
UMDS (Version 6.12)

UMDS User Guide

Contents

1 Introduction 5

1.1 UMDS Overview . 5

1.2 UMDS Architecture . 6

2 UMDS Client 7

2.1 UMDS API . 7

2.2 Server Connection . 7

2.2.1 Authenticating Applications and Users . 8

2.2.2 Assigning Different Client Settings to Your Application . 8

2.2.3 Application Name . 8

2.3 Receiving . 8

2.4 Sending . 9

2.5 Request and Response Capability . 10

2.6 Using UMDS Late Join . 11

2.6.1 Late Join UMDS Sources . 12

3 UMDS Example Client Applications 15

3.1 Java Example Applications . 15

3.1.1 umdsreceive.java . 15

3.1.2 umdssend.java . 15

3.1.3 umdsresponse.java . 16

3.1.4 umdsrequest.java . 16

3.2 .NET Example Applications . 17

3.2.1 umdssend.cs . 17

3.2.2 umdsreceive.cs . 17

3.2.3 umdsresponse.cs . 18

3.2.4 umdsrequest.cs . 18

4 UMDS Server 19

4.1 User Authentication . 20

4.2 Client Application Parameters . 20

4.3 Keep Alive Timers During Idle Periods . 21

4 CONTENTS

4.4 Message Queue . 22

4.4.1 Per-Topic Message Queues . 23

4.4.2 Configuring Message Queue Size . 23

4.4.3 Approximating Per-Queue Memory Use . 23

4.4.4 Approximating the Number of Messages Per Queue . 23

4.4.5 Calculating Optimal Queue Size Limits . 24

4.5 Worker Configuration Guidelines . 24

4.5.1 Increasing Number of UMDS Workers . 24

4.5.2 Workers CPU Cores and Performance . 24

4.5.3 Workers Versus Client Load . 25

5 Umdsd Man Page 27

6 Daemon Statistics 29

6.1 Daemon Statistics Structures . 29

6.2 Daemon Statistics Binary Data . 29

6.3 Daemon Statistics Versioning . 30

6.4 Daemon Statistics Requests . 30

6.5 UMDS Daemon Statistics Structures . 30

6.6 UMDS Daemon Statistics Byte Swapping . 31

6.7 UMDS Daemon Statistics String Buffers . 31

6.8 UMDS Daemon Statistics Configuration . 31

6.9 UMDS Daemon Statistics Requests . 32

6.10 UMDS Daemon Statistics Example Files . 33

7 UMDS Web Monitor 35

7.1 Main Menu . 35

7.2 List Current Connections . 35

7.3 Connection Details . 37

7.4 Current Server Configuration File . 38

7.5 Dump Current Memory Allocation . 39

7.6 Quit Server . 39

8 UMDS Server Configuration 41

8.1 umdsd Configuration File . 41

8.1.1 UMDS Element "<umds-daemon>" . 42

8.1.2 UMDS Element "<daemon>" . 43

8.1.3 UMDS Element "<topics>" . 43

8.1.4 UMDS Element "<topic>" . 44

8.1.5 UMDS Element "<umds-attributes>" . 44

8.1.6 UMDS Element "<option>" . 45

CONTENTS 5

8.1.7 UMDS Element "<monitor>" . 47

8.1.8 UMDS Element "<application-id>" . 47

8.1.9 UMDS Element "<format>" . 48

8.1.10 UMDS Element "<transport>" . 49

8.1.11 UMDS Element "<daemon-monitor>" . 49

8.1.12 UMDS Element "<lbm-config>" . 50

8.1.13 UMDS Element "<remote-config-changes-request>" . 50

8.1.14 UMDS Element "<remote-snapshot-request>" . 51

8.1.15 UMDS Element "<publishing-interval>" . 52

8.1.16 UMDS Element "<group>" . 52

8.1.17 UMDS Element "<web-monitor>" . 54

8.1.18 UMDS Element "<authentication>" . 54

8.1.19 UMDS Element "<basic>" . 54

8.1.20 UMDS Element "<none>" . 55

8.1.21 UMDS Element "<permissions>" . 55

8.1.22 UMDS Element "<can-reqresp>" . 56

8.1.23 UMDS Element "<can-stream>" . 56

8.1.24 UMDS Element "<can-send>" . 56

8.1.25 UMDS Element "<client>" . 56

8.1.26 UMDS Element "<server-reconnect>" . 57

8.1.27 UMDS Element "<client-nodelay>" . 57

8.1.28 UMDS Element "<client-sndbuf>" . 58

8.1.29 UMDS Element "<client-rcvbuf>" . 59

8.1.30 UMDS Element "<server-nodelay>" . 60

8.1.31 UMDS Element "<server-sndbuf>" . 60

8.1.32 UMDS Element "<server-rcvbuf>" . 61

8.1.33 UMDS Element "<server-ka-threshold>" . 62

8.1.34 UMDS Element "<client-ka-interval>" . 63

8.1.35 UMDS Element "<client-ka-threshold>" . 63

8.1.36 UMDS Element "<server-ka-interval>" . 64

8.1.37 UMDS Element "<server-list>" . 65

8.1.38 UMDS Element "<server>" . 66

8.1.39 UMDS Element "<lbm-license-file>" . 66

8.1.40 UMDS Element "<pidfile>" . 67

8.1.41 UMDS Element "<gid>" . 68

8.1.42 UMDS Element "<uid>" . 68

8.1.43 UMDS Element "<log>" . 68

8.1.44 UMDS Topic Options . 69

8.2 UM License File . 70

8.3 UM Configuration File . 70

6 CONTENTS

8.4 Basic Authentication File . 71

8.4.1 UMDS application Element . 71

8.4.2 UMDS user Element . 71

8.5 UMDS Configuration DTD . 72

8.6 Example UMDS Configuration Files . 74

8.6.1 Minimum Configuration File . 74

8.6.2 Typical Configuration File . 75

8.6.3 Complete Configuration File . 76

8.6.4 Sample UM Configuration File . 78

8.6.5 Sample Authentication File . 78

9 UMDS Log Messages 81

Chapter 1

Introduction

© Copyright Informatica LLC 2004-2019.

This software and documentation are provided only under a separate license agreement containing restrictions
on use and disclosure. No part of this document may be reproduced or transmitted in any form, by any means
(electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

A current list of Informatica trademarks is available on the web at https://www.informatica.←↩
com/trademarks.html.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party
notices are included with the product.

This software is protected by patents as detailed at https://www.informatica.com/legal/patents.←↩
html.

The information in this documentation is subject to change without notice. If you find any problems in this documen-
tation, please report them to us in writing at Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are
provided.
INFORMATICA LLC PROVIDES THE INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FIT←↩
NESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

1.1 UMDS Overview

This document introduces the basic concepts and design approaches used by Ultra Messaging Desktop Services
(UMDS). The reader is assumed to already be familiar with basic UM concepts. See the UM Concepts Guide
for more general information about UM.

Ultra Messaging Desktop Services (UMDS) extends Ultra Messaging to diverse desktop networks throughout an
enterprise. With the UMDS client-server model, desktop applications can receive and send topic-based messages.

The UMDS Server runs on a server-class machine and communicates over TCP connections with desktop-class
machines. A UMDS Server can also communicate with other Ultra Messaging components, such as UMS applica-
tions and other UMDS Servers.

Customer desktop applications call the UMDS API to send and receive messages over a TCP connection to the
UMDS Server. This API is a subset of Ultra Messaging functionality, for Java and .NET. The UMDS Server routes
messages to clients according to topic interest. The UMDS Server also routes messages between desktop U←↩
MDS Client applications and other Ultra Messaging components. For message security in the UMDS desktop
environment, you can use application authentication and user authentication.

https://www.informatica.com/trademarks.html
https://www.informatica.com/trademarks.html
https://www.informatica.com/legal/patents.html
https://www.informatica.com/legal/patents.html

8 Introduction

UMDS, you can centrally manage UMDS Client functionality from the UMDS Server, and use the Web Monitor to
view client connection statistics and the server's current configuration file.

1.2 UMDS Architecture

A UMDS implementation comprises a UMDS server daemon and your applications written with UMDS client API
calls. The UMDS server is an Ultra Messaging daemon that is part of an Ultra Messaging backbone. The UMDS
server and the UMDS client application communicate using TCP.

Chapter 2

UMDS Client

UMDS includes the UMDS API, which is a library of Ultra Messaging functions for use by desktop applications. U←↩
MDS Clients communicate with the UMDS Server with TCP connections. You cannot use UDP to connect a UMDS
Client to a UMDS Server.

2.1 UMDS API

The UMDS API is a more compact version of the Ultra Messaging API, intended to provide an easier and more
consistent implementation of Ultra Messaging across enterprise desktops. The API is fully implemented for Java
and .NET.

2.2 Server Connection

A UMDS Client application can create multiple server connections, which can be to the same UMDS Server or
different UMDS Servers. The UMDS Client uses UMDS API UMDSServerConnection class calls to establish
a server connection with the following general procedure:

1. UMDS Client application creates a UMDSServerConnection object.

2. UMDS Client application sets configuration options.

3. UMDS Client initiates the TCP connection.

4. UMDS Server confirms the connection.

5. UMDS Client logs into the server, and sends client configuration parameters.

6. UMDS Server authenticates the UMDS Client application and sets configuration parameters.

7. UMDS Client application creates a source or receiver, and participates in messaging functions.

8. After it no longer needs the connection, UMDS Client application closes sources or receivers.

9. UMDS Client receives ACKs and closes the connection.

10 UMDS Client

2.2.1 Authenticating Applications and Users

You can authenticate either UMDS Client applications or individual desktop users when they connect to the server.
By default, UMDS automatically authenticates all clients.

You can embed user passwords in a UMDS Client application or provide users with a login prompt. UMDS does
not provide a login prompt facility. If you choose to authenticate applications or users, the application must deliver a
user password to the UMDS Server with a setProperty() call. For an example, view the example application
umdssend.java and search for svrconn.setProperty("password", password).

If an application or desktop user requires authentication upon connection to the UMDS Server, set the application
name, user name, and password in a Basic Authentication File. UMDS formats and transmits these parameters
when requesting a connection.

2.2.2 Assigning Different Client Settings to Your Application

If your application requires different operating parameters from the UMDS Server, set the application name and
parameters in a Basic Authentication File. UMDS formats and transmits these parameters when requesting a
connection.

2.2.3 Application Name

UMDS Server administrators use the application name to identify the client applications connected to the server.
Application developers should coordinate their application names with the server administrator to ensure proper
connections and authentication.

2.3 Receiving

A UMDS Client application uses the UMDSReceiver class to start a receiver object and subscribe to a topic. This
creates a UMS proxy receiver object at the UMDS server to listen for topic messages from other Ultra Messaging
applications, including other UMDS client applications. As the UMDS Server receives messages for that topic, the
UMDS Server routes the message to the proper UMDS Client applications.

In the following figure, a UMDS Client application subscribes to a topic. The UMDS Client application then receives
a message on the topic from a remote Ultra Messaging sending application.

2.4 Sending 11

1. The UMDS Client application creates a regular receiver object at the UMDS Server. This action also specifies
the topic of interest to the receiver.

2. The UMDS Server acknowledges the receiver creation.

3. The receiver begins receiving messages on the topic.

2.4 Sending

A UMDS Client application uses UMDSSource.send to send messages on a topic to the UMDS server. The
UMDS server then uses a proxy source to stream these messages. You configure these sources in the umdsd
Configuration File with the lbm-source Option Type. See UMDS Topic Options.

The following figure shows a UMDS Client application sending a message to all receivers listening on the topic.

A UMDS Client send performs the following steps.

1. UMDS Client application uses UMDSSource.send to send a message to the UMDS Server.

2. UMDS Server multicasts the message to the Ultra Messaging Backbone.

12 UMDS Client

3. UMDS Server uses Ultra Messaging to send the message to other UMDS Client applications subscribed to
the topic.

Clients use nonblocking sends to send messages. If the send results in an EWOULDBLOCK, the UMDS Server
temporarily disables the UMDS Client send socket, which applies back pressure to the client application. The UMDS
Server automatically resends the message when the Ultra Messaging source transport unblocks.

You can also write UMDS Client applications that send Immediate Messages.

2.5 Request and Response Capability

UMDS clients can issue requests, and can send and receive responses, by using the UMDS client interface. UMDS
clients can exchange requests and responses with other UMDS clients or with non-UMDS Ultra Messaging sources
and receivers.

You cannot explicitly cancel a request issued by a UMDS client. UMDS client requests automatically time out after
a server-configured period. The server-configured period applies to all clients.

The following figure shows UMDS requests and responses:

The following table describes the request and response operations shown in the preceding figure:

Operation Description C# and Java Method

Request The sending application sends a request through a UMDS
source object. The request_id parameter must be a 32-
bit integer.

request()

Send Request The UMDS server forwards the request across the UM net-
work.

Request Callback The receiver object issues a callback to the receiving appli-
cation. The receipt of the callback indicates the receipt of a
request.

onRequest()

Response(s) The receiver sends zero or more responses. respond()

2.6 Using UMDS Late Join 13

Send Response(s) The UMDS server forwards the response across the UM net-
work.

n/a

Response Callback(s) The source object that sent the request issues one or more
callbacks to the sending application. The receipt of the call-
backs indicates the receipt of a response.

onResponse()

Request Timeout Each request has its own timeout period. When the configured
timeout expires on the UMDS server, the UMDS server sends
a request timeout notification to the sending client's onEvent
callback. The timeout notification indicates that the request is
closed, and that the source will deliver no more responses for
that particular request. Requests always time out regardless of
the number of responses received. A sending client must send
new requests if it is dissatisfied with the number of responses.
The server sends timeout notification messages to the sending
client. Therefore, if the client disconnects from the server, the
client cannot receive timeout notifications. When a client dis-
connects, the UMDS server cancels all outstanding requests
without notification. If the client reconnects, the server does
not send to the client any responses or timeout notifications for
the requests that the client issued before it disconnected.

onEvent()

2.6 Using UMDS Late Join

You can use Ultra Messaging Late Join functionality, however some aspects of Late Join work differently for UMDS
Client receive applications.

With Late Join enabled, the first application that causes the UMDS Server to create a receiver for a particular topic
initiates a Late Join request to the Ultra Messaging application's source for that topic. The UMDS Server also
creates a message cache for the topic and stores the messages there to service subsequent late join requests
more efficiently. When the UMDS Server receiver receives Late Join retransmissions, it sends them to the UMDS
Client, flagged as RX messages.

When the receiver switches to live data, it streams the data to the client and continues to add to the message cache.
When the message cache fills to maximum capacity, it deletes older messages as new messages arrive.

When a second UMDS Client receive application launches, it receives Late Join retransmissions from the UMDS
Server message cache, not from the source's retention buffer. The second application might not receive the earlier
messages that the first application received.

The following image shows how a first UMDS Client receive application receives its Late Join retransmissions from
the source, while subsequent client applications receive Late Join retransmissions from the UMDS Server message
cache.

14 UMDS Client

There might be multiple sources on a topic, however the UMDS Server stores all messages on a topic into a single
message cache. The message cache stores and dispatches data as whole messages, not message fragments.

To configure UMDS Client receiving applications to use Late Join, set the options in the umdsd configuration file. By
default, Late Join is disabled for UMDS Client receive applications. The following example shows part of a umdsd
configuration file that sets the options related to a UMDS Client receiving application that uses Late Join on topic
orderAW.

<topic pattern="orderAW" type="direct">
<umds-attributes>
<option type="umds-receiver" name="use-late-join" value="1" />
<option type="umds-receiver" name="message-cache-size" value="10" />
<option type="lbm-receiver" name="use_late_join" value="1" />
<option type="lbm-receiver" name="late_join_info_request_interval"

value="1000" />
<option type="lbm-receiver" name="late_join_info_request_maximum"

value="60" />
<option type="lbm-receiver" name="retransmit_initial_sequence_number_request"

value="1" />
<option type="lbm-receiver" name="retransmit_message_caching_proximity"

value="2147483647" />
<option type="lbm-receiver" name="retransmit_request_interval"

value="500" />
<option type="lbm-receiver" name="retransmit_request_maximum"

value="0" />
<option type="lbm-receiver" name="retransmit_request_message_timeout"

value="10000" />
</umds-attributes>

</topic>

2.6.1 Late Join UMDS Sources

You can enable Late Join for UMDS sources in the same manner as for standard Ultra Messaging sources. This must
be done on the UMDS server via its configuration file. The following example excerpt from a umdsd configuration
file shows how to enable Late Join for topic orderAW. The example also shows other relevant source Late Join
options.

<topic pattern="orderAW" type="direct">
<umds-attributes>
<option type="lbm-source" name="late_join" value="1" />
<option type="lbm-source" name="retransmit_retention_age_threshold"

2.6 Using UMDS Late Join 15

value="0" />
<option type="lbm-source" name="retransmit_retention_size_limit"

value="25165824" />
<option type="lbm-source" name="retransmit_retention_size_threshold"

value="100" />
</umds-attributes>

</topic>

For more information about Late Join source configuration options, see the Ultra Messaging Configuration Guide.

16 UMDS Client

Chapter 3

UMDS Example Client Applications

This section shows usages of included example applications. The same information can be displayed interactively
by running the example with the "-h" command-line option.

3.1 Java Example Applications

3.1.1 umdsreceive.java

Receive messages on a single topic.

Usage: umdssend [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config parameters from filename

-I Immediate Mode
-h = help
-l len = send messages of len bytes
-L linger = Allow traffic to drain for up to linger seconds

before closing the connection
-M msgs = send msgs number of messages
-N num_topics = Number of topics to send on
-P msec = pause after each send msec milliseconds
-s num_secs = Print statistics every num_secs
-U username = set the user name and prompt for password
-v = be verbose in reporting to the console

3.1.2 umdssend.java

Send messages on a single topic.

18 UMDS Example Client Applications

Usage: umdsreceive [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config file filename

-h = help
-M num_msgs = End after num_msgs received
-N num_topics = Number of topics (receivers)
-s num_secs = print statistics every num_secs along with bandwidth
-S address:port = Server address and port
-U username = set the user name and prompt for password
-v = be verbose about each message
-W = Wildcard topic

3.1.3 umdsresponse.java

Send responses on a single topic.

Usage: umdsresponse [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config file filename

-h = help
-M num_msgs = End after num_msgs received
-N num_topics = Number of topics (receivers)
-r len = send responses of len bytes
-s num_secs = print statistics every num_secs along with bandwidth
-S address:port = Server address and port
-U username = set the user name and prompt for password
-v = be verbose about each message
-W = Wildcard topic

3.1.4 umdsrequest.java

Send requests and messages on a single topic.

-S address[:port] = Server address/name and optionally port
A comma separated list of multiple servers may be provided

Available options:
-A Suppress sending the application name to the server on login
-c filename = read config parameters from filename

-I Immediate Mode
-h = help
-l len = send messages of len bytes
-L linger = Allow traffic to drain for up to linger seconds

before closing the connection
-M msgs = send msgs number of messages
-N num_topics = Number of topics to send on
-P msec = pause after each send msec milliseconds
-r len = send requests of len bytes

3.2 .NET Example Applications 19

-s num_secs = Print statistics every num_secs
-U username = set the user name and prompt for password
-v = be verbose in reporting to the console

3.2 .NET Example Applications

3.2.1 umdssend.cs

Send messages on a single topic.

Usage: umdssend [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config parameters from filename

-I Immediate Mode
-h = help
-l len = send messages of len bytes
-L linger = Allow traffic to drain for up to linger seconds

before closing the connection
-M msgs = send msgs number of messages
-N num_topics = Number of topics to send on
-P msec = pause after each send msec milliseconds
-s num_secs = Print statistics every num_secs
-U username = set the user name and prompt for password
-v = be verbose in reporting to the console

3.2.2 umdsreceive.cs

Receive messages on a single topic.

Usage: umdsreceive [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config file filename

-h = help
-M num_msgs = End after num_msgs received
-N num_topics = Number of topics (receivers)
-s num_secs = print statistics every num_secs along with bandwidth
-S address:port = Server address and port
-U username = set the user name and prompt for password
-v = be verbose about each message
-W = Wildcard topic

20 UMDS Example Client Applications

3.2.3 umdsresponse.cs

Send responses on a single topic.

Usage: umdsresponse [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config file filename
-h = help
-M num_msgs = End after num_msgs received
-N num_topics = Number of topics (receivers)
-r response message length
-s num_secs = print statistics every num_secs along with bandwidth
-S address:port = Server address and port
-U username = set the user name and prompt for password
-v = be verbose about each message
-W = Wildcard topic

3.2.4 umdsrequest.cs

Send requests and messages on a single topic.

Usage: umdsrequest [options] -S address[:port] topic
-S address[:port] = Server address/name and optionally port

A comma separated list of multiple servers may be provided
Available options:

-A Suppress sending the application name to the server on login
-c filename = read config parameters from filename
-I Immediate Mode
-h = help
-l len = send messages of len bytes
-L linger = Allow traffic to drain for up to linger seconds

before closing the connection
-M msgs = send msgs number of messages
-N num_topics = Number of topics to send on
-P msec = pause after each send msec milliseconds
-r len = send requests of len bytes
-s num_secs = Print statistics every num_secs
-U username = set the user name and prompt for password
-v = be verbose in reporting to the console

Chapter 4

UMDS Server

The UMDS Server is a daemon that enables UMDS Clients to exchange messages with standard Ultra Messag-
ing sending and receiving applications. The following image shows some of the UMDS Server components and
functionality.

The UMDS Server consists of the following components:

• UMDS Server - The UMDS Server is a daemon that contains a standard Ultra Messaging context, which
sends and receives messages.

• Workers - Workers exchange messages with UMDS Client applications over TCP connections. You can
configure and run multiple worker instances to provide parallelism.

• Web Monitor - Use the Web Monitor, a web-based user interface, to control operation of, and view the status
of, the UMDS Server.

• Configuration Options - When the umdsd UMDS Server starts, it reads configuration options from a umdsd
configuration file.

22 UMDS Server

4.1 User Authentication

You can assign a user or application name, or both, and a password, to authenticate your client applications or
individual desktop users. Authentication occurs when a user or application requests a server connection.

You assign user passwords in the <user> element in the Basic Authentication File, which you specify in the
<authentication> element in the umdsd Configuration File. You can specify an application or user name
in the UMDS user Element. If you specify <none/> for the <authentication> element in the umdsd
configuration file, the UMDS Server authenticates all applications and users.

4.2 Client Application Parameters

When a client application requests a server connection, the UMDS Server looks at a sequence of
<client>element settings to determine what parameters to apply to the client application.

Operating parameters control the degree of resource utilization allowed by a client application, such as keep-alive
intervals and thresholds. You can override all client application parameter values from multiple sources.

With overrides, you can select the optimal trade offs between flexibility and centralized control of client configuration.
For example, a deployment that requires control would allow the client application to override fewer settings, which
might simplify the job of the application programmer, but increase the responsibility of the server administrator.

UMDS Server factory defaults are the least restrictive, allowing clients to change any setting. However, you can
configure a more restrictive, generic set of UMDS daemon <client>element settings that disable client overrides
for certain settings. You can also set up acceptable ranges of values for other settings. Plus, you can then configure
other applications or users to use different settings, which maybe more or less restrictive than the generic set of
parameters.

The following table shows the sequence of <client>element settings the UMDS Server goes through when
choosing the operating parameters for a particular UMDS Client application connection.

Step Client Settings Used by UMDS Server Can Configure Parameters Can Authenticate User

1 Factorydefaults. Requires no action by
either application programmers or UMDS
Server administrator.

Yes No

2 umdsdconfiguration file
<client>element settings. Overrides
factory defaults. You can apply different
settings to different UMDS Servers across
the enterprise.

Yes No

3 BasicAuthentication File
<application>settings. Overrides
umdsd configuration file. These settings
indicate one or more client applications that
require different settings from the server
settings in the umdsd configuration file.

Yes No

4 BasicAuthentication File
<user>settings. Override Basic Au-
thentication File <application>.
These settings indicate one or more users
that require either authentication or different
operating parameters or both.

Yes Yes

4.3 Keep Alive Timers During Idle Periods 23

Step Client Settings Used by UMDS Server Can Configure Parameters Can Authenticate User

5 Clientapplication requests of certain set-
tings. umdsd configuration file and Ba-
sic Authentication File settings can deny
the client application requests with the
client-writeattribute for any operation
parameter.

Yes No

The UMDS Server sends the resulting settings to the client application as the final phase of the initial connection
handshake.

Note

For Steps 3 and 4, if you specify no Basic Authentication File and the client application does not provide
a password, the UMDS Server permits the connection. However, the UMDS Server does not apply any
<application>or <user>settings requested by the client application.

4.3 Keep Alive Timers During Idle Periods

UMDS provides keep alive timers so during periods of message inactivity, servers and clients can be aware of any
unresponsiveness. Both the server and client have a keep alive interval and threshold. You configure these timers
in the UMDS Element "<client>" of the umds configuration file.

• The interval defines the time period in milliseconds between keep alive messages sent from either a client
or server to the other (UMDS Element "<client-ka-interval>" and UMDS Element "<server-ka-interval>").
When a client or server sends a data message or keep alive message, it resets the interval.

• The threshold defines the timeout for message traffic from the server or client to the other (keep alive or
otherwise). A timeout results in disconnection. (UMDS Element "<client-ka-threshold>" and UMDS Element
"<server-ka-threshold>"). When a client or server receives a data message or keep alive message, it resets
the threshold.

The following figure shows the interaction of the interval and threshold configuration elements for a server when
traffic from a client ceases.

24 UMDS Server

1. When the server sends a message (data or keepalive) to the client, it resets the server-ka-interval.
During the period when the server sends no data messages to the client, at the end of the
server-ka-interval, it sends a keepalive message and resets the server-ka-interval. It
continues to send keepalive messages at the expiration of the server-ka-interval as long as the
connection exists.

2. When the server receives a message (data or keepalive) from the client, it resets the server-ka-threshold.

3. If the server receives no messages from the client, it disconnects the client when the server-ka-threshold
timer expires.

During periods of inactivity, the interval used by one side prevents the threshold from being reached on the other
side. Therefore, there is a relationship between client-ka-interval and server-ka-threshold and
also between server-ka-interval and client-ka-threshold. The interval should be less than the
related threshold.

4.4 Message Queue

The UMDS Server maintains a default message queue for the messages that it forwards to UMDS Client receiving
applications. Because connections to UMDS Client applications use receiver-paced TCP, the UMDS Server queues
these messages to prevent loss from fast senders.

In the UMDS Server configuration file, you can configure the queue's age limit and size limit with the <server>
element msg-age-limit and msg-q-size-limit attributes. The UMDS Server deletes messages that stay
in the queue longer than the age limit. If the queue reaches the configured size limit, the UMDS Server deletes the
oldest messages in the queue to make room for new messages.

4.4 Message Queue 25

Note

When considering memory usage, be aware that when the UMDS Server creates sources and receivers, it
also creates other buffers and caches. Examples include the topic Late Join message cache, and buffers
created using the standard Ultra Messaging configuration options. Note also that when UMDS configuration
files do not specify standard Ultra Messaging configuration options, these options use default values.

4.4.1 Per-Topic Message Queues

When the default queue reaches its size limit and a new message arrives, the UMDS Server deletes the oldest
message. This might be undesirable if the oldest message is for a different topic than the newest message. The
UMDS Server can also maintain per-topic message queues to address the possibility of message loss across topics
when using the single default message queue. You can configure topics in the UMDS Server configuration file to
use their own message queue or the default queue with the <topics> element. You can configure topics by
pattern matching or explicit names. Each queue maintains its own statistics, which you can view in the Web Monitor
Client Details page.

4.4.2 Configuring Message Queue Size

Use the following information and examples to determine the optimum settings for the msg-q-size-limit
parameter, and to properly size the physical memory contained in the UMDS Server host machine.

n

4.4.3 Approximating Per-Queue Memory Use

The msg-q-size-limit parameter sets the maximum number of message payload bytes that the UMDS Server
allows before deleting older messages to make room for new messages. This limit does not include the Ultra
Messaging overhead of approximately 900 bytes per message.

For example, if a message queue contains 2,000 25-byte messages, this total of 50,000 payload bytes does not
exceed the msg-q-size-limit parameter default size of 1,048,576 bytes. However, with the overhead of 900
bytes, the queue actually uses 925 x 2,000 = 1,850,000 bytes.

4.4.4 Approximating the Number of Messages Per Queue

You can calculate the maximum number of messages that fit into a queue if you know the message payload size.
For example, if all messages have a payload size of 25 bytes, then the default configuration of 1,048,576 bytes
indicates that up to (1,048,576 / 25) = 41,943 messages can be enqueued.

When using individual topic queues, each UMDS Client has multiple queues. Thus, the total memory use is the
sum of the memory use of all topic queues.

26 UMDS Server

4.4.5 Calculating Optimal Queue Size Limits

If all connected clients are able to keep up with average message traffic, then the message queue consumes little
or no memory. However, if a burst of high-rate traffic occurs, queues can fill up quickly as clients struggle to keep
up. The following example demonstrates peak memory utilization.

• If each message contains 25 bytes of user data, and the default queue size limit is set to 1,048,576 bytes,
then the queue can grow to contain 41,943 messages.

• If each 25-byte message consumes a total of 925 bytes including the UMDS overhead, a full queue consumes
about 37 MB of memory.

• If 80 client queues all fill to capacity, these queues collectively consume about 3 GB of memory.

4.5 Worker Configuration Guidelines

The default configuration of the UMDS Server assigns three workers to service all client connections. For each
worker, four primary threads process data as follows:

• One Client-to-Server Data Thread: handles all data produced by all sending Clients

• One Server-to-Client Data Thread: handles all data dispatched to all receiving Clients

• Two Ultra Messaging Backbone Context Processing Threads: shared by all workers

– UMS context worker thread processes all UMS streaming data from the Ultra Messaging Backbone,
using UMS unicast and multicast transports.

– MIM context worker thread sends MIM data from sending Clients to the Ultra Messaging Backbone.

Four additional threads handle low volume internal command and control. These threads require a small fraction of
the processing done by the primary threads.

4.5.1 Increasing Number of UMDS Workers

For each additional worker configured, the number of Client to Server Data Threads and Server to Client Data
Threads increases by one. For example, four workers will result in four Client to Server Data Threads and four
Server to Client Data Threads. Regardless of the number of workers configured, UMDS uses only two Informatica
High Speed Message Backbone Processing Threads and 4 additional low volume command and control threads.

4.5.2 Workers CPU Cores and Performance

Due to the number of primary threads as described above, increasing the number of workers does not necessarily
increase performance if the number of CPU Cores is four or less. For systems with greater than four cores, set
the number of workers so the number of primary threads never exceeds the number of CPU Cores. See the table
below.

4.5 Worker Configuration Guidelines 27

Workers Client to Server
Threads

Server to Client
Threads

Ultra Messaging
Threads

Number of Pri-
mary Threads

Number of C←↩
PU Cores Rec-
ommended

1 1 1 2 4 4 or less

2 2 2 2 6 6

3 3 3 2 8 8

4 4 4 2 10 10

Proper performance analysis to determine the optimal configuration is recommended.

4.5.3 Workers Versus Client Load

Using multiple workers distributes work load among multiple threads. UMDS assigns each new client connection to
a worker in round robin fashion. For the case of 1 worker, the single worker manages all client connections. If you
configure two workers, then each worker services half the clients. Note, however, the following two limitations:

• The server does not perform any load balancing of clients. For example, if two workers are servicing three
clients each, but one of the six clients produces and/or consumes all the data, that client's worker will not
distribute any processing chores to the other worker.

• UMDS assigns new clients to workers in a round-robin fashion without regard to the current load. If, for
example, a number of clients are evenly distributed across the workers and then all the clients assigned to
a single worker disconnect, the UMDS Server does not move any clients to the idle worker. In addition, new
connections continue to be assigned in a round-robin fashion.

28 UMDS Server

Chapter 5

Umdsd Man Page

umdsd options configfile

Description

umdsd runs the UMDS Server and requires a umdsd configuration file.

Options

-d or -dump-dtd - option dumps the DTD file used to validate the umdsd configuration file to standard output.
After dumping the DTD, umdsd exits instead of initiating the UMDS Server.

-v or -validate - option validates the umdsd configuration file against the DTD. After attempting validation,
umdsd exits instead of initiating the UMDS Server. The exit status will be 0 for a configuration file validated by the
DTD and non-zero otherwise.

-f or -detach option forks umdsd, detaches the child from the controlling terminal and the parent exits immedi-
ately. The umdsd normally remains attached to the controlling terminal and runs until interrupted.

-h or -help - option provides command line help.

Note

The UMDS Server may, under some conditions, return an error message similar to error, not enough
file descriptors. This may be caused by exceeding the default limit of 1024 file descriptors per pro-
cess. To override this limit, edit /etc/security/limits.conf and add a line for the user name that
starts the UMDS Server and increase it to 2048 or higher. This enables use of the ulimit -n command (or
limit openfiles on some systems). Use ulimit -n just before starting the UMDS Server to activate
the new limit.

Exit Status

The exit status from umdsd is 0 for success and some non-zero value for failure.

30 Umdsd Man Page

Chapter 6

Daemon Statistics

The UMDS Server has a simple web server which provides operational information. This information is important
for monitoring the operation and performance of these components. However, while the web-based presentation is
convenient for manual, on-demand monitoring, it is not suitable for automated collection and recording of operational
information for continuous monitoring and historical analysis.

The Daemon Statistics feature supports the background publishing of their operational information via UM mes-
sages. Monitoring systems can now subscribe to this information in much the same way that UM transport statistics
can be subscribed.

6.1 Daemon Statistics Structures

The operational information is published as messages of different types sent over a normal UM topic source (topic
name configurable). Each message is in the form of a binary, C-style data structure.

There are generally two categories of messages: config and stats. A given instance of a category "config" message
does not have content which changes over time. An instance of a category "stats" message has content that does
change over time. The daemon-specific documentation indicates which messages are in which category.

Each message type is configured for a publishing interval. When the publishing interval for a message type expires,
the possible messages are checked to see if its content has materially changed since the last interval. If not, then
the message is not republished. The publishing interval for a stat message is typically set to shorter periods to see
those changes as they occur.

6.2 Daemon Statistics Binary Data

The messages published are in binary form and map onto the C data structures defined for each message type.

The byte order of the structure fields is defined as the host endian architecture of the publishing daemon. Thus,
if a monitoring host receiving the messages has the same endian architecture, the binary structures can be used
directly. If the monitoring host has the opposite endian architecture, the receiver must byte-swap the fields.

The message structure is designed to make it possible for a monitoring application to detect a mismatch in endian
architecture. Detection and byte swapping is demonstrated with daemon-specific example monitoring applications.

32 Daemon Statistics

6.3 Daemon Statistics Versioning

Each message sent by the daemon consists of a standard header followed by a message-type-specific set of fields.
The standard header contains a version field which identifies the version of the C include file used to build the
daemon.

The UMDS Server is built with the include file umdsdmonmsgs.h. With each daemon statistics message sent by
the UMDS Server, it sets the header version field to LBM_UMDSD_DMON_VERSION. With each new release of
the UMDS package, if that include file changes in a substantive way, the value of LBM_UMDSD_DMON_VERSION
is increased. In this way, a monitoring application can determine if it is receiving messages from a store daemon
whose data structures match the monitoring application's structure definitions.

6.4 Daemon Statistics Requests

The daemon can optionally be configured to accept command-and-control requests from monitoring applications.
There are two categories of these requests: "snapshot" and "config". "Snapshot" requests tell the daemon to
immediately republish the desired stats and/or configs without waiting until the next publishing interval. These
requests might be sent by a monitoring application which has only just started running and needs a full snapshot
of the operational information. "Config" requests tell the daemon to modify an operational parameter of the running
daemon.

The monitoring application sends a request to the daemon, and the daemon sends status messages in response.
The exchanges are made via standard UM topicless immediate Request Response messaging. Informatica recom-
mends the use of Unicast Immediate Messaging (UIM) for sending the requests using lbm_unicast_immediate_←↩
request(). To use UIM effectively, Informatica recommends configuring the daemon monitor context for a specific
UIM interface and port using: request_tcp_port (context) and request_tcp_interface (context). This enables the
monitoring application to know how to address the request UIMs to the proper daemon.

The request message is formatted as a simple ASCII string. For the SRS service, the request message is formatted
as a JSON message. The request is sent as a non-topic unicast immediate request message. The daemon reacts
by parsing the request and sending a UM response with a success/failure response. If the request was parsed
successfully, the daemon then performs the requested operation (republishing the data or modifying the operational
parameter). There are daemon-specific example applications which demonstrate the use of this request feature.

6.5 UMDS Daemon Statistics Structures

The different message types are:

• UMDS_DSTATTYPE_CFG

• UMDS_DSTATTYPE_MALLINFO

• UMDS_DSTATTYPE_CONNSUMMARY

• UMDS_DSTATTYPE_CLIENTPERMS

• UMDS_DSTATTYPE_CLIENTATTRS

• UMDS_DSTATTYPE_PERTOPIC

• UMDS_DSTATTYPE_TOPICTOTALS

• UMDS_DSTATTYPE_SOURCE

6.6 UMDS Daemon Statistics Byte Swapping 33

• UMDS_DSTATTYPE_RECEIVER

• UMDS_DSTATTYPE_SMARTHEAP

• UMDS_DSTATTYPE_WORKER

Each one has a specific structure associated with it, as detailed in the file umdsdmonmsgs.h.

Note that message type ending with "CFG" is in the config category. All others are in the stats category. See
Daemon Statistics Structures for information on how the two categories are handled differently.

6.6 UMDS Daemon Statistics Byte Swapping

A monitoring application receiving these messages must detect if there is an endian mismatch (see Daemon Statis-
tics Binary Data). The header structure umdsd_dstat_msg_hdr_t_stct contains a 16-bit field named magic which
is set equal to LBM_UMDS_DMON_MAGIC. The receiving application should compare it to LBM_UMDS_DMO←↩
N_MAGIC and LBM_UMDS_DMON_ANTIMAGIC. Anything else would represent a serious problem.

If the receiving app sees:

magic == LBM_UMDS_DMON_MAGIC

then it can simply access the binary fields directly. However, if it sees:

magic == LBM_UMDS_DMON_ANTIMAGIC

then most (but not all) binary fields need to be byte-swapped. See umdsdmon.c for an example, paying special
attention to the macros COND_SWAPxx (which conditionally swaps based on the magic test) and the functions
byte_swapXX() (which performs the byte swapping).

6.7 UMDS Daemon Statistics String Buffers

UMDS Daemon Statistics data structures sometimes contain string buffers. Strings in these data structures are
always null-terminated. These messages are generally sent as fixed-length equal to the sizes of the structures,
and therefore include all of the declared bytes of the string fields, even if the contained string uses fewer bytes
than declared. For example, the structure umdsd_dstat_connection_summary_record_stct contains the field
user_name which is a char array of size UMDS_DSTAT_CFG_EL_NAME_SZ + 1. If user_name is set to
"p1", then only 3 bytes of the buffer are used (including the null string terminator). However, all UMDS_DSTAT_C←↩
FG_EL_NAME_SZ + 1 bytes will be sent in the UMDS_DSTATTYPE_CONNSUMMARY message type.

There is one exception to this rule: UMDS_DSTATTYPE_CFG.

The UMDS_DSTATTYPE_CFG message is of type umdsd_dstat_config_msg_stct, which contains the structure
umdsd_dstat_config_record_stct, which contains the field data. This field is variable length and contains a
null-terminated string.

6.8 UMDS Daemon Statistics Configuration

UMDS daemon statistics are configured by the UMDS Element "<daemon-monitor>" in the UMDS server configu-
ration.

34 Daemon Statistics

6.9 UMDS Daemon Statistics Requests

The UMDS Daemon supports a monitoring application to send a specific set of requests to control the operation
of Daemon Statistics. The remote-snapshot-request and remote-config-changes-request configuration elements
control whether the Store enables this request feature (defaults to disabled).

If enabled, the monitoring application can send a command message to the UMDS in the form of a topicless
unicast immediate "request" message (see lbm_unicast_immediate_request() with NULL for topic). The format of
the message is a simple ascii string, with or without null termination. Due to the simple format of the message, no
data structure is defined for it.

When the UMDS receives and validates the command, it sends a UM response message back to the requesting
application containing a status message (which is not null-terminated). If the status was OK, the Store also performs
the requested action.

The example program umdsdcmd.c demonstrates the correct way to send the messages and receive the re-
sponses.

Commands enabled by remote-snapshot-request:

version

The UMDS Server returns in its command response the value of LBM_UMDSD_DMON_VERSION. No daemon
statistics messages are published.

snap mallinfo

The UMDS Server immediately publishes the memory allocation usage message of type UMDS_DSTATTY←↩
PE_MALLINFO.

snap cfg

The UMDS Server immediately publishes the UMDS configuration message(s) UMDS_DSTATTYPE_CFG.

snap connsum

The UMDS Server immediately publishes connection summary information message(s) UMDS_DSTATTYP←↩
E_CONNSUMMARY.

snap conndet

The UMDS Server immediately publishes connection details message(s), consisting of an initial UMDS_DST←↩
ATTYPE_CONNSUMMARY message, followed by zero or more of the following messages: UMDS_DSTAT←↩
TYPE_CLIENTPERMS, UMDS_DSTATTYPE_PERTOPIC, UMDS_DSTATTYPE_TOPICTOTALS, UMDS_←↩
DSTATTYPE_RECEIVER, UMDS_DSTATTYPE_SOURCE, and UMDS_DSTATTYPE_CLIENTATTRS.

snap worksum

The UMDS Server immediately publishes worker summary message(s), consisting of an initial UMDS_DST←↩
ATTYPE_WORKER message, followed by zero or more UMDS_DSTATTYPE_CONNSUMMARY messages.

snap workdet

The UMDS Server immediately publishes worker summary message(s), consisting of an initial UMDS_DST←↩
ATTYPE_WORKER message, followed by zero or more of the following messages: UMDS_DSTATTYPE_C←↩
LIENTPERMS, UMDS_DSTATTYPE_PERTOPIC, UMDS_DSTATTYPE_TOPICTOTALS, UMDS_DSTATT←↩
YPE_RECEIVER, UMDS_DSTATTYPE_SOURCE, and UMDS_DSTATTYPE_CLIENTATTRS.

Commands enabled by remote-config-changes-request:

6.10 UMDS Daemon Statistics Example Files 35

mallinfo N

Set the publishing interval for memory allocation usage.
For example: mallinfo 5

worksum N

Set the publishing interval for the worker summary messages.
For example: worksum 5

workdet N

Set the publishing interval for the worker detail messages.
For example: workdet 5

6.10 UMDS Daemon Statistics Example Files

The following files are provided in source code form to assist users in writing monitoring applications using the
UMDS Daemon Statistics feature.

• umdsdmon.c - C program to read UMDS Daemon Statistics and print them.

• umdsdcmd.c - C program to send Daemon Statistics commands to the UMDS server.

• umdsdmonmsgs.h - C header file which defines the internal structures. You can also see its Doxygen
documentation.

• getopt.c - GNU command-line option parsing code (useful for building umdsdmon.c and umdsdcmd.c
on Windows platform).

• replgetopt.h - C header file for getopt.c.

36 Daemon Statistics

Chapter 7

UMDS Web Monitor

Use the UMDS Web Monitor to monitor the UMDS Server's connections. The monitor displays statistics for each
connection, with a link to more details about the client connection. You configure the UMDS Web Monitor with the
UMDS Element "<web-monitor>" in the UMDS daemon configuration file.

7.1 Main Menu

Use the UMDS Web Monitor Main Menu to view connections, the configuration file, current memory allocation
statistics, or to stop the UMDS Server daemon.

7.2 List Current Connections

The Connection List page shows all current UMDS client-server connections. The page organizes connections by
Worker subsystem. If you mouse over table elements, you see pop-up tooltips displays.

38 UMDS Web Monitor

The Connection List display has the following column headings:

• Connection ID - Identifies a connection to a UMDS Client in x.y format, where x designates the worker thread
number and y is a connection identifier for that thread. Click a Connection ID to go to the Connection Details
page.

• User Name - Name of the user logged in for this connection, as sent by the client. If the UMDS Client does
not supply a user name, this item is blank. You specify authenticated users in the Basic Authentication File.

• Application - Name of the client application connected to the server, as sent by the client. You can specify
an application name in the Basic Authentication File or from within the application.

• Client IP - IP address of the host where the UMDS Client application is running.

• Received From Client - Number of messages and number of bytes that the UMDS Server has received from
the UMDS Client applications. Pause on the value to see a tooltip display separating the value into user data,
requests, responses, and control data.

• Sent To Client - Number of messages and number of bytes that the UMDS Server has sent to UMDS
Client applications. Pause on the value to see a tooltip display separating the value into user data, requests,
responses, and control data.

• Messages Lost/Discarded - Total number of messages that the UMDS Server either lost or discarded, based
on the following reasons:

– A: - messages dropped because the message queue has reached the limit set by parameter
msg-age-limit.

– S: - messages dropped because the message queue has reached the limit set by parameter
msg-q-size-limit.

7.3 Connection Details 39

– L: - messages never enqueued on the client queue in the UMDS Server. Transport level loss can happen
between the UMDS Server and external Ultra Messaging sources, or between sources and receivers
internal to the UMDS Server.

7.3 Connection Details

This page displays information specific to the Connection ID clicked on in the UMDS Connection List page.

The Client Details page begins with the following items:

• User Name - Name of the user authenticated for this connection, as sent by the client. This item is blank if
no user is authenticated. You specify authenticated users in the Basic Authentication File.

• Application Name - Name of the client application connected to the server, as sent by the client. You specify
applications in the Basic Authentication File.

• Client Host - IP address of the host where the UMDS Client application is running.

• Permissions - Permissions configured for the Application or User Name. These settings are deprecated and
have no effect.

The Message Queues display has the following column headings:

40 UMDS Web Monitor

• Topic - For per-topic message queues, this is the topic name. Default is the non-topic-specific default
message queue.

• Attributes - The configured queue size limit for this message queue.

• Cumulative Total Messages - The number of messages that have entered the queue since being created or
reset.

• Messages Currently in Queue - The number of messages the queue is holding at the time the page was
loaded or refreshed. The UMDS Server has not yet delivered these messages to a UMDS Client receiving
application.

• Messages Lost/Discarded - Total number of messages that the UMDS Server either lost or discarded, based
on the following reasons:

– A: - messages dropped because the message queue has reached the limit set by parameter
msg-age-limit

– S: - messages dropped because the message queue has reached the limit set by parameter
msg-q-size-limit

– L: - messages never enqueued on the client queue in the UMDS Server. Transport level loss can
happen between the UMDS Server and external Ultra Messaging sources, or between sources and
receivers internal to the UMDS Server.

The Client Details page ends with the following items:

• Receivers - Receivers listed by index number and topic name.

• Sources - The number of sources associated with this UMDS Client.

• Attribute Table - A display of the configuration option values for this UMDS Client.

• Clear Connection "Messages Lost/Discarded" Counts - Click this button to reset the Messages Lost/←↩
Discarded values to 0.

• Clear Connection Statistics - Click this button to clear the connection statistics for this UMDS Client.

• Disconnect this Client - Click this button to disconnect this UMDS Client from the UMDS Server. You
can configure this button to be hidden with the <server> element allow-shutdown-via-webmon
attribute.

7.4 Current Server Configuration File

This page displays the umdsd configuration file.

7.5 Dump Current Memory Allocation 41

7.5 Dump Current Memory Allocation

This page displays current memory allocation statistics.

7.6 Quit Server

Stop the UMDS Server. This option closes all server connections and terminates the umdsd process. You can
configure this button to be hidden with the <server> element allow-shutdown-via-webmon attribute.

42 UMDS Web Monitor

Chapter 8

UMDS Server Configuration

You configure the UMDS Server with four files:

1. The umdsd Configuration File (in xml format). Required and typically specified on the UMDS Server program
command line.

2. The UM License File (in Ultra Messaging license format). Optional and specified in the UMDS server config-
uration file.

3. The UM Configuration File that affects the Ultra Messaging Context running on the same host as the UMDS
Server. Does not directly affect the activity between UMDS Server and Client Applications. See the Ultra
Messaging Configuration Guide. Optional and specified in the UMDS server configuration file.

4. The Basic Authentication File (in xml format). Optional and specified in the UMDS server configuration file.

8.1 umdsd Configuration File

The following example shows the element structure of the xml configuration file that you use for the umdsd UMDS
Server daemon.

<?xml version="1.0" encoding="UTF-8"?>
<umds-daemon version="1.0">

<daemon>
<log type="file" xml:space="preserve">umdsd.log</log>
<uid>12345</uid>

<gid>23456</gid>
<pidfile xml:space="preserve">example.pid</pidfile>
<lbm-license-file>example.lic</lbm-license-file>
<lbm-config>example.lbmcfg</lbm-config>

<server bind-addr="*:14701" num-workers="3" msg-age-limit="1000"
msg-q-size-limit="1048576"/>

<client>
<server-list client-write="yes">LIST</server-list>
<server-ka-interval client-write="range"

min="0" max="2147483648">2000</server-ka-interval>
<client-ka-threshold client-write="range"

min="0" max="2147483648">3000</client-ka-threshold>
<client-ka-interval client-write="range"

min="0" max="2147483648">10000</client-ka-interval>

44 UMDS Server Configuration

<server-ka-threshold client-write="yes">11000</server-ka-threshold>
<server-rcvbuf client-write="yes">0</server-rcvbuf>
<server-sndbuf client-write="yes">0</server-sndbuf>
<server-nodelay client-write="yes">0</server-nodelay>
<client-rcvbuf client-write="yes">0</client-rcvbuf>
<client-sndbuf client-write="yes">0</client-sndbuf>
<client-nodelay client-write="yes">0</client-nodelay>
<server-reconnect client-write="yes">0</server-reconnect>

</client>
<authentication>
<basic xml:space="preserve">BASIC_FILE</basic>

</authentication>
<web-monitor>172.16.254.1:8080</web-monitor>
<monitor object="source" interval="7">
<transport module="lbm" options="string"/>
<format module="csv" options="string"/>
<application-id xml:space="preserve">STRING</application-id>

</monitor>
<topics>

<topic pattern="BEW.xyz.*" type="PCRE">
<umds-attributes>
<option type="umds-receiver" name="receiver-queue-type"

value="topic" />
<option type="umds-receiver" name="topic-queue-size-limit"

value="200000" />
</umds-attributes>

</topic>
<topic pattern="BEW.xyz" type="direct">

<umds-attributes>
<option type="umds-receiver" name="receiver-queue-type"

value="default" />
<option type="umds-receiver" name="topic-queue-size-limit"

value="200000" />
</umds-attributes>

</topic>
</topics>

</daemon>
</umds-daemon>

8.1.1 UMDS Element "<umds-daemon>"

Container element which holds the UMDS server's configuration. Also defines the version of the configuration format
used by the file.

Required.

• Children: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

version Version number of user's configuration file. "1.0" - Initial version "1.0"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

8.1 umdsd Configuration File 45

...
</umds-daemon>

8.1.2 UMDS Element "<daemon>"

Container element which holds the UMDS server's configuration.

Required.

• Cardinality: 0 .. 1

• Parent: <umds-daemon>

• Children: <log>, <uid>, <gid>, <pidfile>, <lbm-license-file>, <lbm-config>, <server>, <client>,
<permissions>, <authentication>, <web-monitor>, <daemon-monitor>, <monitor>, <topics>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
...

</daemon>
</umds-daemon>

8.1.3 UMDS Element "<topics>"

Container element for topics that the UMDS server forwards to UMDS client applications. Use this element to apply
UMS Configuration Options to individual topics or topic patterns. You can also configure topics and topic patterns
to have individual message queues, which can mitigate possible message loss.

Optional. If omitted, topics use the UMDS Server default message queue, and these topics do not use specific UMS
configuration options.

• Cardinality: 0 .. 1

• Parent: <daemon>

• Children: <topic>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<topics>

...
</topics>
...

</daemon>
</umds-daemon>

46 UMDS Server Configuration

8.1.4 UMDS Element "<topic>"

Holds the configuration for a specific set of topics.

Required, if UMDS Element "<topics>" is present.

Note: if type "direct" is used, the pattern must exactly match the entire topic string. For example,
pattern="x.y" type="direct" will only match the topic "x.y". Topcis "x.yz" and "zx.y" and will
be excluded. However, if the type is a regular expression, no assumption is made regarding the start or end of the
topic name. The user is expected to make use of anchor metacharacters "‘∧‘" and "‘$‘" if needed. For example,
pattern="x" type="PCRE" will match topics "x", "xyz", "zyx", and "axe". If it is desired to match
only topics that start with "x", use pattern="∧x" type="PCRE". That will match "x" and "xyz", but ex-
clude "zyx" and "axe". Also remember that a period (".") is a metacharacter which matches any character,
and must be escaped if an actual period is desired. For example, pattern="∧NASD\\." type="PCRE" will
match topics "NASD.a", "NASD.a.b", and "NASD\.", but will exclude "NASDa.b" and "XNASD.a".

• Parent: <topics>

• Children: <umds-attributes>

XML Attributes:

Attribute Description Valid Values Default Value

pattern Specifies a pattern used to
match topic names. Used to
select incoming topics to apply
the configuration.

string (no default; must be specified)

type Specifies how the pattern
should be interpreted.

"direct" - Exact match for
full topic name.
"PCRE" - Regular expression
match using PCRE syntax.
"regexp" - (Not recom-
mended.) Regular expression
match using POSIX extended
regular expressions syntax.

"direct"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<topics>
<topic pattern="^NASD\..*" type="PCRE">
...

</topic>
...

</topics>
...

</daemon>
</umds-daemon>

8.1.5 UMDS Element "<umds-attributes>"

Container for one or more UMDS Element "<option>" elements which configure the topic(s) matching the parent
UMDS Element "<topic>".

8.1 umdsd Configuration File 47

Optional, but there is no use case for omission.

• Cardinality: 0 .. 1

• Parent: <topic>

• Children: <option>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<topics>

<topic pattern="^NASD\..*" type="PCRE">
<umds-attributes>

...
</umds-attributes>

</topic>
...

</topics>
...

</daemon>
</umds-daemon>

8.1.6 UMDS Element "<option>"

Specifies a configuration option for the topic(s) matching the parent UMDS Element "<topic>".

Required, if UMDS Element "<umds-attributes>" is present.

Each option supplied is of one of six types divided into two classes:
- Types "lbm-receiver", "lbm-wildcard-receiver", "lbm-source", and "lbm-context". These are used to specify UM
configuration options, as described in the UM Configuration Guide.
- Types "umds-receiver" and "umds-source". These are used to specify UMDS-specific options, as described in
section UMDS Topic Options.

Note

Although "umds-source" is a valid "type" attribute for the UMDS Element "<option>", there are currently
no supported "umds-source" options available. The "umds-source" type is defined in the DTD for future
expansion.

• Parent: <umds-attributes>

XML Attributes:

48 UMDS Server Configuration

Attribute Description Valid Values Default Value

type Specifies the scope of the con-
figuration option being set.

"lbm-receiver" - UM
configuration option of "re-
ceiver" scope. See Config
Guide.
"lbm-wildcard-receiver"
- UM configuration option of
"wildcard_receiver" scope.
See Config Guide.
"lbm-context" - UM
configuration option of "con-
text" scope. See Config
Guide.
"lbm-source" - UM
configuration option of
"source" scope. See Config
Guide.
"umds-receiver" - Con-
figuration option specific to
UMDS client-side receivers.
See UMDS Topic Options.
"umds-source" - Con-
figuration option specific to
UMDS client-side sources.
See UMDS Topic Options.

(no default; must be specified)

name Specifies the name of the con-
figuration option being set.

attr_name (no default; must be specified)

value Specifies the desired value for
the configuration option being
set.

string (no default; must be specified)

Example:

In this example, the server will configure its wildcard receiver for topics such as "NASD.X" and "NASD.Y" to not stop
topic resolution queries using the UM configuration option resolver_query_minimum_duration_wildcard (receiver).

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<topics>
<topic pattern="^NASD\..*" type="PCRE">
<umds-attributes>

<option type="lbm-wildcard-receiver"
name="resolver_query_minimum_duration"
value="0"/>

...
</umds-attributes>

</topic>
...

</topics>
...

</daemon>
</umds-daemon>

8.1 umdsd Configuration File 49

8.1.7 UMDS Element "<monitor>"

Enables and configures the UM transport statistics monitoring function. Multiple instances of this element are
typically supplied to enable monitoring of the different types of UM objects created by the UMDS server during its
operation.

Opional. If omitted, no monitoring takes place.

• Cardinality: 0 .. 1

• Parent: <daemon>

• Children: <transport>, <format>, <application-id>

XML Attributes:

Attribute Description Valid Values Default Value

object The UM object type to monitor. "context" - Monitor UM
contexts.
"source" - Monitor UM
sources.
"receiver" - Monitor UM
receivers.

(no default; must be specified)

interval The time, in seconds, that
monitoring statistics are sam-
pled and published.

string "5"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<monitor object="context" interval="60">
...

</monitor>
<monitor object="receiver" interval="30">
...

</monitor>
...

</daemon>
</umds-daemon>

8.1.8 UMDS Element "<application-id>"

Identification string, used by monitoring applications to identify the application (where the UMDS server itself is the
application in this case).

Optional. If omitted, application ID is not used.

• Parent: <monitor>

XML Attributes:

50 UMDS Server Configuration

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<monitor object="context" interval="60">
<application-id>

UMDS server 123
</application-id>
...

</monitor>
...

</daemon>
</umds-daemon>

8.1.9 UMDS Element "<format>"

Configures the data formatting module for publishing monitoring statistics.

Optional. If omitted, uses csv format.

This element is normally not supplied since there is only one supported format, "csv", and UMDS defaults to that
format. The element is defined in the DTD for future expansion.

• Parent: <monitor>

XML Attributes:

Attribute Description Valid Values Default Value

module Specifies the formatting module to use.
Currently, only "csv" is supported.

"csv" - Formatting module which pro-
duces delimiter-separated values.

"csv"

options Options string to be passed to the for-
matting module.

string (null string)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<monitor object="context" interval="60">
<format module="csv"/>
...

</monitor>
...

</daemon>
</umds-daemon>

8.1 umdsd Configuration File 51

8.1.10 UMDS Element "<transport>"

Configures the data transmission module for publishing monitoring statistics.

Optional. If omitted, uses lbm transport.

• Parent: <monitor>

XML Attributes:

Attribute Description Valid Values Default Value

module Specifies the transmission module to
use.

"lbm" - Use normal UM source to
publish.
"udp" - Use a simple UDP socket to
publish.

"lbm"

options Options string to be passed to the
transport module.

string (null string)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<monitor object="context" interval="60">
<transport module="lbm"/>
...

</monitor>
...

</daemon>
</umds-daemon>

8.1.11 UMDS Element "<daemon-monitor>"

Configures the Daemon Statistics feature. See Daemon Statistics for information on Daemon Statistics.

Optional. If omitted, Daemon Statistics are not published.

• Cardinality: 0 .. 1

• Parent: <daemon>

• Children: <publishing-interval>, <remote-snapshot-request>, <remote-config-changes-request>, <lbm-
config>

XML Attributes:

Attribute Description Valid Values Default Value

topic Topic name to use for publishing Daemon Statistics. string "umdsd.monitor"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<daemon-monitor>

52 UMDS Server Configuration

...
</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1.12 UMDS Element "<lbm-config>"

Specifies the file that contains UM configuration options associated with the parent element.

• Cardinality: 0 .. 1

• Parent: <daemon>, <daemon-monitor>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<daemon-monitor>
<lbm-config>/

etc/umds_dmon.cfg
</lbm-config>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1.13 UMDS Element "<remote-config-changes-request>"

Configures whether the UMDS server will respond to monitoring apps requests to change the rate at which Daemon
Statistics messages are published.

Optional. If omitted, change requests will be ignored.

See Daemon Statistics for information on Daemon Statistics.

• Cardinality: 0 .. 1

• Parent: <daemon-monitor>

XML Attributes:

8.1 umdsd Configuration File 53

Attribute Description Valid Values Default Value

allow Enable or disable change requests. "0" - UMDS will ignore change requests.
"1" - UMDS will respond to change requests.

"0"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<daemon-monitor>
<remote-config-changes-request allow="1"/>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1.14 UMDS Element "<remote-snapshot-request>"

Configures whether the UMDS server will respond to monitoring apps requests to send on-demand snapshots of
daemon statistics.

Optional. If omitted, snapshot requests will be ignored.

See Daemon Statistics for information on Daemon Statistics.

• Cardinality: 0 .. 1

• Parent: <daemon-monitor>

XML Attributes:

Attribute Description Valid Values Default Value

allow Enable or disable snapshot requests. "0" - UMDS will ignore snapshot re-
quests.
"1" - UMDS will respond to snapshot
requests.

"0"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<daemon-monitor>
<remote-snapshot-request allow="1"/>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

54 UMDS Server Configuration

8.1.15 UMDS Element "<publishing-interval>"

Configures the rate at which Daemon Statistics messages are published.

Optional. If omitted, default publishing intervals will be used (see children elements for defaults).

See Daemon Statistics for information on Daemon Statistics.

• Cardinality: 0 .. 1

• Parent: <daemon-monitor>

• Children: <group>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<daemon-monitor>
<publishing-interval>

...
</publishing-interval>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

8.1.16 UMDS Element "<group>"

Configures the rate at which one particular grouping of Daemon Statistics messages are published.

Optional. If omitted, the group publishes at its default rate.

See Daemon Statistics for information on Daemon Statistics.

• Parent: <publishing-interval>

XML Attributes:

8.1 umdsd Configuration File 55

Attribute Description Valid Values Default Value

name Statistics group to set. "default" - Sets interval
for those statistics groups
which are not explicity set by
other <group> elements.
"malloc-info-ivl" -
Sets interval for message type
umdsd_dstat_mallinfo_←↩
msg_stct.
"worker-details-ivl"
- Sets interval for worker detail
reports, which consists of
a set of UMDS_DSTATT←↩
YPE_WORKER messages,
one per worker, and a set
of UMDS_DSTATTYPE_←↩
CLIENTPERMS, UMDS_←↩
DSTATTYPE_PERTOPIC,
UMDS_DSTATTYPE_TOPI←↩
CTOTALS, UMDS_DSTAT←↩
TYPE_RECEIVER, UMDS_←↩
DSTATTYPE_SOURCE, and
UMDS_DSTATTYPE_CLIE←↩
NTATTRS messages.
"worker-summary-ivl"
- Sets interval for worker sum-
mery reports, which consists
of a set of UMDS_DSTAT←↩
TYPE_WORKER messages,
one per worker, and a set of
UMDS_DSTATTYPE_CON←↩
NSUMMARY messages, one
for each connection.

(no default; must be specified)

ivl Time, in seconds, between
publishing the statistics group.

string (no default; must be specified)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<daemon-monitor>
<publishing-interval>

<group name="default" ivl="5">
<group name="worker-details-ivl" ivl="30">
...

</publishing-interval>
...

</daemon-monitor>
...

</daemon>
</umds-daemon>

56 UMDS Server Configuration

8.1.17 UMDS Element "<web-monitor>"

Enables the web-based server monitoring and control functions, and configures the IP address and port to listen
on. Value is in IP:PORT format. An IP value of ∗ indicates any interface (for example: ∗:8080).

Optional. If omitted, the web monitor is disabled.

• Cardinality: 0 .. 1

• Parent: <daemon>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<web-monitor>
172.16.254.1:8080

</web-monitor>
...

</daemon>
</umds-daemon>

8.1.18 UMDS Element "<authentication>"

Determines if UMDS clients use authentication. If empty (<authentication/>>), no authentication occurs.

Required.

• Parent: <daemon>

• Children: <none>, <basic>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<authentication>
...

</authentication>
...

</daemon>
</umds-daemon>

8.1.19 UMDS Element "<basic>"

Enables basic authentication of the client with the server, and supplies the name of the authentication file. See
Basic Authentication File.

Optional.

• Cardinality: 0 .. 1

• Parent: <authentication>

XML Attributes:

8.1 umdsd Configuration File 57

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<authentication>
<basic>/

etc/umds_basic_auth.txt
</basic>

</authentication>
...

</daemon>
</umds-daemon>

8.1.20 UMDS Element "<none>"

No authentication is done.

Optional.

• Cardinality: 0 .. 1

• Parent: <authentication>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<authentication>
<none/>

</authentication>
...

</daemon>
</umds-daemon>

8.1.21 UMDS Element "<permissions>"

This option is deprecated. Setting values has no effect.

• Cardinality: 0 .. 1

• Parent: <daemon>

• Children: <can-send>, <can-stream>, <can-reqresp>

Do not use.

58 UMDS Server Configuration

8.1.22 UMDS Element "<can-reqresp>"

This option is deprecated. Setting values has no effect.

• Cardinality: 0 .. 1

• Parent: <permissions>

Do not use.

8.1.23 UMDS Element "<can-stream>"

This option is deprecated. Setting values has no effect.

• Cardinality: 0 .. 1

• Parent: <permissions>

Do not use.

8.1.24 UMDS Element "<can-send>"

This option is deprecated. Setting values has no effect.

• Cardinality: 0 .. 1

• Parent: <permissions>

Do not use.

8.1.25 UMDS Element "<client>"

Sets optional client operating parameters.

Required.

Each client child element can be configured to be overwritten by a client application with the client-write attribute.
Some client elements (keep-alive, receive and send socket buffers) can also restrict the ability of a client application
to overwrite a client element by specifying a range of acceptable values from the client application.

• Parent: <daemon>

• Children: <server-list>, <server-ka-interval>, <client-ka-threshold>, <client-ka-interval>, <server-ka-
threshold>, <server-rcvbuf>, <server-sndbuf>, <server-nodelay>, <client-rcvbuf>, <client-sndbuf>,
<client-nodelay>, <server-reconnect>

Example:

8.1 umdsd Configuration File 59

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
...

</client>
...

</daemon>
</umds-daemon>

8.1.26 UMDS Element "<server-reconnect>"

Indicates whether the client should attempt to reconnect to the server if the connection fails.

Optional. If omitted, reconnection is enabled.

Value of 1 turns on reconnect. The client then tries to reconnect to a server in the UMDS Element "<server-list>".
A value of 0 prevents the client from reconnecting to any server after connection failure.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting for
this element.

"yes" - Client is allowed to override.
"no" - Client is not allowed to over-
ride.

"yes"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<server-reconnect client-write="no">

1
</server-reconnect>
...

</client>
...

</daemon>
</umds-daemon>

8.1.27 UMDS Element "<client-nodelay>"

Specify if the UMDS client's TCP connection to the server should set the TCP_NODELAY socket option, which
disables Nagle's algorithm.

Optional. If omitted, TCP_NODELAY is not set (Nagle's algorithm is retained).

This option should be set if the lowest-possible latency is desired. Leaving it unset permits more-efficient use of
network resources.

• Parent: <client>

60 UMDS Server Configuration

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the client setting for
this element.

"yes" - Client is allowed to override.
"no" - Client is not allowed to over-
ride.

"yes"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<client-nodelay client-write="yes">

1
</client-nodelay>
...

</client>
...

</daemon>
</umds-daemon>

8.1.28 UMDS Element "<client-sndbuf>"

Specify the UMDS client's TCP's SO_SNDBUF (send-side socket buffer size) in its connection to the server.

Optional. If omitted, client's operating system sets it.

It is usually recommended not to set this option.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<client-sndbuf client-write="yes">

8.1 umdsd Configuration File 61

524288
</client-sndbuf>
...

</client>
...

</daemon>
</umds-daemon>

8.1.29 UMDS Element "<client-rcvbuf>"

Specify the UMDS client's TCP's SO_RCVBUF (receive-side socket buffer size) in its connection to the server.

Optional. If omitted, client's operating system sets it.

It is usually recommended not to set this option.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<client-rcvbuf client-write="yes">

524288
</client-rcvbuf>
...

</client>
...

</daemon>
</umds-daemon>

62 UMDS Server Configuration

8.1.30 UMDS Element "<server-nodelay>"

Specify if the UMDS server's TCP connection to the client should set the TCP_NODELAY socket option, which
disables Nagle's algorithm.

Optional. If omitted, TCP_NODELAY is not set (Nagle's algorithm is retained).

This option should be set if the lowest-possible latency is desired. Leaving it unset permits more-efficient use of
network resources.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting for
this element.

"yes" - Client is allowed to override.
"no" - Client is not allowed to over-
ride.

"yes"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<server-nodelay client-write="yes">

1
</server-nodelay>
...

</client>
...

</daemon>
</umds-daemon>

8.1.31 UMDS Element "<server-sndbuf>"

Specify the UMDS server's TCP's SO_SNDBUF (send-side socket buffer size) in its connection to the client.

Optional. If omitted, server's operating system sets it.

It is usually recommended not to set this option.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

8.1 umdsd Configuration File 63

Attribute Description Valid Values Default Value
min Client's override must be at least this

value.
string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<server-sndbuf client-write="yes">

524288
</server-sndbuf>
...

</client>
...

</daemon>
</umds-daemon>

8.1.32 UMDS Element "<server-rcvbuf>"

Specify the UMDS server's TCP's SO_RCVBUF (receive-side socket buffer size) in its connection to the client.

Optional. If omitted, server's operating system sets it.

It is usually recommended not to set this option.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<server-rcvbuf client-write="yes">

524288

64 UMDS Server Configuration

</server-rcvbuf>
...

</client>
...

</daemon>
</umds-daemon>

8.1.33 UMDS Element "<server-ka-threshold>"

Number of milliseconds of silence to wait before connection is declared dead.

Optional. If omitted, defaults to 11000

n the absence of message or keep-alive traffic for the threshold, the server declares the connection dead. This
value should be at least one second (1000 ms) greater than the UMDS Element "<client-ka-interval>". See also
Keep Alive Timers During Idle Periods.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<server-ka-threshold client-write="yes">

12000
</server-ka-threshold>
...

</client>
...

</daemon>
</umds-daemon>

8.1 umdsd Configuration File 65

8.1.34 UMDS Element "<client-ka-interval>"

Milliseconds between keep-alive messages from the client.

Optional. If omitted, defaults to 10000

In the absence of message traffic, the client sends keep-alive messages at this interval. This value should be at
least one second (1000 ms) less than UMDS Element "<server-ka-threshold>" Element. See also Keep Alive
Timers During Idle Periods.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<client-ka-interval client-write="yes">

8000
</client-ka-interval>
...

</client>
...

</daemon>
</umds-daemon>

8.1.35 UMDS Element "<client-ka-threshold>"

Number of milliseconds of silence to wait before connection is declared dead.

Optional. If omitted, defaults to 3000

In the absence of message or keep-alive traffic for the threshold, the client declares the connection dead and
attempts to reconnect. This value should be at least one second (1000 ms) greater than the UMDS Element
"<server-ka-interval>". See also Keep Alive Timers During Idle Periods.

• Parent: <client>

XML Attributes:

66 UMDS Server Configuration

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

max Client's override must be no more
than this value.

string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<client-ka-threshold client-write="yes">

4000
</client-ka-threshold>
...

</client>
...

</daemon>
</umds-daemon>

8.1.36 UMDS Element "<server-ka-interval>"

Milliseconds between keep-alive messages from the client.

Optional. If omitted, defaults to 2000

In the absence of message traffic, the client sends keep-alive messages at this interval. This value should be
at least one second (1000 ms) less than UMDS Element "<client-ka-threshold>" Element. See also Keep Alive
Timers During Idle Periods.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting
for this element.

"yes" - Client is allowed to over-
ride.
"no" - Client is not allowed to over-
ride.
"range" - Client is allowed to
override within a given range of val-
ues. If range attribute is used,
must also supply min and max at-
tributes.

"yes"

min Client's override must be at least this
value.

string "0"

8.1 umdsd Configuration File 67

Attribute Description Valid Values Default Value
max Client's override must be no more

than this value.
string "2147483648"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<server-ka-interval client-write="yes">

3000
</server-ka-interval>
...

</client>
...

</daemon>
</umds-daemon>

8.1.37 UMDS Element "<server-list>"

Comma-separated list of UMDS server addresses (IP:Port) that the client should use.

Optional. If omitted, the client uses the server list in its own configuration.

This allows a server to be used as a "redirection" service. I.e. a client can be initially configured to connect to UMDS
server A, which re-directs the client to the production server.

• Parent: <client>

XML Attributes:

Attribute Description Valid Values Default Value

client-write Specify if the client application is al-
lowed to override the server setting for
this element.

"yes" - Client is allowed to override.
"no" - Client is not allowed to over-
ride.

"yes"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<client>
<server-list client-write="no">

10.11.12.13:14701,10.11.12.14:14701
</server-list>
...

</client>
...

</daemon>
</umds-daemon>

68 UMDS Server Configuration

8.1.38 UMDS Element "<server>"

Configure the operating parameters UMDS server with the attributes supplied.

Required.

• Parent: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

bind-addr IP/Port that the UMDS server lis-
tens on for client connections.

string "∗:14701"

num-workers Number of workers to create to
service clients. See Worker Con-
figuration Guidelines.

string "3"

msg-age-limit Maximum age in milliseconds be-
fore umdsd deletes the oldest
messages when it reaches this
limit. To remove this limit, set this
attribute to zero.

string "1000" (1 sec)

msg-q-size-limit Maximum size in bytes of mes-
sage queue. Umdsd deletes the
oldest messages when it reaches
this limit. To remove the limit, set
this attribute to zero.

string "1048576"

allow-shutdown-via-webmon Control if the UMDS web monitor
offers a "Quit Server" button in the
main page, and a "Disconnect this
Client" button in the Client Details
page. Value "0" disables the but-
tons. Value "1" enables the but-
tons.

string "0" (disable)

request-timeout Duration for each request to re-
main open (accepting responses).

string "10,000" (10 sec)

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<server bind-addr="*.14701"

num-workers="3"
msg-age-limit="1000"
msg-q-size-limit="1048576"
request-timeout="10000"
allow-shutdown-via-webmon="0"

\>
...

</daemon>
</umds-daemon>

8.1.39 UMDS Element "<lbm-license-file>"

Specifies the pathname where the the user has placed their UM license file.

8.1 umdsd Configuration File 69

Optional. if omitted, the license must be supplied via an environment variable.

• Cardinality: 0 .. 1

• Parent: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<lbm-licnese-file>/etc/umdsd.lic</lbm-licnese-file>
...

</daemon>
</umds-daemon>

8.1.40 UMDS Element "<pidfile>"

Specifies the pathname where the UMDS server stores its Process ID (PID).

Optional. If omitted, the server does not store its PID in a file.

• Cardinality: 0 .. 1

• Parent: <daemon>

XML Attributes:

Attribute Description Valid Values Default Value

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<pidfile>/var/run/umdsd.pid</pidfile>
...

</daemon>
</umds-daemon>

70 UMDS Server Configuration

8.1.41 UMDS Element "<gid>"

Specifies the Group ID (GID) for the server process (if run as root).

Optional. If omitted, the GID of the parent process is inherited.

• Cardinality: 0 .. 1

• Parent: <daemon>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<gid>5555</gid>
...

</daemon>
</umds-daemon>

8.1.42 UMDS Element "<uid>"

Specifies the User ID (UID) for the server process (if run as root).

Optional. If omitted, the UID of the parent process is inherited.

• Cardinality: 0 .. 1

• Parent: <daemon>

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<uid>5555</uid>
...

</daemon>
</umds-daemon>

8.1.43 UMDS Element "<log>"

Configures UMDS server's logging behavior. The value contained within the <log>...</log> is a file name,
but is only used if the "type" attribute is set to "file".

Optional. If omitted, logs are written to Standard Out.

• Cardinality: 0 .. 1

• Parent: <daemon>

XML Attributes:

8.1 umdsd Configuration File 71

Attribute Description Valid Values Default Value

type Specifies the method of logging. "file" - Logs to a text file.
"syslog" - Logs to the Unix SYS←↩
LOG facility.
"console" - Logs to standard out-
put.

"console"

xml:space Controls how XML handles spaces in
the value string.

"default" - Trims most whites-
pace.
"preserve" - Retains whitespace
as entered.

"default"

Example 1: (write log messages to Standard Out)

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<log type="console"/>
...

</daemon>
</umds-daemon>

Example 2: (write log messages to "umds.log" file)

<?xml version="1.0" encoding="UTF-8" ?>
<umds-daemon version="1.0">

<daemon>
<log type="file" frequency="daily">umds.log</log>
...

</daemon>
</umds-daemon>

8.1.44 UMDS Topic Options

The UMDS server's configuration file can contain one or more UMDS Element "<option>" elements to allow the
user to have topic-specific configurations.

Note

Although "umds-source" is a valid type attribute for the UMDS Element "<option>", there are currently
no supported "umds-source" options available. The "umds-source" type is defined in the DTD for future
expansion.

Available options for type "umds-receiver":

Option Description Default Value

receiver-queue-type topic or default. The value topic
creates a queue for the topic. The value
default places messages for the topic in
the client's default queue.

topic

topic-queue-size-limit Maximum size in bytes of topic message
queue. UMDS Server deletes oldest mes-
sages when the queue reaches this config-
ured limit. A value of 0 (zero) means no limit.

1048576

72 UMDS Server Configuration

Option Description Default Value

use-late-join Controls whether UMDS receivers use Late
Join for this topic.
To disable Late Join for UMDS receivers, set
this option to 0 (Off).

1 (On)

message-cache-size Specifies the size, in number of messages, of
the Late Join message cache for this topic.

1

ignore-unique-receiver-attributesIndicates which set of lbm-receiver op-
tions a UMDS Client application uses when
it discovers a source/topic that matches a
wildcard receiver pattern. Both the wildcard
pattern and the individual topic might have
lbm-receiver options. The default value
of 1 ignores the lbm-receiver individual
topic options, and instead uses the options
configured for the wildcard pattern. This value
can provide more efficient control over options
for all receivers. Setting this option to 0 (zero)
instructs the UMDS Client application to use
lbm-receiver options configured for the
individual topic.

1 (Ignore)

8.2 UM License File

The Ultra Messaging license file contains the Ultra Messaging license key. The file name is specified with the U←↩
MDS Element "<lbm-license-file>". If omitted from the umdsd Configuration File, umdsd looks for the environment
variables, LBM_LICENSE_INFO or LBM_LICENSE_FILENAME.

8.3 UM Configuration File

This file is optional. You specify this file in the umdsd Configuration File with the UMDS Element "<lbm-config>".
The Ultra Messaging Configuration File contains configuration options for the UMDS Server's Ultra Messaging
context. If omitted, Ultra Messaging uses the factory default values. See the Ultra Messaging Configuration Guide
for complete details.

Do not include the following options in the Ultra Messaging configuration file when you use it with the umdsd
daemon. UMDS ignores these options if they appear in the file.

• operational_mode (context)

• mim_ordered_delivery (context)

• ordered_delivery (receiver)

• use_transport_thread (receiver)

• use_late_join (receiver)

• ume_use_store (receiver)

8.4 Basic Authentication File 73

• umq_queue_participation (receiver)

• umq_queue_name (source)

8.4 Basic Authentication File

The Basic Authentication File specifies user and application records which contain client operational parameters.
You optionally specify this file in the umdsd Configuration File. If the Basic Authentication File is omitted, umdsd
does not perform Basic Authentication.

The format of the Basic Authentication File is xml. The <client> child elements of both the Application and
User elements are identical to those specified for the umdsd Configuration File. Values in a Basic Authentication
File override those in the umdsd Configuration File. The following example shows a Basic Authentication File:

<?xml version="1.0" encoding="UTF-8" ?>
<umds-authentication-basic="1.0">

<application name="NAME">
<client>

...
</client>

</application>
<user name="NAME" password="PASW">
<client>

...
</client>

</user>
</umds-authentication-basic>

8.4.1 UMDS application Element

Optional. Name of application to associate client operating parameters.

Attribute Values

name Name is limited to 31 characters.

8.4.2 UMDS user Element

Optional. Name and password for an application user. Client operating parameters can be set for individual users.

Attribute Values

name Name is limited to 31 characters.

password Password used to authenticate user. Password is limited to 31 characters and is stored in plain text.

74 UMDS Server Configuration

8.5 UMDS Configuration DTD

Here is the umdsd server's configuration DTD, used to validate the user's XML file:

<!ELEMENT umds-daemon (daemon?)>
<!ATTLIST umds-daemon

version (1.0) #REQUIRED
>
<!ELEMENT daemon (log?, uid?, gid?, pidfile?, lbm-license-file?, lbm-config?,

server, client, permissions?, authentication, web-monitor?, daemon-monitor?,
monitor?, topics?)>

<!ELEMENT log (#PCDATA)>
<!ATTLIST log

type (file | syslog | console) "console"
xml:space (default | preserve) "default"

>
<!ELEMENT uid (#PCDATA)>
<!ELEMENT gid (#PCDATA)>
<!ELEMENT pidfile (#PCDATA)>
<!ATTLIST pidfile

xml:space (default | preserve) "default"
>
<!ELEMENT lbm-license-file (#PCDATA)>
<!ATTLIST lbm-license-file

xml:space (default | preserve) "default"
>
<!ELEMENT lbm-config (#PCDATA)>
<!ATTLIST lbm-config

xml:space (default | preserve) "default"
>
<!ELEMENT server EMPTY>
<!ATTLIST server

bind-addr CDATA "*:14701"
num-workers CDATA "3"
msg-age-limit CDATA "1000"
msg-q-size-limit CDATA "(1024*1024)"
allow-shutdown-via-webmon CDATA "0"
request-timeout CDATA "10000"

>
<!ELEMENT client (server-list | server-ka-interval | client-ka-threshold |

client-ka-interval | server-ka-threshold | server-rcvbuf | server-sndbuf |
server-nodelay | client-rcvbuf | client-sndbuf | client-nodelay |
server-reconnect)* >

<!ELEMENT server-list (#PCDATA) >
<!ATTLIST server-list

client-write (yes | no) "yes"
>
<!ELEMENT server-ka-interval (#PCDATA) >
<!ATTLIST server-ka-interval

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT client-ka-threshold (#PCDATA) >
<!ATTLIST client-ka-threshold

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT client-ka-interval (#PCDATA) >

8.5 UMDS Configuration DTD 75

<!ATTLIST client-ka-interval
client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT server-ka-threshold (#PCDATA) >
<!ATTLIST server-ka-threshold

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT server-rcvbuf (#PCDATA) >
<!ATTLIST server-rcvbuf

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT server-sndbuf (#PCDATA) >
<!ATTLIST server-sndbuf

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT server-nodelay (#PCDATA) >
<!ATTLIST server-nodelay

client-write (yes | no) "yes"
>
<!ELEMENT client-rcvbuf (#PCDATA) >
<!ATTLIST client-rcvbuf

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT client-sndbuf (#PCDATA) >
<!ATTLIST client-sndbuf

client-write (yes | no | range) "yes"
min CDATA "0"
max CDATA "2147483648"

>
<!ELEMENT client-nodelay (#PCDATA) >
<!ATTLIST client-nodelay

client-write (yes | no) "yes"
>
<!ELEMENT server-reconnect (#PCDATA) >
<!ATTLIST server-reconnect

client-write (yes | no) "yes"
>
<!ELEMENT permissions (can-send?, can-stream?, can-reqresp?) >
<!ELEMENT can-send (#PCDATA) >
<!ELEMENT can-stream (#PCDATA) >
<!ELEMENT can-reqresp (#PCDATA) >
<!ELEMENT authentication (none?, basic?)>
<!ELEMENT none EMPTY>
<!ELEMENT basic (#PCDATA)>
<!ATTLIST basic

xml:space (default | preserve) "default"
>
<!ELEMENT web-monitor (#PCDATA)>
<!ELEMENT monitor (transport | format | application-id)*>
<!ATTLIST monitor

object (context | source | receiver) "context"
interval CDATA "5"

>

76 UMDS Server Configuration

<!ELEMENT topics (topic+)>
<!ELEMENT topic (umds-attributes?)>
<!ATTLIST topic pattern CDATA #REQUIRED

type (direct | PCRE | regexp) #IMPLIED
>
<!ELEMENT umds-attributes (option+)>
<!ELEMENT option EMPTY>
<!ATTLIST option type (lbm-receiver | lbm-wildcard-receiver | lbm-context |

lbm-source | umds-receiver | umds-source) #IMPLIED>
<!ATTLIST option name CDATA #REQUIRED>
<!ATTLIST option value CDATA #REQUIRED>
<!ELEMENT transport EMPTY>
<!ATTLIST transport

module (lbm | udp) "lbm"
options CDATA #IMPLIED

>
<!ELEMENT format EMPTY>
<!ATTLIST format

module (csv) "csv"
options CDATA #IMPLIED

>
<!ELEMENT application-id (#PCDATA)>
<!ATTLIST application-id

xml:space (default | preserve) "default"
>
<!ELEMENT daemon-monitor (publishing-interval?, remote-snapshot-request?,

remote-config-changes-request?, lbm-config?)>
<!ATTLIST daemon-monitor topic CDATA "umdsd.monitor">
<!ELEMENT publishing-interval (group+)>
<!ELEMENT group EMPTY>
<!ATTLIST group name (default | malloc-info-ivl | worker-details-ivl |

worker-summary-ivl) #REQUIRED>
<!ATTLIST group ivl CDATA #REQUIRED>
<!ELEMENT remote-snapshot-request EMPTY>
<!ATTLIST remote-snapshot-request allow (0 | 1) "0">
<!ELEMENT remote-config-changes-request EMPTY>
<!ATTLIST remote-config-changes-request allow (0 | 1) "0">

8.6 Example UMDS Configuration Files

This section presents the following example UMDS Server configuration files, which contain comments that explain
sections of the xml files.

8.6.1 Minimum Configuration File

The following sample UMDS Server configuration file contains the minimum configuration information required to
start the UMDS Server umdsd daemon. The daemon uses default values for the empty elements.

<?xml version="1.0" encoding="UTF-8"?>
<umds-daemon version="1.0">
<daemon>

<!-- This line is required. Defaults are: bind-addr="*:14701" num-workers="3" -->
<!-- msg-age-limit= "1000" msg-q-size-limit="1048576" -->
<server/>

8.6 Example UMDS Configuration Files 77

<!-- This line is required. -->
<client/>

<!-- This line is required. Default is "none" -->
<authentication/>

</daemon>
</umds-daemon>

8.6.2 Typical Configuration File

The second example is a typical starting point for most users. It relies on example.lic (which contains the Ultra
Messaging license information and is not shown), Sample UM Configuration File, and Sample Authentication File.
The UMDS Server generates the file named example.log.

<?xml version="1.0" encoding="UTF-8"?>
<umds-daemon version="1.0">
<daemon>

<!-- Write log messages to a file -->
<log type="file" xml:space="preserve">example.log</log>

<!-- License contains your Informatica license key -->
<!-- <lbm-license-file>example.lic</lbm-license-file> -->

<!-- Override LBM configuration parameters. -->
<lbm-config>example.lbmcfg</lbm-config>

<!-- Select a unique port and set the other parameters. -->
<server bind-addr="*:17500" num-workers="2" msg-age-limit= "7000"

msg-q-size-limit="4000000" />

<!-- Select reasonable defaults and prevent users from overriding. -->
<!-- (Specific users can override via the authentication file.) -->
<client>
<!-- Pick default server-list settings -->
<server-list/>

<!-- Server sends a keep alive msg every 5 seconds -->
<server-ka-interval client-write="no">5000</server-ka-interval>

<!-- Client times-out if no keep alive received in 12 seconds -->
<client-ka-threshold client-write="no">12000</client-ka-threshold>

<!-- Client sends a keep alive msg every 9 seconds -->
<client-ka-interval client-write="no">9000</client-ka-interval>

<!-- Server times-out if no keep alive received in 20 seconds -->
<server-ka-threshold client-write="no">20000</server-ka-threshold>

<!-- Set buffers to 1/2 megabyte -->
<server-rcvbuf client-write="no">524288</server-rcvbuf>
<server-sndbuf client-write="no">524288</server-sndbuf>
<!-- Do not change TCP nodelay from OS default -->
<server-nodelay client-write="no">0</server-nodelay>

78 UMDS Server Configuration

<!-- Set client side to same as server side -->
<client-rcvbuf client-write="no">524288</client-rcvbuf>
<client-sndbuf client-write="no">524288</client-sndbuf>
<client-nodelay client-write="no">0</client-nodelay>

<!-- Do not allow client to automatically reconnect to the server -->
<server-reconnect client-write="no">0</server-reconnect>

</client>

<!-- Block unathorized users. -->
<authentication>
<basic>authentication.xml</basic>

</authentication>

<!-- Web monitoring can be a valuable feature -->
<web-monitor>*:8080</web-monitor>

</daemon>
</umds-daemon>

8.6.3 Complete Configuration File

This sample UMDS Server configuration file contains values for all configuration elements.

<?xml version="1.0" encoding="UTF-8"?>
<umds-daemon version="1.0">
<daemon>

<!-- This line is optional. Default sends log information to the screen -->
<log type="file" xml:space="preserve">example.log</log>

<!-- These lines are optional. To set UID and GID, you need to be root -->
<!--

<uid>12345</uid>
<gid>23456</gid>

-->

<!-- This line is optional. If omitted, no PID file is created -->
<pidfile xml:space="preserve">example.pid</pidfile>

<!-- This line is optional; it is not the only way to designate a license. -->
<!-- <lbm-license-file>example.lic</lbm-license-file> -->

<!-- Sets Ultra Messaging configuration options for contexts used by UMDS. -->
<lbm-config>example.lbmcfg</lbm-config>

<!-- This line is required. -->
<server/>

<!-- All client attributes and their defaults appear below. -->
<!-- Attributes must be listed in this order -->
<client>
<server-list client-write="yes">0.0.0.0:14701</server-list>

<!-- Server sends keep alive at interval...client times out at threshold -->
<server-ka-interval client-write="range"

min="0" max="2147483648">2000</server-ka-interval>
<client-ka-threshold client-write="range"

min="0" max="2147483648">3000</client-ka-threshold>

8.6 Example UMDS Configuration Files 79

<!-- Client sends keep alive at interval...server times out at threshold -->
<client-ka-interval client-write="range"

min="0" max="2147483648">10000</client-ka-interval>
<server-ka-threshold client-write="range"

min="0" max="2147483648">11000</server-ka-threshold>

<!-- Zero means use the OS default settings -->
<server-rcvbuf client-write="range"

min="0" max="2147483648">0</server-rcvbuf>
<server-sndbuf client-write="range"

min="0" max="2147483648">0</server-sndbuf>

<!-- Zero means don’t enable TCP_NODELAY (improves network efficiency) -->
<server-nodelay client-write="yes">0</server-nodelay>

<!-- Zero means use the OS default settings -->
<client-rcvbuf client-write="range"

min="0" max="2147483648">0</client-rcvbuf>
<client-sndbuf client-write="range"

min="0" max="2147483648">0</client-sndbuf>

<!-- Zero means don’t enable TCP_NODELAY -->
<client-nodelay client-write="yes">0</client-nodelay>

<!-- Zero indicates that the client will not attempt to reconnect -->
<!-- to the server after connection is lost -->
<server-reconnect client-write="yes">0</server-reconnect>

</client>

<!-- This line is required. An empty element specifies the default "none" -->
<authentication/>

<!-- This line is optional. Web monitoring can be a valuable feature -->
<web-monitor>*:8080</web-monitor>

<!-- Enables and configures the UM transport statistics monitoring functionality. -->
<!-- See the Informatica Ultra Messaging Concepts Guide. -->
<monitor object="context" interval="5">
<transport module="lbm" options=""/>
<format module="csv" options=""/>
<application-id xml:space="preserve"></application-id>

</monitor>

<topics>
<topic pattern="BEW.xyz.*" type="PCRE">

<!-- This configures a message queue for a wildcard topic pattern. -->
<umds-attributes>

<option type="umds-receiver" name="receiver-queue-type"
value="topic" />

<option type="umds-receiver" name="topic-queue-size-limit"
value="200000" />

</umds-attributes>
</topic>
<topic pattern="BEW.xyz" type="direct">

<!-- This directs the topic, BEW.xyz, to use the default message queue. -->
<umds-attributes>

<option type="umds-receiver" name="receiver-queue-type"
value="default" />

<option type="umds-receiver" name="topic-queue-size-limit"
value="200000" />

80 UMDS Server Configuration

</umds-attributes>
</topic>
<topic pattern="wild.*" type="direct">

<!-- This is a direct match for a wildcard to set explicit wildcard and receiver attributes -->
<umds-attributes>

<option type="lbm-wildcard-receiver" name="resolver_no_source_linger_timeout"
value="30000"/>

<option type="lbm-receiver" name="use_late_join" value="0" />
<option type="umds-receiver" name="ignore-unique-receiver-attributes"

value="1" />
</umds-attributes>

</topic>
</topics>

</daemon>
</umds-daemon>

8.6.4 Sample UM Configuration File

The following sample UMS configuration file contains override values used by the UMDS Server for the specified
UMS options. You use the UMDS Element "<lbm-config>" to specify a file such as this.

context transport_tcp_receiver_socket_buffer 4000000
source transport_tcp_sender_socket_buffer 4000000

context transport_lbtrm_receiver_socket_buffer 4000000
context transport_lbtrm_source_socket_buffer 4000000

context transport_lbtru_receiver_socket_buffer 4000000
context transport_lbtru_source_socket_buffer 4000000

context mim_implicit_batching_minimum_length 8192

context transport_lbtrm_data_rate_limit 400000000
context transport_lbtrm_retransmit_rate_limit 40000000

8.6.5 Sample Authentication File

The following sample authentication file specifies settings for a master application, a set of users who can only
monitor prices, a second set of users who can post trades and monitor prices, and settings for an administrative
user. You specify this file with the UMDS Element "<authentication>".

<?xml version="1.0" encoding="UTF-8" ?>
<umds-authentication-basic version="1.0">

<application name="master_app">
<client>

<!-- Allow application "master_app" to reconnect and give ability to override this setting -->
<server-reconnect client-write="yes">0</server-reconnect>

</client>
</application>

8.6 Example UMDS Configuration Files 81

<!-- users allowed to only monitor prices...except when using master_app -->
<user name="john_doe" password="id1" />
<user name="jane_doe" password="id2" />
<user name="jim_doe" password="id3" />
<user name="jackie_doe" password="id4" />
<user name="john_smith" password="id5" />
<user name="jane_smith" password="id6" />
<user name="jim_smith" password="id7" />
<user name="jackie_smith" password="id8" />
<!-- This list could be 1,000’s of users -->

<!-- users allowed to monitor prices and post trades -->
<user name="rob_smith" password="priv1"> </user>
<user name="rose_smith" password="priv2"> </user>
<user name="rod_smith" password="priv3"> </user>
<!-- This list could be 100’s or even 1,000’s of users -->

<user name="patel" password="admin">
<client>

<!-- allow this user to override any setting -->
<server-ka-interval client-write="yes">5000</server-ka-interval>
<client-ka-threshold client-write="yes">12000</client-ka-threshold>
<client-ka-interval client-write="yes">9000</client-ka-interval>
<server-ka-threshold client-write="yes">20000</server-ka-threshold>
<server-rcvbuf client-write="yes">524288</server-rcvbuf>
<server-sndbuf client-write="yes">524288</server-sndbuf>
<server-nodelay client-write="yes">0</server-nodelay>
<client-rcvbuf client-write="yes">524288</client-rcvbuf>
<client-sndbuf client-write="yes">524288</client-sndbuf>
<client-nodelay client-write="yes">0</client-nodelay>
<server-reconnect client-write="yes">0</server-reconnect>

</client>

</user>
<!-- This list would probably be limited -->

</umds-authentication-basic>

82 UMDS Server Configuration

Chapter 9

UMDS Log Messages

Umds-10372-10: unable to create
umds cfg stat group: s

Failure when creating daemon
monitor umds config stats group

Verify all the attributes in the
daemon-monitor section of the xml
file are correct

Umds-10372-11: unable to create
memory stat group: s

Failure created while creating dae-
mon monitor malloc info stat group

Verify all the attributes in the
daemon-monitor section of the xml
file are correct

Umds-10372-12: unable to sched-
ule timer for gateway config stat
group call back, s

Error setting up UMDS config stat
group callback timer

Contact Informatica Support.

Umds-10372-13: unable to sched-
ule timer for umds config stat group
call back, s

Failure setting up gateway config
stat group callback timer

Contact Informatica Support.

Umds-10372-14: umdsd_publish←↩
_cfg: s

UM was unable to publish dmon
message.

Contact Informatica Support.

Umds-10372-15: error trying to
publish config record

Failure publishing config record Contact Informatica Support.

Umds-10372-16: error reading
memory info record

Error attempting to read daemon
stats memory info record

This is an information message
only.

Umds-10372-17: unable to sched-
ule timer for memory stat group
callback: s

Failure creating memory stat group
callback timer

Contact Informatica Support.

Umds-10372-18: error reading
malloc info record

Error attempting to read daemon
stats malloc info record

Contact Informatica Support.

Umds-10372-19: unable to sched-
ule timer for memory stat group call
back, s

failure scheduling timer for memory
stat group callback timer

Contact Informatica Support.

Umds-10372-1: pointer to stats_←↩
info is NULL: s

pointer to stats_info is NULL Contact Informatica Support.

Umds-10372-20: Error reading
memory record

Error reading memory record Contact Informatica Support.

Umds-10372-21: worker id number
is out of range

Worker number is out of range Contact Informatica Support.

Umds-10372-22: worker_list
pointer is NULL

worker_list pointer is NULL Contact Informatica Support.

Umds-10372-23: stats_info pointer
is NULL

stats_info pointer is NULL Contact Informatica Support.

Umds-10372-24: unable to sched-
ule timer for gateway config stat
group call back, s

Error setting up UMDS config stat
group callback timer

Contact Informatica Support.

84 UMDS Log Messages

Umds-10372-25: unable to sched-
ule timer for gateway config stat
group call back, s

Error setting up UMDS config stat
group callback timer

Contact Informatica Support.

Umds-10372-26: No workers de-
fined in umdsd_dstat_allworker_←↩
stat_grp_create

No workers defined Verify that the number of workers
defined in the xml file is > 0

Umds-10372-27: error initializing a
worker stat object

Error initializing a worker stat object Contact Informatica Support.

Umds-10372-28: unable to sched-
ule timer for worker stat group call
back, s

failure scheduling timer for worker
stat group callback timer

Contact Informatica Support.

Umds-10372-29: unable to sched-
ule timer for worker stat group call
back, s

failure scheduling timer for worker
stat group callback timer

Contact Informatica Support.

Umds-10372-2: unable to create
context attributes: s

Failure while creating context at-
tributes

Contact Informatica Support.

Umds-10372-30: Worker ID num-
ber d is out of range

Worker ID is out of range Contact Informatica Support.

Umds-10372-31: error reading
worker stats

Failure reading worker stats This is an information message
only

Umds-10372-32: connection sta-
tus read failed

Failure reading connection stats This is an information message
only

Umds-10372-33: umdsd_dstat_←↩
send_thread_main: Unable to pub-
lish message of type d: s

UM was unable to publish dmon
message.

Contact Informatica Support.

Umds-10372-34: invalid UMDS
dmon message [s] from s [s]

UM dmon received an invalid/cor-
rupted immediate message.

Verify that messages sent on the
request port are valid.

Umds-10372-35: UMDS dmon
failed to send error response [s]

UM could not respond to a dmon
immediate message.

Contact Informatica Support.

Umds-10372-36: UMDS dmon
failed to send success response [s]

UM could not respond to a dmon
immediate message.

Contact Informatica Support.

Umds-10372-37: UMDS dmon re-
ceived control message exceeding
255 bytes

UM daemon monitor received an
invalid control message exceeding
255 bytes.

Verify that messages sent on the
control channel are <= 255 bytes.

Umds-10372-38: UMDS dmon
failed to send error response [s]

UM could not respond to a dmon
immediate message.

Contact Informatica Support.

Umds-10372-39: UMDS received
unknown lbm_msg_t type x [s][s]

UM daemon monitor received un-
known lbm_msg_t type.

Stop the source of unknown mes-
sages to the daemon monitor.

Umds-10372-3: lbmaux_context←↩
_attr_setopt_from_file() failed, s

Failure while setting up extra config
opts for UMDS daemon monitor

Check attributes in "lbm-config"
config file specified in the "daemon-
monitor" section of the UMDS's xml
file

Umds-10372-40: error from
umdsd_dstat_mallinfo_stat_grp_←↩
snapshot()

Failure reading malloc info stat
group record

Contact Informatica Support.

Umds-10372-41: error from
umdsd_cfg_dstat_stat_grp_←↩
snapshot()

Failure reading config info stat
group record

Verify that the xml file has not been
removed since starting the dae-
mon.

Umds-10372-42: error from
umdsd_dstat_workers_snapshot()

Failure reading worker stat group
record

This is an information message
only.

Umds-10372-43: error from
umdsd_dstat_memory_stat_grp←↩
_snapshot()

Failure reading malloc info stat
group record

Contact Informatica Support.

85

Umds-10372-44: error from
umdsd_dstat_cfg_stat_grp_←↩
snapshot()

Failure reading config info stat
group record

This is an information message
only

Umds-10372-45: No connection ID
specified for connection snapshot

No connection ID specified for the
connections snapshot

Verify that a valid connection ID
was specified

Umds-10372-46: error from
umdsd_dstat_conn_snapshot()

Failure reading connection stat
group record

This is an information only mes-
sage.

Umds-10372-47: bad worker ID re-
turned from umdsd_getworkerID←↩
_fromstring()

The worker ID is invalid Verify that the worker ID is within
the range of Workers specified U←↩
MDS XML file

Umds-10372-48: error from
umdsd_dstat_workers_snapshot()

Failure reading worker stat group
record

This is an information only mes-
sage

Umds-10372-49: error returned
from umdsd_dstat_setinterval()

Failure changing the publishing in-
terval for config stat group

Contact Informatica Support.

Umds-10372-4: lbm_context_attr←↩
_setopt() failed, s

Failure setting up attributes for dae-
mon monitor remote control han-
dler

Contact Informatica Support.

Umds-10372-50: error returned
from umdsd_dstat_setinterval()

Failure changing the publishing in-
terval for mallinfo stat group

Contact Informatica Support.

Umds-10372-51: bad worker ID re-
turned from umdsd_getworkerID←↩
_fromstring()

The worker ID is invalid Verify that the worker ID is within
the range of workers specified in
the UMDS XML file

Umds-10372-52: error returned
from umdsd_dstat_setinterval()

Failure changing the publishing in-
terval for worksum stat group

Contact Informatica Support.

Umds-10372-53: invalid command
s

Attempt to obtain snapshot of
record for invalid stat group

Contact Informatica Support.

Umds-10372-54: unable to sched-
ule timer

Failure to schedule callback timer Contact Informatica Support.

Umds-10372-55: Worker ID d is out
of range

Worker ID out of range Contact Informatica Support.

Umds-10372-56: Unable to start
daemon stats monitor

unable to start daemon stats moni-
tor for UMDS

Verify all daemon monitor related
attributes are correct in xml and
config files

Umds-10372-57: NULL webmon
pointer

NULL webmon pointer Contact Informatica Support.

Umds-10372-58: monitor section
lbm-config must have a value

Expecting a string that contains the
path to the config file.

Please specify a string that con-
tains the path to the config file.

Umds-10372-59: monitor section
xml-config must have a value

Expecting a string that contains the
path to the config file.

Please specify a string that con-
tains the path to the config file.

Umds-10372-5: unable to create
context attributes: s

Failure creating lbm context for
daemon stats monitor

Contact Informatica Support.

Umds-10372-60: lbmaux_src_←↩
topic_attr_setopt_from_file() failed,
s

Failure while setting up extra con-
fig opts for UMDS daemon monitor
source object

Check attributes in "lbm-config"
config file specified in the "daemon-
monitor" section of the UMDS's xml
file

Umds-10372-6: unable to create
src topic attributes: s

Error creating source attributes for
daemon stats monitor

Contact Informatica Support.

Umds-10372-7: unable to alloc src
topic: s

Error allocating src topic for dae-
mon stats monitor

Contact Informatica Support.

Umds-10372-8: unable to create
src: s

Error creating source for daemon
stats monitor

Contact Informatica Support.

Umds-10372-9: unable to allworker
stat group

Failure returned while creating all-
worker stats group

Verify all the attributes in the
daemon-monitor section of the xml
file are correct

86 UMDS Log Messages

Umds-10633-1: umdsd_main←↩
: Daemon setup failed. Exiting
umdsd.

There was a failure trying to setup
the UMDS Daemon. The daemon
cannot continue and exits.

Check previous errors and correct
appropriately.

Umds-10759-1: Unable to create
daemon stats sender thread: s

Failure to create sender thread for
daemon stats

Contact Informatica Support.

Umds-10759-2: umdsd_dstat_←↩
send_thread_create() error creat-
ing TL queue: s

Unable to create two-lock queue Contact Informatica Support.

Umds-10759-3: umdsd_dstat_←↩
send_thread_main(): Error while
dequeueing

Error while dequeueing from TL
queue

Contact Informatica Support.

Umds-4892-1: Attempt to set use←↩
_late_join failed for attrs p err(d)

ERROR: Attempt to turn use_late←↩
_join ON in the rcvr attrs failed.

Umds-4892-2: Attempt to set
ume_use_store failed for attrs p
err(d)

ERROR: Attempt to turn ume←↩
_use_store ON in the rcvr attrs
failed.

Umds-4892-3: Error creating Topic
Queue: No Hash function found.

FATAL: A hash function is required
to create a Topic Queue. This
is set from the resolver_string_←↩
hash_function in the topic queue
map init function.

Check that the Hash function for
Topic Resolution has been set cor-
rectly.

Umds-4892-4: Attempt to get
ume_session_id failed or session
id is zero: lu

ERROR: Trying to create a persis-
tent receiver but the session id is
either zero, or reading the attribute
failed.

Check that session ID sent by the
UMDS client is not zero

Umds-4892-5: Attempt to set
ume_explicit_ack_only failed for at-
trs p err(d)

ERROR: The attempt to set ume←↩
_explicit_ack_only (to ON) failed
while creating a persistent receiver.

Umds-5688-5609: umdsd_←↩
worker_api_mim_loss_advisory:
worker(p<d>) not running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

Umds-5688-5617: PCRE exec
[s][s][d] error d

An error occurred while trying to
match the pattern listed in the first
bracketed expression. The topic
string attempting to be matched
is supplied as the second brack-
eted expression, and its length is
supplied as the third bracketed ex-
pression. The error that occurred
was internal to PCRE, and the er-
ror code is listed in the PCRE
documentation for return values of
pcre_exec.

Umds-6033-635: Ultra Messaging
UMDS server version " UMDS_V←↩
ERSION " Build s, s (s)

Reports the version of UMDS, build
time and date, and version of the
underlying UM library.

No resolution, this in formation is
provided for audit and debugging
purposes.

Umds-6033-637: umdsd_main←↩
: webmon interface not found (s)

The interface specified for the web
monitor could not be found.

Review the setting in the <web-
monitor> tag in the server's xml
configuration file.

Umds-6033-638: umdsd_main←↩
: client interface not found (s)

The interface specified for the client
connections could not be found.

Review the setting for the bind-addr
attribute in the <server> tag in the
server's xml configuration file.

87

Umds-6033-641: umdsd_main: Er-
ror opening pidfile 's' (s)

Opening (creating) the pid file
failed.

The error message includes the OS
error message associated with the
open attempt. Check that files can
be created in the target directory
and that the device is not full.

Umds-6033-656: umdsd_worker←↩
_cont_sending_cntl: sendb header
error (s)

Sending a UMDS Control message
to the client resulted in an UM error.

A description of the UM error is in-
cluded in the message text.

Umds-6033-657: umdsd_worker←↩
_cont_sending_data: sendb data
error (s)

Sending on the client socket en-
countered an error.

Included in the message text is a
description of the particular error
encountered.

Umds-6033-664: umdsd_←↩
webmon_api_create: failed to init
web server (ip=s, port=s)

The web monitor subsystem failed
to start.

The web server library will have re-
ported additional details to the con-
sole.

Umds-6033-685: s: worker p<d>
connection p<d> invalid conn_←↩
state (d)

The indicated state for the client
connection is inappropriate for the
requested operation.

The client connection will be
deleted and if configured, the client
will retry. If this error repeats,
call Informatica support with all
relevant server and client log files.

Umds-6033-705: umdsd_worker←↩
_internal_cmd_del_conn: worker
p<d> connection p<d> (s:u)
deleted, bytes_in=lld, bytes_←↩
out=lld

The indicated connection has been
deleted

No resolution is required.

Umds-6033-706: umdsd_←↩
worker_internal_cmd_mim_loss←↩
_advisory: worker(p<d>) not
running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

Umds-6033-708: umdsd_worker←↩
_keepalive_tmr_cb: worker(p<d>)
not running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

Umds-6033-709: umdsd_worker←↩
_keepalive_tmr_cb: send_←↩
period=d, disconnecting worker
p<d> connection p<d>

The keep alive state has been PE←↩
NDING for too long; it is being dis-
connected as unresponsive.

This can occur if the client appli-
cation is spending long periods of
time in any of the library call back
functions and preventing the client
sid socket from being read.

Umds-6033-710: umdsd_worker←↩
_keepalive_tmr_cb: rcv_period=d,
disconnecting worker p<d> con-
nection p<d>

The keep alive timer has expired for
the indicated worker connection; it
is being disconnected as unrespon-
sive.

This can occur if the keep alive
threshold and intervals are not ap-
propriate for the connection or if the
client application is spending long
periods of time in any of the library
call back functions.

Umds-6033-711: umdsd_worker←↩
_api_conn_add: worker(p<d>)
not running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

Umds-6033-712: umdsd_worker←↩
_api_conn_add: worker p<d>
waiting to add new connection

The client request to add a connec-
tion to this worker is still pending.

The main UM context thread is un-
usually busy at this time but will
eventually serve this request.

Umds-6033-715: umdsd_worker←↩
_api_delete: quit skipped (ctx=p,
thrd_running=d)

The context or worker thread has
already shutdown

Shutdown is already in progress

88 UMDS Log Messages

Umds-6033-716: umdsd_worker←↩
_api_delete: error joining worker
(p<d>) thread (d)

An error occurred joining the
worker thread during shutdown.

It is likely this is a result of multiple
shutdown requests. However if this
error is seen on multiple occasions,
please report it along with any ap-
plicable configuration and log files
to GCS.

Umds-8218-1: s: error: 's', appl_←↩
name='s'

The UMDS client failed to authenti-
cate.

Check authentication credentials
and server auth configuration.

Umds-8366-1: Unknown receiver
type deleting umdsd_rcv <p>

An unknown receiver type was en-
countered while deleting a UMDS
receiver object.

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

Umds-8366-2: failed to free umds
unique receiver p

The UMDS server (umdsd) en-
countered an error deleting the
UM receiver associated with the
umds_rcv object

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

Umds-8366-3: failed to free umds
wc receiver p

The UMDS server (umdsd) en-
countered an error deleting the UM
wildcard receiver associated with
the umds_rcv object

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

Umds-8366-4: Unknown receiver
type deleting umdsd_rcv <p>

An unknown receiver type was en-
countered while freeing a UMDS
receiver object.

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

Umds-8366-5: Unknown receiver
type deleting umdsd_rcv <p>

An unknown receiver type was en-
countered while deleting a UMDS
receiver object.

This is an internal error and should
be reported to customer support;
please include all appropriate ver-
sion numbers (UM and UMDS), as-
sociated configuration files and any
other pertinent details.

Umds-8406-1: umdsd_stats←↩
_queue_internal_cmd_cb: src
create before delete. is <d>

The webmon statistics subsystem
got a source create for an already
existing source id (the intended
src structure was not NULL in the
source array).

It is possible for creation and dele-
tion to happen out of order.

Umds-8406-2: umdsd_stats←↩
_queue_internal_cmd_cb: src
delete before create. id <d>

The webmon statistics subsystem
got a source delete for an already
deleted source id (the intended src
structure was NULL in the source
array).

It is possible for creation and dele-
tion to happen out of order.

Umds-8406-3: umdsd_stats←↩
_queue_internal_cmd_cb: rcv
create before delete. id <d>

The webmon statistics subsystem
got a receiver create for an already
existing receiver id (the intended
rcv structure was not NULL in the
receiver array).

It is possible for creation and dele-
tion to happen out of order.

89

Umds-8406-4: umdsd_stats←↩
_queue_internal_cmd_cb: rcv
delete before create. id <d>

The webmon statistics subsystem
got a receiver delete for an already
deleted source id (the intended rcv
structure was NULL in the receiver
array).

It is possible for creation and dele-
tion to happen out of order.

Umds-8408-1: umdsd_worker_←↩
api_delete: waiting for worker
p<d> to quit

The request to remove a worker is
still pending.

The worker thread is unusually
busy at this time but will eventually
serve this request.

Umds-8447-1: umdsd_worker_←↩
handle_blocked_msg: Parse Error

The client connection parser en-
countered an unrecoverable error.

This is an internal error, if it recurs,
please report it along with any rela-
vant log files to GCS.

Umds-8499-1: LBM error while
sending request: s

LBM returned an unhandled error
code.

The LBM error code is given in the
log message. Please refer to the
LBM error code.

Umds-8499-2: LBM error while
sending message: s

LBM returned an unhandled error
code.

The LBM error code is given in the
log message. Please refer to the
LBM error code.

Umds-8499-3: LBM error while
sending response: s

LBM returned an unhandled error
code.

The LBM error code is given in the
log message. Please refer to the
LBM error code.

Umds-8519-1: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage before the umdsd server has
created the corresponding source.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

Umds-8519-2: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage before the umdsd server has
created the corresponding source.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

Umds-8519-3: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage before the umdsd server has
created the corresponding source.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

Umds-8542-1: umdsd_worker_←↩
client_src_create: transport <s>
not allowed, using TCP instead

The UMDS server configuration file
specified the use of LBT-SMX as
a transport type, which is not sup-
ported. The server will use TCP in-
stead.

Change the server configuration
file to specify one of the supported
transport types.

Umds-8544-11: Error creating
source: <d>: s

An error occurred creating the re-
quest source.

The text of the warning will provide
additional information for the reso-
lution of the problem.

Umds-8544-1: Error creating
source: <d>: s

An error occurred creating the re-
quest source.

The text of the warning will provide
additional information for the reso-
lution of the problem.

Umds-8697-1: umdsd_worker_←↩
api_create: Error creating R←↩
O-Contex while creating worker
p<d>

Creating the reactor only context
for a worker failed.

This fatal error is usually due to
specifying too many workers.

Umds-8697-2: umdsd_worker_←↩
api_create: Error creating thread
while creating worker p<d>

Creating the worker application
thread failed.

This fatal error is usually due to
specifying too many workers.

Umds-8753-1: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage with a wrong or garbage tidx;
either the client is buggy or t he
server is receiving garbage data.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

90 UMDS Log Messages

Umds-8753-2: Attempt to send
without a valid source created←↩
: conn p

The UMDS client has sent a mes-
sage with a wrong or garbage tidx;
either the client is buggy or the
server is receiving garbage data.

This will result in the loss of the
client message. Please notify G←↩
CS with all suitable logs (client and
server).

Umds-8757-1: s: malformed con-
nect capabilities

The UMDS client sent a malformed
capabilities string.

Make sure the client and server
versions are compatible and that
data from another application isn't
being erroneously sent to the UM←↩
DS server.

Umds-8796-100: Error creating
umdsd_rcv_topic: <d>: s

An internal error occurred while
creating a receiver in the UMDS
server.

Contact Informatica support.

Umds-8894-1: umdsd_worker←↩
_internal_cmd_add_sock←↩
: worker(p<d>) not running

The indicated worker is not in the
RUNNING state

Contact Informatica support with all
relevant log files

Umds-8894-2: umdsd_worker_←↩
internal_cmd_add_sock: worker
p<d> connection p<d> (s:u) cre-
ated

Notification that a new client con-
nection has been added.

No resolution is required.

Umds-8896-1: umdsd_webmon_←↩
api_create: failed to init web server
(ip=s, port=s)

The web monitor subsystem failed
to start.

The web server library will have re-
ported additional details to the con-
sole.

Umds-8909-1: UMDS Permissions
are no longer applied

Permissions are no longer sup-
ported in the UMDS server XML
configuration file.

Remove any permissions sections
from the server's XML config file.

Umds-8909-2: get_application←↩
: UMDS Permissions are no longer
applied

Permissions are no longer sup-
ported in the UMDS server XML
configuration file.

Remove any permissions sections
from the server's XML config file.

Umds-8909-3: get_user: UMDS
Permissions are no longer applied

Permissions are no longer sup-
ported in the UMDS server XML
configuration file.

Remove any permissions sections
from the server's XML config file.

Umds-8947-1: Error creating
umdsd_rcv_topic: <d>: s

An underlying regular receiver for
a topic could not be created for a
wildcard receiver.

This would usually imply an out
of memory problem or some other
internal error; contact Informatica
support.

	Introduction
	UMDS Overview
	UMDS Architecture

	UMDS Client
	UMDS API
	Server Connection
	Authenticating Applications and Users
	Assigning Different Client Settings to Your Application
	Application Name

	Receiving
	Sending
	Request and Response Capability
	Using UMDS Late Join
	Late Join UMDS Sources

	UMDS Example Client Applications
	Java Example Applications
	umdsreceive.java
	umdssend.java
	umdsresponse.java
	umdsrequest.java

	.NET Example Applications
	umdssend.cs
	umdsreceive.cs
	umdsresponse.cs
	umdsrequest.cs

	UMDS Server
	User Authentication
	Client Application Parameters
	Keep Alive Timers During Idle Periods
	Message Queue
	Per-Topic Message Queues
	Configuring Message Queue Size
	Approximating Per-Queue Memory Use
	Approximating the Number of Messages Per Queue
	Calculating Optimal Queue Size Limits

	Worker Configuration Guidelines
	Increasing Number of UMDS Workers
	Workers CPU Cores and Performance
	Workers Versus Client Load

	Umdsd Man Page
	Daemon Statistics
	Daemon Statistics Structures
	Daemon Statistics Binary Data
	Daemon Statistics Versioning
	Daemon Statistics Requests
	UMDS Daemon Statistics Structures
	UMDS Daemon Statistics Byte Swapping
	UMDS Daemon Statistics String Buffers
	UMDS Daemon Statistics Configuration
	UMDS Daemon Statistics Requests
	UMDS Daemon Statistics Example Files

	UMDS Web Monitor
	Main Menu
	List Current Connections
	Connection Details
	Current Server Configuration File
	Dump Current Memory Allocation
	Quit Server

	UMDS Server Configuration
	umdsd Configuration File
	UMDS Element `¨<umds-daemon>`¨
	UMDS Element `¨<daemon>`¨
	UMDS Element `¨<topics>`¨
	UMDS Element `¨<topic>`¨
	UMDS Element `¨<umds-attributes>`¨
	UMDS Element `¨<option>`¨
	UMDS Element `¨<monitor>`¨
	UMDS Element `¨<application-id>`¨
	UMDS Element `¨<format>`¨
	UMDS Element `¨<transport>`¨
	UMDS Element `¨<daemon-monitor>`¨
	UMDS Element `¨<lbm-config>`¨
	UMDS Element `¨<remote-config-changes-request>`¨
	UMDS Element `¨<remote-snapshot-request>`¨
	UMDS Element `¨<publishing-interval>`¨
	UMDS Element `¨<group>`¨
	UMDS Element `¨<web-monitor>`¨
	UMDS Element `¨<authentication>`¨
	UMDS Element `¨<basic>`¨
	UMDS Element `¨<none>`¨
	UMDS Element `¨<permissions>`¨
	UMDS Element `¨<can-reqresp>`¨
	UMDS Element `¨<can-stream>`¨
	UMDS Element `¨<can-send>`¨
	UMDS Element `¨<client>`¨
	UMDS Element `¨<server-reconnect>`¨
	UMDS Element `¨<client-nodelay>`¨
	UMDS Element `¨<client-sndbuf>`¨
	UMDS Element `¨<client-rcvbuf>`¨
	UMDS Element `¨<server-nodelay>`¨
	UMDS Element `¨<server-sndbuf>`¨
	UMDS Element `¨<server-rcvbuf>`¨
	UMDS Element `¨<server-ka-threshold>`¨
	UMDS Element `¨<client-ka-interval>`¨
	UMDS Element `¨<client-ka-threshold>`¨
	UMDS Element `¨<server-ka-interval>`¨
	UMDS Element `¨<server-list>`¨
	UMDS Element `¨<server>`¨
	UMDS Element `¨<lbm-license-file>`¨
	UMDS Element `¨<pidfile>`¨
	UMDS Element `¨<gid>`¨
	UMDS Element `¨<uid>`¨
	UMDS Element `¨<log>`¨
	UMDS Topic Options

	UM License File
	UM Configuration File
	Basic Authentication File
	UMDS application Element
	UMDS user Element

	UMDS Configuration DTD
	Example UMDS Configuration Files
	Minimum Configuration File
	Typical Configuration File
	Complete Configuration File
	Sample UM Configuration File
	Sample Authentication File

	UMDS Log Messages

