolved)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.0.

resolver_context_name_query_maximum_interval (context)
The longest interval between sending context name queries. A value of 0 disables context name queries. See
also “Disabling Aspects of Topic Resolution ” on page 39. This option has an effective minimum of 100 ms.
See “Minimum Values for Advertisement and Query Intervals” on page 70

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.0.

resolver_context_name_query_minimum_interval (context)
Interval between the first context name query sent upon creation of the UMP source using named stores and
the second query sent. A value of 0 disables context name queries. See also “Disabling Aspects of Topic
Resolution ” on page 39. This option has an effective minimum of 100 ms. See “Minimum Values for
Advertisement and Query Intervals” on page 70.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 100 (0.1 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.0 .

Resolver Operation Options 75

resolver_datagram_max_size (context)
The maximum datagram size that can be generated for topic resolution advertisements and queries. The
default value is 8192, the minimum is 500 bytes, and the maximum is 65535.

Scope: context

Type: lbm_uint_t

Units: bytes

Default value: 8192

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 3.0.

resolver_domain_id_active_propagation_timeout (context)
Indicates how a context learns the ID of its own Topic Resolution Domain (TRD).

Scope: context

Type: int

76 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.7.1.

Value Description

-1 Learn TRD ID from other contexts in the same TRD, without restriction. This is the method
Ultra Messaging has traditionally used. Default for all.
This method assigns TRD IDs quickly to avoid partial connectivity. However, note that to
change a TRD ID, you must reconfigure and restart all UM Routers, if present. Then you
must delete all application contexts, and then re-create all application contexts.
Note: With this option value, newly-created contexts can learn from earlier versions of
Ultra Messaging software.

0 Learn TRD ID only from a UM Router directly. Do not learn the TRD ID from other contexts
in the same TRD. Consider using this option with a TRD that has many contexts and a
possible need to change a TRD ID.

1 to 2,147,483,647 Learn TRD ID from other contexts in the same TRD that have heard the domain ID
advertised by a UM Router within this timeout value in milliseconds. Use the following
formula:
3 * {propagation-interval}/1000 + {maximum expected duration of UM Router outage}
where propagation-interval is an attribute value of the UM Router configuration option
<route-info> element, which defaults to 1000.
With a timeout value set, a restarted context does not learn obsolete TRD IDs from un-
restarted contexts, but instead, learns from UM Routers or restarted contexts. You do not
need to bring all contexts to a deleted state simultaneously before you re-create the first
context.
Note: During this timeout period, there is a risk for temporary incomplete connectivity in
networks with no UM Routers.

resolver_initial_advertisement_bps (context)
Maximum advertisement rate during the initial phase of topic advertisement. A value of 0 sets no rate limit on
advertisements in the initial phase of topic advertisement.

Scope: context

Type: lbm_uint64_t

Units: bits per second

Default value: 1000000

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

Resolver Operation Options 77

resolver_initial_advertisements_per_second (context)
Maximum number of advertisements sent within a one second period during the initial phase of topic
advertisement. A value of 0 sets no rate limit on advertisements in the initial phase of topic advertisement.

Scope: context

Type: lbm_ulong_t

Units: advertisements

Default value: 1000

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_initial_queries_per_second (context)
Maximum number of queries sent within a one second period during the initial phase of topic querying. A
value of 0 sets no rate limit on queries in the initial phase of topic querying.

Scope: context

Type: lbm_ulong_t

Units: advertisements

Default value: 1000

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_initial_query_bps (context)
Maximum query rate during the initial phase of topic querying. A value of 0 sets no rate limit on queries in the
initial phase of topic querying.

Scope: context

Type: lbm_uint64_t

Units: bits per second

Default value: 1000000

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

78 Chapter 4: Reference

resolver_query_maximum_initial_interval (receiver)
The longest - and last - interval in the initial phase of topic querying. A value of 0 disables the initial phase of
querying. See also “Disabling Aspects of Topic Resolution ” on page 39.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 200 (0.2 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_query_minimum_initial_duration (receiver)
The duration of the initial phase of topic querying. A value of 0 guarantees that the initial phase of querying
never completes.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 5000 (5 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_query_minimum_initial_interval (receiver)
Interval between the first topic query sent upon creation of the receiver and the second query sent by the
receiver. A value of 0 disables the initial phase of querying. See also “Disabling Aspects of Topic
Resolution ” on page 39. This option has an effective minimum of 20 ms. See “Minimum Values for
Advertisement and Query Intervals” on page 70.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 20 (0.02 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

Resolver Operation Options 79

resolver_query_minimum_sustain_duration (receiver)
The duration of the sustaining phase of topic querying. A value of 0 guarantees that the sustaining phase of
querying never completes.

Scope: receiver

Type: lbm_ulong_t

Units: seconds

Default value: 60 (1 minute)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_query_sustain_interval (receiver)
Interval between sending topic queries in the sustaining phase of topic querying. A value of 0 disables the
sustaining phase of querying. See also “Disabling Aspects of Topic Resolution ” on page 39. This option has
an effective minimum of 100 ms. See “Minimum Values for Advertisement and Query Intervals” on page 70.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_receiver_map_tablesz (context)
The size of the hash table used for storing receiver topic information used for topic resolution. This value
should be a prime number.

Scope: context

Type: size_t

Units: map entries

Default value: 131111

When to Set: Can only be set during object initialization.

80 Chapter 4: Reference

resolver_send_initial_advertisement (source)
Controls whether or not a source sends an advertisement upon creation. Turning off this advertisement
speeds source creation and reduces the number of messages on your network through application
initialization.

Scope: source

Type: lbm_uint_t

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

Value Description

1 Source sends a topic advertisement immediately upon creation. Default for all.

0 Source does not send an advertisement upon creation. This setting does not affect the
topic resolution phases you have configured, which execute as expected. See Disabling
Aspects of Topic Resolution for information about altering topic resolution phase
advertisements.

resolver_source_map_tablesz (context)
The size of the hash table used for storing source topic information used by topic resolution. This value
should be a prime number.

Scope: context

Type: size_t

Units: map entries

Default value: 131111

When to Set: Can only be set during object initialization.

resolver_string_hash_function (context)
The hash function to use for hashing topic name strings for source and receiver topics. The application may
choose from a list of defined hash functions or it may define its own hash function, as identified by the string
value of this option. When setting a hash function, note that:

• If set through a configuration file or a call to lbm_context_attr_str_setopt(), only the string values
classic, djb2, sdbm, or murmur2 are valid. (If retrieved by a call to lbm_context_attr_str_getopt(), one
of these string values is returned.)

Resolver Operation Options 81

• If set through a call to lbm_context_attr_setopt(), you must pass a pointer to a hash function. Use this
method for hash functions other than the four pre-defined functions.

Scope: context

Type: lbm_str_hash_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

String value Integer value Description

classic A "classic" good string hash
function. Works best when topic
names have a constant prefix with
a changing suffix.

djb2 The Dan Bernstein algorithm from
comp.lang.c. Works best when
topic names have a changing prefix
with a constant suffix.

sdbm sdbm database library (used in
Berkeley DB). A useful alternative
to djb2.

murmur2 Good all-around hash function by
Austin Appleby. Best for medium to
long topic strings. Default for all.

resolver_string_hash_function_ex (context)
This option is similar to the “ resolver_string_hash_function (context) ” on page 81 above, except for the
following differences:

• This option can be set via only lbm_context_attr_setopt() (not from a configuration file or
lbm_context_attr_str_setopt()). Hence, this also means you cannot use the string options (classic,
etc.).

• You can pass a string length to the hash function, allowing it to then possibly run faster by operating on
multiple-character strings at a time. Note that if -1 is passed in, you must use a strlen to calculate the
length.

• The hash function accepts a clientd pointer, which you can set as needed, and which is passed back in
each time the function is called.

This option is the better choice when setting your own custom hash function. Note that both the
resolver_string_hash_function and resolver_string_hash_function_ex options set the same attributes,
hence, if you use both (not recommended) one will override the other.

Scope: context

Type: lbm_str_hash_func_ex_t

82 Chapter 4: Reference

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

resolver_sustain_advertisement_bps (context)
Maximum advertisement rate during the sustaining phase of topic advertisement. A value of 0 sets no rate
limit on advertisements in the sustaining phase of topic advertisement.

Scope: context

Type: lbm_uint64_t

Units: bits per second

Default value: 1000000

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_sustain_advertisements_per_second (context)
Maximum number of advertisements sent within a one second period during the sustaining phase of topic
advertisement. A value of 0 sets no rate limit on advertisements in the sustaining phase of topic
advertisement.

Scope: context

Type: lbm_ulong_t

Units: advertisements

Default value: 0

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_sustain_queries_per_second (context)
Maximum number of queries sent within a one second period during the sustaining phase of topic querying. A
value of 0 sets no rate limit on queries in the sustaining phase of topic querying.

Scope: context

Type: lbm_ulong_t

Resolver Operation Options 83

Units: advertisements

Default value: 0

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_sustain_query_bps (context)
Maximum query rate during the sustaining phase of topic querying. A value of 0 sets no rate limit on queries
in the sustaining phase of topic querying.

Scope: context

Type: lbm_uint64_t

Units: bits per second

Default value: 1000000

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_unicast_activity_timeout (context)
Indicates the maximum time between messages from a unicast resolver daemon before UM declares it
inactive and stops sending normal topic resolution traffic via that daemon. UM will still send keepalives to the
daemon. A value of 0 will force all resolver daemons to be treated as permanently active.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

resolver_unicast_change_interval (context)
Indicates how often UM will change to the next available resolver daemon specified using the.
resolver_unicast_daemon configuration option. The actual value used is random, and is selected from the
range (1/2*change_interval, 3/2*change_interval). If all resolver daemons have been marked inactive, UM

84 Chapter 4: Reference

enters a quick-change mode where it uses a random value from the range (1/4*change_interval,
3/4*change_interval) in order to more quickly locate an active daemon.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 200

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

resolver_unicast_check_interval (context)
Indicates how often a UM checks for resolver activity in order to determine liveness. A value of 0 will disable
activity checks. This setting only applies to the unicast resolver.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 200

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

resolver_unicast_force_alive (context)
Indicates whether sources or receivers in this context should send keepalive messages to a configured
Unicast Topic Resolver so they can receive topic resolution traffic.

Scope: context

Type: lbm_uint16_t

When to Set: Can only be set during object initialization.

Value Description

1 Contexts send keepalive messages to the Unicast Resolver at the
“ resolver_unicast_keepalive_interval (context) ” on page 86 regardless of whether the
context has any sources or receivers that require topic resolution.

0 Contexts do not send keepalive messages to the Unicast Resolver until sources or
receivers have been created. Then Contexts send keepalives at the
“ resolver_unicast_keepalive_interval (context) ” on page 86. Default for all.

Resolver Operation Options 85

resolver_unicast_ignore_unknown_source (context)
Indicates whether contexts using unicast topic resolution accept topic resolution udp datagrams that originate
from any lbmrd or only the specific lbmrd configured for use.

Note: Do not modify this setting without guidance from Informatica.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.7.1.

Value Description

0 A context using unicast topic resolution accepts traffic from lbmrd resolver daemons not
configured for use by the context.

1 Contexts using unicast topic resolution accept topic resolution udp datagrams that
originate from only the specific lbmrd configured for use. The context discards topic
resolution datagrams from unrecognized origins and logs a message. This prevents
applications at the same IP address, but in different topic resolution domains that might
share resolver unicast port ranges, from processing unintended topic resolution traffic
while lbmrd resolver daemons time out stale client entries. Default for all.

resolver_unicast_keepalive_interval (context)
Indicates how often keepalive messages should be sent to a resolver daemon. Keepalives are only sent if no
other traffic has been sent since the last keepalive interval expired.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 500

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

86 Chapter 4: Reference

Multicast Resolver Network Options
Multicast resolver network options

See also Topic Resolution in the Ultra Messaging Concepts Guide for more information.

resolver_multicast_address (context)
Multicast address used for Topic Resolution. This option automatically sets the values for
“ resolver_multicast_incoming_address (context) ” on page 87 and “ resolver_multicast_outgoing_address
(context) ” on page 88 as evidenced by the default values for all three options, which are the same.

Scope: context

Type: struct in_addr

Default value: 224.9.10.11

When to Set: Can only be set during object initialization.

resolver_multicast_incoming_address (context)
Incoming multicast address used for finer control of Topic Resolution. For example, if you want the context to
listen on a different address/port than the “ resolver_multicast_address (context) ” on page 87, set this option
and “ resolver_multicast_incoming_port (context) ” on page 88 to different values. This value may be set to
0.0.0.0 (INADDR_ANY), to switch off listening to topic resolution messages. This means that queries from
receivers or advertisements from sources will not be handled. See also
“ resolver_multicast_outgoing_address (context) ” on page 88.

Scope: context

Type: struct in_addr

Multicast Resolver Network Options 87

Default value: 224.9.10.11

When to Set: Can only be set during object initialization.

resolver_multicast_incoming_port (context)
Incoming multicast port used for finer control of Topic Resolution. For example, if you want the context to
listen on a different address/port than the “ resolver_multicast_port (context) ” on page 89, set this option
and “ resolver_multicast_incoming_address (context) ” on page 87 to different values. See also
“ resolver_multicast_outgoing_port (context) ” on page 89.

Scope: context

Type: lbm_uint16_t

Default value: 12965

Byte order: Network

When to Set: Can only be set during object initialization.

resolver_multicast_interface (context)
Specifies which network interface UM sends/receives all multicast traffic (Topic Resolution, LBT-RM,
Multicast Immediate Messaging). Can specify full IP address of interface, or just network part (see
“Specifying Interfaces” on page 52 for details). Default is set to default multicast interface as determined by
UM (the first multicast-capable, non-loopback interface).

Scope: context

Type: lbm_ipv4_address_mask_t

Default value: 0.0.0.0

When to Set: Can only be set during object initialization.

resolver_multicast_outgoing_address (context)
Outgoing multicast address used for finer control of Topic Resolution. For example, if you want the context to
send on a different address/port than the “ resolver_multicast_address (context) ” on page 87, set this option
and “ resolver_multicast_outgoing_port (context) ” on page 89 to different values. See also
“ resolver_multicast_incoming_address (context) ” on page 87.

Scope: context

Type: struct in_addr

88 Chapter 4: Reference

Default value: 224.9.10.11

When to Set: Can only be set during object initialization.

resolver_multicast_outgoing_port (context)
Outgoing multicast port used for finer control of Topic Resolution. For example, if you want the context to
send on a different address/port than the “ resolver_multicast_port (context) ” on page 89, set this option
and “ resolver_multicast_outgoing_address (context) ” on page 88 to different values. See also
“ resolver_multicast_incoming_port (context) ” on page 88.

Scope: context

Type: lbm_uint16_t

Default value: 12965

Byte order: Network

When to Set: Can only be set during object initialization.

resolver_multicast_port (context)
Multicast port used for Topic Resolution. This option automatically sets the values for
“ resolver_multicast_incoming_port (context) ” on page 88 and “ resolver_multicast_outgoing_port
(context) ” on page 89 as evidenced by the default values for all three options, which are the same.

Scope: context

Type: lbm_uint16_t

Default value: 12965

Byte order: Network

When to Set: Can only be set during object initialization.

resolver_multicast_receiver_socket_buffer (context)
Value used to set SO_RCVBUF value of the resolver receivers. In some cases the OS will not allow all of this
value to be used. A value of 0 instructs UM to use the default OS values. See the section on “Socket Buffer
Sizes” on page 52 for platform-dependent information. See also our white paper
Topics in High Performance Messaging for background and guidelines on UDP buffer sizing.

Scope: context

Type: lbm_ulong_t

Units: bytes

Multicast Resolver Network Options 89

http://vip.informatica.com/content/Downloads?docid=1568&=NA-Ongoing-2011Q1-JP-UM_Topics_in_High_Performance_WP_www

Default value: 0 (use OS default)

When to Set: Can only be set during object initialization.

resolver_multicast_ttl (context)
The IP TTL (hop count) to use for a Topic Resolution packet. A value of 1 confines the packet to the local
network (but may also cause high CPU usage on some routers). Also controls TTL on LBT-RM packets.

Scope: context

Type: lbm_uint8_t

Default value: 16

When to Set: May be set during operation.

90 Chapter 4: Reference

Unicast Resolver Network Options
Unicast resolver network options

This diagram shows a single unicast resolver daemon configured with resolver_unicast_daemon.

If using multiple lbmrd instances with a single context, you can configure resolver_unicast_interface and
resolver_unicast_port_low/high and omit the Interface:LocalPort section of resolver_unicast_daemon.

See also Unicast Topic Resolution in the Ultra Messaging Concepts Guide for more information.

resolver_unicast_daemon (context)
Add a unicast resolver daemon specification to the list of unicast resolver daemons. Unlike most other UM
settings, every time this setting is called, it adds another daemon specification to the list and does NOT
overwrite previous specifications. Each entry contains the interface, source port, resolver IP, and destination
port for a single daemon. For the configuration file as well as string versions of setting this option, the string
value is formatted as follows:

[Iface[:Src_Port]->]IP:Dest_Port

Unicast Resolver Network Options 91

Iface

the interface to use (previously set via “ resolver_unicast_interface (context) ” on page 92)

Src_Port
the source port to use (previously “ resolver_unicast_port (context) ” on page 227)

IP
the resolver daemon's IP address (previously “ resolver_unicast_address (context) ” on page 226)

Dest_Port
the resolver daemon's UDP port (previously “ resolver_unicast_destination_port (context) ” on page 226)

You can omit either the Src_Port or both the Iface and Src_Port, in which case the default
“ resolver_unicast_interface (context) ” on page 92 and “ resolver_unicast_port (context) ” on page 227
settings are used. Because each entry adds a new daemon specification and does not overwrite previous
values, an entry or string with the IP address of 0.0.0.0 and port of 0 removes all previous daemon
specifications. At least one daemon specification means the context does not use multicast topic resolution.

Possible formats of this option are as follows:

Interface:LocalPort->DaemonIP:RemotePort
Interface->DaemonIp:RemotePort
DaemonIP:RemotePort

You can specify Interface in any of the ways described in “Specifying Interfaces” on page 52.

Scope: context

Type: lbm_ucast_resolver_entry_t

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0

resolver_unicast_interface (context)
Specifies the network interface over which UM receives unicast Topic Resolution messages. Can specify full
IP address of interface, or just network part (see “Specifying Interfaces” on page 52 for details). Default is set
to INADDR_ANY, meaning that it will accept unicast Topic Resolution messages on any interface.

Scope: context

Type: lbm_ipv4_address_mask_t

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

92 Chapter 4: Reference

resolver_unicast_port_high (context)
The highest local UDP port in a range of ports used for unicast topic resolution messages. The UM resolution
daemon (lbmrd) sends unicast topic resolution messages to the UDP port range defined by this option and
“ resolver_unicast_port_low (context) ” on page 93.

Scope: context

Type: lbm_uint16_t

Default value: 14406

Byte order: Host

When to Set: Can only be set during object initialization.

resolver_unicast_port_low (context)
The lowest local UDP port in a range of ports used for unicast topic resolution messages. The UM resolution
daemon (lbmrd) sends unicast topic resolution messages to the UDP port range defined by this option and
“ resolver_unicast_port_high (context) ” on page 93.

Scope: context

Type: lbm_uint16_t

Default value: 14402

Byte order: Host

When to Set: Can only be set during object initialization.

resolver_unicast_receiver_socket_buffer (context)
Value used to set SO_RCVBUF value of the UDP receivers for unicast topic resolution messages. In some
cases the OS will not allow all of this value to be used. A value of 0 instructs UM to use the default OS
values. See the section on “Socket Buffer Sizes” on page 52 for platform-dependent information.

Scope: context

Type: lbm_ulong_t

Units: bytes

Default value: 0 (use OS default)

When to Set: Can only be set during object initialization.

Unicast Resolver Network Options 93

Transport TCP Network Options
TCP receivers initiate connections toward TCP sources. Messages flow from sources to receivers.

TCP network options

“ transport_tcp_port_low (context) ” on page 96
is the lowest port that UMS will allocate for TCP sources in a context; “ transport_tcp_port_high (context) ” on
page 96
is the highest. No more than “ transport_tcp_maximum_ports (context) ” on page 95
ports will be assigned to TCP sources within a single context.

Creation of a UMS source on a TCP transport will allocate an unused port from the range if less than
“ transport_tcp_maximum_ports (context) ” on page 95 ports have already been allocated. Setting
“ transport_tcp_maximum_ports (context) ” on page 95 to a fraction of the range allows the corresponding
multiple number of UMS processes to share a common configuration.

If a particular TCP port is desired by a source, it may be given with “ transport_tcp_port (source) ” on page
95. If the desired port is already in use, then an unused port will be sought as described above. A value of 0
(the default) expresses no preference and results in the default open port seeking behavior described above.

“ transport_tcp_interface (source) ” on page 95 may be used on TCP sources to choose particular interface,
overriding the default INADDR_ANY which accepts connections on all interfaces. Similarly,
“ transport_tcp_interface (receiver) ” on page 94 may be used on receivers to choose a particular interface
for outgoing connections.

transport_tcp_interface (receiver)
Specifies the network interface to which UM receivers bind before connecting to sources. You can specify the
full IP address of interface, or just the network part (see “Specifying Interfaces” on page 52 for details).

Scope: receiver

Type: lbm_ipv4_address_mask_t

94 Chapter 4: Reference

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

transport_tcp_interface (source)
Specifies the network interface over which UM accepts connection requests (from topic receivers). You can
specify the full IP address of interface, or just the network part (see “Specifying Interfaces” on page 52 for
details). Be aware that this option is applied to the transport session when the first topic is created on that
session. Thus, setting a different interface for a subsequent topic that maps onto the same transport session
will have no effect. Default is set to INADDR_ANY, meaning that it will not bind to a specific interface. You
can also modify the default by setting the option to 0.0.0.0/0 which produces the same result.

Scope: source

Type: lbm_ipv4_address_mask_t

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

transport_tcp_maximum_ports (context)
Maximum number of TCP sessions to allocate.

Scope: context

Type: lbm_uint16_t

Units: number of ports

Default value: 10

When to Set: Can only be set during object initialization.

transport_tcp_port (source)
The preferred TCP port number for this Topic. If 0, the context will attempt to find one in the given TCP port
range.

Scope: source

Type: lbm_uint16_t

Default value: 0 (pick open port)

Byte order: Network

When to Set: Can only be set during object initialization.

Transport TCP Network Options 95

transport_tcp_port_high (context)
High port number to assign to TCP sessions.

Scope: context

Type: lbm_uint16_t

Default value: 14390

Byte order: Host

When to Set: Can only be set during object initialization.

transport_tcp_port_low (context)
Low port number to assign to TCP sessions.

Scope: context

Type: lbm_uint16_t

Default value: 14371

Byte order: Host

When to Set: Can only be set during object initialization.

Transport TCP Operation Options

transport_session_maximum_buffer (source)
Value used to control the maximum amount of data buffered in UM for the transport session used for the
topic. For the normal multiple receiver behavior, this value represents the total buffered by all TCP receivers.
For the bounded_latency and source_paced multiple receiver behavior, this value represents the individual
receiver buffered amount. This option affects the transport session underlying the source rather than the
source itself. The transport session uses the value from the first source created on the session and ignores
subsequent sources. Refer to Source Configuration and Transport Sessions in the Ultra Messaging Concepts
Guide for additional information.

Scope: source

Type: lbm_ulong_t

Units: bytes

96 Chapter 4: Reference

Default value: 65536

When to Set: Can only be set during object initialization.

transport_tcp_activity_method (receiver)
For TCP sessions only. The type of timeout method to use for TCP receivers.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.3.8/UME 2.0.6.

String value Integer value Description

timer LBM_RCV_TOPIC_ATTR_T
CP_ACTIVITY_TIMEOUT_TI
MER

Timer method that requires new
TCP session data to be sent to
determine if the connection is alive.
Default for all.

SO_KEEPALIVE LBM_RCV_TOPIC_ATTR_T
CP_ACTIVITY_TIMEOUT_S
O_KEEPALIVE

Set SO_KEEPALIVE on the TCP
connection which uses the TCP
keepalive support in the operating
system to determine if the
connection is alive. When you use
the SO_KEEPALIVE method, UM
uses transport_tcp_activity_timeout
value to set the idle and probe
times for SO_KEEPALIVE. The idle
time is 90% of the timeout value at
most. The probe time is 10% with
10 seconds as the minimum.

transport_tcp_activity_timeout (receiver)
For TCP sessions only. The maximum time that a TCP session may be quiescent before it is deleted and an
EOS event is delivered for all topics using this transport session. A value greater than zero turns the timer on.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 0

When to Set: Can only be set during object initialization.

Transport TCP Operation Options 97

transport_tcp_activity_timeout (source)
For TCP sessions only. This timeout option enables using SO_KEEPALIVE to detect when a receiver does not
cleanly disconnect or is no longer reachable from the source. When the timeout expires, a DISCONNECT
source event is delivered. This option affects only Linux or Windows platforms. Outstanding TCP retransmit
timers must expire before this timer starts. With a default Linux or Windows system configuration, TCP
retransmit timers may take minutes or even hours to expire. Therefore the total time taken to detect an
unreachable receiver may be significantly higher than the value configured for this timeout. A value of zero
(0) defers TCP timeout to OS settings.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 0

When to Set: Can only be set during object initialization.

transport_tcp_coalesce_threshold (source)
UM passes implicitly batched messages to the Operating System sendmsg() as a set unless the size of the
set exceeds the coalescing threshold at which point the messages are coalesced and passed to the O/S as
one copy.

This option accommodates the different number of iovecs supported by different O/Ss. Tuning this option
balances the efficiency of less iovecs handled by the OS vs. the expense of an additional copy operation of
the messages before sending. The default values are also the maximum allowable values.

Scope: source

Type: int

Units: number of individual messages

Default value: 1024 for Linux, Microsoft™ Windows™ , Darwin; 16 for Solaris, AIX, HPUX

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.6/UME 2.3.

transport_tcp_datagram_max_size (context)
The maximum datagram size that can be generated for a TCP transport session. The default value is 65535,
the minimum is 500 bytes, and the maximum is 65535.

Scope: context

Type: lbm_uint_t

Units: bytes

98 Chapter 4: Reference

Default value: 65535

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

transport_tcp_exclusiveaddr (source)
Applicable only to Windows. Indicate whether the TCP session should set SO_EXCLUSIVEADDRUSE or not
before it binds. The default setting in Windows allows multiple binds to the same port. By default, UM will set
SO_EXCLUSIVEADDRUSE to minimize port sharing. Refer to Microsoft's web site for more information on
SO_EXCLUSIVEADDRUSE.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Set SO_EXCLUSIVEADDRUSE. Default for Windows.

0 Do not set SO_EXCLUSIVEADDRUSE.

transport_tcp_listen_backlog (source)
The backlog used in the TCP listen() call to set the queue length for incoming connections.

Scope: source

Type: int

Units: number of queued connections

Default value: 5

When to Set: Can only be set during object initialization.

transport_tcp_multiple_receiver_behavior (source)
The flow control behavior desired when multiple TCP clients are receiving for a TCP session. If an application
is only allowed to send as fast as all receivers can consume data, markedly slower receivers will lose data
(have unrecoverably lost UM messages) if they can not keep up with the other faster receivers for the TCP
session. Note that at high rates and with receivers that can consume data at fairly similar rates, all receivers
may experience some loss at times. This option affects the transport session underlying the source rather
than the source itself. The transport session uses the value from the first source created on the session and

Transport TCP Operation Options 99

ignores subsequent sources. Refer to Source Configuration and Transport Sessions in the Ultra Messaging
Concepts Guide for additional information.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

normal LBM_SRC_TOPIC_ATTR_T
CP_MULTI_RECV_NORMAL

The application sends as fast as
the slowest receiver consumes
data. This slows down all receivers
on that TCP session. Default for
all.

bounded_latency LBM_SRC_TOPIC_ATTR_T
CP_MULTI_RECV_BOUNDE
D_LATENCY

The application sends as fast as
the fastest receiver can consume
data even if recent data headed for
slower receivers must be
discarded.

source_paced LBM_SRC_TOPIC_ATTR_T
CP_MULTI_RECV_SOURCE
_PACED

The application sends as fast as it
can even if recent data headed for
any or all receivers must be
discarded.

transport_tcp_multiple_receiver_send_order (source)
In the case of multiple receivers, this option determines whether datagrams are sent to each receiver in the
established order of receivers, or if receivers are selected in random order for each datagram transmission.

Scope: source

Type: lbm_src_topic_attr_t

When to Set: Can only be set during object initialization.

String value Integer value Description

serial LBM_SRC_TOPIC_ATTR_T
CP_MULTI_RECV_SEND_O
RDER_SERIAL

Select receivers to receive a
datagram based on current
established order. Default for all.

random LBM_SRC_TOPIC_ATTR_T
CP_MULTI_RECV_SEND_O
RDER_RANDOM

For each datagram sent, select
receivers in random order, for the
sake of "fairness". Note that this
option adds a small amount of CPU
overhead.

100 Chapter 4: Reference

transport_tcp_nodelay (source)
Whether the TCP sockets used for the transport session should set TCP_NODELAY or not. (Setting
TCP_NODELAY disables Nagle's algorithm.)

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 TCP transport sockets should set TCP_NODELAY (disable Nagle). Default for all.

0 TCP transport sockets should not set TCP_NODELAY (leave Nagle enabled).

transport_tcp_receiver_socket_buffer (context)
Value used to set SO_RCVBUF value of the TCP receivers for topics. In some cases the OS will not allow all
of this value to be used. A value of 0 instructs UM to use the default OS values. See the section on “Socket
Buffer Sizes” on page 52 for platform-dependent information.

Scope: context

Type: lbm_ulong_t

Units: bytes

Default value: 0 (use OS default)

When to Set: Can only be set during object initialization.

transport_tcp_reuseaddr (source)
Whether the TCP session should set SO_REUSEADDR or not before it binds. WARNING: This option is not
recommended for Microsoft™ Windows™ users because the SO_REUSEADDR socket option in Windows

Transport TCP Operation Options 101

allows a socket to forcibly bind to a port in use by another socket. Multiple sockets using the same port
results in indeterminate behavior.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Set SO_REUSEADDR.

0 Do not set SO_REUSEADDR. Default for all.

transport_tcp_sender_socket_buffer (source)
Value used to set the SO_SNDBUF value of the TCP session. In some cases the OS will not allow all of this
value to be used. A value of 0 instructs UM to use the OS defaults. See the section on “Socket Buffer
Sizes” on page 52 for platform-dependent information.

Scope: source

Type: lbm_ulong_t

Units: bytes

Default value: 0 (use OS default)

When to Set: Can only be set during object initialization.

transport_tcp_use_session_id (source)
Enable a session ID for the TCP Transport.

Indicates if the application desires the UM TCP Transport to use a Session ID. Older versions of UM may not
understand session IDs with TCP and may not be able to receive TCP transport sessions that include session
IDs.

Scope: source

Type: int

102 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Version This option was implemented in UM 6.0.

Value Description

1 Indicates the application desires TCP to use a session ID. Default for all.

0 Indicates the application does not desire TCP to use a session ID.

Transport LBT-RM Network Options
The following illustration shows where the various options are applied. Note that for a multi-homed LBT-RM
source, the interface LBT-RM multicast resolver interface specified with “ resolver_multicast_interface
(context) ” on page 88 will be used as the source for LBT-RM.

LBT-RM network options

Transport LBT-RM Network Options 103

transport_lbtrm_destination_port (source)
The UDP destination port used for this Topic when the transport is LBT-RM.

Scope: source

Type: lbm_uint16_t

Default value: 14400

Byte order: Network

When to Set: Can only be set during object initialization.

transport_lbtrm_multicast_address (source)
The preferred multicast address for this Topic when the transport is LBT-RM. If 0.0.0.0 (INADDR_ANY), the
context will attempt to find one in the given multicast address range.

Scope: source

Type: struct in_addr

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

transport_lbtrm_multicast_address_high (context)
Multicast address used as the highest value to assign to LBT-RM sessions.

Scope: context

Type: struct in_addr

Default value: 224.10.10.14

When to Set: Can only be set during object initialization.

transport_lbtrm_multicast_address_low (context)
Multicast address used as the lowest value to assign to LBT-RM sessions.

Scope: context

Type: struct in_addr

Default value: 224.10.10.10

When to Set: Can only be set during object initialization.

104 Chapter 4: Reference

transport_lbtrm_source_port_high (context)
Highest port number value used for LBT-RM source sessions' unicast NAK processing. UM sends NAKs to
this port number for processing and retransmission generation. Each LBT-RM session must use a unique port
value. Note that this does not control the UDP source port on the outbound LBT-RM stream.

Scope: context

Type: lbm_uint16_t

Default value: 14399

Byte order: Host

When to Set: Can only be set during object initialization.

transport_lbtrm_source_port_low (context)
Lowest port number value used for LBT-RM source sessions' unicast NAK processing. UM sends NAKs to
this port number for processing and retransmission generation. Each LBT-RM session must use a unique port
value. Note that this does not control the UDP source port on the outbound LBT-RM stream.

Scope: context

Type: lbm_uint16_t

Default value: 14390

Byte order: Host

When to Set: Can only be set during object initialization.

Transport LBT-RM Reliability Options
In addition to LBT-RM reliability options, this section discusses the following topics.

• “LBT-RM Datagram Loss Resulting in Unrecovered Message Loss” on page 105

• “LBT-RM Source Ignoring NAKs for Efficiency” on page 106

• “LBT-RM Receiver Suppressing NAK Generation” on page 107

LBT-RM Datagram Loss Resulting in Unrecovered Message Loss
The key options that control the effort that an LBT-RM receiver will make to recover from datagram loss are
“ transport_lbtrm_nak_backoff_interval (receiver) ” on page 108 and
“ transport_lbtrm_nak_generation_interval (receiver) ” on page 109. Timers for both start when loss is
detected. The following timeline illustrates a case where a receiver is notified of unrecoverable message loss
following repeated datagram loss.

Transport LBT-RM Reliability Options 105

Note: The actual length of the interval randomization periods are between 1/2 and 3/2 of the configured
interval value. In the diagram below (Scenario Timeline: LBT-RM Datagram Loss Resulting in Unrecovered
Message Losson page 106), these periods appear shorter to simplify the diagram.

Scenario Timeline: LBT-RM Datagram Loss Resulting in Unrecovered Message Loss

Set “ transport_lbtrm_nak_backoff_interval (receiver) ” on page 108 to the NAK service time that could be
reasonably expected from the receiver's location in the network plus some cushion for network congestion.
Set “ transport_lbtrm_nak_generation_interval (receiver) ” on page 109 to the latency budget established for
the transport layer. See our whitepaper Topics in High Performance Messaging for background on latency
budgets. See also Reducing Loss Recovery Latencies

Note: The diagram, Scenario Timeline: LBT-RM Datagram Loss Resulting in Unrecovered Message Losson
page 106, depicts loss occurring over a LBT-RM transport session. Many topics may be sent across a given
transport session. For information about how topic level loss is reported, see “Delivery Control Options” on
page 172.

LBT-RM Source Ignoring NAKs for Efficiency
Bandwidth efficiency of an LBT-RM source may be improved by avoiding useless retransmissions. Consider
the case of an LBT-RM source that has received a NAK for a datagram that it has just retransmitted. It's likely
that the NAK and the retransmission "crossed in the mail." Hence it's likely that the receiver generating the
NAK will have already received the retransmission just sent. If so, there's no need for the source to send

106 Chapter 4: Reference

http://vip.informatica.com/content/Downloads?docid=1568&=NA-Ongoing-2011Q1-JP-UM_Topics_in_High_Performance_WP_www
https://communities.informatica.com/infakb/faq/5/Pages/80070.aspx

another retransmission so the NAK can be safely ignored. Consider the timeline illustrated in Scenario
Timeline: LBT-RM Source Ignoring NAKs for Efficiencyon page 107.

Scenario Timeline: LBT-RM Source Ignoring NAKs for Efficiency

This shows NAKs for a given datagram being ignored for “ transport_lbtrm_ignore_interval (source) ” on page
108 following the retransmission of that datagram. (The successive NAKs received by the source in Scenario
Timeline: LBT-RM Source Ignoring NAKs for Efficiencyon page 107 indicate that more than one receiver is
subscribed to the source's topic.) NAKs will be serviced as normal following the passage of the interval.
When ignoring a NAK, the source sends a NCF (NAK ConFirmation) instead of a retransmission, which starts
a NAK suppression interval at the receiver. (See Scenario Timeline: An LBT-RM Receiver Suppressing NAK
Generationon page 108.)

LBT-RM Receiver Suppressing NAK Generation
LBT-RM sources want receivers to be notified that their NAKs have been heard. Prompt notification via a
retransmission or NCF can suppress useless NAK generation. There are a variety of circumstances where
the source does not send a retransmission in response to a receiver's NAK. For example, as shown in
Scenario Timeline: LBT-RM Source Ignoring NAKs for Efficiencyon page 107, NAKs received during the
ignore interval do not generate retransmissions. Another example would be if previous retransmissions have

Transport LBT-RM Reliability Options 107

used up all the retransmission bandwidth for the current rate limiter interval. See Scenario Timeline: An LBT-
RM Receiver Suppressing NAK Generationon page 108 for a depiction of how a receiver responds to a NCF.

Scenario Timeline: An LBT-RM Receiver Suppressing NAK Generation

Following the receipt of an NCF, a receiver suppresses all NAK generation until
“ transport_lbtrm_nak_suppress_interval (receiver) ” on page 110 passes. NAK generation resumes with the
usual “ transport_lbtrm_nak_backoff_interval (receiver) ” on page 108 if repair was not received during the
suppression interval.

Note: The actual length of the interval randomization period is between 1/2 and 3/2 of the configured interval
value. In Scenario Timeline: An LBT-RM Receiver Suppressing NAK Generationon page 108, this period
appears shorter to simplify the diagram.

transport_lbtrm_ignore_interval (source)
The interval to ignore NAKs after a retransmission is sent. This option affects the transport session
underlying the source rather than the source itself. The transport session uses the value from the first source
created on the session and ignores subsequent sources. Refer to Source Configuration and Transport
Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

transport_lbtrm_nak_backoff_interval (receiver)
For LBT-RM sessions only. The maximum interval between transmissions of a single NAK. The actual time
the receiver will wait to NAK again is random. The algorithm used to determine the time range is (1/2 *
backoff_interval - 3/2 * backoff_interval). This can result in a wait interval longer than the specified value.
This option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers.

108 Chapter 4: Reference

Refer to Receiver Configuration and Transport Sessions in the Ultra Messaging Concepts Guide and
“Interrelated Configuration Options” on page 42 for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 200 (0.2 seconds)

When to Set: Can only be set during object initialization.

transport_lbtrm_nak_generation_interval (receiver)
For LBT-RM sessions only. The maximum time that a piece of data may be outstanding before the data is
unrecoverably lost. Although the minimum valid value is 5 milliseconds, larger values are advisable. This
option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers.
Refer to Receiver Configuration and Transport Sessions in the Ultra Messaging Concepts Guide and
“Interrelated Configuration Options” on page 42 for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

transport_lbtrm_nak_initial_backoff_interval (receiver)
For LBT-RM sessions only. The interval between loss detection and transmission of the first NAK. The actual
time the receiver will wait to NAK is random. The algorithm used to determine the time range is (1/2 *
initial_backoff_interval - 3/2 * initial_backoff_interval). This can result in a wait interval longer than the
specified value. A value of 0 indicates that the receiver should immediately send a NAK. Users should be
fully aware of the implications of this before using a value of 0.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 50 (0.05 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

Transport LBT-RM Reliability Options 109

transport_lbtrm_nak_suppress_interval (receiver)
For LBT-RM sessions only. The maximum interval to suppress sending NAKs after an NCF or a NAK from
another receiver. This option affects the transport session underlying the receiver rather than the receiver
itself. The transport session uses the value from the first receiver created on the session and ignores
subsequent receivers. Refer to Receiver Configuration and Transport Sessions in the Ultra Messaging
Concepts Guide for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

transport_lbtrm_receiver_socket_buffer (context)
Value used to set SO_RCVBUF value of the LBT-RM receiver multicast socket. In some cases the OS will
not allow all of this value to be used. See the section on “Socket Buffer Sizes” on page 52 for platform-
dependent information. See also our white paper Topics in High Performance Messaging for background and
guidelines on UDP buffer sizing.

Scope: context

Type: lbm_ulong_t

Units: bytes

Default value: 524288 (512KB)

When to Set: Can only be set during object initialization.

transport_lbtrm_send_naks (receiver)
For LBT-RM sessions only. This flag indicates whether LBT-RM should send negative acknowledgements
(NAKs) for missing packets or not. This option affects the transport session underlying the receiver rather
than the receiver itself. The transport session uses the value from the first receiver created on the session

110 Chapter 4: Reference

http://vip.informatica.com/content/Downloads?docid=1568&=NA-Ongoing-2011Q1-JP-UM_Topics_in_High_Performance_WP_www

and ignores subsequent receivers. Refer to Receiver Configuration and Transport Sessions in the Ultra
Messaging Concepts Guide for additional information.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 NAKs are sent for missing packets to request retransmission. Default for all.

0 Do not send NAKs for missing packets.

transport_lbtrm_source_socket_buffer (context)
Value used to set SO_SNDBUF value of the LBT-RM send multicast socket. In some cases the OS will not
allow all of this value to be used. See the section on “Socket Buffer Sizes” on page 52 for platform-dependent
information. A value of 0 instructs UM to use the OS default.

Scope: context

Type: lbm_ulong_t

Units: bytes

Default value: 0 (use OS default or 131072, whichever is larger)

When to Set: Can only be set during object initialization.

transport_lbtrm_transmission_window_limit (source)
Caps the total amount of memory that a transmission window uses, which includes data and overhead. For
example, if the “ transport_lbtrm_transmission_window_size (source) ” on page 112 (source) is 24 MB
(default) and the source sends (with flush flag set) 1.2 million messages with a 20-byte payload and 230-byte
header, the actual amount of memory used can approximate 300 MB. The default value of 0 (zero) disables
the transmission window size limit.

Scope: source

Type: size_t

Units: bytes

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

Transport LBT-RM Reliability Options 111

transport_lbtrm_transmission_window_size (source)
The maximum amount of buffered payload data, excluding UM headers, that the LBT-RM source is allowed to
retain for retransmissions. The minimum valid value is 65,536 bytes. This option affects the transport session
underlying the source rather than the source itself. The transport session uses the value from the first source
created on the session and ignores subsequent sources. Fore more information, see the Ultra Messaging
Concepts Guide, Source Configuration and Transport Sessions.

Scope: source

Type: size_t

Units: bytes

Default value: 25165824 (24 MB)

When to Set: Can only be set during object initialization.

Transport LBT-RM Operation Options
Scenario Timeline: LBT-RM Source Stops Sending

Reliable multicast protocols like LBT-RM rely on sequence numbers and the arrival of data after a loss as
evidence that the loss happened. What would happen if the last packet sent by a source was lost? How
would receivers learn of the loss if no further messages were sent?

LBT-RM generates session messages when the sources on a transport session stop sending. These
messages contain the expected last sequence number for the session so that receivers can detect loss even
when sources aren't sending. Session messages also help to maintain state in multicast routers and switches
that require regular traffic to prevent the reclamation of unused forwarding entries.

The following timeline illustrates the case where an LBT-RM source stops sending.

An LBT-RM source stops sending

112 Chapter 4: Reference

No session messages are generated as long as the interval between lbm_src_send() calls that generate
writes to LBT-RM is less than “ transport_lbtrm_sm_minimum_interval (source) ” on page 117. The interval
between session messages starts at “ transport_lbtrm_sm_minimum_interval (source) ” on page 117 and
doubles till it reaches “ transport_lbtrm_sm_maximum_interval (source) ” on page 116.

Scenario Timeline: Receiver Detects End of LBT-RM Session

The absence of activity on a transport session is the only indication receivers get that a source is gone or no
longer available through any network path. LBT-RM receivers reset a session activity timer for each data
message or session message that arrives. If the activity timer ever expires, all receivers on the transport
session receive an LBM_MSG_EOS event. This is illustrated in the following timeline:

A receiver detects the end of an LBT-RM session

The activity timer is controlled with the “ transport_lbtrm_activity_timeout (receiver) ” on page 113 option.

transport_lbtrm_activity_timeout (receiver)
For LBT-RM sessions only. The maximum time that an LBT-RM session may be quiescent before it is deleted
and an EOS event is delivered for all topics using this transport session. This option affects the transport
session underlying the receiver rather than the receiver itself. The transport session uses the value from the
first receiver created on the session and ignores subsequent receivers. Refer to Receiver Configuration and
Transport Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 60000 (60 seconds)

When to Set: Can only be set during object initialization.

Transport LBT-RM Operation Options 113

transport_lbtrm_coalesce_threshold (source)
UM passes implicitly batched messages to the Operating System sendmsg() as a set unless the size of the
set exceeds the coalescing threshold at which point the messages are coalesced and passed to the O/S as
one copy.

This option accommodates the different number of iovecs supported by different O/Ss. Tuning this option
balances the efficiency of less iovecs handled by the OS vs. the expense of an additional copy operation of
the messages before sending. The default value is also the maximum allowable value for Solaris, AIX and
HPUX. For Linux and Microsoft® Windows® and Darwin, the maximum allowable value is 1023. These
maximum allowable values are one less than what the O/S provides.

This option affects the transport session underlying the source rather than the source itself. The transport
session uses the value from the first source created on the session and ignores subsequent sources. Refer to
Source Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for additional
information.

Scope: source

Type: int

Units: number of individual messages

Default value: 15

When to Set: Can only be set during object initialization.

transport_lbtrm_data_rate_limit (context)
Maximum aggregate transmission rate of all LBT-RM sessions' original data plus retransmissions for this
particular context.

Scope: context

Type: unsigned long int

Units: bits per second

Default value: 10000000 (10 Mbps)

When to Set: Can only be set during object initialization.

transport_lbtrm_datagram_max_size (context)
The maximum datagram size that can be generated for a LBT-RM transport session. The default value is
8192, the minimum is 500 bytes, and the maximum is 65535.

Scope: context

Type: lbm_uint_t

Units: bytes

114 Chapter 4: Reference

Default value: 8192

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

transport_lbtrm_preactivity_timeout (receiver)
Use this option only if the receiver subscribes to a pre-LBM 3.3 source or if you have turned off
“ transport_topic_sequence_number_info_interval (source) ” on page 67 messages in your post-LBM 3.3
implementation. Set it high enough so the source starts sending data messages before the timeout expires.
This timeout begins when the receiver receives a topic advertisement. Pre-LBM 3.3 sources do not send
TSNI messages which in effect inform receivers that the source is alive even though it has not started
sending data. Session messages provide the same information but do not begin until after the source has
started sending data. This option provides an additional “ transport_lbtrm_activity_timeout (receiver) ” on
page 113 for the receiver that does not rely on TSNI or sessions messages. The default value of 0 (zero)
essentially disables this option, giving precedence to the receiver's standard
“ transport_lbtrm_activity_timeout (receiver) ” on page 113. This option affects the transport session
underlying the receiver rather than the receiver itself. The transport session uses the value from the first
receiver created on the session and ignores subsequent receivers. Refer to Receiver Configuration and
Transport Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4.1/UME 2.1.1.

transport_lbtrm_rate_interval (context)
Period that LBT-RM rate limiter runs. Reducing period reduces burst intensity, but also increases CPU load.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Transport LBT-RM Operation Options 115

Default value: 100

When to Set: Can only be set during object initialization.

String value Integer value Description

"10" (Integer value as a
string.)

10 LBT-RM rate limiter runs every 10
milliseconds.

"20" (Integer value as a
string.)

20 LBT-RM rate limiter runs every 20
milliseconds.

"50" (Integer value as a
string.)

50 LBT-RM rate limiter runs every 50
milliseconds.

"100" (Integer value as a
string.)

100 LBT-RM rate limiter runs every 100
milliseconds. Default for all.

transport_lbtrm_retransmit_rate_limit (context)
Maximum aggregate transmission rate of all LBT-RM sessions' retransmissions for this particular context.
This should always be less than the value used for original data.

Scope: context

Type: unsigned long int

Units: bits per second

Default value: 5000000 (5 Mbps)

When to Set: Can only be set during object initialization.

transport_lbtrm_sm_maximum_interval (source)
The maximum interval between LBT-RM session messages. In lieu of data being sent, LBT-RM sends
session messages to inform receivers of sequence numbers and to let receivers know that the sender is still
transmitting. This option affects the transport session underlying the source rather than the source itself. The
transport session uses the value from the first source created on the session and ignores subsequent
sources. Refer to Source Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for
additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

116 Chapter 4: Reference

transport_lbtrm_sm_minimum_interval (source)
The minimum interval between LBT-RM session messages. In lieu of data being sent, LBT-RM sends session
messages to inform receivers of sequence numbers and to let receivers know that the sender is still
transmitting. This option affects the transport session underlying the source rather than the source itself. The
transport session uses the value from the first source created on the session and ignores subsequent
sources. Refer to Source Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for
additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 200 (0.2 seconds)

When to Set: Can only be set during object initialization.

transport_lbtrm_tgsz (source)
The transmission group size used for this Topic when LBT-RM is used. This value must be greater than 0 and
must be a power of 2 no greater than 32K. This option affects the transport session underlying the source
rather than the source itself. The transport session uses the value from the first source created on the
session and ignores subsequent sources. Refer to Source Configuration and Transport Sessions in the Ultra
Messaging Concepts Guide for additional information.

Scope: source

Type: lbm_uint16_t

Units: packets

Default value: 8

When to Set: Can only be set during object initialization.

Transport LBT-RM Operation Options 117

Transport LBT-RU Network Options
LBT-RU receivers initiate UDP connections toward LBT-RU sources for delivering NAKs and ACKs. LBT-RU
sources then initiate connections toward LBT-RU receivers for delivery of UMS messages.

LBT-RU network options

“ transport_lbtru_port_low (context) ” on page 121
is the lowest port that UMS will allocate for LBT-RU sources in a context; “ transport_lbtru_port_high
(context) ” on page 120
is the highest. No more than “ transport_lbtru_maximum_ports (context) ” on page 119
ports will be assigned to LBT-RU sources within a single context.

Creation of an UMS source on an LBT-RU transport will allocate an unused UDP port from the range if less
than “ transport_lbtru_maximum_ports (context) ” on page 119 ports have already been allocated. Setting
“ transport_lbtru_maximum_ports (context) ” on page 119 to a fraction of the range allows the corresponding
multiple number of UMS processes to share a common configuration.

If a particular UDP port is desired by a source, it may be given with “ transport_lbtru_port (source) ” on page
120. If the desired port is already in use, then an unused port will be sought as described above. A value of 0
(the default) expresses no preference and results in the default open port seeking behavior described above.

“ transport_lbtru_interface (source) ” on page 119 may be used on LBT-RU sources to choose particular
interface, overriding the default INADDR_ANY which accepts connections on all interfaces. Similarly,
“ transport_lbtru_interface (receiver) ” on page 119 may be used on receivers to choose a particular interface
for outgoing connections.

118 Chapter 4: Reference

transport_lbtru_interface (receiver)
Specifies the network interface over which UM LBT-RU receivers read application data messages. Can
specify full IP address of interface, or just network part (see “Specifying Interfaces” on page 52 for details).

Scope: receiver

Type: lbm_ipv4_address_mask_t

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

transport_lbtru_interface (source)
Specifies the network interface over which UM LBT-RU sources receive connection requests from topic
receivers. Can specify full IP address of interface, or just network part (see “Specifying Interfaces” on page
52 for details). Be aware that this option is applied to the transport session when the first topic is created on
that session. Thus, setting a different interface for a subsequent topic that maps onto the same transport
session will have no effect. Default is set to INADDR_ANY, meaning that it will accept incoming connection
requests from any interface.

Scope: source

Type: lbm_ipv4_address_mask_t

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

transport_lbtru_maximum_ports (context)
Maximum number of unicast port numbers that LBT-RU will use for all implicitly allocated sessions.

Scope: context

Type: lbm_uint16_t

Units: number of ports

Default value: 5

When to Set: Can only be set during object initialization.

Transport LBT-RU Network Options 119

transport_lbtru_port (source)
The preferred unicast port number for this Topic. If 0, the context will attempt to find one in the given LBT-RU
source port range.

Scope: source

Type: lbm_uint16_t

Default value: 0 (use open port)

Byte order: Network

When to Set: Can only be set during object initialization.

transport_lbtru_port_high (context)
High unicast port number to assign to LBT-RU sources. Clients send connection requests, ACKs, and NAKs
to a port number in this range.

Scope: context

Type: lbm_uint16_t

Default value: 14389

Byte order: Host

When to Set: Can only be set during object initialization.

transport_lbtru_port_high (receiver)
High port number to use for receiving LBT-RU data. All LBT-RU data for the topic will arrive on this range.

Scope: receiver

Type: lbm_uint16_t

Default value: 14379

Byte order: Host

When to Set: Can only be set during object initialization.

120 Chapter 4: Reference

transport_lbtru_port_low (context)
Low unicast port number to assign LBT-RU sources to. Clients send connection requests, ACKs, and NAKs
to a port number in this range.

Scope: context

Type: lbm_uint16_t

Default value: 14380

Byte order: Host

When to Set: Can only be set during object initialization.

transport_lbtru_port_low (receiver)
Low port number to use for receiving LBT-RU data. All LBT-RU data for the topic will arrive on this range.

Scope: receiver

Type: lbm_uint16_t

Default value: 14360

Byte order: Host

When to Set: Can only be set during object initialization.

Transport LBT-RU Reliability Options
For every LBT-RU reliability option, there is a corresponding LBT-RM reliability option. For more information
on how LBT-RU reliability options interact and for illustrations, please see the introduction to the “Transport
LBT-RM Reliability Options” on page 105 section.

transport_lbtru_ignore_interval (source)
The interval to ignore NAKs after a retransmission is sent. This option affects the transport session
underlying the source rather than the source itself. The transport session uses the value from the first source
created on the session and ignores subsequent sources. Refer to Source Configuration and Transport
Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Transport LBT-RU Reliability Options 121

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

transport_lbtru_nak_backoff_interval (receiver)
For LBT-RU sessions only. The maximum interval between transmissions of a single NAK. The actual value
is random (to reduce self-similar behaviors) and is uniform on the range [0.5*interval, 1.5*interval]. This
option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers.
Refer to Receiver Configuration and Transport Sessions in the Ultra Messaging Concepts Guide and
“Interrelated Configuration Options” on page 42 for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 200 [100,300] (0.2 [0.1,0.3] seconds)

When to Set: Can only be set during object initialization.

transport_lbtru_nak_generation_interval (receiver)
For LBT-RU sessions only. The maximum time that a piece of data may be outstanding before the data is
unrecoverably lost. Although the minimum valid value is 5 milliseconds, larger values are advisable. This
option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers.
Refer to Receiver Configuration and Transport Sessions in the Ultra Messaging Concepts Guide and
“Interrelated Configuration Options” on page 42 for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

transport_lbtru_nak_suppress_interval (receiver)
For LBT-RU sessions only. The maximum interval to suppress sending NAKs after an NCF is received. This
option affects the transport session underlying the receiver rather than the receiver itself. The transport
session uses the value from the first receiver created on the session and ignores subsequent receivers.

122 Chapter 4: Reference

Refer to Receiver Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for
additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

transport_lbtru_receiver_socket_buffer (context)
Value used to set SO_RCVBUF value of the LBT-RU receiver unicast socket (both sender and receiver
sides). In some cases the OS will not allow all of this value to be used. See the section on “Socket Buffer
Sizes” on page 52 for platform-dependent information. See also our white paper
Topics in High Performance Messaging for background and guidelines on UDP buffer sizing.

Scope: context

Type: lbm_ulong_t

Units: bytes

Default value: 524288 (512KB)

When to Set: Can only be set during object initialization.

transport_lbtru_source_socket_buffer (context)
Value used to set SO_SNDBUF value of the LBT-RU send multicast socket. In some cases the OS will not
allow all of this value to be used. See the section on “Socket Buffer Sizes” on page 52 for platform-dependent
information. A value of 0 instructs UM to use the OS default.

Scope: context

Type: lbm_ulong_t

Units: bytes

Default value: 0 (use OS default or 131072, whichever is larger)

When to Set: Can only be set during object initialization.

transport_lbtru_transmission_window_limit (source)
Caps the total amount of memory that a transmission window uses, which includes data and overhead. For
example, if the “ transport_lbtru_transmission_window_size (source) ” on page 124 is 24 MB (default) and

Transport LBT-RU Reliability Options 123

http://vip.informatica.com/content/Downloads?docid=1568&=NA-Ongoing-2011Q1-JP-UM_Topics_in_High_Performance_WP_www

the source sends 20 byte messages with the "flush" flag, the actual amount of memory used can approximate
300 MB. The default value of this option does not limit the transmission window.

Scope: source

Type: size_t

Units: bytes

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

transport_lbtru_transmission_window_size (source)
The maximum amount of buffered data that the LBT-RU source is allowed to retain for retransmissions. The
minimum valid value is 65536 bytes. This option affects the transport session underlying the source rather
than the source itself. The transport session uses the value from the first source created on the session and
ignores subsequent sources. Refer to Source Configuration and Transport Sessions in the Ultra Messaging
Concepts Guide for additional information.

Scope: source

Type: size_t

Units: bytes

Default value: 25165824 (24 MB)

When to Set: Can only be set during object initialization.

Transport LBT-RU Operation Options
For most LBT-RU operation options, there is a corresponding LBT-RM operation option. For more information
on how LBT-RU operation options interact and for illustrations, please see the introduction to the “Transport
LBT-RM Operation Options” on page 112 section.

Two options unique to LBT-RU are “ transport_lbtru_client_map_size (source) ” on page 126 and
“ transport_lbtru_connect_interval (receiver) ” on page 127.

124 Chapter 4: Reference

The illustration below shows the interaction of two more options unique to LBT-RU:
“ transport_lbtru_acknowledgement_interval (receiver) ” on page 125 and
“ transport_lbtru_client_activity_timeout (source) ” on page 126.

An LBT-RU receiver goes away

transport_lbtru_acknowledgement_interval (receiver)
For LBT-RU session only. The interval between sending acknowledgements. Each client continually sends
acknowledgements to let the source know that the client is still alive. This option affects the transport session
underlying the receiver rather than the receiver itself. The transport session uses the value from the first
receiver created on the session and ignores subsequent receivers. Refer to Receiver Configuration and
Transport Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

transport_lbtru_activity_timeout (receiver)
For LBT-RU sessions only. The maximum time that an LBT-RU session may be quiescent before it is deleted
and an EOS event is delivered for all topics using this transport session. This option affects the transport
session underlying the receiver rather than the receiver itself. The transport session uses the value from the

Transport LBT-RU Operation Options 125

first receiver created on the session and ignores subsequent receivers. Refer to Receiver Configuration and
Transport Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 60000 (60 seconds)

When to Set: Can only be set during object initialization.

transport_lbtru_client_activity_timeout (source)
The maximum time that an LBT-RU client may be quiescent, i.e. not sending ACKs, before the sender
assumes that it is dead and stops sending to it. This option affects the transport session underlying the
source rather than the source itself. The transport session uses the value from the first source created on the
session and ignores subsequent sources. Refer to Source Configuration and Transport Sessions in the Ultra
Messaging Concepts Guide for additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

transport_lbtru_client_map_size (source)
The size of the hash table used to store client information and state. This option affects the transport session
underlying the source rather than the source itself. The transport session uses the value from the first source
created on the session and ignores subsequent sources. Refer to Source Configuration and Transport
Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: size_t

Units: table entries

Default value: 7

When to Set: Can only be set during object initialization.

126 Chapter 4: Reference

transport_lbtru_coalesce_threshold (source)
UM passes implicitly batched messages to the Operating System sendmsg() as a set unless the size of the
set exceeds the coalescing threshold at which point the messages are coalesced and passed to the O/S as
one copy.

This option accommodates the different number of iovecs supported by different O/Ss. Tuning this option
balances the efficiency of less iovecs handled by the OS vs. the expense of an additional copy operation of
the messages before sending. The default value is also the maximum allowable value for Solaris, AIX and
HPUX. For Linux and Microsoft® Windows® and Darwin, the maximum allowable value is 1023. These
maximum allowable values are one less than what the O/S provides.

This option affects the transport session underlying the source rather than the source itself. The transport
session uses the value from the first source created on the session and ignores subsequent sources. Refer to
Source Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for additional
information.

Scope: source

Type: int

Units: number of messages

Default value: 15

When to Set: Can only be set during object initialization.

transport_lbtru_connect_interval (receiver)
For LBT-RU session only. The interval between sending connection requests. This option affects the
transport session underlying the receiver rather than the receiver itself. The transport session uses the value
from the first receiver created on the session and ignores subsequent receivers. Refer to Receiver
Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 100 (0.1 seconds)

When to Set: Can only be set during object initialization.

transport_lbtru_data_rate_limit (context)
Maximum aggregate transmission rate of all LBT-RU sessions original data for this particular context.

Scope: context

Type: unsigned long int

Transport LBT-RU Operation Options 127

Units: bits per second

Default value: 10000000 (10 Mbps)

When to Set: Can only be set during object initialization.

transport_lbtru_datagram_max_size (context)
The maximum datagram size that can be generated for a LBT-RU transport session. The default value is
8192, the minimum is 500 bytes, and the maximum is 65535.

Scope: context

Type: lbm_uint_t

Units: bytes

Default value: 8192

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

transport_lbtru_maximum_connect_attempts (receiver)
The maximum number of connect attempts to make before this transport session is deleted and an EOS
event is delivered for all topics using this transport session. This option affects the transport session
underlying the receiver rather than the receiver itself. The transport session uses the value from the first
receiver created on the session and ignores subsequent receivers. Refer to Receiver Configuration and
Transport Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: receiver

Type: lbm_ulong_t

Default value: 600

When to Set: Can only be set during object initialization.

transport_lbtru_rate_interval (context)
Period that LBT-RU rate limiter runs. Reducing period reduces burst intensity, but also increases CPU load.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

128 Chapter 4: Reference

Default value: 100

When to Set: Can only be set during object initialization.

String value Integer value Description

"10" (Integer value as a
string.)

10 LBT-RU rate limiter runs every 10
milliseconds.

"20" (Integer value as a
string.)

20 LBT-RU rate limiter runs every 20
milliseconds.

"50" (Integer value as a
string.)

50 LBT-RU rate limiter runs every 50
milliseconds.

"100" (Integer value as a
string.)

100 LBT-RU rate limiter runs every 100
milliseconds. Default for all.

transport_lbtru_retransmit_rate_limit (context)
Maximum aggregate transmission rate of all LBT-RU sessions retransmissions for this particular context. This
should always be less than the value used for original data.

Scope: context

Type: unsigned long int

Units: bits per second

Default value: 5000000 (5 Mbps)

When to Set: Can only be set during object initialization.

transport_lbtru_sm_maximum_interval (source)
The maximum interval between LBT-RU session messages. In lieu of data being sent, LBT-RU sends session
messages to each client to inform them of sequence numbers and to let receivers know that the sender is still
transmitting. This option affects the transport session underlying the source rather than the source itself. The
transport session uses the value from the first source created on the session and ignores subsequent
sources. Refer to Source Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for
additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

Transport LBT-RU Operation Options 129

transport_lbtru_sm_minimum_interval (source)
The minimum interval between LBT-RU session messages. In lieu of data being sent, LBT-RU sends session
messages to each client to inform them of sequence numbers and to let receivers know that the sender is still
transmitting. This option affects the transport session underlying the source rather than the source itself. The
transport session uses the value from the first source created on the session and ignores subsequent
sources. Refer to Source Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for
additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 200 (0.2 seconds)

When to Set: Can only be set during object initialization.

transport_lbtru_use_session_id (source)
Flag to indicate whether the application desires LBT-RU to use a session ID or not. Older versions of UM
may not understand session IDs with LBT-RU and may not be able to receive LBT-RU transport sessions that
include session IDs.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Indicates the application desires LBT-RU to use a session ID. Default for all.

0 Indicates the application does not desire LBT-RU to use a session ID.

130 Chapter 4: Reference

Transport LBT-IPC Operation Options
The following option descriptions and diagrams describe the Ultra Messaging Configuration Options available
for the LBT-IPC transport.

An LBT-IPC source goes away

The Source Session Message mechanism enables the receiver to detect when a source goes away and
works similarly to LBT-RU. It operates independently of message writes and reads in the Shared Memory
Area.

transport_lbtipc_activity_timeout (receiver)
The maximum period of inactivity (lack of session messages) from an IPC source before the UM delivers an
EOS event for all topics using the transport session. Refer to Receiver Configuration and Transport Sessions
in the Ultra Messaging Concepts Guide and “Interrelated Configuration Options” on page 42 for additional
information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 60,000 (60 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

Transport LBT-IPC Operation Options 131

transport_lbtipc_behavior (source)
Desired flow control behavior when multiple receivers have joined the same LBT-IPC transport session. See
also Transport LBT-IPC in the Ultra Messaging Concepts Guide. This option affects the transport session
underlying the source rather than the source itself. The transport session uses the value from the first source
created on the session and ignores subsequent sources. Refer to Source Configuration and Transport
Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: lbm_ushort_t

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

String value Integer value Description

source_paced LBM_SRC_TOPIC_ATTR_L
BTIPC_BEHAVIOR_SOURC
E_PACED

Your application writes as fast as it
can to the LBT-IPC shared memory
area. Slower receivers can
experience loss. A source does not
consider if any receivers have
successfully read a message
before it reclaims it. Default for all.

receiver_paced LBM_SRC_TOPIC_ATTR_L
BTIPC_BEHAVIOR_RECEIV
ER_PACED

Your application writes to the LBT-
IPC shared memory area only as
fast as the slowest receiver
consumes data. A source will not
reclaim a message until all
receivers have successfully read
the message. This slows down all
receiver on the LBT-IPC transport
session.

transport_lbtipc_datagram_max_size (context)
The maximum datagram size that can be generated for a LBT-IPC transport session. The default value is
65535, the minimum is 500 bytes, and the maximum is 65535.

Scope: context

Type: lbm_uint_t

Units: bytes

Default value: 65535

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

132 Chapter 4: Reference

transport_lbtipc_id (source)
The preferred Transport ID for a specific source's LBT-IPC session. If 0, the UM context attempts to find one
in the given Transport ID range of “ transport_lbtipc_id_low (context) ” on page 133 and
“ transport_lbtipc_id_high (context) ” on page 133. Refer to Source Configuration and Transport Sessions in
the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: lbm_uint16_t

Default value: 0 (use open port)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

transport_lbtipc_id_high (context)
Highest transport ID of the range of available LBT-IPC Transport IDs.

Scope: context

Type: lbm_uint16_t

Default value: 20,005

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

transport_lbtipc_id_low (context)
Lowest transport ID of the range of available LBT-IPC Transport IDs.

Scope: context

Type: lbm_uint16_t

Default value: 20,001

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

Transport LBT-IPC Operation Options 133

transport_lbtipc_maximum_receivers_per_transport (source)
The maximum number of receiving contexts that can join an IPC transport session. Once a receiving context
joins an IPC transport session, it can receive messages on multiple topics. Increasing this value increases
the amount of shared memory allocated per transport session by a negligible amount.

Scope: source

Type: lbm_ushort_t

Default value: 20

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

transport_lbtipc_receiver_operational_mode (context)
The mode in which UM operates to process LBT-IPC messages. See also Embedded and Sequential Mode in
the Ultra Messaging Concepts Guide for additional information.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

embedded LBM_CTX_ATTR_OP_EMBE
DDED

UM spawns a thread to process
received LBT-IPC messages.
Default for all.

sequential LBM_CTX_ATTR_OP_SEQU
ENTIAL

Your application must call
lbm_context_process_lbtip
c_messages() to process
received LBT-IPC messages.
If you also set the context's
“ operational_mode (context) ” on
page 61 option to sequential,
your application must donate an
additional thread to service the
lbm_context_process_eve
nts() calls.
Note: You can use sequential
mode with the C API, but not with
the Java API or .NET API. The
Java and .NET APIs do not provide
an equivalent
lbm_context_process_lbtip
c_messages() API for LBT-
IPC.

134 Chapter 4: Reference

transport_lbtipc_receiver_thread_behavior (context)
Receiver behavior for monitoring the signaling semaphore set by the IPC source when it writes new data to
the shared memory area.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

String value Integer value Description

pend LBM_CTX_ATTR_IPC_RCV
_THREAD_PEND

Receiver waits (sleep) for
notification from OS that IPC
source has updated the signaling
semaphore. This option is best
when the IPC source frequently
writes new data to the shared area.
Default for all.

busy_wait LBM_CTX_ATTR_IPC_RCV
_THREAD_BUSY_WAIT

Provides the lowest latency as the
receiver monopolizes the CPU core
looking for an incremented
semaphore. This option works best
for infrequent or sporadic message
delivery from the IPC source, but
involves a CPU cost.

transport_lbtipc_sm_interval (source)
Time period between sessions message sent from source to receivers. Refer to Source Configuration and
Transport Sessions in the Ultra Messaging Concepts Guide and “Interrelated Configuration Options” on page
42 for additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 10,000 (10 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

transport_lbtipc_transmission_window_size (source)
Size of an LBT-IPC transport's shared memory area. This value may vary across platforms. The actual size of
the shared memory area equals the value you specify for this option plus about 64 KB for header information.

Transport LBT-IPC Operation Options 135

The minimum value for this option is 65,536. Refer to Source Configuration and Transport Sessions in the
Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: size_t

Units: bytes

Default value: 25165824 (24 MB)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.5ea2/UME 2.2ea1

Transport LBT-SMX Operation Options
The following option descriptions and diagram describe the Ultra Messaging Configuration Options available
for the LBT-SMX transport.

Figure 2. LBT-SMX Session Messages

The Source Session Message mechanism enables the receiver to detect when a source goes away and
works similarly to LBT-RU. It operates independently of message writes and reads in the Shared Memory
Area.

transport_lbtsmx_activity_timeout (receiver)
The maximum period of inactivity (lack of session messages) from an LBT-SMX source before UM delivers
an EOS event for all topics using the transport session. You should configure this option to a value greater
than the source's transport_lbtsmx_sm_interval so receivers do not erroneously report a source as

136 Chapter 4: Reference

inactive. Refer to Receiver Configuration and Transport Sessions in the Ultra Messaging Concepts Guide and
“Interrelated Configuration Options” on page 42 for additional information.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 60,000 (60 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.1

transport_lbtsmx_datagram_max_size (source)
The maximum datagram size that can be generated for a LBT-SMX transport session. This value includes 16
bytes of header information per message, plus an additional 24 bytes of reserved space for compatibility with
other egress transports when re-sending SMX messages through a UM Dynamic Router. Therefore, the
largest usable message size for the default setting of 8192 bytes would be 8176 bytes (8192 - 16 - 24). The
minimum is 32 bytes. The maximum size is limited by available memory.

This option imposes a hard limit on message size because the LBT-SMX transport does not support
datagram fragmentation or reassembly. Unlike other transports that do support fragmentation, attempts to
send messages larger than the datagram size configured by this option fail.

Scope: context

Type: lbm_uint_t

Units: bytes

Default value: 8192

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.1

transport_lbtsmx_id (source)
The preferred Transport ID for a specific source's LBT-SMX session. To use this option, configure a non-zero
value. For the default value of 0 (zero), the UM context selects the next available Transport ID in the
Transport ID range of transport_lbtsmx_low and transport_lbtsmx_high. Refer to Source Configuration
and Transport Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: lbm_uint16_t

Default value: 0 (zero)

Transport LBT-SMX Operation Options 137

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.1

transport_lbtsmx_id_high (context)
Highest transport ID in the range of available LBT-SMX Transport IDs.

Scope: context

Type: lbm_uint16_t

Default value: 30,005

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.1

transport_lbtsmx_id_low (context)
Lowest transport ID in the range of available LBT-SMX Transport IDs.

Scope: context

Type: lbm_uint16_t

Default value: 30,001

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.1

transport_lbtsmx_maximum_receivers_per_transport (source)
The maximum number of receiving contexts that can join an LBT-SMX transport session. Once a receiving
context joins an LBT-SMX transport session, it can receive messages on multiple topics. If you increase this
option's value, you increase the amount of shared memory allocated per transport session by a negligible
amount.

Scope: source

Type: lbm_ushort_t

Default value: 64

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.1

138 Chapter 4: Reference

transport_lbtsmx_message_statistics_enabled (context)
Controls whether or not UM records LBT-SMX transport statistics, which adds a small but measurable
amount of latency.

Scope: context

Type: int

Default value: 0

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.1

String value Integer value Description

"1" (Integer value as a
string.)

1 UM records source and receiver
LBT-SMX transport statistics.

"0" (Integer value as a
string.)

0 UM does not record source and
receiver LBT-SMX transport
statistics.Default for all.

transport_lbtsmx_sm_interval (source)
Time period between updates to an LBT-SMX source's shared activity counter, which enables connected
receivers to determine the source's liveness. You should configure this option to a value less than the
receivers' corresponding transport_lbtsmx_activity_timeout setting so receivers do not time out sources
too early. Refer to Source Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for
additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 10,000 (10 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.1

transport_lbtsmx_transmission_window_size (source)
Size of an LBT-SMX transport's shared memory area, which must be a power of two and be twice a large as
the source's transport_lbtsmx_datagram_max_size. If you configure a value that is not a power of 2 or is
less than twice the size of the maximum datagram size, UM issues a warning log message and automatically
rounds up the value of this option to the next power of 2 window size that can fit at least two maximum-sized

Transport LBT-SMX Operation Options 139

datagrams. The minimum value for this option is 64 bytes. Refer to Source Configuration and Transport
Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: size_t

Units: bytes

Default value: 131072 (128 KB)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.1

Transport LBT-RDMA Operation Options
Use of the LBT-RDMA transport requires the purchase and installation of the Ultra Messaging RDMA
Transport Module. See your Ultra Messaging representative for licensing specifics.

See also Transport LBT-RDMA in the Ultra Messaging Concepts Guide.

transport_lbtrdma_datagram_max_size (context)
The maximum datagram size that can be generated for a LBT-RDMA transport session. The default value is
4096, the minimum is 500 bytes, and the maximum is 4096.

Scope: context

Type: lbm_uint_t

Units: bytes

Default value: 4096

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1/UME 3.1/UMQ 1.1

transport_lbtrdma_interface (source)
Specifies the network interface over which UM LBT-RDMA sources receive connection requests from topic
receivers. You can specify the full IP address of the interface, or just the network part (see “Specifying
Interfaces” on page 52 for details). Be aware that the first source joining a transport session sets the interface
with this option. Thus, setting a different interface for a subsequent topic that maps onto the same transport

140 Chapter 4: Reference

session will have no effect. Default is set to INADDR_ANY, meaning that it accepts incoming connection
requests from any interface.

Scope: source

Type: lbm_ipv4_address_mask_t

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1

transport_lbtrdma_maximum_ports (context)
Maximum number of LBT-RDMA sessions to allocate.

Scope: context

Type: lbm_uint16_t

Units: number of ports

Default value: 5

When to Set: Can only be set during object initialization.

transport_lbtrdma_port (source)
Port number for a specific source's LBT-RDMA session that is outside the “ transport_lbtipc_id_low
(context) ” on page 133 and “ transport_lbtipc_id_high (context) ” on page 133 range. Refer to Source
Configuration and Transport Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: lbm_uint16_t

Default value: 0 (zero)

Byte order Host

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1

Transport LBT-RDMA Operation Options 141

transport_lbtrdma_port_high (context)
Highest port number that can be assigned to a LBT-RDMA session.

Scope: context

Type: lbm_uint16_t

Default value: 20,020

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1

transport_lbtrdma_port_low (context)
Lowest port number that can be assigned to a LBT-RDMA session.

Scope: context

Type: lbm_uint16_t

Default value: 20,001

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1

transport_lbtrdma_receiver_thread_behavior (context)
Receiver behavior for monitoring a LBT-RDMA source's shared memory area for new data.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1

String value Integer value Description

pend LBM_CTX_ATTR_RDMA_R
CV_THREAD_PEND

Receiver waits (sleep) for
notification from RDMA that the
source has updated the shared
memory area with new data.
Default. Default for all.

busy_wait LBM_CTX_ATTR_RDMA_R
CV_THREAD_BUSY_WAIT

UM polls the shared memory area
for new data.

142 Chapter 4: Reference

transport_lbtrdma_transmission_window_size (source)
Size of an LBT-RDMA transport's shared memory area. This value may vary across platforms. The actual
size of the shared memory area equals the value you specify for this option plus about 64 KB for header
information. The minimum value for this option is 65,536. Refer to Source Configuration and Transport
Sessions in the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: size_t

Units: bytes

Default value: 25165824 (24 MB)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1

Transport Acceleration Options
Transport acceleration options enable kernel-bypass acceleration in conjunction with the following vendor
solutions:

• Myricom® Datagram Bypass Layer (DBL™)

• Solarflare® Onload

• Mellanox® 10-Gigabit Ethernet or InfiniBand hardware

Myricom® Datagram Bypass Layer (DBL™)
DBL is a kernel-bypass technology that accelerates sending and receiving UDP traffic and operates with
DBL-enabled Myricom 10-Gigabit Ethernet adapter cards for Linux and Microsoft® Windows.

DBL does not support fragmentation and reassembly, so do not send messages larger than the MTU size
configured on the DBL interface.

DBL acceleration is compatible with the following Ultra Messaging transport types.

• LBT-RM (UDP-based reliable multicast)

• LBT-RU (UDP-based reliable unicast)

• Multicast Immediate Messaging

• Multicast Topic Resolution

To enable DBL Transport Acceleration:

1. Install the Myricom 10-Gigabit Ethernet NIC.

2. Install the DBL shared library.

3. Update your search path to include the location of the DBL shared library.

4. Set “ transport_datagram_max_size (context) ” on page 228 to a value of no more than 28 bytes smaller
than the Myricom interface's configured MTU size.

Transport Acceleration Options 143

Solarflare® Onload
Solarflare Onload is a kernel-bypass technology that accelerates message traffic and operates with Solarflare
10GbE Ethernet NICs.

Onload does not support fragmentation and reassembly, so do not send messages larger than the MTU size
configured on the Solarflare interface.

UM loads the Onload library dynamically during UM initialization on the following UM platforms:

• Linux-glibc-2.3-i686

• Linux-glibc-2.3-x86_64

• Linux-glibc-2.5-x86_64

Note: If you set the LBM_SUPPRESS_ONLOAD environment variable to any value, UM does not dynamically
load the Onload library at runtime.

Onload default behavior accelerates all sockets. You can access the Onload onload_set_stackname API
extension to select the sockets you want to accelerate by using UM configuration options. Selecting sockets
with a stackname ensures that you accelerate data transmission sockets and not sockets for control
messages, topic resolution, or responses.

You can select a stackname with the configuration option onload_acceleration_stack_name in both the
source and receiver scope for the following Ultra Messaging transport types.

• LBT-RM (UDP-based reliable multicast)

• LBT-RU (UDP-based reliable unicast)

• TCP

If you use the onload_set_stackname API directly for any other accelerated sockets, note that after UM
accelerates a transport socket, UM resets the stackname to the default for all threads by calling:

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_NOCHANGE, "");

UM resets the stackname during source creation and when a receiver matched topic opens a transport
session.

To enable Onload selective socket acceleration,

1. Install Onload.

2. Set the Onload environment variable EF_DONT_ACCELERATE = 1 to disable Onload default behavior.

3. Set UM configuration option (source) onload_acceleration_stack_name according to the thread the
source uses.

4. Set UM configuration option (receiver) onload_acceleration_stack_name according to the thread the
receiver uses.

5. Set “ transport_datagram_max_size (context) ” on page 228 to a value of no more than 28 bytes smaller
than the Solarflare interface's configured MTU size.

For detailed information about onload_set_stackname, refer to the Solarflare® Onload User Guide.

UD Acceleration for Mellanox® Hardware Interfaces
UD (Unreliable Datagram) acceleration is a kernel-bypass technology that accelerates sending and receiving
UDP traffic and operates with Mellanox 10-Gigabit Ethernet or InfiniBand adapter cards for 64-bit Linux on
X86 platforms.

UD acceleration does not support fragmentation and reassembly, so do not send messages larger than the
MTU size configured on the Mellanox interface.

144 Chapter 4: Reference

UD acceleration is available for the following Ultra Messaging transport types.

• LBT-RM (UDP-based reliable multicast)

• LBT-RU (UDP-based reliable unicast)

• Multicast Immediate Messaging

• Multicast Topic Resolution

To enable UD acceleration,

1. Install the Mellanox NIC.

2. Install the VMA package, which is part of the UD acceleration option .

3. Include the appropriate transport acceleration options in your Ultra Messaging Configuration File .

4. Set “ transport_datagram_max_size (context) ” on page 228 to a value of no more than 28 bytes smaller
than the Mellanox interface's configured MTU size.

resolver_ud_acceleration (context)
Flag indicating if Accelerated Multicast is enabled for Topic Resolution. Accelerated Multicast requires
Mellanox InfiniBand or 10 Gigabit Ethernet hardware, and the purchase and installation of the Ultra
Messaging Accelerated Multicast Module. See your Ultra Messaging representative for licensing specifics.
UD Acceleration of topic resolution relies on hardware-supported loopback, which InfiniBand provides, but
which the 10 Gigabit Ethernet ConnectX hardware does not provide.

• For InfiniBand, set this option to 1 to enable.

• For 10 Gigabit Ethernet ConnectX, set this option to 0 to disable.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 5.2.

Value Description

1 Accelerated Topic Resolution is enabled.

0 Accelerated Topic Resolution is not enabled. Default for all.

ud_acceleration (context)
Flag indicating if Accelerated Multicast is enabled for LBT-RM. Accelerated Multicast requires InfiniBand or
10 Gigabit Ethernet hardware and the purchase and installation of the Ultra Messaging Accelerated Multicast
Module. See your Ultra Messaging representative for licensing specifics.

Scope: context

Type: int

Transport Acceleration Options 145

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.

Value Description

1 Accelerated Multicast is enabled.

0 Accelerated Multicast is not enabled. Default for all.

onload_acceleration_stack_name (receiver)
The stackname to use when creating an OpenOnload® transport data socket. The stackname must be eight
characters or less. Since this is a transport setting, the first receiver applies its configuration and all other
subsequent receivers on the same transport inherit the original setting. A special, case sensitive string, NULL,
disables the stackname.

Note: Use of this option requires Solarflare® OpenOnload® and applies to LBT-RM, LBT-RU, and TCP
transports.

Scope: source

Type: string

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.5.

onload_acceleration_stack_name (source)
The stackname to use when creating an OpenOnload® transport data socket. The stackname must be eight
characters or less. Since this is a transport setting, the first source applies its configuration and all other
subsequent sources on the same transport inherit the original setting. A special, case sensitive string, NULL,
disables the stackname.

Note: Use of this option requires Solarflare® OpenOnload® and applies to LBT-RM, LBT-RU, and TCP
transports.

Scope: source

Type: string

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.5.

146 Chapter 4: Reference

Multicast Immediate Messaging Network Options
The multicast address and port used for incoming and outgoing multicast immediate messages can be set
with “ mim_address (context) ” on page 147 and “ mim_destination_port (context) ” on page 147. A context
may use different multicast addresses and/or ports for incoming and outgoing messages by setting
“ mim_incoming_address (context) ” on page 148, “ mim_outgoing_address (context) ” on page 148,
“ mim_incoming_destination_port (context) ” on page 148, and/or “ mim_outgoing_destination_port
(context) ” on page 148. In case of conflict, the most recently set option wins.

As with LBT-RM on multi-homed hosts, the interface UM uses for MIM follows the interface used with
multicast topic resolution. See “ resolver_multicast_interface (context) ” on page 88.

Warning: The addresses and ports you configure for MIM traffic should not overlap with any addresses or
ports - or address and port ranges - configured for LBT-RM transports or Topic Resolution traffic. For
example, do not use the same multicast address for both Topic Resolution (resolver_multicast_address)
and MIM (mim_address). Use different addresses and ports for all multicast address options and port options.

See also Multicast Immediate Messaging in the Ultra Messaging Concepts Guide for more information about
this feature.

mim_address (context)
The IP multicast address that multicast immediate messages are sent to and received from.

Scope: context

Type: struct in_addr

Default value: 224.10.10.21

When to Set: Can only be set during object initialization.

mim_destination_port (context)
The UDP destination port that multicast immediate messages are sent to and received from.

Scope: context

Type: lbm_uint16_t

Default value: 14401

Byte order: Network

When to Set: Can only be set during object initialization.

Multicast Immediate Messaging Network Options 147

mim_incoming_address (context)
The IP multicast address that multicast immediate messages are received from. Setting this option to 0.0.0.0
turns off multicast immediate messaging. (MIM).

Scope: context

Type: struct in_addr

Default value: 224.10.10.21

When to Set: Can only be set during object initialization.

mim_incoming_destination_port (context)
The UDP destination port that multicast immediate messages are received from.

Scope: context

Type: lbm_uint16_t

Default value: 14401

Byte order: Network

When to Set: Can only be set during object initialization.

mim_outgoing_address (context)
The IP multicast address that multicast immediate messages are sent to.

Scope: context

Type: struct in_addr

Default value: 224.10.10.21

When to Set: Can only be set during object initialization.

mim_outgoing_destination_port (context)
The UDP destination port that multicast immediate messages are sent to.

Scope: context

Type: lbm_uint16_t

Default value: 14401

148 Chapter 4: Reference

Byte order: Network

When to Set: Can only be set during object initialization.

Multicast Immediate Messaging Reliability Options
For every MIM reliability option, there is a corresponding LBT-RM reliability option. For more information on
how MIM reliability options interact and for illustrations, please see the introduction to “Transport LBT-RM
Reliability Options” on page 105.

See also Multicast Immediate Messaging in the Ultra Messaging Concepts Guide for more information about
this feature.

mim_ignore_interval (context)
For multicast immediate message senders only. See “ transport_lbtrm_ignore_interval (source) ” on page 108
for description.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

mim_nak_backoff_interval (context)
For multicast immediate message receivers only. See “ transport_lbtrm_nak_backoff_interval (receiver) ” on
page 108 for description.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 200 (0.2 seconds)

When to Set: Can only be set during object initialization.

Multicast Immediate Messaging Reliability Options 149

mim_nak_generation_interval (context)
For multicast immediate message receivers only. See “ transport_lbtrm_nak_generation_interval
(receiver) ” on page 109 for description.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

mim_nak_initial_backoff_interval (context)
For multicast immediate message receivers only. See “ transport_lbtrm_nak_initial_backoff_interval
(receiver) ” on page 109 for description.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 50 (0.05 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

mim_nak_suppress_interval (context)
For multicast immediate message receivers only. See “ transport_lbtrm_nak_suppress_interval (receiver) ” on
page 110 for description.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

150 Chapter 4: Reference

mim_send_naks (context)
For multicast immediate message receivers only. See “ transport_lbtrm_send_naks (receiver) ” on page 110
for description.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 NAKs are sent for missing packets to request retransmission. Default for all.

0 Do not send NAKs for missing packets.

mim_transmission_window_limit (context)
For multicast immediate message senders only. See “ transport_lbtrm_transmission_window_limit
(source) ” on page 111 for description.

Scope: context

Type: size_t

Units: bytes

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

mim_transmission_window_size (context)
For multicast immediate message senders only. See “ transport_lbtrm_transmission_window_size
(source) ” on page 112 for description.

Scope: context

Type: size_t

Units: bytes

Default value: 25165824 (24 MB)

When to Set: Can only be set during object initialization.

Multicast Immediate Messaging Reliability Options 151

Multicast Immediate Messaging Operation Options
For many MIM operation options, there is a corresponding LBT-RM operation option. For more information on
how MIM operation options interact and for illustrations, please see the introduction to “Transport LBT-RM
Operation Options” on page 112.

Note that the LBT-RM rate controller also governs MIM transmission rates. Hence there is no separate option
for setting MIM transmission rate.

See also Multicast Immediate Messaging in the Ultra Messaging Concepts Guide for more information about
this feature.

immediate_message_receiver_function (context)
Callback function (and associated event queue and client data pointer) called when a topic-less immediate
message is received for which there is no receiver. A value of NULL for the callback prevents the callback
from being called.

Scope: context

Type: lbm_context_rcv_immediate_msgs_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

immediate_message_topic_receiver_function (context)
Callback function (and associated event queue and client data pointer) that is called when an immediate
message is received for a topic for which there is no receiver. A value of NULL for the callback prevents the
callback from being called.

Scope: context

Type: lbm_context_rcv_immediate_msgs_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

152 Chapter 4: Reference

mim_activity_timeout (context)
For multicast immediate message receivers only. See “ transport_lbtrm_activity_timeout (receiver) ” on page
113 for description. However, multicast immediate message channels do not deliver an EOS indication.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 60000 (60 seconds)

When to Set: Can only be set during object initialization.

mim_delivery_control_activity_check_interval (context)
The interval between activity checks of a Multicast Immediate Messaging delivery controller. Multiple MIM
delivery controllers may exist to accommodate multiple messages from a single MIM sender received across
more than one UM Router. These multiple delivery controllers allow for duplicate message detection.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 5000 (5 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

mim_delivery_control_activity_timeout (context)
The maximum time that a Multicast Immediate Messaging delivery controller may be quiescent before it is
deleted. MIM delivery controllers may be created to accommodate multiple messages from a single MIM
sender received across more than one UM Router. These multiple delivery controllers allow for duplicate
message detection.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 60000 (60 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Multicast Immediate Messaging Operation Options 153

mim_delivery_control_order_tablesz (context)
For multicast immediate messages with ordered delivery, this controls the size of the hash table used to hold
data.

Scope: context

Type: size_t

Units: table entries

Default value: 1031

When to Set: Can only be set during object initialization.

mim_implicit_batching_interval (context)
The maximum timeout between when the first message of an implicitly batched immediate message is
queued until the batch is sent. A message will not stay in the queue longer than this value before being sent
in the worst case.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 200 (0.2 seconds)

When to Set: Can only be set during object initialization.

mim_implicit_batching_minimum_length (context)
The minimum length of an implicitly batched multicast immediate message. When the total length of the
implicitly batched messages reaches or exceeds this value, the batch is sent.

Scope: context

Type: size_t

Units: bytes

Default value: 2048 (8192 for Microsoft™ Windows™)

When to Set: Can only be set during object initialization.

mim_ordered_delivery (context)
For multicast immediate messages only. Indicates whether or not the MIM source should have its data
delivered in order. The default value also guarantees fragmentation and reassembly of large messages.
Changing this option from the default value results in large messages being delivered as individual fragments

154 Chapter 4: Reference

of less than 8K each, requiring the application to reassemble them. See also Ordered Delivery in the Ultra
Messaging Concepts Guide for more information about large message fragmentation and reassembly.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Indicates the source should have its data delivered in order. Default for all.

0 The source should have its data delivered as soon as possible and may come in out of
order.

mim_sm_maximum_interval (context)
For multicast immediate message senders only. See “ transport_lbtrm_sm_maximum_interval (source) ” on
page 116 for description.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

mim_sm_minimum_interval (context)
For multicast immediate message senders only. See “ transport_lbtrm_sm_minimum_interval (source) ” on
page 117 for description.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 200 (0.2 seconds)

When to Set: Can only be set during object initialization.

Multicast Immediate Messaging Operation Options 155

mim_sqn_window_increment (context)
For multicast immediate message receivers only. Determines the increment by which the sequence number
window is moved when detecting the receipt of duplicate multicast immediate messages. Must be a multiple
of 8 and an even divisor of “ mim_sqn_window_size (context) ” on page 156.

Scope: context

Type: lbm_ulong_t

Units: messages

Default value: 8192

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.8/UME 3.2.8/UMQ 2.1.8

mim_sqn_window_size (context)
For multicast immediate message receivers only. Determines the window size used to detect the receipt of
duplicate multicast immediate messages. Must be a multiple of 8.

Scope: context

Type: lbm_ulong_t

Units: messages

Default value: 16384

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.8/UME 3.2.8/UMQ 2.1.8

mim_src_deletion_timeout (context)
The timeout after a multicast immediate message is sent before the internal source is deleted and cleaned
up.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 30000 (30 seconds)

When to Set: Can only be set during object initialization.

156 Chapter 4: Reference

mim_tgsz (context)
For multicast immediate message senders only. See “ transport_lbtrm_tgsz (source) ” on page 117 for
description.

Scope: context

Type: lbm_uint16_t

Units: packets

Default value: 8

When to Set: Can only be set during object initialization.

mim_unrecoverable_loss_function (context)
Callback function (and associated client data pointer) that is called when a MIM receiver has unrecoverable
loss. This callback is called directly in line and does not use the event queue. Therefore the callback function
used should not block or it will block the context thread processing. A value of NULL for the callback turns off
the callback being called.

Scope: context

Type: lbm_mim_unrecloss_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Late Join Options

Late Join Recovery

Overview
Late Join allows sources to save a predefined amount of their messaging traffic for late-joining receivers.
Sources set the configuration options that determine whether they use Late Join or not, and receivers set
options that determine whether they will participate in Late Join recovery if sources use Late Join.

UMP's persistent store is built on Late Join technology. In the Estimating Recovery Time discussion below,
the terms Late Join buffers and UMP store are roughly equivalent.

For more, review the Late Join in the Ultra Messaging Concepts Guide, especially Configuring Late Join for
Large Numbers of Messages.

Late Join Options 157

Estimating Recovery Time
Late Join message recovery time is a function of how much data must be recovered and how fast messages
are retransmitted. To estimate Late Join recovery time R in minutes, use the formula: R = D / (1 - (txrate /
rxrate)) where:

• D is the downtime (in minutes) across all receivers

• txrate is the average source transmission rate of normal (live stream) messages during recovery (in
kmsgs/sec).

• rxrate is the average source retransmission rate from source-side Late Join buffers during recovery (in
kmsgs/sec). This rate needs to be greater than txrate.

For example, consider the following scenario:

• D = 10 minutes

• txrate = 10k messages / second

• rxrate = 25k messages / second

Plugging these values into the formula gives an estimated recovery time in minutes: R = 10 / (1 - (10 / 25))
or 16.67 minutes. Note that this formula assumes the following:

• Retransmit rate(rxrate) is as linear as possible with use of option response_tcp_nodelay 1

• Transmit rate (txrate) from *all* relevant sources is fairly constant and equal

• Retransmit rate (rxrate) from Late Join buffers is fairly constant and equal, and should be measured in a
live test, if possible. You can adjust the recovery rate with two Late Join configuration options:

- “ retransmit_request_outstanding_maximum (receiver) ” on page 161

- “ retransmit_request_interval (receiver) ” on page 160

late_join (source)
Configure the source to enable both Late Join and Off-Transport Recovery (OTR) operation for receivers.
See Late Join and Off-Transport Recovery in the Ultra Messaging Concepts Guide.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Enable source for Late Join and OTR. (Forced on for UMP.)

0 Disable source for Late Join and OTR. Default for all.

158 Chapter 4: Reference

late_join_info_request_interval (receiver)
The interval at which the receiver requests a Late Join Information Record (LJI) from the source. Controlling
these requests helps reduce receiver start-up traffic on your network.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

Version This option was implemented in UMP 6.0

late_join_info_request_maximum (receiver)
The maximum number of requests the receiver issues for a Late Join Information Record (LJI) from the
source. If the receiver has not received an LJI after this number of requests, it stops requesting.

Scope: source

Type: lbm_ulong_t

Default value: 60

When to Set: Can only be set during object initialization.

Version This option was implemented in UMP 6.0

retransmit_initial_sequence_number_request (receiver)
When a late-joining receiver detects (from the topic advertisement) that a source is enabled for Late Join but
has sent no messages, this flag option lets the receiver request an initial sequence number from a source.
Sources respond with a TSNI.

Scope: receiver

Type: int

Default value: 1

Late Join Options 159

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.

Value Description

1 The receiver requests an initial sequence number from Late Join enabled sources that
have not sent any messages. Default for all.

0 The receiver does not request an initial sequence number.

retransmit_message_caching_proximity (receiver)
This option enables receiver caching of new messages during a recovery. The option value determines how
close or proximate the current new sequence number must be to the latest retransmitted sequence number
for the receiver to start caching. The receiver recovers uncached data later in the recovery process by the
retransmit request mechanism. An option value greater than or equal to the default turns on caching of new
data immediately. A smaller value means that caching does not begin until recovery has caught up somewhat
with the source. A larger value means that caching can begin earlier during recovery. This value has meaning
for only receivers using ordered delivery of data. See Configuring Late Join for Large Numbers of Messages
in the Ultra Messaging Concepts Guide for additional information about this option.

Scope: receiver

Type: lbm_ulong_t

Units: messages

Default value: 2147483647

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.3.2/UME 2.0.

retransmit_request_interval (receiver)
The interval between retransmission request messages to the source. See Configuring Late Join for Large
Numbers of Messages in the Ultra Messaging Concepts Guide for additional information about this option.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

160 Chapter 4: Reference

retransmit_request_maximum (receiver)
The maximum number of messages to request, counting backward from the current latest message, when
late-joining a topic. Due to network timing factors, UM may transmit an additional message. For example, a
value of 5 sends 5 or possibly 6 retransmit messages to the new receiver. (Hence, you cannot request and
be guaranteed to receive only 1 last message--you may get 2.) A value of 0 indicates no maximum.

Scope: receiver

Type: lbm_ulong_t

Units: messages

Default value: 0

When to Set: Can only be set during object initialization.

retransmit_request_message_timeout (receiver)
The maximum time from when a receiver first sends a retransmission request to when the receiver gives up
on receiving the retransmitted message and reports loss.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

version: This option was implemented in UM 6.0.

retransmit_request_outstanding_maximum (receiver)
The maximum number of messages to request and to remain active at a single time. A value of 0 indicates no
maximum. See Configuring Late Join for Large Numbers of Messages in the Ultra Messaging Concepts
Guide for additional information about this option.

Scope: receiver

Type: lbm_ulong_t

Units: messages

Default value: 200

When to Set: Can only be set during object initialization.

Late Join Options 161

retransmit_retention_age_threshold (source)
Specifies the minimum age of messages in the retained message buffer before UM can delete them. UM
cannot delete any messages younger than this value. For UMS Late Joins, this and
“ retransmit_retention_size_threshold (source) ” on page 162 are the only options that affect the retention
buffer size. For UMP, these two options combined with “ retransmit_retention_size_limit (source) ” on page
162 affect the retention buffer size. UM deletes a message when it meets all configured threshold criteria,
i.e., the message is older than this option (if set), and the size of the retention buffer exceeds the
retransmit_retention_size_threshold (if set). A value of 0 sets the age threshold to be always triggered,
in which case deletion is determined by other threshold criteria.

Scope: source

Type: lbm_ulong_t

Units: seconds

Default value: 0 (threshold always triggered)

When to Set: Can only be set during object initialization.

retransmit_retention_size_limit (source)
Sets a maximum limit on the size of the source's retransmit retention buffer when using a UMP store. With
UMP, stability and delivery confirmation events can delay the deletion of retained messages, which can
increase the size of the buffer above the “ retransmit_retention_size_threshold (source) ” on page 162.
Hence, this option provides a hard size limit. UM sets a minimum value for this option of 8K for UDP and 64K
for TCP, and issues a log warning if you set a value less than the minimum.

Scope: source

Type: size_t

Units: bytes

Default value: 25165824 (24 MB)

When to Set: Can only be set during object initialization.

retransmit_retention_size_threshold (source)
Specifies the minimum size of the retained message buffer before UM can delete messages. The buffer must
reach this size before UM can delete any messages older than “ retransmit_retention_age_threshold
(source) ” on page 162. For UMP, these options combined with “ retransmit_retention_size_limit (source) ” on
page 162 affect the retention buffer size. A value of 0 sets the size threshold to be always triggered, in which
case deletion is determined by other threshold criteria.

Scope: source

Type: size_t

162 Chapter 4: Reference

Units: bytes

Default value: 0 (threshold always triggered)

When to Set: Can only be set during object initialization.

use_late_join (receiver)
Flag indicating if the receiver should participate in a late join operation or not.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 The receiver will participate in using late join if requested to by the source. Default for all.

0 The receiver will not participate in using late join even if requested to by the source.

Off-Transport Recovery Options
See also Off-Transport Recovery (OTR) in the Ultra Messaging Concepts Guide for more information about
this feature.

otr_request_initial_delay (receiver)
The length of time a receiver waits before initiating OTR lost-message requests.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 5.3

otr_request_log_alert_cooldown (receiver)
Each OTR request generates a log message. The first request's log message is a WARNING-level log
message, and subsequent requests that quickly follow generate INFO-level log messages. After a time

Off-Transport Recovery Options 163

interval defined by this option, the next request leading a new burst of requests again generates a
WARNING-level log message.

Scope: receiver

Type: lbm_ulong_t

Units: seconds

Default value: 300 (5 minutes)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 5.3

otr_request_maximum_interval (receiver)
The maximum time interval between a receiver's OTR lost-message requests. After the receiver initiates OTR
and is waiting to receive the retransmission, the initial interval (set by “ otr_request_minimum_interval
(receiver) ” on page 165) doubles in length for each request until it reaches this option's value, then
continues at this interval (until timeout or UM recovers messages). NOTE: When using TCP Request/
Response, this value must be shorter than “ response_tcp_deletion_timeout (context) ” on page 170.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 5.3

otr_message_caching_threshold (receiver)
This option sets the maximum number of messages a receiver can buffer. When the number of cached
messages hits this threshold, Ultra Messaging drops and does not cache new streamed messages. Dropped
messages can be requested later as retransmissions.

This option applies for only receivers using sequence-number ordered delivery of data.

Scope: receiver

Type: lbm_ulong_t

Units: messages

Default value: 10000

164 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.0

otr_request_message_timeout (receiver)
The maximum time from when a receiver first sends an OTR lost-message request to when the receiver gives
up on receiving the retransmitted message and reports loss.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 20000 (20 seconds)

When to Set: Can only be set during object initialization.

version: This option was implemented in UM 6.0.

otr_request_minimum_interval (receiver)
The initial time interval between a receiver's OTR lost-message requests. While the receiver is waiting to
receive the retransmission, the interval doubles in length for each request until it reaches the maximum
interval set by “ otr_request_maximum_interval (receiver) ” on page 164.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 5.2

otr_request_outstanding_maximum (receiver)
The maximum number of OTR lost-message requests outstanding at any given time. Each message specifies
an individual lost message. A value of 0 indicates no maximum.

Scope: receiver

Type: lbm_ulong_t

Units: messages

Off-Transport Recovery Options 165

Default value: 200

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 5.2

use_otr (receiver)
Flag indicating if the receiver can use OTR or not.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 5.2

Value Description

1 The receiver is enabled to use OTR to recover lost messages.

0 The receiver is not enabled to use OTR to recover lost messages. Default for all.

Request Network Options
See also Request/Response in the Ultra Messaging Concepts Guide for more information about this feature.

request_tcp_bind_request_port (context)
Allows you to turn off request port binding. Setting this option to 0 prevents sockets from being bound to the
request port. Turning off request port binding also turns off the UM features such as: Request/Response,
Late Join, OTR, the reception of Unicast Immediate Messages and Unicast Immediate Request, along with
UMP and UMQ.

Scope: context

Type: int

Default value: 1

166 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.3.7/UME 2.0.5.

Value Description

1 Set request port binding. Default for all.

0 Turn off request port binding.

request_tcp_interface (context)
Specifies the network interface over which UM accepts TCP connections in response to requests it has sent
out. You can specify a full IP address of interface, or just the network part (see “Specifying Interfaces” on
page 52 for details). Default is set to INADDR_ANY, meaning that it will not bind to a specific interface. You
can also modify the default by setting the option to 0.0.0.0/0 which produces the same result.

Scope: context

Type: lbm_ipv4_address_mask_t

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

request_tcp_port (context)
Port number used for listening for responses from requests. If 0, use a random open port within the range of
[“ request_tcp_port_low (context) ” on page 168, “ request_tcp_port_high (context) ” on page 167]. If
nonzero, the specific port number is used instead. Each UM context will bind to a TCP port for requests when
it is initialized.

Scope: context

Type: lbm_uint16_t

Default value: 0 (use open port)

Byte order: Network

When to Set: Can only be set during object initialization.

request_tcp_port_high (context)
High port number to use for listening for responses from requests.

Scope: context

Type: lbm_uint16_t

Request Network Options 167

Default value: 14395

Byte order: Host

When to Set: Can only be set during object initialization.

request_tcp_port_low (context)
Low port number to use for listening for responses from requests.

Scope: context

Type: lbm_uint16_t

Default value: 14391

Byte order: Host

When to Set: Can only be set during object initialization.

Request Operation Options
See also Request/Response in the Ultra Messaging Concepts Guide for more information about this feature.

request_tcp_exclusiveaddr (context)
Applicable only to Windows. Indicate whether the TCP accepting socket should set
SO_EXCLUSIVEADDRUSE or not before it binds. The default setting in Windows allows multiple binds to the
same port. By default, UM will set SO_EXCLUSIVEADDRUSE to minimize port sharing. Refer to Microsoft's
web site for more information on SO_EXCLUSIVEADDRUSE.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Set SO_EXCLUSIVEADDRUSE. Default for Windows.

0 Do not set SO_EXCLUSIVEADDRUSE.

168 Chapter 4: Reference

request_tcp_listen_backlog (context)
The backlog used in the TCP listen() call to set the queue length for incoming connections.

Scope: context

Type: int

Default value: 5

When to Set: Can only be set during object initialization.

request_tcp_reuseaddr (context)
Whether the TCP accepting socket should set SO_REUSEADDR or not before it binds. NOTE: For Microsoft®

Windows®, UM always forces this value to "0" regardless of the value set in any configuration files.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Set SO_REUSEADDR.

0 Do not set SO_REUSEADDR. Default for all.

Response Operation Options
See also Request/Response in the Ultra Messaging Concepts Guide for more information about this feature.

response_session_maximum_buffer (context)
Value used to control the maximum amount of data buffered in UM for each response session (unicast
connection to a requester).

Scope: context

Type: lbm_ulong_t

Units: bytes

Default value: 65536

When to Set: Can only be set during object initialization.

Response Operation Options 169

response_session_sender_socket_buffer (context)
Value used to set the SO_SNDBUF value of the response session (unicast connection to a requester). In
some cases the OS will not allow all of this value to be used. A value of 0 instructs UM to use the OS
defaults. See the section on “Socket Buffer Sizes” on page 52 for platform-dependent information.

Scope: context

Type: lbm_ulong_t

Units: bytes

Default value: 0 (use OS defaults)

When to Set: Can only be set during object initialization.

response_tcp_deletion_timeout (context)
After UM deletes a TCP response, this is the timeout period after which UM closes the connection and
reclaims its memory. NOTE: When using Off-Transport Recovery, this value must be longer than
“ otr_request_maximum_interval (receiver) ” on page 164.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 2000 (2 seconds)

When to Set: Can only be set during object initialization.

response_tcp_interface (context)
Specifies the network interface over which UM initiates TCP connections for responses. You can specify the
full IP address of interface, or just the network part (see “Specifying Interfaces” on page 52 for details).
Default is set to INADDR_ANY, meaning that it will not bind to a specific interface. You can also modify the
default by setting the option to 0.0.0.0/0 which produces the same result.

Scope: context

Type: lbm_ipv4_address_mask_t

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

170 Chapter 4: Reference

response_tcp_nodelay (context)
Whether the TCP sockets used for sending responses should set TCP_NODELAY or not. (Setting
TCP_NODELAY disables Nagle's algorithm.)

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 TCP response sockets should set TCP_NODELAY (disable Nagle).

0 TCP response sockets should not set TCP_NODELAY (leave Nagle enabled). Default
for all.

Implicit Batching Options

implicit_batching_interval (source)
The maximum timeout between when the first message of an implicit batch is queued until the batch is sent.
A message will not stay in the queue longer than this value before being sent in the worst case. Refer to
Message Batching in the Ultra Messaging Concepts Guide for additional information.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 200 (0.2 seconds)

When to Set: May be set during operation.

implicit_batching_minimum_length (source)
The minimum length of an implicitly batched message. When the total length of the implicitly batched
messages reaches or exceeds this value, the batch is sent. Refer to Message Batching in the Ultra
Messaging Concepts Guide for additional information.

Scope: source

Type: size_t

Implicit Batching Options 171

Units: bytes

Default value: 2048 (8192 for Microsoft™ Windows™)

When to Set: May be set during operation.

implicit_batching_type (source)
The implicit batching algorithm to use which controls when messages sent on a transport session are flushed
or batched, if batching is in use.

Scope: source

Type: int

When to Set: May be set during operation.

String value Integer value Description

default LBM_SRC_TOPIC_ATTR_I
MPLICIT_BATCH_TYPE_DE
FAULT

Implicit batching is controlled
entirely by the
implicit_batching_minimum_length
(source)on page 171 and
“ implicit_batching_interval
(source) ” on page 171 options.
Refer to Message Batching for
additional information. Default for
all.

adaptive LBM_SRC_TOPIC_ATTR_I
MPLICIT_BATCH_TYPE_AD
APTIVE

Source-paced batching method that
attempts to adjust the amount of
messages sent in each batch
automatically. The options, and
implicit_batching_minimum_length
(source)on page
171“ implicit_batching_interval
(source) ” on page 171, limit batch
sizes and intervals but sizes and
intervals will usually be much
smaller. Setting this option may
have a negative impact on
maximum throughput.

Delivery Control Options
A Delivery Controller is a receiver-side object created for each source identified by the receiver through topic
resolution. A delivery controller performs the following.

• Delivers messages to multiple receivers subscribed to the same topic.

• Orders received topic messages if “ ordered_delivery (receiver) ” on page 61 is set to 1 (default). This
option applies to LBT-RU and LBT-RM transports.

172 Chapter 4: Reference

• Determines unrecoverable loss and burst loss events for the receiver's topic over LBT-RU and LBT-RM
transports.

Unlike the loss depicted in LBT-RM Datagram Loss Resulting in Unrecovered Message Loss which is due to
the inability of the transport or network to perform message retransmission, Generation of Unrecoverable
Loss Eventon page 173 demonstrates how a receiver's Delivery Controller detects the loss of a topic
message and notifies the receiving application. The TSNI messages contain the sequence number of the last
message sent by the source.

Generation of Unrecoverable Loss Event

The Delivery Controller detects burst loss by comparing the sequence numbers of the last two messages
received. If the resulting gap in sequence numbers equals or exceeds the

Delivery Control Options 173

“ delivery_control_maximum_burst_loss (receiver) ” on page 175, the delivery controller sends
LBM_MSG_BURST_LOSS to the application.

Generation of Burst Loss Event

channel_map_tablesz (receiver)
The size of the hash table that the receiver uses to store channel subscriptions. A larger table means more
channels can be stored more efficiently, but takes up more memory. A smaller table uses less memory, but
costs more CPU time for large numbers of channel subscriptions.

Scope: receiver

Type: size_t

Default value: 10273

When to Set: Can only be set during object initialization.

delivery_control_loss_check_interval (receiver)
This controls the interval between mandatory topic loss checks for a receiver. A value of 0 turns this loss
check off.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

174 Chapter 4: Reference

Default value: 0 (disabled)

When to Set: Can only be set during object initialization.

delivery_control_loss_tablesz (receiver)
For LBT-RM and other datagram-based transport sessions only. This controls the size of the hash table index
used for storing unrecoverable loss state on a per source per topic basis. Larger values mean larger hash
tables and probably better CPU usage under loss scenarios at the cost of more memory per source per topic.
Smaller values mean smaller hash tables and probably worse CPU usage under loss scenarios but with less
memory usage. The value used should be a prime number for efficiency.

Scope: receiver

Type: size_t

Units: table entries

Default value: 131

When to Set: Can only be set during object initialization.

Version: Deprecated

delivery_control_maximum_burst_loss (receiver)
This controls the maximum tolerable burst loss before a burst loss message is delivered to the application. A
burst loss less than or equal to this size is treated normally. Larger burst loss is treated as unrecoverable
immediately. When using OTR, set this to a significantly high value to let OTR recover lost messages.

Scope: receiver

Type: lbm_uint_t

Units: number of messages

Default value: 512

When to Set: Can only be set during object initialization.

delivery_control_maximum_total_map_entries (context)
The maximum total buffered map entries (unrecoverable loss messages as well as data) that all topics can
buffer. When this is exceeded, unrecoverable loss is signaled for data until the total buffered subsides. A
value of 0 implies no maximum value setting and allows any amount required to be buffered.

Delivery Control Options 175

If you use OTR with cache management (otr_message_caching), consider disabling this option (set to 0).

Scope: context

Type: size_t

Units: map entries

Default value: 200000

When to Set: Can only be set during object initialization.

delivery_control_message_batching (context)
Controls whether or not to use receive-side batching, which can improve receiver throughput when using
event queues, but might add latency in other cases.

If you enable this option, and you use an event queue that is in polling mode, using
lbm_event_dispatch(evq, LBM_EVENT_QUEUE_POLL), then rather than dispatching exactly one event per call
to lbm_event_dispatch, you may get multiple events dispatched with a single call.

Scope: context

Type: int

Units: 0 or 1

Default value: 0 (receive-side batching not enabled)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 6.7.

delivery_control_order_tablesz (receiver)
For LBT-RM and other datagram-based transport sessions only. This controls the size of the hash table index
used for storing buffered data on a per source per topic basis when ordered delivery is used. Larger values
mean larger hash tables and probably better CPU usage under loss scenarios at the cost of more memory
per source per topic. Smaller values mean smaller hash tables and probably worse CPU usage under loss
scenarios but with less memory usage. The value used should be a prime number for efficiency.

Scope: receiver

Type: size_t

Units: table entries

Default value: 131

When to Set: Can only be set during object initialization.

Version: Deprecated

176 Chapter 4: Reference

mim_delivery_control_loss_check_interval (context)
This controls the interval between mandatory loss checks for a Multicast Immediate Messaging (MIM)
transport session. A value of 0 turns this loss check off.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 0 (disabled)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

null_channel_behavior (receiver)
Behavior desired when a message without channel information (i.e. a standard UM message) is received by
UM.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

deliver LBM_RCV_TOPIC_ATTR_C
HANNEL_BEHAVIOR_DELI
VER_MSGS

Messages sent without channel
information will be delivered to the
callback specified upon receiver
creation. Default for all.

discard LBM_RCV_TOPIC_ATTR_C
HANNEL_BEHAVIOR_DISC
ARD_MSGS

Messages sent without channel
information will be discarded.

source_notification_function (receiver)
Callback functions (and associated client data pointer) that are called when a receiver creates or deletes a
delivery controller associated with a source. For the creation function, the application has the ability to set the
source client data pointer to be used in each message received from the source. This callback is called
directly in line and does not use the event queue. Therefore the callback function used should not block or it
will block the context thread processing. A value of NULL for the callback turns off the callback being called.

Scope: receiver

Type: lbm_rcv_src_notification_func_t

Delivery Control Options 177

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

unrecognized_channel_behavior (receiver)
Behavior desired when a message with channel information for a channel not in the receiver's set of
subscribed channels is received by UM.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

deliver LBM_RCV_TOPIC_ATTR_C
HANNEL_BEHAVIOR_DELI
VER_MSGS

Messages sent with channel
information for a channel not in the
receiver's set of subscribed
channels will be delivered to the
callback specified upon receiver
creation. Default for all.

discard LBM_RCV_TOPIC_ATTR_C
HANNEL_BEHAVIOR_DISC
ARD_MSGS

Messages sent with channel
information for a channel not in the
receiver's set of subscribed
channels will be discarded.

Wildcard Receiver Options

pattern_callback (wildcard_receiver)
Callback function (and associated client data pointer) that is called when a pattern match is desired for a
topic discovered for a wildcard receiver if the pattern type is set to "appcb". This callback is called directly in
line and does not use the event queue. A return value of 0 indicates the given topic should be considered
part of the wildcard. A value of 1 or more indicates the topic should NOT be considered matching the
wildcard.

Scope: wildcard_receiver

Type: lbm_wildcard_rcv_compare_func_t

Default value: NULL

178 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

pattern_type (wildcard_receiver)
The type of expression UM uses to compare wildcard receiver patterns to new topics seen in topic
advertisements or responses to wildcard receiver queries. As of UM Version 6.1, wildcard receivers must use
pcre expressions.

Scope: wildcard_receiver

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

pcre LBM_WILDCARD_RCV_PA
TTERN_TYPE_PCRE

The pattern is a regular expression
usable by PCRE (Perl Compatible
Regular Expressions) library.
Default for all.

regex Deprecated in UM Version
6.1.

LBM_WILDCARD_RCV_PA
TTERN_TYPE_REGEX

The pattern is a regular expression
usable by POSIX Extended Regular
Expressions.

appcb Deprecated in UM Version
6.1.

LBM_WILDCARD_RCV_PA
TTERN_TYPE_APP_CB

The wildcard receiver ignores the
pattern and calls an application
callback set by the
pattern_callback option.

receiver_create_callback (wildcard_receiver)
Callback function (and associated client data pointer) that is called when a receiver is about to be created for
a topic which matched a wildcard receiver pattern. This callback is called directly in line and does not use the
event queue. The callback function should always return 0.

Scope: wildcard_receiver

Type: lbm_wildcard_rcv_create_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in LBM 3.4/UME 2.1.

Wildcard Receiver Options 179

receiver_delete_callback (wildcard_receiver)
Callback function (and associated client data pointer) that is called when a receiver is about to be deleted.
This callback is called directly in line and does not use the event queue. The callback function should always
return 0.

Scope: wildcard_receiver

Type: lbm_wildcard_rcv_delete_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

Version: This option was implemented in LBM 3.4/UME 2.1.

resolver_no_source_linger_timeout (wildcard_receiver)
This sets the linger timeout value before a topic with no sources is removed and cleaned up. Since wildcard
receivers set the “ resolution_no_source_notification_threshold (receiver) ” on page 71 to 10, the linger timer
starts after the wildcard receiver sends 10 queries and subsequently receives a no-source notification.

Scope: wildcard_receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

resolver_query_maximum_interval (wildcard_receiver)
The longest - and last - interval in wildcard receiver topic querying. A value of 0 disables wildcard receiver
topic querying. See also “Disabling Aspects of Topic Resolution ” on page 39.

Scope: wildcard_receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

180 Chapter 4: Reference

resolver_query_minimum_duration (wildcard_receiver)
The duration of wildcard queries in wildcard receiver topic querying. Only PCRE and regex pattern types can
use wildcard queries. A value of 0 guarantees that wildcard receiver topic querying never completes.

Scope: wildcard_receiver

Type: lbm_ulong_t

Units: seconds

Default value: 60 (1 minute)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_query_minimum_interval (wildcard_receiver)
Interval between the first topic query sent upon creation of the wildcard receiver and the second query sent
by the receiver. A value of 0 disables wildcard receiver topic querying. See also “Disabling Aspects of Topic
Resolution ” on page 39. This option has an effective minimum of 30 ms. See “Minimum Values for
Advertisement and Query Intervals” on page 70.

Scope: wildcard_receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 50 (0.05 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_wildcard_queries_per_second (context)
Maximum number of queries sent within a one second period during wildcard receiver topic querying. A value
of 0 sets no rate limit on queries in wildcard receiver topic querying.

Scope: context

Type: lbm_ulong_t

Units: advertisements

Default value: 0

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

Wildcard Receiver Options 181

resolver_wildcard_query_bps (context)
Maximum query rate during wildcard receiver topic querying. A value of 0 sets no rate limit on queries in
wildcard receiver topic querying.

Scope: context

Type: lbm_uint64_t

Units: bits per second

Default value: 1000000

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0

resolver_wildcard_receiver_map_tablesz (context)
The size of the hash table used for storing wildcard receiver patterns. A value of 0 disables caching wildcard
receiver patterns. This value should be a prime number.

Scope: context

Type: size_t

Units: map entries

Default value: 10273

When to Set: Can only be set during object initialization.

Event Queue Options

event_queue_name (event_queue)
The name of an event queue, limited to 128 alphanumeric characters, hyphens or underscores.

Scope: event_queue

Type: string

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.3/UMP 3.3/UMQ 2.3.

182 Chapter 4: Reference

queue_age_enabled (event_queue)
Controls whether the length of time each event spends on the event queue is measured. Useful only if you
are monitoring event queue statistics.

Scope: event_queue

Type: int

Default value: 0

When to Set: May be set during operation.

Value Description

1 Enables measuring of event queue entry ages.

0 Disables measuring of event queue entry ages. Default for all.

queue_cancellation_callbacks_enabled (event_queue)
Flag indicating whether the event queue is to do appropriate locking to provide cancellation callback support
for cancel/delete functions.

Scope: event_queue

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Provide support for cancellation callbacks.

0 Do not provide cancellation callback support. Default for all.

queue_count_enabled (event_queue)
Controls whether the numbers of each type of queue entry are counted. Useful only if you are monitoring
event queue statistics.

Scope: event_queue

Type: int

Event Queue Options 183

Default value: 0

When to Set: May be set during operation.

Value Description

1 Enables counting event queue entries.

0 Disables counting of event queue entries. Default for all.

queue_delay_warning (event_queue)
The event queue delay threshold (in microseconds) at which the monitor function for the event queue is
called. This delay is the time that an event has been queued before being dispatched. A value of 0 indicates
the event queue delay is not to be monitored and checked.

Scope: event_queue

Type: lbm_ulong_t

Units: microseconds

Default value: 0 (not monitored)

When to Set: May be set during operation.

queue_enqueue_notification (event_queue)
Flag indicating whether to call the monitor function when an event is enqueued into the given event queue.
The thread enqueuing the event is the one that calls this function. So, when this is called, the monitoring
function in use should only assume this is only notification of enqueuing. The monitor function should not
dispatch events directly.

Scope: event_queue

Type: int

When to Set: May be set during operation.

Value Description

1 Enable notification.

0 Disable notification. Default for all.

queue_objects_purged_on_close (event_queue)
Flag indicating whether the event queue should be immediately purged of any pending events associated
with a recently closed object (e.g. source, receiver) during the close operation, or be left on the queue to be

184 Chapter 4: Reference

discarded as the event queue drains normally. In either case, UM does not deliver the defunct events to the
application. The Immediate purge setting reclaims memory immediately, while the Delay purge setting
spreads the reclamation work over time, reducing the CPU impact of closing objects associated with the
queue.

Scope: event_queue

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 Immediate purge. Default for all.

0 Delay purge.

queue_service_time_enabled (event_queue)
Controls whether the amount of time required to service each event on the event queue is measured. Useful
only if you are monitoring event queue statistics.

Scope: event_queue

Type: int

Default value: 0

When to Set: May be set during operation.

Value Description

1 Enables measuring of event queue service times.

0 Disables measuring of event queue service times. Default for all.

queue_size_warning (event_queue)
The event queue size threshold (in number of events) at which the monitor function for the event queue is
called. A value of 0 indicates the event queue size is not to be monitored and checked.

Scope: event_queue

Type: lbm_ulong_t

Units: number of events

Default value: 0 (not monitored)

When to Set: May be set during operation.

Event Queue Options 185

Ultra Messaging Persistence Options

ume_ack_batching_interval (context)
The interval between checks by UMP of consumed, unacknowledged messages. See also
“ ume_use_ack_batching (receiver) ” on page 211.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 100 (0.1 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0, UMP 5.0, UMQ 5.0.

ume_activity_timeout (receiver)
Establishes the period of time from a receiver's last activity to the release of the receiver's Reg ID. Stores
return an error to any new request for the receiver's Reg ID during this period. Overrides the receiver-
activity-timeout setting configured for the receiver's topic on the store. The default value of 0 (zero)
disables this option. See also Proxy Sources in the Ultra Messaging Guide for Persistence.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

ume_activity_timeout (source)
Establishes the period of time from a source's last activity to the release of the source's Reg ID. Stores return
an error to any new source requesting the source's Reg ID during this period. If proxy sources are enabled
(“ ume_proxy_source (source) ” on page 194), the store does not release the source's Reg ID and UMP
elects a proxy source. Overrides the source-activity-timeout setting configured for the source's topic on
the store. The default value of 0 (zero) disables this option. If neither proxy sources nor “ ume_state_lifetime
(source) ” on page 208 are configured, the store also deletes the source's state and cache. See also Proxy
Sources in the Ultra Messaging Guide for Persistence.

Scope: source

Type: lbm_ulong_t

186 Chapter 4: Reference

Units: milliseconds

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

ume_allow_confirmed_delivery (receiver)
Specifies whether or not UMP allows the sending of confirmed delivery notifications back to the source.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0, UMP 5.0, UMQ 5.0.

Value Description

1 Indicates that UMP can send confirmed delivery notifications. Default for all.

0 Indicates that UMP can not send confirmed delivery notifications.

ume_application_outstanding_maximum (receiver)
This UMP receiver option enables the UMP Throttled Delivery feature and sets an upper threshold on the
number of message fragments from a single source that are delivered or in an event queue, but not yet
consumed. When the number of message fragments exceeds this threshold, the receiver stops buffering all
incoming message fragments. Thus, messages from the source transport stream might be dropped and
recovered via OTR or UMP late-join mechanisms.

This feature effectively limits the recovery rate and live stream rate to the receiver message consumption
rate. If OTR is disabled for the receiver, this threshold applies only during initial Late Join recovery. Setting
this option to 0 (zero) disables the UMP Throttled Delivery feature.

Scope: receiver

Type: lbm_ulong_t

Units: message fragments

Default value: 0 (disabled)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 6.7

Ultra Messaging Persistence Options 187

ume_confirmed_delivery_notification (source)
Flag indicating the source is interested in receiving notifications of delivery of messages to receivers
(confirmed delivery) via the source event mechanism. When turned off, receivers do not send delivery
confirmation notifications to the source unless the release policy dictates the need for them.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

0 LBM_SRC_TOPIC_ATTR_U
ME_CDELV_EVENT_NONE

The source does not wish to
receive delivery confirmation
notifications.

1 LBM_SRC_TOPIC_ATTR_U
ME_CDELV_EVENT_PER_F
RAGMENT

The source wishes to receive
delivery confirmation notifications
for all messages and message
fragments. Default for all.

2 LBM_SRC_TOPIC_ATTR_U
ME_CDELV_EVENT_PER_
MESSAGE

The source wishes to receive only
one delivery confirmation for a
message regardless of how many
fragments it comprised.

3 LBM_SRC_TOPIC_ATTR_U
ME_CDELV_EVENT_FRAG
_AND_MSG

The source wishes to receive
delivery confirmation notifications
for all messages and message
fragments. In addition, the
notification contains a
WHOLE_MESSAGE_CONFIRMED
flag when the last fragment of a
message has been delivered.

188 Chapter 4: Reference

ume_consensus_sequence_number_behavior (receiver)
The behavior that the receiver will follow when determining the consensus sequence number used as the
sequence number to begin reception at upon re-registration after a failure or suspension. This setting is only
used when quorum-consensus is also used on the source.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

lowest LBM_RCV_TOPIC_ATTR_U
ME_QC_SQN_BEHAVIOR_
LOWEST

Consensus is determined as the
lowest of the latest sequence
numbers seen from any store.

majority LBM_RCV_TOPIC_ATTR_U
ME_QC_SQN_BEHAVIOR_
MAJORITY

Consensus is determined as the
latest sequence number agreed
upon by the majority of stores
within a group. Between groups,
the latest of all majority decisions is
used. Default for all.

highest LBM_RCV_TOPIC_ATTR_U
ME_QC_SQN_BEHAVIOR_
HIGHEST

Consensus is determined as the
highest of the latest sequence
numbers seen from any store.

Ultra Messaging Persistence Options 189

ume_consensus_sequence_number_behavior (source)
The behavior that the source will follow when determining the consensus sequence number used as the first
message of a source upon re-registration after a failure or suspension. This setting is only used when
quorum-consensus is also used.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

lowest LBM_SRC_TOPIC_ATTR_U
ME_QC_SQN_BEHAVIOR_
LOWEST

Consensus is determined as the
lowest of the latest sequence
numbers seen from any store.

majority LBM_SRC_TOPIC_ATTR_U
ME_QC_SQN_BEHAVIOR_
MAJORITY

Consensus is determined as the
latest sequence number agreed
upon by the majority of stores
within a group. Between groups,
the latest of all majority decisions is
used. Default for all.

highest LBM_SRC_TOPIC_ATTR_U
ME_QC_SQN_BEHAVIOR_
HIGHEST

Consensus is determined as the
highest of the latest sequence
numbers seen from any store.

ume_explicit_ack_only (receiver)
Flag indicating if the receiver should automatically send acknowledgements to any stores and to the source
or if the application desires to explicitly generate acknowledgements itself. See also Explicit
Acknowledgments in the Ultra Messaging Guide for Persistence.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 The receiving application will generate acknowledgements explicitly and the UMP
receiver should not automatically generate them.

0 The UMP receiver will automatically generate and send acknowledgements based on
message consumption. Default for all.

190 Chapter 4: Reference

ume_flight_size (source)
Specifies the number of messages allowed to be in flight (unstabilized at a store and without delivery
confirmation) before a new message send either blocks or triggers a notification (source event).

Scope: source

Type: unsigned int

Units: messages

Default value: 1000

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1

ume_flight_size_behavior (source)
The behavior that UMP follows when a message send exceeds the source's “ ume_flight_size (source) ” on
page 191.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.1.1/UME 3.1.1

String value Integer value Description

Block LBM_FLIGHT_SIZE_BEHAV
IOR_BLOCK

The send call blocks when a source
sends a message that exceeds its
flight size. If the source uses a non-
blocking send, the send returns an
LBM_EWOULD_BLOCK. Default
for all.

Notify LBM_FLIGHT_SIZE_BEHAV
IOR_NOTIFY

A message send that exceeds the
configured flight size does not
block but triggers a flight size
notification (source event),
indicating that the flight size has
been surpassed. UMP also sends
a source event notification if the
number of in-flight messages falls
below the configured flight size.

ume_flight_size_bytes (source)
Specifies the message payload in bytes allowed to be in flight (unstabilized at a store and without delivery
confirmation) before a new message send either blocks or triggers a notification source event. UMP monitors
both this option and “ ume_flight_size (source) ” on page 191. If either threshold is met, the configured

Ultra Messaging Persistence Options 191

blocking or notification behavior executes. See “ ume_flight_size_behavior (source) ” on page 191. When
using Receiver-paced Persistence, set this option greater than 0 (zero) but less than or equal to the
repository's source-flight-size-bytes-maximum value.

Scope: source

Type: lbm_uint64_t

Units: bytes

Default value: 0 (disabled)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.3

ume_force_reclaim_function (source)
Callback function (and associated client data pointer) that is called when a source is forced to release a
retained message due to size limitations specified. This callback is called directly in line and does not use the
event queue. Therefore the callback function used should not block. A value of NULL for the callback turns
off the callback being called.

Scope: source

Type: lbm_ume_src_force_reclaim_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

ume_late_join (source)
Flag indicating the source should allow late join operation for receivers and persistent stores. This is a
compatibility setting. The “ late_join (source) ” on page 158 setting should be used instead.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 The source allows late join receivers and persistent stores.

0 The source does not allow late join receivers or persistent stores. Default for all.

192 Chapter 4: Reference

ume_message_stability_lifetime (source)
The total time in milliseconds from the initial send of a message before a UMP source gives up entirely on
receiving a stability acknowledgement for the message. The source then delivers a forced reclaim notice to
the application. This option is part of the Proactive Retransmissions feature.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 1200000 (20 minutes)

When to Set: Can only be set during object initialization.

Version This option was implemented in UM 6.0

ume_message_stability_notification (source)
Flag indicating the source is interested in receiving notifications of message stability from persistent stores
via the source event mechanism. Even when turned off, stores continue to send message stability
notifications to the source for retention purposes. However, no notification will be delivered to the application.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

0 LBM_SRC_TOPIC_ATTR_UME_STABLE_EV
ENT_NONE

The source does not wish to
receive message stability
notifications from the store.

1 LBM_SRC_TOPIC_ATTR_UME_STABLE_EV
ENT_PER_FRAGMENT

The source wishes to receive all
message and message fragment
stability notifications from the store.
Default for all.

Ultra Messaging Persistence Options 193

String value Integer value Description

2 LBM_SRC_TOPIC_ATTR_UME_STABLE_EV
ENT_PER_MESSAGE

The source wishes to receive only
a single message stability
notifications from the store when
the entire message has been
stabilized. This notification contains
the Sequence Number of the last
fragment of the whole message but
does NOT contain store
information.

3 LBM_SRC_TOPIC_ATTR_UME_STABLE_EV
ENT_FRAG_AND_MSG

The source wishes to receive all
message and message fragment
stability notifications from the store.
In addition, the notification contains
a WHOLE_MESSAGE_STABLE
flag when the last fragment of a
message has been stabilized.

ume_message_stability_timeout (source)
The time in milliseconds from initial send of a message until it is resent by the source because the source has
not received a stability acknowledgement for the store (or a quorum of stores). Setting this option to 0 (zero)
disables the Proactive Retransmissions feature.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 20000 (20 seconds)

When to Set: Can only be set during object initialization.

Version This option was implemented in UM 6.0

ume_proxy_source (source)
Controls whether any stores with which the source registers should provide a proxy source in the event the
actual source terminates. Proxy source support is only available for quorum/consensus store configurations.
In addition, proxy source support requires that the source register with an actual registration ID, and not
request that the store assign it a registration ID.

Scope: source

Type: int

194 Chapter 4: Reference

Default value: 0

When to Set: Can only be set during object initialization.

Value Description

1 Enables proxy source support.

0 Disables proxy source support. Default for all.

ume_receiver_liveness_interval (context)
The maximum interval between delivery confirmations or keepalive messages send to the source. Expiration
of this interval triggers another keepalive and an interval reset.

Scope: context

Type: int

Units: milliseconds

Default value: 0 (disable; do not send keepalives)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.2.

ume_receiver_paced_persistence (receiver)
Specifies that the receiver is a Receiver-paced Persistence (RPP) receiver. If the repository has set
repository-allow-receiver-paced-persistence to 0 (disable), setting this option to 1 creates a store
registration error.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.3

Value Description

1 Indicates that the receiver is a RPP receiver.

0 Indicates that the receiver is not a RPP receiver. Default for all.

Ultra Messaging Persistence Options 195

ume_receiver_paced_persistence (source)
Specifies that the source is a Receiver-paced Persistence (RPP) source and may change certain topic
repository options to values allowed by the repository. If the repository has set repository-allow-receiver-
paced-persistence to 0 (disable), setting this option to 1 creates a store registration error.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.3

Value Description

1 Indicates that source is a RPP source.

0 Indicates that source is not a RPP source. Default for all.

ume_recovery_sequence_number_info_function (receiver)
Callback function (and associated client data pointer) that is called when a receiver is about to complete
registration from the stores in use by the source and the low sequence number is to be determined. The
application has the ability to modify the sequence number to use if it desires. This callback is called directly in
line and does not use the event queue. Therefore the callback function used should not block or it will block
the context thread processing. A value of NULL for the callback turns off the callback being called.

Scope: receiver

Type: lbm_ume_rcv_recovery_info_ex_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

ume_registration_extended_function (receiver)
Callback function (and associated client data pointer) that is called when a receiver is about to attempt to
register with a persistent store. The app must return the registration ID to request from the store or 0 if it will
allow the store to allocate one. This function passes additional extended information, such as the store being
used and a source client data pointer, etc. This callback is called directly in line and does not use the event
queue. Therefore the callback function used should not block or it will block the context thread processing. A
value of NULL for the callback turns off the callback being called.

Scope: receiver

Type: lbm_ume_rcv_regid_ex_func_t

196 Chapter 4: Reference

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

ume_registration_function (receiver)
Callback function (and associated client data pointer) that is called when a receiver is about to attempt to
register with a persistent store. The app must return the registration ID to request from the store or 0 if it will
allow the store to allocate one. This callback is called directly in line and does not use the event queue.
Therefore the callback function used should not block or it will block the context thread processing. A value of
NULL for the callback turns off the callback being called. This setting is provided for compatibility. The
“ ume_registration_extended_function (receiver) ” on page 196 setting should be used instead.

Scope: receiver

Type: lbm_ume_rcv_regid_func_t

Default value: NULL

When to Set: Can only be set during object initialization.

Config File: Cannot be set from an UM configuration file.

ume_registration_interval (receiver)
The interval between registration attempts by the receiver to a persistent store in use by the source.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

ume_registration_interval (source)
The interval between registration attempts by the source. Before declaring Registration Complete, sources
wait at least one full interval, unless all stores have registered.

Ultra Messaging Persistence Options 197

When using the round-robin store behavior, this is the value between registration attempts with the various
stores. In other words, attempt to register with primary, wait interval, attempt to register with secondary, wait
interval, etc.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

ume_repository_ack_on_reception (source)
For topics with a repository-type of disk or reduced-fd, specifies that the stability acknowledgement
should be sent upon message reception by the store instead of when the message has been written to disk.
When using Receiver-paced Persistence, if the repository has set stability-ack-on-reception to 0
(disable), setting this option to 1 creates a store registration error. This option has no effect on Source-paced
Persistence repositories.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.3

Value Description

1 The repository sends a stability acknowledgement for a message as soon as it has
received the message.

0 The repository sends a stability acknowledgement for a message once it has been written
to disk. Default for all.

ume_repository_disk_file_size_limit (source)
For topics with a repository-type of memory, disk or reduced-fd, specifies the maximum amount of disk
space used to store retained messages. Using the default value of 0 (zero) implements the repository's
repository-disk-file-size-limit value. When not set to 0, UMP enforces a minimum value of 196992.
When using Receiver-paced Persistence, you must set this option greater than 0 (zero) but less than or equal
to the repository's repository-disk-file-size-limit value.

Scope: source

Type: lbm_uint64_t

Units: bytes

198 Chapter 4: Reference

Default value: 0 (disabled)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.3

ume_repository_size_limit (source)
For topics with a repository-type of memory, disk or reduced-fd, specifies the maximum number of
message bytes retained (includes payload only). When using Receiver-paced Persistence, you must set this
option greater than 0 (zero) but less than or equal to the repository's repository-size-limit value. For the
disk or reduced-fd repository type, this value configures the size of the memory cache. Using the default
value of 0 (zero) implements the repository's value for this option.

Scope: source

Type: size_t

Units: bytes

Default value: 0 (disabled)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.3

ume_repository_size_threshold (source)
For topics with a repository-type of memory, disk or reduced-fd, specifies the minimum number of
message bytes retained (includes payload only). When using Receiver-paced Persistence, you must set this
option greater than 0 (zero) but less than or equal to the repository's repository-size-threshold value. For
the disk or reduced-fd repository type, this value configures the size of the memory cache. Using the default
value of 0 (zero) implements the repository's value for this option.

Scope: source

Type: size_t

Units: bytes

Default value: 0 (disabled)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.3

Ultra Messaging Persistence Options 199

ume_retention_intergroup_stability_behavior (source)
The behavior that the source will follow when determining, across store groups, both message stability and
registration completion. A source cannot release a message until the message is stable. To be stable, a
message must first be stable within the group and then stable between groups.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

any, any-group LBM_SRC_TOPIC_ATTR_U
ME_STABLE_BEHAVIOR_A
NY

Registration is complete when it is
complete in any group. Messages
are stable when they are stable in
any group. Default for all.

all-active LBM_SRC_TOPIC_ATTR_U
ME_STABLE_BEHAVIOR_A
LL_ACTIVE

A group is active if it has at least a
quorum of registered stores, or as
determined by the
ume_retention_intragroup_
stability_behavior option.
Registration is complete when it is
complete in all active groups. At
least one group must be active.
Messages are stable when they are
stable in all active groups.

majority LBM_SRC_TOPIC_ATTR_U
ME_STABLE_BEHAVIOR_M
AJORITY

Registration is complete when it is
complete in a majority of groups.
Messages are stable when they are
stable in a majority of groups.

all, all-groups LBM_SRC_TOPIC_ATTR_U
ME_STABLE_BEHAVIOR_A
LL

Registration is complete when it is
complete in all groups. Messages
are stable when they are stable in
all groups.

200 Chapter 4: Reference

ume_retention_intragroup_stability_behavior (source)
The behavior that the source will follow when determining, within a store group, both message stability and
group registration completion. A source cannot release a message until the message is stable. To be stable,
a message must first be stable within the group and then stable between groups.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

quorum LBM_SRC_TOPIC_ATTR_U
ME_STABLE_BEHAVIOR_Q
UORUM

Registration is complete for the
group when a majority of the stores
in the group are registered. A
message is stable within the group
when a majority of the stores have
acknowledged the message as
stable. Default for all.

all-active LBM_SRC_TOPIC_ATTR_U
ME_STABLE_BEHAVIOR_A
LL_ACTIVE

Registration is complete for the
group when a majority of the stores
in the group are registered. Stores
registered with a source are active
stores. A message is stable within
the group when each active store in
that group has acknowledged the
message as stable.

all, all-stores LBM_SRC_TOPIC_ATTR_U
ME_STABLE_BEHAVIOR_A
LL

Registration is complete for the
group when all stores in the group
are registered. A message is stable
within the group when all stores in
the group are registered and have
acknowledged the message as
stable.

ume_retention_size_limit (source)
The release policy regarding aggregate size limit before messages are forced to be released. If the total
number of bytes retained for the source is less than this amount, they may be released depending on other
retention settings. If the total number of bytes exceeds this amount, then the message is forced to be
released and a log message generated. This setting is provided for compatibility. The
“ retransmit_retention_size_limit (source) ” on page 162 setting should be used instead.

Scope: source

Type: size_t

Units: bytes

Ultra Messaging Persistence Options 201

Default value: 25165824 (24 MB)

When to Set: Can only be set during object initialization.

ume_retention_size_threshold (source)
The release policy regarding aggregate size threshold before messages are released. If the total number of
bytes retained for the source is less than this amount, they will not be released. If the total number of bytes
exceeds this amount, then the message may be released if no other release policy setting overrides the
decision. A value of 0 indicates there is no size threshold set. This setting is provided for compatibility. The
“ retransmit_retention_size_threshold (source) ” on page 162 setting should be used instead.

Scope: source

Type: size_t

Units: bytes

Default value: 0 (no threshold)

When to Set: Can only be set during object initialization.

ume_retention_unique_confirmations (source)
The release policy regarding the number of confirmations from different receivers required before the source
can release a message. This option enhances, but does not supersede, message stability notification from
the store(s). If the number of unique confirmations for a message is less than this amount, the message will
not be released. If the number of unique confirmations for a message exceeds or equals this amount, then
the message may be released if no other release policy setting overrides the decision. A value of 0 indicates
there is no unique number of confirmations required for reclamation.

Scope: source

Type: size_t

Units: number of confirmations

Default value: 0 (none required)

When to Set: Can only be set during object initialization.

202 Chapter 4: Reference

ume_retransmit_request_generation_interval (receiver)
The maximum interval between when a retransmission request is first sent and when it is given up on and
loss is reported. This setting is provided for compatibility. The “ retransmit_request_generation_interval
(receiver) ” on page 227 setting should be used instead.

Scope: receiver

Type: unsigned long int

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

ume_retransmit_request_interval (receiver)
The interval between retransmission request messages to the persistent store or to the source. This setting is
provided for compatibility. The “ retransmit_request_interval (receiver) ” on page 160 setting should be used
instead.

Scope: receiver

Type: unsigned long int

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

ume_retransmit_request_maximum (receiver)
The maximum number of messages to request back from the current latest message when late joining a topic
or when registering with a UMP store. A value of 0 indicates no maximum. This setting is provided for
compatibility. The “ retransmit_request_maximum (receiver) ” on page 161 setting should be used instead.

Scope: receiver

Type: unsigned long int

Units: messages

Default value: 0

When to Set: Can only be set during object initialization.

Ultra Messaging Persistence Options 203

ume_retransmit_request_outstanding_maximum (receiver)
The maximum number of messages to request at a single time from the store or source. A value of 0
indicates no maximum. This setting is provided for compatibility. The
“ retransmit_request_outstanding_maximum (receiver) ” on page 161 setting should be used instead.

Scope: receiver

Type: unsigned long int

Units: messages

Default value: 200

When to Set: Can only be set during object initialization.

ume_session_id (context)
Specifies the default Session ID to use for sources and receivers within a context. A value of 0 (zero)
indicates no Session ID is to be set. See also Managing RegIDs with Session IDs in the Ultra Messaging
Guide for Persistence. Valid formats for session IDs are as follows: A hexadecimal string with a maximum
value of FFFFFFFFFFFFFFFE, prefixed with '0x'. An octal string with a maximum value of
1777777777777777777776 prefixed with '0'. A decimal string with a maximum value of
18446744073709551614. Prior to LBM 5.2.2, all UME session IDs were interpreted as hexadecimal, and did
not accept the '0x' prefix. If upgrading from an earlier version to LBM 5.2.2 or later, prepend '0x' to the
original setting to use the originally assigned session ID.

Scope: context

Type: lbm_uint64_t

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2

ume_session_id (receiver)
Specifies the Session ID to use for a receiver. A value of 0 (zero) indicates the context ume_session_id will
be used. See also Managing RegIDs with Session IDs in the Ultra Messaging Guide for Persistence. Valid
formats for session IDs are as follows: A hexadecimal string with a maximum value of FFFFFFFFFFFFFFFE,
prefixed with '0x'. An octal string with a maximum value of 1777777777777777777776 prefixed with '0'. A
decimal string with a maximum value of 18446744073709551614. Prior to LBM 5.2.2, all UME session IDs
were interpreted as hexadecimal, and did not accept the '0x' prefix. If upgrading from an earlier version to
LBM 5.2.2 or later, prepend '0x' to the original setting to use the originally assigned session ID.

Scope: receiver

Type: lbm_uint64_t

204 Chapter 4: Reference

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2

ume_session_id (source)
Specifies the Session ID to use for a source. A value of 0 (zero) indicates the context ume_session_id will be
used. See also Managing RegIDs with Session IDs in the Ultra Messaging Guide for Persistence. Valid
formats for session IDs are as follows: A hexadecimal string with a maximum value of FFFFFFFFFFFFFFFE,
prefixed with '0x'. An octal string with a maximum value of 1777777777777777777776 prefixed with '0'. A
decimal string with a maximum value of 18446744073709551614. Prior to LBM 5.2.2, all UME session IDs
were interpreted as hexadecimal, and did not accept the '0x' prefix. If upgrading from an earlier version to
LBM 5.2.2 or later, prepend '0x' to the original setting to use the originally assigned session ID.

Scope: source

Type: lbm_uint64_t

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2/UME 3.2

ume_source_liveness_timeout (context)
The expected maximum interval between keepalive or delivery confirmation messages from a receiver. If
neither are received within the interval, the source declares the receiver "dead".

Scope: context

Type: int

Units: milliseconds

Default value: 0 (disable; do not track receivers)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.2.

Ultra Messaging Persistence Options 205

ume_sri_flush_sri_request_response (source)
This option determines if a source flushes the Implicit Batching buffer after it sends a Source Registration
Information (SRI) record in response to a SRI request from a receiver. Flushing this buffer places the SRI
record immediately on the transport.

Scope: source

Type: lbm_ulong_t

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

Value Description

1 The source places a SRI record in the Implicit Batching buffer and then flushes the buffer.

0 The source places a SRI record in the Implicit Batching buffer and lets normal batch
scheduling determine when to place the SRI on the transport. Default for all.

ume_sri_immediate_sri_request_response (source)
This option determines how a source responds to a receiver's request for a Source Registration Information
(SRI) record. The default setting for this option is the fastest response to a receiver's SRI request.

Scope: source

Type: lbm_ulong_t

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 6.0

Value Description

1 Indicates that the source sends an SRI record and also flushes the implicit batching buffer
to immediately put the SRI record on the transport. Default for all.

0 Indicates that the source waits for the period of time defined by
“ume_sri_request_response_latency (source)” on page 208 before sending an SRI record.

ume_sri_inter_sri_interval (source)
The interval between the sending of SRI packets by a source. The default value results in the source sending
10 SRI packets every second.

Scope: source

Type: lbm_ulong_t

206 Chapter 4: Reference

Units: milliseconds

Default value: 100 (0.1 seconds)

When to Set: Can only be set during object initialization.

Version This option was implemented in UMP 6.0

ume_sri_max_number_of_sri_per_update (source)
The maximum number of SRI packets sent by a source after it has re-registered with a store.

Scope: source

Type: lbm_ulong_t

Default value: 10

When to Set: Can only be set during object initialization.

Version This option was implemented in UMP 6.0

ume_sri_request_interval (receiver)
The interval at which the receiver requests a Store Information Record (SRI) from the source. Controlling
these requests helps reduce receiver start-up traffic on your network.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 1000 (1 second)

When to Set: Can only be set during object initialization.

Version This option was implemented in UMP 6.0

ume_sri_request_maximum (receiver)
The maximum number of requests the receiver issues for a Store Information Record (SRI) from the source.
If the receiver has not received an SRI after this number of requests, it stops requesting.

Scope: source

Type: lbm_ulong_t

Default value: 60

Ultra Messaging Persistence Options 207

When to Set: Can only be set during object initialization.

Version This option was implemented in UMP 6.0

ume_sri_request_response_latency (source)
The interval a source waits before sending an SRI packet in response to a SRI request from a receiver. At
the expiration of this interval, the SRI record may also be slightly delayed by normal batch scheduling unless
“ume_sri_flush_sri_request_response (source)” on page 206 is set to 1.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 100 (0.1 seconds)

When to Set: Can only be set during object initialization.

Version This option was implemented in UMP 6.0

ume_state_lifetime (receiver)
Establishes the period of time from a receiver's last activity to the deletion of the receiver's state and cache
by the store. You can also configure a receiver-state-lifetime for the receiver's topic on the store. The
store uses whichever is shorter. The default value of 0 (zero) disables this option. See also Proxy Sources in
the Ultra Messaging Guide for Persistence.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

ume_state_lifetime (source)
Establishes the period of time from a source's last activity to the deletion of the source's state and cache by
the store, regardless of whether a proxy source has been created or not. You can also configure a source-
state-lifetime for the source's topic on the store. The store uses whichever is shorter. The default value of
0 (zero) disables this option. See also Proxy Sources in the Ultra Messaging Guide for Persistence.

Scope: source

Type: lbm_ulong_t

208 Chapter 4: Reference

Units: milliseconds

Default value: 0 (zero)

When to Set: Can only be set during object initialization.

ume_store (source)
Add a store specification to the list of stores specified for the source. Unlike most other UMP settings, every
time this setting is called, it adds another store specification to the list and does NOT overwrite previous
specifications.

Each entry contains the IP address, TCP port, registration ID, and group index for the store. For the
configuration file as well as string versions of this option, format the string value as
DomainID:IP:port:RegID:GroupIDX where DomainID is the store's UM domain ID, IP is the stores IP
address, port is the TCP port for the store, RegID is the registration ID that the source desires to use, and
GroupIDX is the group index that the store belongs to. The DomainID, RegID and GroupIDX pieces may be
left off the string if desired. If so, UMP assumes the value of 0 for them.

Because each entry adds a new store specification and does not overwrite previous values, an entry or string
with the IP address of 0.0.0.0 and TCP port of 0 causes the removal of all previous store specifications. A
single store specification means the source uses persistence. If no stores are specified, then persistence will
not be provided for the source.

Scope: source

Type: lbm_ume_store_entry_t

When to Set: Can only be set during object initialization.

ume_store_activity_timeout (source)
The timeout value used to indicate when a store is unresponsive. The store must not be active within this
interval to be considered unresponsive. This value must be much larger than the check interval.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 3000 (3 seconds)

When to Set: Can only be set during object initialization.

Ultra Messaging Persistence Options 209

ume_store_behavior (source)
The behavior that the source follows for handling store failures.

Scope: source

Type: int

When to Set: Can only be set during object initialization.

String value Integer value Description

rr, round-robin LBM_SRC_TOPIC_ATTR_U
ME_STORE_BEHAVIOR_R
R

The source uses a single store at a
time, and when a store is
unresponsive due to failure or
disconnect, the next store in the list
will be used. This continues in a
round-robin fashion until an
available store is found that is
available. Default for all. This
selection is deprecated.

qc, quorum-consensus LBM_SRC_TOPIC_ATTR_U
ME_STORE_BEHAVIOR_Q
C

The source uses multiple stores at
the same time based on store and
store group configuration.

ume_store_check_interval (source)
The interval between activity checks of the current store. This interval also governs how often a source
checks outstanding unstabilized messages to see if they have reached the configured
“ ume_message_stability_timeout (source)” on page 194 value yet.

Scope: source

Type: lbm_ulong_t

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

ume_store_group (source)
Add a store group specification to the list of store groups specified for the source. Unlike other UMP settings,
every time this setting is called, it adds another store group specification to the list and does NOT overwrite
previous specifications. Each entry contains the group index and group size for the group. For the
configuration file as well as string versions of setting this option, the string value is formatted as
GroupIDX:GroupSZ where GroupIDX is the index of the group and GroupSZ is the size of the group. Because
each entry adds a new store specification and does not overwrite previous values, an entry or string with the
group index of 0 and group size of 0 will cause all previous store group specifications to be removed.

210 Chapter 4: Reference

Note: When setting this option multiple times, you must set this option in group-index order, from lowest to
highest. In other words, do not set this option for a group index lower in value than any previously set group
index value.

Scope: source

Type: lbm_ume_store_group_entry_t

When to Set: Can only be set during object initialization.

ume_store_name (source)
Add a store specification to the list of stores specified for the source. Unlike other UMP settings, every time
this setting is called, it adds another store specification to the list and does NOT overwrite previous
specifications. Each entry contains the store name, registration ID, and group index for the store. For the
configuration file as well as string versions of setting this option, the string value is formatted as
name:RegID:GroupIDX where name is the name of the store configured with the store attribute, context-name
in the umestored XML configuration file, RegID is the registration ID that the source desires to use, and
GroupIDX is the group index that the store belongs to. The RegID and GroupIDX pieces may be left off the
string if desired. If so, then the value of 0 is assumed for them. Store names are restricted to 128 characters
in length, and may contain only alphanumeric characters, hyphens, and underscores.

Scope: source

Type: lbm_ume_store_name_entry_t

When to Set: Can only be set during object initialization.

ume_use_ack_batching (receiver)
Specifies whether or not UMP allows the batching of consumption acknowledgments sent to the store(s). If
enabled, UMP checks for contiguous sequence numbered messages at the “ ume_ack_batching_interval
(context) ” on page 186. See also Batching Acknowledgments in the Ultra Messaging Guide for Persistence.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.0, UMP 5.0, UMQ 5.0.

Value Description

1 Indicates that UMP can acknowledge the consumption of a batch of messages.

0 Indicates that UMP acknowledges the consumption of individual messages by the
receiver. Default for all.

Ultra Messaging Persistence Options 211

ume_use_late_join (receiver)
Flag indicating if the receiver should participate in late join operation or not. This is a compatibility setting.
The “ use_late_join (receiver) ” on page 163 setting should be used instead.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 The receiver will participate in using late join if requested to by the source. Default for all.

0 The receiver will not participate in using late join even if requested to by the source.

ume_use_store (receiver)
Flag indicating if the receiver should participate in using a persistent store or not.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 The receiver will participate in using a persistent store if requested to by the source.
Default for all.

0 The receiver will not participate in using a persistent store even if requested to by the
source.

ume_user_receiver_registration_id (context)
32-bit value that is used as a user set identifier to be included as the receiver registration ID in
acknowledgements send by any receivers in the context to sources as confirmed delivery notifications. The
value is not interpreted by UMP in any way and has no relation to registration IDs used by the receiver. A
value of 0 indicates no user set value is in use and should not be sent with acknowledgements

Scope: context

Type: lbm_uint_t

Units: identifier

212 Chapter 4: Reference

Default value: 0 (no user set value in use)

When to Set: Can only be set during object initialization.

ume_write_delay (source)
For topics with a repository-type of disk, specifies the delay in milliseconds before the repository persists
a message to disk. When using Receiver-paced Persistence, you must set this option greater than 0 (zero)
but less than or equal to the repository's write-delay value.

Scope: source

Type: lbm_uint32_t

Units: milliseconds

Default value: 0 (disabled)

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMP 5.3

Hot Failover Operation Options
Hot Failover (HF) allows your applications to build in sender redundancy. See Hot Failover in the Ultra
Messaging Concepts Guide for a discussion of using Hot Failover within a single receiver context or across
multiple receiver contexts.

delivery_control_loss_check_interval (hfx)
The interval between periodic forced loss checks. This option defaults to 0, indicating that loss checks should
only be made when a new message arrives.

Scope: hfx

Type: lbm_ulong_t

Units: msec

Default value: 0 (no periodic loss checks)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

Hot Failover Operation Options 213

delivery_control_max_delay (hfx)
The minimum interval that must expire before the HFX Receiver declares a message unrecoverable and
delivers an unrecoverable loss message the application. By default, the HFX Receiver only checks loss when
it receives new messages. To enable periodic loss checks, set the “ delivery_control_loss_check_interval
(hfx) ” on page 213 option.

Scope: hfx

Type: lbm_ulong_t

Units: msec

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

delivery_control_maximum_burst_loss (hfx)
Specifies the largest permissible gap between the next expected message and the most recently received
message. When the difference in sequence numbers between the most recently received message and the
next expected message exceeds this amount, the HFX Receiver delivers a burst loss notification. The HFX
Receiver discards any messages currently pending delivery. Normal delivery resumes with the most recently
received message.

Scope: hfx

Type: lbm_uint_t

Units: number of messages

Default value: 512

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

delivery_control_maximum_total_map_entries (hfx)
The maximum number of map entries for the HFX order and loss maps. This is a soft limit. When the sum of
the number of loss records and the number of messages held for ordering (messages that will be delivered
once all prior messages have been delivered) is greater than this value, the oldest consecutive sequence of
loss records will be declared lost immediately to reduce the number of outstanding map entries. A value of 0
indicates that the map should be allowed to grow without bound.

Scope: hfx

Type: size_t

Units: map entries

214 Chapter 4: Reference

Default value: 200000

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

duplicate_delivery (hfx)
Flag indicating whether duplicate messages should be discarded or simply marked as duplicates. Setting this
to 1 overrides the “ hf_duplicate_delivery (receiver) ” on page 215 setting on all underlying HFX Receivers.

Scope: hfx

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

Value Description

1 The HFX delivers duplicate messages.

0 The HFX does not deliver duplicate messages. Default for all.

hf_duplicate_delivery (receiver)
Flag indicating if the Hot Failover receiver delivers duplicate messages or not.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Value Description

1 The Hot Failover receiver delivers duplicate messages.

0 The Hot Failover receiver does not deliver duplicate messages. Default for all.

Hot Failover Operation Options 215

hf_optional_messages (receiver)
Indicates if a Hot Failover receiver can receive optional messages. See also Hot Failover Optional Messages
in the Ultra Messaging Concepts Guide.

Scope: receiver

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2.5/UME 3.2.5/UMQ 2.1.5

Value Description

1 Hot Failover receivers can receive optional messages. Default for all.

0 Hot Failover receivers do not receive optional messages.

hf_receiver (wildcard_receiver)
Specifies whether to create hot failover receivers for each topic that maps to the wildcard receiver pattern.

Scope: wildcard_receiver

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in UMS 5.2.2

Value Description

1 Create hot failover receivers for each matched topic.

0 Normal wildcard receiver operation. Hot failover sequence numbers are ignored. Default
for all.

ordered_delivery (hfx)
Flag indicating if the HFX Receiver orders messages before delivery.

Scope: hfx

Type: int

216 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.2

String value Integer value Description

"1" (Integer value as a
string.)

1 The HFX Receiver delivers
messages in order. Default for all.

"-1" (Integer value as a
string.)

-1 The HFX Receiver delivers
messages as soon as they are
received. In the case of fragmented
messages, as soon as all
fragments have been received and
reassembled.

Automatic Monitoring Options
The Monitoring Options below apply to a given UMS context. You can override the default values of these
options and apply monitoring option values to all UMS contexts (transports and event queues) with the
following environment variables.

• LBM_MONITOR_INTERVAL

• LBM_MONITOR_TRANSPORT

• LBM_MONITOR_TRANSPORT_OPTS

• LBM_MONITOR_APPID

These variables will not override any Monitoring Options you specifically set. The environment variables only
override Monitoring Options default values.

If you do not specify any monitoring options either in an UMS configuration file or via
lbm_context_attr_setopt() calls, no monitoring will occur. However, if you then set the
LBM_MONITOR_INTERVAL environment variable to 5, you will turn on automatic monitoring for every UMS
context your application creates at 5 second intervals. If you then set monitor_interval to 10 for a particular
context, all transport sessions in that context will be monitored every 10 seconds.

For XML configuration files, you can configure an automatic monitoring context by setting <context> attribute
name=29west_statistics_context.

See also Automatic Monitoring in the Ultra Messaging Operations Guide for more information about this
feature.

monitor_appid (context)
An application ID string used by automatic monitoring to identify the application generating the statistics.

Scope: context

Type: string

Automatic Monitoring Options 217

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

monitor_appid (event_queue)
An application ID string used by automatic monitoring to identify the application generating the statistics.

Scope: event_queue

Type: string

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

monitor_interval (context)
Interval at which automatic monitoring retrieves the statistics for all transport sessions on a context. Setting
this option to zero (the default) disables the automatic monitoring of a context's transport sessions.

Scope: context

Type: lbm_ulong_t

Units: seconds

Default value: 0

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

monitor_interval (event_queue)
Interval at which automatic monitoring retrieves the statistics for an event queue. Setting this option to zero
(the default) disables the automatic monitoring of an event queue. When monitoring Event Queue statistics
you must enable the Event Queue UM Configuration Options, queue_age_enabled , queue_count_enabled
and queue_service_time_enabled . UM disables these options by default, which produces no event queue
statistics.

Scope: event_queue

Type: lbm_ulong_t

Units: seconds

Default value: 0

218 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

monitor_interval (receiver)
Interval at which automatic monitoring retrieves the topic interest information for all receivers using a UM
configuration file with this option set to a non-zero value. Topic interest information contains source and topic
information if the receiver has joined the source transport session. If the topic interest information is blank,
the receiver has not joined a source transport session. UM System Monitoring uses this information to
monitor the number of subscribed topics. Setting this option to zero (the default) disables the automatic
monitoring of receiver interest.

Scope: context

Type: lbm_ulong_t

Units: seconds

Default value: 0

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.5.

monitor_interval (wildcard_receiver)
Interval at which automatic monitoring retrieves the topic interest information for all receivers interested in
topics that match the wildcard receiver pattern. Topic interest information contains source and topic
information if the receiver has joined the source transport session. If the topic interest information is blank,
the receiver has not joined a source transport session. UM System Monitoring uses this information to
monitor the number of subscribed topics. Setting this option to zero (the default) disables the automatic
monitoring of a wildcard receiver interest.

Scope: context

Type: lbm_ulong_t

Units: seconds

Default value: 0

When to Set: Can only be set during object initialization.

Version: This option was implemented in UM 6.5.

Automatic Monitoring Options 219

monitor_transport (context)
The LBMMON transport module to be used for automatic monitoring.

Scope: context

Type: string

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

String value Integer value Description

lbm LBM_CTX_ATTR_MON_TR
ANSPORT_LBM

Use the LBMMON lbm transport
module. Default for all.

lbmsnmp LBM_CTX_ATTR_MON_TR
ANSPORT_LBMSNMP

Use the LBMMON lbmsnmp
transport module. This value is
required if you use the Ultra
Messaging SNMP Agent.

monitor_transport (event_queue)
The LBMMON transport module to be used for automatic monitoring.

Scope: event_queue

Type: string

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

String value Integer value Description

lbm LBM_CTX_ATTR_MON_TR
ANSPORT_LBM

Use the LBMMON lbm transport
module. Default for all.

lbmsnmp LBM_CTX_ATTR_MON_TR
ANSPORT_LBMSNMP

Use the LBMMON lbmsnmp
transport module. This value is
required if you use the Ultra
Messaging SNMP Agent.

220 Chapter 4: Reference

monitor_transport_opts (context)
An option string to be passed to the LBMMON transport module for automatic monitoring. See The UM
Transport Module in the Ultra Messaging Concepts Guide for more information about Transport Options.
(Options for the lbm transport module and the lbmsnmp transport module are identical.)

Scope: context

Type: string

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

monitor_transport_opts (event_queue)
An option string to be passed to the LBMMON transport module for automatic monitoring. See The UM
Transport Module in the Ultra Messaging Concepts Guide for more information about Transport Options.
(Options for the lbm transport module and the lbmsnmp transport module are identical.)

Scope: event_queue

Type: string

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.4/UME 2.1.

Deprecated Options

dbl_lbtrm_acceleration (context)
Flag indicating if DBL acceleration is enabled for LBT-RM transports.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Value Description

1 DBL acceleration is enabled for LBT-RM.

0 DBL acceleration is not enabled for LBT-RM. Default for all.

Deprecated Options 221

dbl_lbtru_acceleration (context)
Flag indicating if DBL acceleration is enabled for LBT-RU transports.

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Value Description

1 DBL acceleration is enabled for LBT-RU.

0 DBL acceleration is not enabled for LBT-RU. Default for all.

dbl_mim_acceleration (context)
Flag indicating if DBL acceleration is enabled for multicast immediate messaging (MIM).

Scope: context

Type: int

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Value Description

1 DBL acceleration is enabled for MIM.

0 DBL acceleration is not enabled for MIM. Default for all.

dbl_resolver_acceleration (context)
Flag indicating if DBL acceleration is enabled for topic resolution.

Scope: context

Type: int

222 Chapter 4: Reference

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 4.0.

Value Description

1 DBL acceleration is enabled for topic resolution.

0 DBL acceleration is not enabled for topic resolution. Default for all.

otr_request_duration (receiver)
The length of time a receiver continues to send OTR lost-message requests before giving up.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 20000 (20 seconds)

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UM 6.0

resolver_active_source_interval (context)
Interval between sending Topic Resolution advertisements for active sources. A value of 0 indicates that
periodic advertisements should not be sent (sources will still respond to queries). When set to 0, the
resolver_active_threshold should typically also be set to 0. See also “Disabling Aspects of Topic
Resolution ” on page 39.

Note: Although this option is eligible to be set during operation, two considerations exist.

• If this option is disabled at initialization (set to 0), you cannot re-set the option during operation.

• Disabling this option by setting it to 0 (zero) during operation prevents you from re-setting the option a
second time during operation.

Scope: context

Type: unsigned long int

Units: milliseconds

Default value: 1000 (1 second)

When to Set: May be set during operation.

Version: This option was deprecated in LBM 4.0

Deprecated Options 223

resolver_active_threshold (context)
Number of seconds since the last application message was sent to a source that causes that source to be
marked inactive. Inactive sources are not advertised periodically (but will continue to respond to queries). A
value of 0 indicates that sources will advertise periodically regardless of how often the application sends
messages. Note that for publishers with large numbers of sources, this can increase the topic resolution
traffic load. However, also note that this option SHOULD be set to 0 if periodic advertisements are disabled
(by setting resolver_active_source_interval to 0). See also “Disabling Aspects of Topic Resolution ” on
page 39 and “Interrelated Configuration Options” on page 42.

Scope: context

Type: unsigned long int

Units: seconds

Default value: 60

When to Set: May be set during operation.

Version: This option was deprecated in LBM 4.0

resolver_context_advertisement_interval (context)
Interval between context advertisements. Setting this option to 0 disables context advertisements, though UM
Router and other functionality depends upon context advertisements, so a value of 0 is not generally
recommended.

Scope: context

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UM 6.0.

resolver_maximum_advertisements (context)
Maximum number of topics that will be advertised per active source interval. A value of 0 means to advertise
all topics.

Scope: context

Type: unsigned long int

Units: Number of topics

Default value: 0 (all topics)

224 Chapter 4: Reference

When to Set: May be set during operation.

Version: This option was deprecated in LBM 4.0

resolver_query_interval (context)
Interval between query transmissions for receivers attempting Topic Resolution. A value of 0 indicates
queries should not be sent. See also Disabling Aspects of Topic Resolution.

Note: Although this option is eligible to be set during operation, two considerations exist.

• If this option is disabled at initialization (set to 0), you cannot re-set the option during operation.

• Disabling this option by setting it to 0 (zero) during operation prevents you from re-setting the option a
second time during operation.

Scope: context

Type: unsigned long int

Units: milliseconds

Default value: 100 (0.1 seconds)

When to Set: May be set during operation.

Version: This option was deprecated in LBM 4.0

resolver_maximum_queries (context)
Maximum number of topics that will be queried for per query interval. A value of 0 means to query for all
topics that do not have at least one source.

Scope: context

Type: unsigned long int

Units: Number of topics

Default value: 0 (all topics with no source)

When to Set: May be set during operation.

Version: This option was deprecated in LBM 4.0

resolver_query_max_interval (wildcard_receiver)
This sets the maximum interval between wildcard queries in topic resolution (when used). Only PCRE and
regex pattern types can use wildcard queries. A value of 0 indicates wildcard queries should not be sent. UM
currently queries a maximum of 250 unique wildcard patterns (receivers).

Deprecated Options 225

Note: Although this option is eligible to be set during operation, two considerations exist.

• If this option is disabled at initialization (set to 0), you cannot re-set the option during operation.

• Disabling this option by setting it to 0 (zero) during operation prevents you from re-setting the option a
second time during operation.

Scope: wildcard_receiver

Type: unsigned long int

Units: milliseconds

Default value: 0 (do not query)

When to Set: May be set during operation.

Version: This option was deprecated in LBM 4.0

resolver_unicast_address (context)
The IP address to send unicast topic resolution messages to. If set to 0.0.0.0 (INADDR_ANY), then topic
resolution uses multicast (the default). If set to anything else, then topic resolution messages go to the IP
address specified.

Scope: context

Type: struct in_addr

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UMS 5.0. See resolver_unicast_daemon instead.

resolver_unicast_destination_port (context)
The UDP port to send unicast topic resolution messages to. This is the UDP port used by the UM resolution
daemon (lbmrd).

Scope: context

Type: lbm_uint16_t

Default value: 15380

Byte order: Network

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UMS 5.0. See resolver_unicast_daemon instead.

226 Chapter 4: Reference

resolver_unicast_port (context)
The local UDP port used for unicast topic resolution messages. The UM resolution daemon (lbmrd) will send
unicast topic resolution messages to this UDP port. A value of 0 indicates that UM should pick an open port
in the range (“ resolver_unicast_port_low (context) ” on page 93, “ resolver_unicast_port_high (context) ” on
page 93).

Scope: context

Type: lbm_uint16_t

Default value: 0 (pick open port)

Byte order: Network

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UMS 5.0. See resolver_unicast_daemon instead.

retransmit_message_map_tablesz (source)
The size of the hash table that the source uses to store messages for the retention policy in effect. A larger
table means more messages can be stored more efficiently, but takes up more memory. A smaller table uses
less memory, but costs more CPU time as more messages are retained. See Configuring Late Join for Large
Numbers of Messages in the Ultra Messaging Concepts Guide for additional information about this option.

Scope: source

Type: size_t

Default value: 131

When to Set: Can only be set during object initialization.

Version: This option has been deprecated.

retransmit_request_generation_interval (receiver)
The maximum interval between when a receiver first sends a retransmission request and when the receiver
stops and reports loss on the remaining RXs not received. See Configuring Late Join for Large Numbers of
Messages in the Ultra Messaging Concepts Guide for additional information about this option.

Scope: receiver

Type: lbm_ulong_t

Units: milliseconds

Default value: 10000 (10 seconds)

Deprecated Options 227

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UM 6.0

transport_datagram_max_size (context)
The maximum datagram size that can be generated by UM. The default value is 8192, the minimum is 400
bytes, and the maximum is 65535.

Scope: context

Type: unsigned int

Units: bytes

Default value: 8192

When to Set: Can only be set during object initialization.

Version: This option was implemented in LBM 3.3.5/UME 2.0.3.

Version: This option was deprecated in LBM 4.1

transport_lbtipc_acknowledgement_interval (receiver)
Period of time between acknowledgement (keepalive) messages sent from the receiver to the IPC source.
See also “ transport_lbtipc_client_activity_timeout (source) ” on page 228. See also “Disabling Aspects of
Topic Resolution ” on page 39 and “Interrelated Configuration Options” on page 42.

Scope: receiver

Type: unsigned long int

Units: milliseconds

Default value: 500 (0.5 seconds)

When to Set: Can only be set during object initialization.

Version: This option was deprecated in LBM 4.0

transport_lbtipc_client_activity_timeout (source)
The maximum period of inactivity (lack of acknowledgement keepalive messages) from a receiver before the
source deletes the receiver from its active receiver table. The IPC source signals all receivers in it's active
receiver's table when it writes new data to the shared memory area. See also

228 Chapter 4: Reference

“ transport_lbtipc_acknowledgement_interval (receiver) ” on page 228. See also “Disabling Aspects of Topic
Resolution ” on page 39 and “Interrelated Configuration Options” on page 42.

Scope: source

Type: unsigned long int

Units: milliseconds

Default value: 10,000 (10 seconds)

When to Set: Can only be set during object initialization.

Version: This option was deprecated in LBM 4.0

ume_message_map_tablesz (source)
The size of the hash table that the source uses to store messages for the retention policy in effect. A larger
table means more messages can be stored more efficiently, but takes up more memory. A smaller table uses
less memory, but costs more CPU time as more messages are retained. This setting no longer has any
effect.

Scope: source

Type: size_t

Default value: 131

When to Set: Can only be set during object initialization.

Version: This option has been deprecated.

ume_primary_store_address (source)
IPv4 address of the persistent store to be used as the primary store. A value of 0.0.0.0 (or INADDR_ANY)
indicates no store is set as the primary. In other words, persistence is not enabled for the source. This setting
is deprecated. Its use is not recommended except by legacy systems. Please use the ume_store option
instead.

Scope: source

Type: struct in_addr

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UME 2.0

Deprecated Options 229

ume_primary_store_port (source)
TCP port of the primary persistent store. This setting is deprecated. Its use is not recommended except by
legacy systems. Please use the ume_store option instead.

Scope: source

Type: lbm_uint16_t

Default value: 14567

Byte order: Network

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UME 2.0

ume_registration_id (source)
32-bit value that is used by a persistent store to identify a source. If a source desires to identify itself as a
previously known source (after a crash or shutdown), it should set the ID to the value it was using before. A
value of 0 indicates the source will allow the persistent store to assign an ID. This setting is deprecated. Its
use is not recommended except by legacy systems. Please use the ume_store option instead.

Scope: source

Type: lbm_uint_t

Units: identifier

Default value: 0 (allow persistent store to assign ID)

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UME 2.0

ume_secondary_store_address (source)
IPv4 address of the persistent store to be used as the secondary store. A value of 0.0.0.0 (or INADDR_ANY)
indicates no store is set as the secondary. This setting is deprecated. Its use is not recommended except by
legacy systems. Please use the ume_store option instead.

Scope: source

Type: struct in_addr

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UME 2.0

230 Chapter 4: Reference

ume_secondary_store_port (source)
TCP port of the secondary persistent store. This setting is deprecated. Its use is not recommended except by
legacy systems. Please use the ume_store option instead.

Scope: source

Type: lbm_uint16_t

Default value: 14567

Byte order: Network

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UME 2.0

ume_tertiary_store_address (source)
IPv4 address of the persistent store to be used as the tertiary store. A value of 0.0.0.0 (or INADDR_ANY)
indicates no store is set as the tertiary. This setting is deprecated. Its use is not recommended except by
legacy systems. Please use the ume_store option instead.

Scope: source

Type: struct in_addr

Default value: 0.0.0.0 (INADDR_ANY)

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UME 2.0

ume_tertiary_store_port (source)
TCP port of the tertiary persistent store. This setting is deprecated. Its use is not recommended except by
legacy systems. Please use the ume_store option instead.

Scope: source

Type: lbm_uint16_t

Default value: 14567

Byte order: Network

When to Set: Can only be set during object initialization.

Version: This option was deprecated in UME 2.0

Deprecated Options 231

UMS Port Values
This section lists the default port values use by UMS.

UMS UDP Port Values
Table 5. Default UMS UDP Port Values

Configuration Option Scope Default Value

mim_destination_port context 14401

mim_incoming_destination_port context 14401

mim_outgoing_destination_port context 14401

resolver_multicast_incoming_port context 12965

resolver_multicast_outgoing_port context 12965

resolver_multicast_port context 12965

resolver_unicast_destination_port context 15380

resolver_unicast_port context 0 (pick open port)

resolver_unicast_port_high context 14406

resolver_unicast_port_low context 14402

transport_lbtrm_destination_port source 14400

transport_lbtrm_source_port_high context 14399

transport_lbtrm_source_port_low context 14390

transport_lbtru_maximum_ports context 5

transport_lbtru_port source 0 (use open port)

transport_lbtru_port_high context 14389

transport_lbtru_port_high receiver 14379

transport_lbtru_port_low context 14380

transport_lbtru_port_low receiver 14360

232 Chapter 4: Reference

UMS TCP Port Values
Table 6. Default UMS TCP Port Values

Configuration Option Scope Default Value

request_tcp_port context 0 (use open port)

request_tcp_port_high context 14395

request_tcp_port_low context 14391

transport_tcp_maximum_ports context 10

transport_tcp_port source 0 (pick open port)

transport_tcp_port_high context 14390

transport_tcp_port_low context 14371

ume_primary_store_port source 14567

ume_secondary_store_port source 14567

ume_tertiary_store_port source 14567

UMS Multicast Group Values
This section lists the default multicast group values use by UMS.

Table 7. Default UMS Multicast Group Values

Configuration Option Scope Default Value

mim_address context 224.10.10.21

mim_incoming_address context 224.10.10.21

mim_outgoing_address context 224.10.10.21

resolver_multicast_address context 224.9.10.11

resolver_multicast_incoming_address context 224.9.10.11

resolver_multicast_outgoing_address context 224.9.10.11

transport_lbtrm_multicast_address source 0.0.0.0 (INADDR_ANY)

transport_lbtrm_multicast_address_high context 224.10.10.14

transport_lbtrm_multicast_address_low context 224.10.10.10

UMS Multicast Group Values 233

UMS Timer Interval Values
This section lists the default timer interval values use by UMS. All values are in milliseconds.

Table 8. Default UMS Timer Interval Values

Configuration Option Scope Default Value

delivery_control_loss_check_i
nterval

receiver 0 (disabled)

implicit_batching_interval source 200 (0.2 seconds)

mim_activity_timeout context 60000 (60 seconds)

mim_delivery_control_loss_c
heck_interval

context 0 (disabled)

mim_ignore_interval context 500 (0.5 seconds)

mim_implicit_batching_interv
al

context 200 (0.2 seconds)

mim_nak_backoff_interval context 200 (0.2 seconds)

mim_nak_generation_interval context 10000 (10 seconds)

mim_nak_initial_backoff_inter
val

context 50 (0.05 seconds)

mim_nak_suppress_interval context 1000 (1 second)

mim_sm_maximum_interval context 10000 (10 seconds)

mim_sm_minimum_interval context 200 (0.2 seconds)

mim_src_deletion_timeout context 30000 (30 seconds)

rcv_sync_cache_timeout receiver 2000 (2 seconds)

resolver_active_source_interv
al

context 1000 (1 second)

resolver_advertisement_maxi
mum_initial_interval

source 500 (0.5 seconds)

resolver_advertisement_mini
mum_initial_duration

source 5000 (5 seconds)

resolver_advertisement_mini
mum_initial_interval

source 10 (0.01 seconds)

resolver_advertisement_mini
mum_sustain_duration

source 60 (1 minute)

resolver_advertisement_susta
in_interval

source 1000 (1 second)

234 Chapter 4: Reference

Configuration Option Scope Default Value

resolver_context_advertiseme
nt_interval

context 10000 (10 seconds)

resolver_no_source_linger_ti
meout

wildcard_rec
eiver

1000 (1 second)

resolver_query_interval context 100 (0.1 seconds)

resolver_query_max_interval wildcard_rec
eiver

0 (do not query)

resolver_query_maximum_init
ial_interval

receiver 200 (0.2 seconds)

resolver_query_maximum_int
erval

wildcard_rec
eiver

1000 (1 second)

resolver_query_minimum_dur
ation

wildcard_rec
eiver

60 (1 minute)

resolver_query_minimum_initi
al_duration

receiver 5000 (5 seconds)

resolver_query_minimum_initi
al_interval

receiver 20 (0.02 seconds)

resolver_query_minimum_inte
rval

wildcard_rec
eiver

50 (0.05 seconds)

resolver_query_minimum_sus
tain_duration

receiver 60 (1 minute)

resolver_query_sustain_interv
al

receiver 1000 (1 second)

response_tcp_deletion_timeo
ut

context 2000 (2 seconds)

retransmit_request_generatio
n_interval

receiver 10000 (10 seconds)

retransmit_request_interval receiver 500 (0.5 seconds)

transport_lbtipc_acknowledge
ment_interval

receiver 500 (0.5 seconds)

transport_lbtipc_activity_time
out

receiver 60,000 (60 seconds)

transport_lbtipc_client_activit
y_timeout

source 10,000 (10 seconds)

transport_lbtipc_sm_interval source 10,000 (10 seconds)

UMS Timer Interval Values 235

Configuration Option Scope Default Value

transport_lbtrm_activity_time
out

receiver 60000 (60 seconds)

transport_lbtrm_ignore_interv
al

source 500 (0.5 seconds)

transport_lbtrm_nak_backoff_
interval

receiver 200 (0.2 seconds)

transport_lbtrm_nak_generati
on_interval

receiver 10000 (10 seconds)

transport_lbtrm_nak_initial_b
ackoff_interval

receiver 50 (0.05 seconds)

transport_lbtrm_nak_suppres
s_interval

receiver 1000 (1 second)

transport_lbtrm_preactivity_ti
meout

receiver 0 (zero)

transport_lbtrm_rate_interval context 100

transport_lbtrm_sm_maximu
m_interval

source 10000 (10 seconds)

transport_lbtrm_sm_minimum
_interval

source 200 (0.2 seconds)

transport_lbtsmx_activity_tim
eout

receiver 60,000 (60 seconds)

transport_lbtsmx_sm_interval source 10,000 (10 seconds)

transport_lbtru_acknowledge
ment_interval

receiver 500 (0.5 seconds)

transport_lbtru_activity_timeo
ut

receiver 60000 (60 seconds)

transport_lbtru_client_activity
_timeout

source 10000 (10 seconds)

transport_lbtru_connect_inter
val

receiver 100 (0.1 seconds)

transport_lbtru_ignore_interv
al

source 500 (0.5 seconds)

transport_lbtru_nak_backoff_i
nterval

receiver 200 [100,300] (0.2 [0.1,0.3]
seconds)

transport_lbtru_nak_generatio
n_interval

receiver 10000 (10 seconds)

236 Chapter 4: Reference

Configuration Option Scope Default Value

transport_lbtru_nak_suppress
_interval

receiver 1000 (1 second)

transport_lbtru_rate_interval context 100

transport_lbtru_sm_maximum
_interval

source 10000 (10 seconds)

transport_lbtru_sm_minimum
_interval

source 200 (0.2 seconds)

transport_tcp_activity_timeout receiver 0

transport_topic_sequence_nu
mber_info_active_threshold

source 60

transport_topic_sequence_nu
mber_info_interval

source 5000 (5 second)

ume_ack_batching_interval context 100 (0.1 seconds)

ume_activity_timeout receiver 0 (zero)

ume_activity_timeout source 0 (zero)

ume_message_stability_lifeti
me

source 1200000 (20 minutes)

ume_message_stability_time
out

source 20000 (20 seconds)

ume_receiver_liveness_interv
al

context 0 (disable; do not send
keepalives)

ume_registration_interval receiver 500 (0.5 seconds)

ume_registration_interval source 500 (0.5 seconds)

ume_retransmit_request_gen
eration_interval

receiver 10000 (10 seconds)

ume_retransmit_request_inter
val

receiver 500 (0.5 seconds)

ume_source_liveness_timeou
t

context 0 (disable; do not track
receivers)

ume_state_lifetime receiver 0 (zero)

ume_state_lifetime source 0 (zero)

ume_store_activity_timeout source 3000 (3 seconds)

ume_store_check_interval source 500 (0.5 seconds)

UMS Timer Interval Values 237

Configuration Option Scope Default Value

umq_command_interval context 500 (0.5 seconds)

umq_delayed_consumption_r
eport_interval

receiver 0

umq_hold_interval receiver 10000 (10 seconds)

umq_message_retransmissio
n_interval

context 500 (0.5 seconds)

umq_msg_total_lifetime context 0 (zero)

umq_msg_total_lifetime source 0 (zero)

umq_queue_activity_timeout context 3000 (3.0 seconds)

umq_queue_check_interval context 500 (0.5 seconds)

umq_queue_query_interval context 200 (0.2 seconds)

umq_retransmit_request_inter
val

receiver 500 (0.5 seconds)

umq_ulb_check_interval source 1000 (1 second)

umq_ulb_source_activity_tim
eout

receiver 10000 (10 seconds)

umq_ulb_source_check_inter
val

receiver 1000 (1 second)

Options That May Be Set During Operation
This section lists options that may be set during operation with a lbm_*_setopt() function.

Table 9. Options That May Be Set During Operation

Configuration Option Scope Default Value

implicit_batching_interval source 200 (0.2 seconds)

implicit_batching_minimum_length source 2048 (8192 for Microsoft Windows)

implicit_batching_type source

queue_age_enabled event_queue 0

queue_count_enabled event_queue 0

238 Chapter 4: Reference

Configuration Option Scope Default Value

queue_delay_warning event_queue 0 (not monitored)

queue_enqueue_notification event_queue

queue_service_time_enabled event_queue 0

queue_size_warning event_queue 0 (not monitored)

resolution_no_source_notification_threshold receiver 0 (do not notify)

resolution_number_of_sources_query_threshold receiver 10000000 (10 million)

resolver_active_source_interval context 1000 (1 second)

resolver_active_threshold context 60

resolver_maximum_advertisements context 0 (all topics)

resolver_maximum_queries context 0 (all topics with no source)

resolver_multicast_ttl context 16

resolver_query_interval context 100 (0.1 seconds)

resolver_query_max_interval wildcard_receiver 0 (do not query)

Options (Callbacks) That Cannot Be Set From a UM
Configuration File

This section lists options that require function pointers as their value and cannot be set in a UM Configuration
File. These options must be set with API functions.

Table 10. Options That Cannot Be Set From a UM Configuration File

Configuration Option Scope Default Value

immediate_message_receiver_function context NULL

immediate_message_topic_receiver_function context NULL

mim_unrecoverable_loss_function context NULL

pattern_callback wildcard_receiver NULL

receiver_create_callback wildcard_receiver NULL

receiver_delete_callback wildcard_receiver NULL

Options (Callbacks) That Cannot Be Set From a UM Configuration File 239

Configuration Option Scope Default Value

resolver_source_notification_function context NULL

resolver_string_hash_function_ex context NULL

source_cost_evaluation_function context NULL

source_event_function context NULL

source_notification_function receiver NULL

ume_force_reclaim_function source NULL

ume_recovery_sequence_number_info_function receiver NULL

ume_registration_extended_function receiver NULL

ume_registration_function receiver NULL

240 Chapter 4: Reference

I N D E X

A
Address

mim_address (context) 147
mim_incoming_address (context) 148
mim_outgoing_address (context) 148
resolver_multicast_address (context) 87
resolver_multicast_incoming_address (context) 87
resolver_multicast_outgoing_address (context) 88
resolver_unicast_address (context) 226
transport_lbtrm_multicast_address (source) 104
transport_lbtrm_multicast_address_high (context) 104
transport_lbtrm_multicast_address_low (context) 104
ume_primary_store_address (source) 229
ume_secondary_store_address (source) 230
ume_tertiary_store_address (source) 231

B
Buffer, Network

resolver_multicast_receiver_socket_buffer (context) 89
resolver_unicast_receiver_socket_buffer (context) 93
response_session_sender_socket_buffer (context) 170
transport_lbtrm_receiver_socket_buffer (context) 110
transport_lbtrm_source_socket_buffer (context) 111
transport_lbtru_receiver_socket_buffer (context) 123
transport_lbtru_source_socket_buffer (context) 123
transport_tcp_receiver_socket_buffer (context) 101
transport_tcp_sender_socket_buffer (source) 102

C
channel_map_tablesz 174
compatibility_include_pre_um_6_0_behavior 58
context Scope Options

compatibility_include_pre_um_6_0_behavior 58
context_event_function 58
context_name 59
dbl_lbtrm_acceleration 221
dbl_lbtru_acceleration 222
dbl_mim_acceleration 222
dbl_resolver_acceleration 222
delivery_control_maximum_total_map_entries 175
delivery_control_message_batching 176
disable_extended_topic_resolution_message_options 70
fd_management_type 59
immediate_message_receiver_function 152
immediate_message_topic_receiver_function 152
mim_activity_timeout 153
mim_address 147
mim_delivery_control_activity_check_interval 153
mim_delivery_control_activity_timeout 153
mim_delivery_control_loss_check_interval 177
mim_delivery_control_order_tablesz 154

context Scope Options (continued)
mim_destination_port 147
mim_ignore_interval 149
mim_implicit_batching_interval 154
mim_implicit_batching_minimum_length 154
mim_incoming_address 148
mim_incoming_destination_port 148
mim_nak_backoff_interval 149
mim_nak_generation_interval 150
mim_nak_initial_backoff_interval 150
mim_nak_suppress_interval 150
mim_ordered_delivery 154
mim_outgoing_address 148
mim_outgoing_destination_port 148
mim_send_naks 151
mim_sm_maximum_interval 155
mim_sm_minimum_interval 155
mim_sqn_window_increment 156
mim_sqn_window_size 156
mim_src_deletion_timeout 156
mim_tgsz 157
mim_transmission_window_limit 151
mim_transmission_window_size 151
mim_unrecoverable_loss_function 157
monitor_appid 217
monitor_interval 218, 219
monitor_transport 220
monitor_transport_opts 221
network_compatibility_mode 60
operational_mode 61
receive_thread_pool_size 63
request_tcp_bind_request_port 166
request_tcp_exclusiveaddr 168
request_tcp_interface 167
request_tcp_listen_backlog 169
request_tcp_port 167
request_tcp_port_high 167
request_tcp_port_low 168
request_tcp_reuseaddr 169
resolver_active_source_interval 223
resolver_active_threshold 224
resolver_cache 74
resolver_context_advertisement_interval 224
resolver_context_name_activity_timeout 74
resolver_context_name_query_duration 75
resolver_context_name_query_maximum_interval 75
resolver_datagram_max_size 76
resolver_initial_advertisement_bps 77
resolver_initial_advertisements_per_second 78
resolver_initial_queries_per_second 78
resolver_initial_query_bps 78
resolver_maximum_advertisements 224
resolver_maximum_queries 225
resolver_multicast_address 87
resolver_multicast_incoming_address 87
resolver_multicast_incoming_port 88

241

context Scope Options (continued)
resolver_multicast_interface 88
resolver_multicast_outgoing_address 88
resolver_multicast_outgoing_port 89
resolver_multicast_port 89
resolver_multicast_receiver_socket_buffer 89
resolver_multicast_ttl 90
resolver_query_interval 225
resolver_receiver_map_tablesz 80
resolver_source_map_tablesz 81
resolver_source_notification_function 64
resolver_string_hash_function 81
resolver_string_hash_function_ex 82
resolver_sustain_advertisement_bps 83
resolver_sustain_advertisements_per_second 83
resolver_sustain_queries_per_second 83
resolver_sustain_query_bps 84
resolver_ud_acceleration 145
resolver_unicast_activity_timeout 84
resolver_unicast_address 226
resolver_unicast_change_interval 84
resolver_unicast_check_interval 85
resolver_unicast_daemon 91
resolver_unicast_destination_port 226
resolver_unicast_force_alive 85
resolver_unicast_interface 92
resolver_unicast_keepalive_interval 86
resolver_unicast_port 227
resolver_unicast_port_high 93
resolver_unicast_port_low 93
resolver_unicast_receiver_socket_buffer 93
resolver_wildcard_queries_per_second 181
resolver_wildcard_query_bps 182
resolver_wildcard_receiver_map_tablesz 182
response_session_maximum_buffer 169
response_session_sender_socket_buffer 170
response_tcp_deletion_timeout 170
response_tcp_interface 170
response_tcp_nodelay 171
source_cost_evaluation_function 64
source_event_function 64
source_includes_topic_index 65
transport_datagram_max_size 228
transport_lbtipc_datagram_max_size 132
transport_lbtipc_id_high 133
transport_lbtipc_id_low 133
transport_lbtipc_receiver_operational_mode 134
transport_lbtipc_receiver_thread_behavior 135
transport_lbtrdma_datagram_max_size 140
transport_lbtrdma_maximum_ports 141
transport_lbtrdma_port_high 142
transport_lbtrdma_port_low 142
transport_lbtrdma_receiver_thread_behavior 142
transport_lbtrm_data_rate_limit 114
transport_lbtrm_datagram_max_size 114
transport_lbtrm_multicast_address_high 104
transport_lbtrm_multicast_address_low 104
transport_lbtrm_rate_interval 115
transport_lbtrm_receiver_socket_buffer 110
transport_lbtrm_retransmit_rate_limit 116
transport_lbtrm_source_port_high 105
transport_lbtrm_source_port_low 105
transport_lbtrm_source_socket_buffer 111
transport_lbtru_data_rate_limit 127
transport_lbtru_datagram_max_size 128
transport_lbtru_maximum_ports 119
transport_lbtru_port_high 120
transport_lbtru_port_low 121

context Scope Options (continued)
transport_lbtru_rate_interval 128
transport_lbtru_receiver_socket_buffer 123
transport_lbtru_retransmit_rate_limit 129
transport_lbtru_source_socket_buffer 123
transport_lbtsmx_id_high 138
transport_lbtsmx_id_low 138
transport_lbtsmx_message_statistics_enabled 139
transport_session_multiple_sending_threads 66
transport_tcp_datagram_max_size 98
transport_tcp_maximum_ports 95
transport_tcp_port_high 96
transport_tcp_port_low 96
transport_tcp_receiver_socket_buffer 101
ud_acceleration 145
ume_ack_batching_interval 186
ume_receiver_liveness_interval 195
ume_session_id 204
ume_source_liveness_timeout 205
ume_user_receiver_registration_id 212

context_event_function 58
context_name 59
contextScope Options

resolver_context_name_query_minimum_interval 75

D
Datagram Bypass Layer 143
dbl_lbtrm_acceleration 221
dbl_lbtru_acceleration 222
dbl_mim_acceleration 222
dbl_resolver_acceleration 222
delivery_control_loss_check_interval 174, 213
delivery_control_loss_tablesz 175
delivery_control_max_delay 214
delivery_control_maximum_burst_loss 175, 214
delivery_control_maximum_total_map_entries 175, 214
delivery_control_message_batching 176
delivery_control_order_tablesz 176
disable_extended_topic_resolution_message_options 70
duplicate_delivery 215
Dynamic

implicit_batching_interval (source) 171
implicit_batching_minimum_length (source) 171
implicit_batching_type (source) 172
queue_age_enabled (event_queue) 183
queue_count_enabled (event_queue) 183
queue_delay_warning (event_queue) 184
queue_enqueue_notification (event_queue) 184
queue_service_time_enabled (event_queue) 185
queue_size_warning (event_queue) 185
resolution_no_source_notification_threshold (receiver) 71
resolution_number_of_sources_query_threshold (receiver) 71
resolver_active_source_interval (context) 223
resolver_active_threshold (context) 224
resolver_maximum_advertisements (context) 224
resolver_maximum_queries (context) 225
resolver_multicast_ttl (context) 90
resolver_query_interval (context) 225
resolver_query_max_interval (wildcard_receiver) 225

E
event_queue Scope Options

event_queue_name 182
monitor_appid 218

242 Index

event_queue Scope Options (continued)
monitor_interval 218
monitor_transport 220
monitor_transport_opts 221
queue_age_enabled 183
queue_cancellation_callbacks_enabled 183
queue_count_enabled 183
queue_delay_warning 184
queue_enqueue_notification 184
queue_objects_purged_on_close 184
queue_service_time_enabled 185
queue_size_warning 185

event_queue_name 182

F
fd_management_type 59

H
hf_duplicate_delivery 215
hf_optional_messages 216
hf_receiver 216
hfx Scope Options

delivery_control_loss_check_interval 213
delivery_control_max_delay 214
delivery_control_maximum_burst_loss 214
delivery_control_maximum_total_map_entries 214
duplicate_delivery 215
ordered_delivery 216

I
immediate_message_receiver_function 152
immediate_message_topic_receiver_function 152
implicit_batching_interval 171
implicit_batching_minimum_length 171
implicit_batching_type 172
InifiBand 144
Interface

request_tcp_interface (context) 167
resolver_multicast_interface (context) 88
resolver_unicast_interface (context) 92
response_tcp_interface (context) 170
transport_lbtrdma_interface (source) 140
transport_lbtru_interface (receiver) 119
transport_lbtru_interface (source) 119
transport_tcp_interface (receiver) 94
transport_tcp_interface (source) 95

L
late_join 158
late_join_info_request_interval 159
late_join_info_request_maximum 159

M
Mellanox 144
message_selector 60
mim_activity_timeout 153
mim_address 147
mim_delivery_control_activity_check_interval 153

mim_delivery_control_activity_timeout 153
mim_delivery_control_loss_check_interval 177
mim_delivery_control_order_tablesz 154
mim_destination_port 147
mim_ignore_interval 149
mim_implicit_batching_interval 154
mim_implicit_batching_minimum_length 154
mim_incoming_address 148
mim_incoming_destination_port 148
mim_nak_backoff_interval 149
mim_nak_generation_interval 150
mim_nak_initial_backoff_interval 150
mim_nak_suppress_interval 150
mim_ordered_delivery 154
mim_outgoing_address 148
mim_outgoing_destination_port 148
mim_send_naks 151
mim_sm_maximum_interval 155
mim_sm_minimum_interval 155
mim_sqn_window_increment 156
mim_sqn_window_size 156
mim_src_deletion_timeout 156
mim_tgsz 157
mim_transmission_window_limit 151
mim_transmission_window_size 151
mim_unrecoverable_loss_function 157
monitor_appid 217, 218
monitor_interval 218, 219
monitor_transport 220
monitor_transport_opts 221
Multicast address

mim_address (context) 147
mim_incoming_address (context) 148
mim_outgoing_address (context) 148
resolver_multicast_address (context) 87
resolver_multicast_incoming_address (context) 87
resolver_multicast_outgoing_address (context) 88
transport_lbtrm_multicast_address (source) 104
transport_lbtrm_multicast_address_high (context) 104
transport_lbtrm_multicast_address_low (context) 104

Myricom 143

N
Network buffer

resolver_multicast_receiver_socket_buffer (context) 89
resolver_unicast_receiver_socket_buffer (context) 93
transport_lbtrm_receiver_socket_buffer (context) 110
transport_lbtrm_source_socket_buffer (context) 111
transport_lbtru_receiver_socket_buffer (context) 123
transport_lbtru_source_socket_buffer (context) 123
transport_tcp_receiver_socket_buffer (context) 101
transport_tcp_sender_socket_buffer (source) 102

Network Buffer
response_session_sender_socket_buffer (context) 170

network_compatibility_mode 60
no-config-file

immediate_message_receiver_function (context) 152
immediate_message_topic_receiver_function (context) 152
mim_unrecoverable_loss_function (context) 157
pattern_callback (wildcard_receiver) 178
receiver_create_callback (wildcard_receiver) 179
receiver_delete_callback (wildcard_receiver) 180
resolver_source_notification_function (context) 64
resolver_string_hash_function_ex (context) 82
source_cost_evaluation_function (context) 64
source_event_function (context) 64

Index 243

no-config-file (continued)
source_notification_function (receiver) 177
ume_force_reclaim_function (source) 192
ume_recovery_sequence_number_info_function (receiver) 196
ume_registration_extended_function (receiver) 196
ume_registration_function (receiver) 197

null_channel_behavior 177

O
Onload 144
onload_acceleration_stack_name 146
OpenOnload 143
operational_mode 61
ordered_delivery 61, 216
otr_message_caching_threshold 164
otr_request_duration 223
otr_request_initial_delay 163
otr_request_log_alert_cooldown 163
otr_request_maximum_interval 164
otr_request_message_timeout 165
otr_request_minimum_interval 165
otr_request_outstanding_maximum 165

P
pattern_callback 178
pattern_type 179
Port

mim_destination_port (context) 147
mim_incoming_destination_port (context) 148
mim_outgoing_destination_port (context) 148
request_tcp_port (context) 167
request_tcp_port_high (context) 167
request_tcp_port_low (context) 168
resolver_multicast_incoming_port (context) 88
resolver_multicast_outgoing_port (context) 89
resolver_multicast_port (context) 89
resolver_unicast_destination_port (context) 226
resolver_unicast_port (context) 227
resolver_unicast_port_high (context) 93
resolver_unicast_port_low (context) 93
transport_lbtrdma_maximum_ports (context) 141
transport_lbtrm_destination_port (source) 104
transport_lbtrm_source_port_high (context) 105
transport_lbtrm_source_port_low (context) 105
transport_lbtru_maximum_ports (context) 119
transport_lbtru_port (source) 120
transport_lbtru_port_high (context) 120
transport_lbtru_port_high (receiver) 120
transport_lbtru_port_low (context) 121
transport_lbtru_port_low (receiver) 121
transport_tcp_maximum_ports (context) 95
transport_tcp_port (source) 95
transport_tcp_port_high (context) 96
transport_tcp_port_low (context) 96
ume_primary_store_port (source) 230
ume_secondary_store_port (source) 231
ume_tertiary_store_port (source) 231

Q
queue_age_enabled 183
queue_cancellation_callbacks_enabled 183
queue_count_enabled 183

queue_delay_warning 184
queue_enqueue_notification 184
queue_objects_purged_on_close 184
queue_service_time_enabled 185
queue_size_warning 185

R
rcv_sync_cache 62
rcv_sync_cache_timeout 63
receive_thread_pool_size 63
receiver Scope Options

channel_map_tablesz 174
delivery_control_loss_check_interval 174
delivery_control_loss_tablesz 175
delivery_control_maximum_burst_loss 175
delivery_control_order_tablesz 176
hf_duplicate_delivery 215
hf_optional_messages 216
late_join_info_request_maximum 159
message_selector 60
null_channel_behavior 177
onload_acceleration_stack_name 146
ordered_delivery 61
otr_message_caching_threshold 164
otr_request_duration 223
otr_request_initial_delay 163
otr_request_log_alert_cooldown 163
otr_request_maximum_interval 164
otr_request_message_timeout 165
otr_request_minimum_interval 165
otr_request_outstanding_maximum 165
rcv_sync_cache 62
rcv_sync_cache_timeout 63
receiver_callback_service_time_enabled 63
resolution_no_source_notification_threshold 71
resolution_number_of_sources_query_threshold 71
resolver_query_maximum_initial_interval 79
resolver_query_minimum_initial_duration 79
resolver_query_minimum_initial_interval 79
resolver_query_minimum_sustain_duration 80
resolver_query_sustain_interval 80
retransmit_initial_sequence_number_request 159
retransmit_message_caching_proximity 160
retransmit_request_generation_interval 227
retransmit_request_interval 160
retransmit_request_maximum 161
retransmit_request_message_timeout 161
retransmit_request_outstanding_maximum 161
source_notification_function 177
transport_demux_tablesz 66
transport_lbtipc_acknowledgement_interval 228
transport_lbtipc_activity_timeout 131
transport_lbtrm_activity_timeout 113
transport_lbtrm_nak_backoff_interval 108
transport_lbtrm_nak_generation_interval 109
transport_lbtrm_nak_initial_backoff_interval 109
transport_lbtrm_nak_suppress_interval 110
transport_lbtrm_preactivity_timeout 115
transport_lbtrm_send_naks 110
transport_lbtru_acknowledgement_interval 125
transport_lbtru_activity_timeout 125
transport_lbtru_connect_interval 127
transport_lbtru_interface 119
transport_lbtru_maximum_connect_attempts 128
transport_lbtru_nak_backoff_interval 122
transport_lbtru_nak_generation_interval 122

244 Index

receiver Scope Options (continued)
transport_lbtru_nak_suppress_interval 122
transport_lbtru_port_high 120
transport_lbtru_port_low 121
transport_lbtsmx_activity_timeout 136
transport_tcp_activity_method 97
transport_tcp_activity_timeout 97
transport_tcp_interface 94
transport_topic_sequence_number_info_request_maximum 68
ume_activity_timeout 186
ume_allow_confirmed_delivery 187
ume_application_outstanding_maximum 187
ume_consensus_sequence_number_behavior 189
ume_explicit_ack_only 190
ume_receiver_paced_persistence 195
ume_recovery_sequence_number_info_function 196
ume_registration_extended_function 196
ume_registration_function 197
ume_registration_interval 197
ume_retransmit_request_generation_interval 203
ume_retransmit_request_interval 203
ume_retransmit_request_maximum 203
ume_retransmit_request_outstanding_maximum 204
ume_session_id 204
ume_sri_request_maximum 207
ume_state_lifetime 208
ume_use_ack_batching 211
ume_use_late_join 212
ume_use_store 212
unrecognized_channel_behavior 178
use_late_join 163
use_otr 166
use_transport_thread 69

receiver_callback_service_time_enabled 63
receiver_create_callback 179
receiver_delete_callback 180
request_tcp_bind_request_port 166
request_tcp_exclusiveaddr 168
request_tcp_interface 167
request_tcp_listen_backlog 169
request_tcp_port 167
request_tcp_port_high 167
request_tcp_port_low 168
request_tcp_reuseaddr 169
resolution_no_source_notification_threshold 71
resolution_number_of_sources_query_threshold 71
resolver_active_source_interval 223
resolver_active_threshold 224
resolver_advertisement_maximum_initial_interval 72
resolver_advertisement_minimum_initial_duration 72
resolver_advertisement_minimum_initial_interval 72
resolver_advertisement_minimum_sustain_duration 73
resolver_advertisement_send_immediate_response 73
resolver_advertisement_sustain_interval 73
resolver_cache 74
resolver_context_advertisement_interval 224
resolver_context_name_activity_timeout 74
resolver_context_name_query_duration 75
resolver_context_name_query_maximum_interval 75
resolver_context_name_query_minimum_interval 75
resolver_datagram_max_size 76
resolver_domain_id_active_propagation_timeout 76
resolver_initial_advertisement_bps 77
resolver_initial_advertisements_per_second 78
resolver_initial_queries_per_second 78
resolver_initial_query_bps 78
resolver_maximum_advertisements 224
resolver_maximum_queries 225

resolver_multicast_address 87
resolver_multicast_incoming_address 87
resolver_multicast_incoming_port 88
resolver_multicast_interface 88
resolver_multicast_outgoing_address 88
resolver_multicast_outgoing_port 89
resolver_multicast_port 89
resolver_multicast_receiver_socket_buffer 89
resolver_multicast_ttl 90
resolver_no_source_linger_timeout 180
resolver_query_interval 225
resolver_query_max_interval 225
resolver_query_maximum_initial_interval 79
resolver_query_maximum_interval 180
resolver_query_minimum_duration 181
resolver_query_minimum_initial_duration 79
resolver_query_minimum_initial_interval 79
resolver_query_minimum_interval 181
resolver_query_minimum_sustain_duration 80
resolver_query_sustain_interval 80
resolver_receiver_map_tablesz 80
resolver_send_initial_advertisement 81
resolver_source_map_tablesz 81
resolver_source_notification_function 64
resolver_string_hash_function 81
resolver_string_hash_function_ex 82
resolver_sustain_advertisement_bps 83
resolver_sustain_advertisements_per_second 83
resolver_sustain_queries_per_second 83
resolver_sustain_query_bps 84
resolver_ud_acceleration 145
resolver_unicast_activity_timeout 84
resolver_unicast_address 226
resolver_unicast_change_interval 84
resolver_unicast_check_interval 85
resolver_unicast_daemon 91
resolver_unicast_destination_port 226
resolver_unicast_force_alive 85
resolver_unicast_ignore_unknown_source 86
resolver_unicast_interface 92
resolver_unicast_keepalive_interval 86
resolver_unicast_port 227
resolver_unicast_port_high 93
resolver_unicast_port_low 93
resolver_unicast_receiver_socket_buffer 93
resolver_wildcard_queries_per_second 181
resolver_wildcard_query_bps 182
resolver_wildcard_receiver_map_tablesz 182
response_session_maximum_buffer 169
response_session_sender_socket_buffer 170
response_tcp_deletion_timeout 170
response_tcp_interface 170
response_tcp_nodelay 171
retransmit_initial_sequence_number_request 159
retransmit_message_caching_proximity 160
retransmit_message_map_tablesz 227
retransmit_request_generation_interval 227
retransmit_request_interval 160
retransmit_request_maximum 161
retransmit_request_message_timeout 161
retransmit_request_outstanding_maximum 161
retransmit_retention_age_threshold 162
retransmit_retention_size_limit 162
retransmit_retention_size_threshold 162

Index 245

S
Socket option

resolver_multicast_receiver_socket_buffer (context) 89
resolver_unicast_receiver_socket_buffer (context) 93
response_session_sender_socket_buffer (context) 170
response_tcp_nodelay (context) 171
transport_lbtrm_receiver_socket_buffer (context) 110
transport_lbtrm_source_socket_buffer (context) 111
transport_lbtru_receiver_socket_buffer (context) 123
transport_lbtru_source_socket_buffer (context) 123
transport_tcp_nodelay (source) 101
transport_tcp_receiver_socket_buffer (context) 101
transport_tcp_sender_socket_buffer (source) 102

Solarflare 143, 144
source Scope Options

ume_message_stability_lifetime 193
implicit_batching_interval 171
implicit_batching_minimum_length 171
implicit_batching_type 172
late_join 158
late_join_info_request_interval 159
onload_acceleration_stack_name 146
resolver_advertisement_maximum_initial_interval 72
resolver_advertisement_minimum_initial_duration 72
resolver_advertisement_minimum_initial_interval 72
resolver_advertisement_minimum_sustain_duration 73
resolver_advertisement_send_immediate_response 73
resolver_advertisement_sustain_interval 73
resolver_send_initial_advertisement 81
retransmit_message_map_tablesz 227
retransmit_retention_age_threshold 162
retransmit_retention_size_limit 162
retransmit_retention_size_threshold 162
transport 65
transport_lbtipc_behavior 132
transport_lbtipc_client_activity_timeout 228
transport_lbtipc_id 133
transport_lbtipc_maximum_receivers_per_transport 134
transport_lbtipc_sm_interval 135
transport_lbtipc_transmission_window_size 135
transport_lbtrdma_interface 140
transport_lbtrdma_port 141
transport_lbtrdma_transmission_window_size 143
transport_lbtrm_coalesce_threshold 114
transport_lbtrm_destination_port 104
transport_lbtrm_ignore_interval 108
transport_lbtrm_multicast_address 104
transport_lbtrm_sm_maximum_interval 116
transport_lbtrm_sm_minimum_interval 117
transport_lbtrm_tgsz 117
transport_lbtrm_transmission_window_limit 111
transport_lbtrm_transmission_window_size 112
transport_lbtru_client_activity_timeout 126
transport_lbtru_client_map_size 126
transport_lbtru_coalesce_threshold 127
transport_lbtru_ignore_interval 121
transport_lbtru_interface 119
transport_lbtru_port 120
transport_lbtru_sm_maximum_interval 129
transport_lbtru_sm_minimum_interval 130
transport_lbtru_transmission_window_limit 123
transport_lbtru_transmission_window_size 124
transport_lbtru_use_session_id 130
transport_lbtsmx_datagram_max_size 137
transport_lbtsmx_id 137
transport_lbtsmx_maximum_receivers_per_transport 138
transport_lbtsmx_sm_interval 139

source Scope Options (continued)
transport_lbtsmx_transmission_window_size 139
transport_session_maximum_buffer 96
transport_source_side_filtering_behavior 67
transport_tcp_activity_timeout 98
transport_tcp_coalesce_threshold 98
transport_tcp_exclusiveaddr 99
transport_tcp_interface 95
transport_tcp_listen_backlog 99
transport_tcp_multiple_receiver_behavior 99
transport_tcp_multiple_receiver_send_order 100
transport_tcp_nodelay 101
transport_tcp_port 95
transport_tcp_reuseaddr 101
transport_tcp_sender_socket_buffer 102
transport_tcp_use_session_id 102
transport_topic_sequence_number_info_active_threshold 67
transport_topic_sequence_number_info_interval 67
transport_topic_sequence_number_info_request_interval 68
ume_activity_timeout 186
ume_confirmed_delivery_notification 188
ume_consensus_sequence_number_behavior 190
ume_flight_size 191
ume_flight_size_behavior 191
ume_flight_size_bytes 191
ume_force_reclaim_function 192
ume_late_join 192
ume_message_map_tablesz 229
ume_message_stability_notification 193
ume_message_stability_timeout 194
ume_primary_store_address 229
ume_primary_store_port 230
ume_proxy_source 194
ume_receiver_paced_persistence 196
ume_registration_id 230
ume_registration_interval 197
ume_repository_ack_on_reception 198
ume_repository_disk_file_size_limit 198
ume_repository_size_limit 199
ume_repository_size_threshold 199
ume_retention_intergroup_stability_behavior 200
ume_retention_intragroup_stability_behavior 201
ume_retention_size_limit 201
ume_retention_size_threshold 202
ume_retention_unique_confirmations 202
ume_secondary_store_address 230
ume_secondary_store_port 231
ume_session_id 205
ume_sri_flush_sri_request_response 206
ume_sri_immediate_sri_request_response 206
ume_sri_inter_sri_interval 206
ume_sri_max_number_of_sri_per_update 207
ume_sri_request_interval 207
ume_sri_request_response_latency 208
ume_state_lifetime 208
ume_store 209
ume_store_activity_timeout 209
ume_store_behavior 210
ume_store_check_interval 210
ume_store_group 210
ume_store_name 211
ume_tertiary_store_address 231
ume_tertiary_store_port 231
ume_write_delay 213
use_extended_reclaim_notifications 69

source_cost_evaluation_function 64
source_event_function 64
source_includes_topic_index 65

246 Index

source_notification_function 177

T
TCP Port

request_tcp_port (context) 167
request_tcp_port_high (context) 167
request_tcp_port_low (context) 168
transport_tcp_maximum_ports (context) 95
transport_tcp_port (source) 95
transport_tcp_port_high (context) 96
transport_tcp_port_low (context) 96
ume_primary_store_port (source) 230
ume_secondary_store_port (source) 231
ume_tertiary_store_port (source) 231

Timer interval
ume_message_stability_lifetime (source) 193
delivery_control_loss_check_interval (receiver) 174
implicit_batching_interval (source) 171
late_join_info_request_interval (source) 159
mim_activity_timeout (context) 153
mim_delivery_control_loss_check_interval (context) 177
mim_ignore_interval (context) 149
mim_implicit_batching_interval (context) 154
mim_nak_backoff_interval (context) 149
mim_nak_generation_interval (context) 150
mim_nak_initial_backoff_interval (context) 150
mim_nak_suppress_interval (context) 150
mim_sm_maximum_interval (context) 155
mim_sm_minimum_interval (context) 155
mim_src_deletion_timeout (context) 156
otr_request_message_timeout (receiver) 165
rcv_sync_cache_timeout (receiver) 63
resolver_active_source_interval (context) 223
resolver_advertisement_maximum_initial_interval (source) 72
resolver_advertisement_minimum_initial_duration (source) 72
resolver_advertisement_minimum_initial_interval (source) 72
resolver_advertisement_minimum_sustain_duration (source) 73
resolver_advertisement_sustain_interval (source) 73
resolver_context_advertisement_interval (context) 224
resolver_context_name_activity_timeout (context) 74
resolver_context_name_query_duration (context) 75
resolver_context_name_query_maximum_interval (context) 75
resolver_context_name_query_minimum_interval (receiver) 75
resolver_no_source_linger_timeout (wildcard_receiver) 180
resolver_query_interval (context) 225
resolver_query_max_interval (wildcard_receiver) 225
resolver_query_maximum_initial_interval (receiver) 79
resolver_query_maximum_interval (wildcard_receiver) 180
resolver_query_minimum_duration (wildcard_receiver) 181
resolver_query_minimum_initial_duration (receiver) 79
resolver_query_minimum_initial_interval (receiver) 79
resolver_query_minimum_interval (wildcard_receiver) 181
resolver_query_minimum_sustain_duration (receiver) 80
resolver_query_sustain_interval (receiver) 80
response_tcp_deletion_timeout (context) 170
retransmit_request_generation_interval (receiver) 227
retransmit_request_interval (receiver) 160
retransmit_request_message_timeout (receiver) 161
transport_lbtipc_acknowledgement_interval (receiver) 228
transport_lbtipc_activity_timeout (receiver) 131
transport_lbtipc_client_activity_timeout (source) 228
transport_lbtipc_sm_interval (source) 135
transport_lbtrm_activity_timeout (receiver) 113
transport_lbtrm_ignore_interval (source) 108
transport_lbtrm_nak_backoff_interval (receiver) 108
transport_lbtrm_nak_generation_interval (receiver) 109

Timer interval (continued)
transport_lbtrm_nak_initial_backoff_interval (receiver) 109
transport_lbtrm_nak_suppress_interval (receiver) 110
transport_lbtrm_preactivity_timeout (receiver) 115
transport_lbtrm_rate_interval (context) 115
transport_lbtrm_sm_maximum_interval (source) 116
transport_lbtrm_sm_minimum_interval (source) 117
transport_lbtru_acknowledgement_interval (receiver) 125
transport_lbtru_activity_timeout (receiver) 125
transport_lbtru_client_activity_timeout (source) 126
transport_lbtru_connect_interval (receiver) 127
transport_lbtru_ignore_interval (source) 121
transport_lbtru_nak_backoff_interval (receiver) 122
transport_lbtru_nak_generation_interval (receiver) 122
transport_lbtru_nak_suppress_interval (receiver) 122
transport_lbtru_rate_interval (context) 128
transport_lbtru_sm_maximum_interval (source) 129
transport_lbtru_sm_minimum_interval (source) 130
transport_lbtsmx_activity_timeout (receiver) 136
transport_lbtsmx_sm_interval (source) 139
transport_tcp_activity_timeout (receiver) 97
transport_tcp_activity_timeout (source) 98
transport_topic_sequence_number_info_active_threshold (source)
67
transport_topic_sequence_number_info_interval (source) 67
transport_topic_sequence_number_info_request_interval (source)
68
ume_ack_batching_interval (context) 186
ume_activity_timeout (receiver) 186
ume_activity_timeout (source) 186
ume_message_stability_timeout (source) 194
ume_receiver_liveness_interval (context) 195
ume_registration_interval (receiver) 197
ume_registration_interval (source) 197
ume_retransmit_request_generation_interval (receiver) 203
ume_retransmit_request_interval (receiver) 203
ume_source_liveness_timeout (context) 205
ume_sri_inter_sri_interval (source) 206
ume_sri_request_interval (source) 207
ume_sri_request_response_latency (source) 208
ume_state_lifetime (receiver) 208
ume_state_lifetime (source) 208
ume_store_activity_timeout (source) 209
ume_store_check_interval (source) 210

transport 65
transport_datagram_max_size 228
transport_demux_tablesz 66
transport_lbtipc_acknowledgement_interval 228
transport_lbtipc_activity_timeout 131
transport_lbtipc_behavior 132
transport_lbtipc_client_activity_timeout 228
transport_lbtipc_datagram_max_size 132
transport_lbtipc_id 133
transport_lbtipc_id_high 133
transport_lbtipc_id_low 133
transport_lbtipc_maximum_receivers_per_transport 134
transport_lbtipc_receiver_operational_mode 134
transport_lbtipc_receiver_thread_behavior 135
transport_lbtipc_sm_interval 135
transport_lbtipc_transmission_window_size 135
transport_lbtrdma_datagram_max_size 140
transport_lbtrdma_interface 140
transport_lbtrdma_maximum_ports 141
transport_lbtrdma_port 141
transport_lbtrdma_port_high 142
transport_lbtrdma_port_low 142
transport_lbtrdma_receiver_thread_behavior 142
transport_lbtrdma_transmission_window_size 143

Index 247

transport_lbtrm_activity_timeout 113
transport_lbtrm_coalesce_threshold 114
transport_lbtrm_data_rate_limit 114
transport_lbtrm_datagram_max_size 114
transport_lbtrm_destination_port 104
transport_lbtrm_ignore_interval 108
transport_lbtrm_multicast_address 104
transport_lbtrm_multicast_address_high 104
transport_lbtrm_multicast_address_low 104
transport_lbtrm_nak_backoff_interval 108
transport_lbtrm_nak_generation_interval 109
transport_lbtrm_nak_initial_backoff_interval 109
transport_lbtrm_nak_suppress_interval 110
transport_lbtrm_preactivity_timeout 115
transport_lbtrm_rate_interval 115
transport_lbtrm_receiver_socket_buffer 110
transport_lbtrm_retransmit_rate_limit 116
transport_lbtrm_send_naks 110
transport_lbtrm_sm_maximum_interval 116
transport_lbtrm_sm_minimum_interval 117
transport_lbtrm_source_port_high 105
transport_lbtrm_source_port_low 105
transport_lbtrm_source_socket_buffer 111
transport_lbtrm_tgsz 117
transport_lbtrm_transmission_window_limit 111
transport_lbtrm_transmission_window_size 112
transport_lbtru_acknowledgement_interval 125
transport_lbtru_activity_timeout 125
transport_lbtru_client_activity_timeout 126
transport_lbtru_client_map_size 126
transport_lbtru_coalesce_threshold 127
transport_lbtru_connect_interval 127
transport_lbtru_data_rate_limit 127
transport_lbtru_datagram_max_size 128
transport_lbtru_ignore_interval 121
transport_lbtru_interface 119
transport_lbtru_maximum_connect_attempts 128
transport_lbtru_maximum_ports 118, 119
transport_lbtru_nak_backoff_interval 122
transport_lbtru_nak_generation_interval 122
transport_lbtru_nak_suppress_interval 122
transport_lbtru_port 120
transport_lbtru_port_high 118, 120
transport_lbtru_port_low 118, 121
transport_lbtru_rate_interval 128
transport_lbtru_receiver_socket_buffer 123
transport_lbtru_retransmit_rate_limit 129
transport_lbtru_sm_maximum_interval 129
transport_lbtru_sm_minimum_interval 130
transport_lbtru_source_socket_buffer 123
transport_lbtru_transmission_window_limit 123
transport_lbtru_transmission_window_size 124
transport_lbtru_use_session_id 130
transport_lbtsmx_activity_timeout 136
transport_lbtsmx_datagram_max_size 137
transport_lbtsmx_id 137
transport_lbtsmx_id_high 138
transport_lbtsmx_id_low 138
transport_lbtsmx_maximum_receivers_per_transport 138
transport_lbtsmx_message_statistics_enabled 139
transport_lbtsmx_sm_interval 139
transport_lbtsmx_transmission_window_size 139
transport_session_maximum_buffer 96
transport_session_multiple_sending_threads 66
transport_source_side_filtering_behavior 67
transport_tcp_activity_method 97
transport_tcp_activity_timeout 97, 98
transport_tcp_coalesce_threshold 98

transport_tcp_datagram_max_size 98
transport_tcp_exclusiveaddr 99
transport_tcp_interface 94, 95
transport_tcp_listen_backlog 99
transport_tcp_maximum_ports 94, 95
transport_tcp_multiple_receiver_behavior 99
transport_tcp_multiple_receiver_send_order 100
transport_tcp_nodelay 101
transport_tcp_port 95
transport_tcp_port_high 94, 96
transport_tcp_port_low 94, 96
transport_tcp_receiver_socket_buffer 101
transport_tcp_reuseaddr 101
transport_tcp_sender_socket_buffer 102
transport_tcp_use_session_id 102
transport_topic_sequence_number_info_active_threshold 67
transport_topic_sequence_number_info_interval 67
transport_topic_sequence_number_info_request_interval 68
transport_topic_sequence_number_info_request_maximum 68

U
UD acceleration 144
ud_acceleration 145
UDP Port

mim_destination_port (context) 147
mim_incoming_destination_port (context) 148
mim_outgoing_destination_port (context) 148
resolver_multicast_incoming_port (context) 88
resolver_multicast_outgoing_port (context) 89
resolver_multicast_port (context) 89
resolver_unicast_destination_port (context) 226
resolver_unicast_port (context) 227
resolver_unicast_port_high (context) 93
resolver_unicast_port_low (context) 93
transport_lbtrm_destination_port (source) 104
transport_lbtrm_source_port_high (context) 105
transport_lbtrm_source_port_low (context) 105
transport_lbtru_maximum_ports (context) 119
transport_lbtru_port (source) 120
transport_lbtru_port_high (context) 120
transport_lbtru_port_high (receiver) 120
transport_lbtru_port_low (context) 121
transport_lbtru_port_low (receiver) 121

ume_ack_batching_interval 186
ume_activity_timeout 186
ume_allow_confirmed_delivery 187
ume_application_outstanding_maximum 187
ume_confirmed_delivery_notification 188
ume_consensus_sequence_number_behavior 189, 190
ume_explicit_ack_only 190
ume_flight_size 191
ume_flight_size_behavior 191
ume_flight_size_bytes 191
ume_force_reclaim_function 192
ume_late_join 192
ume_message_map_tablesz 229
ume_message_stability_lifetime 193
ume_message_stability_notification 193
ume_message_stability_timeout 194
ume_primary_store_address 229
ume_primary_store_port 230
ume_proxy_source 194
ume_receiver_liveness_interval 195
ume_receiver_paced_persistence 195, 196
ume_recovery_sequence_number_info_function 196
ume_registration_extended_function 196

248 Index

ume_registration_function 197
ume_registration_id 230
ume_registration_interval 197
ume_repository_ack_on_reception 198
ume_repository_disk_file_size_limit 198
ume_repository_size_limit 199
ume_repository_size_threshold 199
ume_retention_intergroup_stability_behavior 200
ume_retention_intragroup_stability_behavior 201
ume_retention_size_limit 201
ume_retention_size_threshold 202
ume_retention_unique_confirmations 202
ume_retransmit_request_generation_interval 203
ume_retransmit_request_interval 203
ume_retransmit_request_maximum 203
ume_retransmit_request_outstanding_maximum 204
ume_secondary_store_address 230
ume_secondary_store_port 231
ume_session_id 204, 205
ume_source_liveness_timeout 205
ume_sri_flush_sri_request_response 206
ume_sri_immediate_sri_request_response 206
ume_sri_inter_sri_interval 206
ume_sri_max_number_of_sri_per_update 207
ume_sri_request_interval 207
ume_sri_request_maximum 207
ume_sri_request_response_latency 208
ume_state_lifetime 208
ume_store 209
ume_store_activity_timeout 209
ume_store_behavior 210

ume_store_check_interval 210
ume_store_group 210
ume_store_name 211
ume_tertiary_store_address 231
ume_tertiary_store_port 231
ume_use_ack_batching 211
ume_use_late_join 212
ume_use_store 212
ume_user_receiver_registration_id 212
ume_write_delay 213
unrecognized_channel_behavior 178
use_extended_reclaim_notifications 69
use_late_join 163
use_otr 166
use_transport_thread 69

W
wildcard_receiver Scope Options

hf_receiver 216
pattern_callback 178
pattern_type 179
receiver_create_callback 179
receiver_delete_callback 180
resolver_no_source_linger_timeout 180
resolver_query_max_interval 225
resolver_query_maximum_interval 180
resolver_query_minimum_duration 181
resolver_query_minimum_interval 181

Index 249

	Table of Contents
	Preface
	Informatica Resources
	Informatica My Support Portal
	Informatica Documentation
	Informatica Web Site
	Informatica How-To Library
	Informatica Knowledge Base
	Informatica Support YouTube Channel
	Informatica Marketplace
	Informatica Velocity
	Informatica Global Customer Support

	Chapter 1: Configuring Ultra Messaging Options
	Overview
	Assignment Methods
	Assignment Flow
	Definitions
	Which Method Should I Use?
	Configuration Files

	Plain Text Configuration Files
	Reading Plain Text Configuration Files
	Plain Text Configuration File Format

	XML Configuration Files
	Reading XML Configuration Files
	Using XML Configuration Files With a UM Application
	XML Configuration File Format
	Merging Multiple XML Configuration Files
	XML Configuration File Elements
	Sample XML Configuration File
	XML Configuration File DTD

	Configuration File Restrictions
	Attributes Objects
	Creating An Attributes Object
	Setting an Option from a Binary Value
	Setting an Option from a String Value
	Getting an Option as a Binary Value
	Getting an Option as a String Value
	Deleting an Attributes Object
	Restrictions

	Modifying Current Attributes
	Setting An Option from a Binary Value
	Setting An Option from a String Value
	Restrictions

	Retrieving Current Option Values
	Getting An Option as a Binary Value
	Getting An Option as a String Value

	Chapter 2: Example Configuration Scenarios
	Highest Throughput
	Lowest Latency
	Creating Multicast Sources
	Disabling Aspects of Topic Resolution
	Disabling Topic Advertisements
	Disabling Receiver Topic Queries
	Disabling Wildcard Topic Queries
	Disabling Store (Context) Name Queries
	Disabling All But the Minimum Topic Resolution Traffic
	Re-establish Pre-4.0 Topic Resolution

	Unicast Resolver
	Configure Previous Port Defaults
	Configure New Port Defaults
	Interrelated Configuration Options
	Preventing NAK Storms with NAK Interval Options
	Preventing Tail Loss With TSNI and NAK Interval Options
	Preventing IPC Receiver Deafness With Keepalive Options
	Preventing Erroneous LBT-RM/LBT-RU Session Timeouts
	Preventing Errors Due to Bad Multicast Address Ranges
	Preventing Store or Queue Timeouts
	Preventing ULB Timeouts
	Preventing Unicast Resolver Daemon Timeouts
	Preventing Undetected Late Join Loss
	Preventing Undetected Loss

	Chapter 3: Common Tasks
	Configuring Multi-Homed Hosts
	Traversing a Firewall
	Running Multiple Applications

	Chapter 4: Reference
	Introduction
	Case Sensitivity
	Specifying Interfaces
	Socket Buffer Sizes
	Reference Entry Format
	Network Compatibility Mode

	Major Options
	compatibility_include_pre_um_6_0_behavior (context)
	context_event_function (context)
	context_name (context)
	fd_management_type (context)
	message_selector (receiver)
	network_compatibility_mode (context)
	operational_mode (context)
	ordered_delivery (receiver)
	rcv_sync_cache (receiver)
	rcv_sync_cache_timeout (receiver)
	receive_thread_pool_size (context)
	receiver_callback_service_time_enabled (context)
	resolver_source_notification_function (context)
	source_cost_evaluation_function (context)
	source_event_function (context)
	source_includes_topic_index (context)
	transport (source)
	transport_demux_tablesz (receiver)
	transport_session_multiple_sending_threads (context)
	transport_source_side_filtering_behavior (source)
	transport_topic_sequence_number_info_active_threshold (source)
	transport_topic_sequence_number_info_interval (source)
	transport_topic_sequence_number_info_request_interval (receiver)
	transport_topic_sequence_number_info_request_maximum (receiver)
	use_extended_reclaim_notifications (source)
	use_transport_thread (receiver)

	Resolver Operation Options
	Minimum Values for Advertisement and Query Intervals
	disable_extended_topic_resolution_message_options (context)
	resolution_no_source_notification_threshold (receiver)
	resolution_number_of_sources_query_threshold (receiver)
	resolver_advertisement_maximum_initial_interval (source)
	resolver_advertisement_minimum_initial_duration (source)
	resolver_advertisement_minimum_initial_interval (source)
	resolver_advertisement_minimum_sustain_duration (source)
	resolver_advertisement_send_immediate_response (source)
	resolver_advertisement_sustain_interval (source)
	resolver_cache (context)
	resolver_context_name_activity_timeout (context)
	resolver_context_name_query_duration (context)
	resolver_context_name_query_maximum_interval (context)
	resolver_context_name_query_minimum_interval (context)
	resolver_datagram_max_size (context)
	resolver_domain_id_active_propagation_timeout (context)
	resolver_initial_advertisement_bps (context)
	resolver_initial_advertisements_per_second (context)
	resolver_initial_queries_per_second (context)
	resolver_initial_query_bps (context)
	resolver_query_maximum_initial_interval (receiver)
	resolver_query_minimum_initial_duration (receiver)
	resolver_query_minimum_initial_interval (receiver)
	resolver_query_minimum_sustain_duration (receiver)
	resolver_query_sustain_interval (receiver)
	resolver_receiver_map_tablesz (context)
	resolver_send_initial_advertisement (source)
	resolver_source_map_tablesz (context)
	resolver_string_hash_function (context)
	resolver_string_hash_function_ex (context)
	resolver_sustain_advertisement_bps (context)
	resolver_sustain_advertisements_per_second (context)
	resolver_sustain_queries_per_second (context)
	resolver_sustain_query_bps (context)
	resolver_unicast_activity_timeout (context)
	resolver_unicast_change_interval (context)
	resolver_unicast_check_interval (context)
	resolver_unicast_force_alive (context)
	resolver_unicast_ignore_unknown_source (context)
	resolver_unicast_keepalive_interval (context)

	Multicast Resolver Network Options
	resolver_multicast_address (context)
	resolver_multicast_incoming_address (context)
	resolver_multicast_incoming_port (context)
	resolver_multicast_interface (context)
	resolver_multicast_outgoing_address (context)
	resolver_multicast_outgoing_port (context)
	resolver_multicast_port (context)
	resolver_multicast_receiver_socket_buffer (context)
	resolver_multicast_ttl (context)

	Unicast Resolver Network Options
	resolver_unicast_daemon (context)
	resolver_unicast_interface (context)
	resolver_unicast_port_high (context)
	resolver_unicast_port_low (context)
	resolver_unicast_receiver_socket_buffer (context)

	Transport TCP Network Options
	transport_tcp_interface (receiver)
	transport_tcp_interface (source)
	transport_tcp_maximum_ports (context)
	transport_tcp_port (source)
	transport_tcp_port_high (context)
	transport_tcp_port_low (context)

	Transport TCP Operation Options
	transport_session_maximum_buffer (source)
	transport_tcp_activity_method (receiver)
	transport_tcp_activity_timeout (receiver)
	transport_tcp_activity_timeout (source)
	transport_tcp_coalesce_threshold (source)
	transport_tcp_datagram_max_size (context)
	transport_tcp_exclusiveaddr (source)
	transport_tcp_listen_backlog (source)
	transport_tcp_multiple_receiver_behavior (source)
	transport_tcp_multiple_receiver_send_order (source)
	transport_tcp_nodelay (source)
	transport_tcp_receiver_socket_buffer (context)
	transport_tcp_reuseaddr (source)
	transport_tcp_sender_socket_buffer (source)
	transport_tcp_use_session_id (source)

	Transport LBT-RM Network Options
	transport_lbtrm_destination_port (source)
	transport_lbtrm_multicast_address (source)
	transport_lbtrm_multicast_address_high (context)
	transport_lbtrm_multicast_address_low (context)
	transport_lbtrm_source_port_high (context)
	transport_lbtrm_source_port_low (context)

	Transport LBT-RM Reliability Options
	LBT-RM Datagram Loss Resulting in Unrecovered Message Loss
	LBT-RM Source Ignoring NAKs for Efficiency
	LBT-RM Receiver Suppressing NAK Generation
	transport_lbtrm_ignore_interval (source)
	transport_lbtrm_nak_backoff_interval (receiver)
	transport_lbtrm_nak_generation_interval (receiver)
	transport_lbtrm_nak_initial_backoff_interval (receiver)
	transport_lbtrm_nak_suppress_interval (receiver)
	transport_lbtrm_receiver_socket_buffer (context)
	transport_lbtrm_send_naks (receiver)
	transport_lbtrm_source_socket_buffer (context)
	transport_lbtrm_transmission_window_limit (source)
	transport_lbtrm_transmission_window_size (source)

	Transport LBT-RM Operation Options
	transport_lbtrm_activity_timeout (receiver)
	transport_lbtrm_coalesce_threshold (source)
	transport_lbtrm_data_rate_limit (context)
	transport_lbtrm_datagram_max_size (context)
	transport_lbtrm_preactivity_timeout (receiver)
	transport_lbtrm_rate_interval (context)
	transport_lbtrm_retransmit_rate_limit (context)
	transport_lbtrm_sm_maximum_interval (source)
	transport_lbtrm_sm_minimum_interval (source)
	transport_lbtrm_tgsz (source)

	Transport LBT-RU Network Options
	transport_lbtru_interface (receiver)
	transport_lbtru_interface (source)
	transport_lbtru_maximum_ports (context)
	transport_lbtru_port (source)
	transport_lbtru_port_high (context)
	transport_lbtru_port_high (receiver)
	transport_lbtru_port_low (context)
	transport_lbtru_port_low (receiver)

	Transport LBT-RU Reliability Options
	transport_lbtru_ignore_interval (source)
	transport_lbtru_nak_backoff_interval (receiver)
	transport_lbtru_nak_generation_interval (receiver)
	transport_lbtru_nak_suppress_interval (receiver)
	transport_lbtru_receiver_socket_buffer (context)
	transport_lbtru_source_socket_buffer (context)
	transport_lbtru_transmission_window_limit (source)
	transport_lbtru_transmission_window_size (source)

	Transport LBT-RU Operation Options
	transport_lbtru_acknowledgement_interval (receiver)
	transport_lbtru_activity_timeout (receiver)
	transport_lbtru_client_activity_timeout (source)
	transport_lbtru_client_map_size (source)
	transport_lbtru_coalesce_threshold (source)
	transport_lbtru_connect_interval (receiver)
	transport_lbtru_data_rate_limit (context)
	transport_lbtru_datagram_max_size (context)
	transport_lbtru_maximum_connect_attempts (receiver)
	transport_lbtru_rate_interval (context)
	transport_lbtru_retransmit_rate_limit (context)
	transport_lbtru_sm_maximum_interval (source)
	transport_lbtru_sm_minimum_interval (source)
	transport_lbtru_use_session_id (source)

	Transport LBT-IPC Operation Options
	transport_lbtipc_activity_timeout (receiver)
	transport_lbtipc_behavior (source)
	transport_lbtipc_datagram_max_size (context)
	transport_lbtipc_id (source)
	transport_lbtipc_id_high (context)
	transport_lbtipc_id_low (context)
	transport_lbtipc_maximum_receivers_per_transport (source)
	transport_lbtipc_receiver_operational_mode (context)
	transport_lbtipc_receiver_thread_behavior (context)
	transport_lbtipc_sm_interval (source)
	transport_lbtipc_transmission_window_size (source)

	Transport LBT-SMX Operation Options
	transport_lbtsmx_activity_timeout (receiver)
	transport_lbtsmx_datagram_max_size (source)
	transport_lbtsmx_id (source)
	transport_lbtsmx_id_high (context)
	transport_lbtsmx_id_low (context)
	transport_lbtsmx_maximum_receivers_per_transport (source)
	transport_lbtsmx_message_statistics_enabled (context)
	transport_lbtsmx_sm_interval (source)
	transport_lbtsmx_transmission_window_size (source)

	Transport LBT-RDMA Operation Options
	transport_lbtrdma_datagram_max_size (context)
	transport_lbtrdma_interface (source)
	transport_lbtrdma_maximum_ports (context)
	transport_lbtrdma_port (source)
	transport_lbtrdma_port_high (context)
	transport_lbtrdma_port_low (context)
	transport_lbtrdma_receiver_thread_behavior (context)
	transport_lbtrdma_transmission_window_size (source)

	Transport Acceleration Options
	Myricom® Datagram Bypass Layer (DBL™)
	Solarflare® Onload
	UD Acceleration for Mellanox® Hardware Interfaces
	resolver_ud_acceleration (context)
	ud_acceleration (context)
	onload_acceleration_stack_name (receiver)
	onload_acceleration_stack_name (source)

	Multicast Immediate Messaging Network Options
	mim_address (context)
	mim_destination_port (context)
	mim_incoming_address (context)
	mim_incoming_destination_port (context)
	mim_outgoing_address (context)
	mim_outgoing_destination_port (context)

	Multicast Immediate Messaging Reliability Options
	mim_ignore_interval (context)
	mim_nak_backoff_interval (context)
	mim_nak_generation_interval (context)
	mim_nak_initial_backoff_interval (context)
	mim_nak_suppress_interval (context)
	mim_send_naks (context)
	mim_transmission_window_limit (context)
	mim_transmission_window_size (context)

	Multicast Immediate Messaging Operation Options
	immediate_message_receiver_function (context)
	immediate_message_topic_receiver_function (context)
	mim_activity_timeout (context)
	mim_delivery_control_activity_check_interval (context)
	mim_delivery_control_activity_timeout (context)
	mim_delivery_control_order_tablesz (context)
	mim_implicit_batching_interval (context)
	mim_implicit_batching_minimum_length (context)
	mim_ordered_delivery (context)
	mim_sm_maximum_interval (context)
	mim_sm_minimum_interval (context)
	mim_sqn_window_increment (context)
	mim_sqn_window_size (context)
	mim_src_deletion_timeout (context)
	mim_tgsz (context)
	mim_unrecoverable_loss_function (context)

	Late Join Options
	Late Join Recovery
	late_join (source)
	late_join_info_request_interval (receiver)
	late_join_info_request_maximum (receiver)
	retransmit_initial_sequence_number_request (receiver)
	retransmit_message_caching_proximity (receiver)
	retransmit_request_interval (receiver)
	retransmit_request_maximum (receiver)
	retransmit_request_message_timeout (receiver)
	retransmit_request_outstanding_maximum (receiver)
	retransmit_retention_age_threshold (source)
	retransmit_retention_size_limit (source)
	retransmit_retention_size_threshold (source)
	use_late_join (receiver)

	Off-Transport Recovery Options
	otr_request_initial_delay (receiver)
	otr_request_log_alert_cooldown (receiver)
	otr_request_maximum_interval (receiver)
	otr_message_caching_threshold (receiver)
	otr_request_message_timeout (receiver)
	otr_request_minimum_interval (receiver)
	otr_request_outstanding_maximum (receiver)
	use_otr (receiver)

	Request Network Options
	request_tcp_bind_request_port (context)
	request_tcp_interface (context)
	request_tcp_port (context)
	request_tcp_port_high (context)
	request_tcp_port_low (context)

	Request Operation Options
	request_tcp_exclusiveaddr (context)
	request_tcp_listen_backlog (context)
	request_tcp_reuseaddr (context)

	Response Operation Options
	response_session_maximum_buffer (context)
	response_session_sender_socket_buffer (context)
	response_tcp_deletion_timeout (context)
	response_tcp_interface (context)
	response_tcp_nodelay (context)

	Implicit Batching Options
	implicit_batching_interval (source)
	implicit_batching_minimum_length (source)
	implicit_batching_type (source)

	Delivery Control Options
	channel_map_tablesz (receiver)
	delivery_control_loss_check_interval (receiver)
	delivery_control_loss_tablesz (receiver)
	delivery_control_maximum_burst_loss (receiver)
	delivery_control_maximum_total_map_entries (context)
	delivery_control_message_batching (context)
	delivery_control_order_tablesz (receiver)
	mim_delivery_control_loss_check_interval (context)
	null_channel_behavior (receiver)
	source_notification_function (receiver)
	unrecognized_channel_behavior (receiver)

	Wildcard Receiver Options
	pattern_callback (wildcard_receiver)
	pattern_type (wildcard_receiver)
	receiver_create_callback (wildcard_receiver)
	receiver_delete_callback (wildcard_receiver)
	resolver_no_source_linger_timeout (wildcard_receiver)
	resolver_query_maximum_interval (wildcard_receiver)
	resolver_query_minimum_duration (wildcard_receiver)
	resolver_query_minimum_interval (wildcard_receiver)
	resolver_wildcard_queries_per_second (context)
	resolver_wildcard_query_bps (context)
	resolver_wildcard_receiver_map_tablesz (context)

	Event Queue Options
	event_queue_name (event_queue)
	queue_age_enabled (event_queue)
	queue_cancellation_callbacks_enabled (event_queue)
	queue_count_enabled (event_queue)
	queue_delay_warning (event_queue)
	queue_enqueue_notification (event_queue)
	queue_objects_purged_on_close (event_queue)
	queue_service_time_enabled (event_queue)
	queue_size_warning (event_queue)

	Ultra Messaging Persistence Options
	ume_ack_batching_interval (context)
	ume_activity_timeout (receiver)
	ume_activity_timeout (source)
	ume_allow_confirmed_delivery (receiver)
	ume_application_outstanding_maximum (receiver)
	ume_confirmed_delivery_notification (source)
	ume_consensus_sequence_number_behavior (receiver)
	ume_consensus_sequence_number_behavior (source)
	ume_explicit_ack_only (receiver)
	ume_flight_size (source)
	ume_flight_size_behavior (source)
	ume_flight_size_bytes (source)
	ume_force_reclaim_function (source)
	ume_late_join (source)
	ume_message_stability_lifetime (source)
	ume_message_stability_notification (source)
	ume_message_stability_timeout (source)
	ume_proxy_source (source)
	ume_receiver_liveness_interval (context)
	ume_receiver_paced_persistence (receiver)
	ume_receiver_paced_persistence (source)
	ume_recovery_sequence_number_info_function (receiver)
	ume_registration_extended_function (receiver)
	ume_registration_function (receiver)
	ume_registration_interval (receiver)
	ume_registration_interval (source)
	ume_repository_ack_on_reception (source)
	ume_repository_disk_file_size_limit (source)
	ume_repository_size_limit (source)
	ume_repository_size_threshold (source)
	ume_retention_intergroup_stability_behavior (source)
	ume_retention_intragroup_stability_behavior (source)
	ume_retention_size_limit (source)
	ume_retention_size_threshold (source)
	ume_retention_unique_confirmations (source)
	ume_retransmit_request_generation_interval (receiver)
	ume_retransmit_request_interval (receiver)
	ume_retransmit_request_maximum (receiver)
	ume_retransmit_request_outstanding_maximum (receiver)
	ume_session_id (context)
	ume_session_id (receiver)
	ume_session_id (source)
	ume_source_liveness_timeout (context)
	ume_sri_flush_sri_request_response (source)
	ume_sri_immediate_sri_request_response (source)
	ume_sri_inter_sri_interval (source)
	ume_sri_max_number_of_sri_per_update (source)
	ume_sri_request_interval (receiver)
	ume_sri_request_maximum (receiver)
	ume_sri_request_response_latency (source)
	ume_state_lifetime (receiver)
	ume_state_lifetime (source)
	ume_store (source)
	ume_store_activity_timeout (source)
	ume_store_behavior (source)
	ume_store_check_interval (source)
	ume_store_group (source)
	ume_store_name (source)
	ume_use_ack_batching (receiver)
	ume_use_late_join (receiver)
	ume_use_store (receiver)
	ume_user_receiver_registration_id (context)
	ume_write_delay (source)

	Hot Failover Operation Options
	delivery_control_loss_check_interval (hfx)
	delivery_control_max_delay (hfx)
	delivery_control_maximum_burst_loss (hfx)
	delivery_control_maximum_total_map_entries (hfx)
	duplicate_delivery (hfx)
	hf_duplicate_delivery (receiver)
	hf_optional_messages (receiver)
	hf_receiver (wildcard_receiver)
	ordered_delivery (hfx)

	Automatic Monitoring Options
	monitor_appid (context)
	monitor_appid (event_queue)
	monitor_interval (context)
	monitor_interval (event_queue)
	monitor_interval (receiver)
	monitor_interval (wildcard_receiver)
	monitor_transport (context)
	monitor_transport (event_queue)
	monitor_transport_opts (context)
	monitor_transport_opts (event_queue)

	Deprecated Options
	dbl_lbtrm_acceleration (context)
	dbl_lbtru_acceleration (context)
	dbl_mim_acceleration (context)
	dbl_resolver_acceleration (context)
	otr_request_duration (receiver)
	resolver_active_source_interval (context)
	resolver_active_threshold (context)
	resolver_context_advertisement_interval (context)
	resolver_maximum_advertisements (context)
	resolver_query_interval (context)
	resolver_maximum_queries (context)
	resolver_query_max_interval (wildcard_receiver)
	resolver_unicast_address (context)
	resolver_unicast_destination_port (context)
	resolver_unicast_port (context)
	retransmit_message_map_tablesz (source)
	retransmit_request_generation_interval (receiver)
	transport_datagram_max_size (context)
	transport_lbtipc_acknowledgement_interval (receiver)
	transport_lbtipc_client_activity_timeout (source)
	ume_message_map_tablesz (source)
	ume_primary_store_address (source)
	ume_primary_store_port (source)
	ume_registration_id (source)
	ume_secondary_store_address (source)
	ume_secondary_store_port (source)
	ume_tertiary_store_address (source)
	ume_tertiary_store_port (source)

	UMS Port Values
	UMS UDP Port Values
	UMS TCP Port Values

	UMS Multicast Group Values
	UMS Timer Interval Values
	Options That May Be Set During Operation
	Options (Callbacks) That Cannot Be Set From a UM Configuration File

	Index

